
Robust Leasing for Virtual Infrastructure

Aydan Yumerefendi, David Irwin, Varun Marupadi, Matt Sayler, Laura Grit, and Jeffrey Chase
Duke University

{aydan,irwin,varun,sayler,grit,chase}@cs.duke.edu

Abstract
Lease contracts are a powerful and general abstrac-

tion for negotiating and arbitrating control of shared net-
worked resources. This paper addresses failure handling
and recovery for leasing protocols and services. We
present the design and implementation of a robust co-
operative leasing service and illustrate its use for man-
aging shared virtual clusters. The state update model is
based on interacting recoverable state machines, an alter-
native to distributed transactions in which each partici-
pant recovers from a local log and then completes a self-
synchronization protocol with other participants to restore
each lease to a globally consistent state. We explore the
impact of hidden component dependencies in virtual in-
frastructure, and the role of the leasing core in respond-
ing to failures involving plug-in extensions: policy mod-
ules and configuration handlers for hosted services and
resource components.

1 Introduction
A distributed resource leasing system provides the means
to procure computing resources from a collection of re-
source providers to be used by end users or application
services. The resource leasing model has the potential to
improve resource management and provide the means to
share and use resources more efficiently. The emergence
of a number of systems [5, 3, 12, 21, 2, 24, 19, 20, 26]
with varying support for resource leasing is an attestation
of the potential and popularity of the approach.

Resource leasing involves the cooperation of a number
of servers, which may often be managed and controlled
by different entities. Each server may fail independently
and its failures may affect other servers and services. A
robust resource leasing system must be able to deal with
and tolerate failures of individual servers. In this paper
we examine the problem of failure handling and recovery
for resource leasing protocols and servers.

Our approach views lease management systems as
coalitions of cooperating interacting state machines. Each
state machine has well-defined states and rules. The state
machines do not execute in isolation but rather interact
with each other. The successful interaction of individ-
ual state machines results in resources being allocated to
end users and application services. The distributed state
machine can be considered as consisting of a fixedcore,

which describes the basic rules for interactions among in-
dividual machines, and a number ofpluginextensions in-
tended to accommodate different allocation algorithms or
new resource types. Since individual state machines may
represent self-interested actors with their own incentives,
cooperation and interaction among state machines is lim-
ited.

This paper presents a general approach to maintaining
consistency in a distributed state machine. We describe a
failure and recovery model, which allows individual state
machines to restart their actions after a crash and to self-
stabilize [9] into a consistent state with the rest of the dis-
tributed state machine. The approach avoids the need for
distributed transactions [8, 22, 28] but offers looser con-
sistency guaranteed compared to transactional solutions.
Others [16] have proposed similar solutions in the context
of systems with “infinite scalability”. The primary driv-
ing force in our case is the need for robustness in a dis-
tributed composition of loosely coupled state machines,
where each machine is responsible for its own recovery.

We then show how to apply this general to the prob-
lem of robust resource leasing. Our implementation is
based on the Shirako resource leasing toolkit [17] and
the SHARP resource peering model [11]. We explore the
specific requirements of resource leasing systems, and the
challenges of plugin extensions. The paper chronicles our
experience integrating and verifying recovery into Shi-
rako and describes the tools we built to verify our imple-
mentation and the behavior plugin extensions.

This paper is organized as follows. Section 2 presents
an overview of our context and approach. Section 3 de-
scribes the execution, failure, and recovery model of self-
stabilising interacting state machines. We illustrate how
the model applies to resource leasing in Section 4. Sec-
tion 5 narrates our experience implementing and verifying
lease recovery techniques. We position our work relative
to others in Section 6 and Section 7 concludes.

2 Overview
Resource leases are a powerful abstraction for nego-
tiating and arbitrating control over shared network re-
sources [11, 17]. A lease is a contract among several
actors in a networked system that guarantees access to a
number of units of a given resource over a period of time.
We describe leases in more detail in Section 4.



The leasing abstraction applies to any set of computing
resources that is “virtualized” in the sense that it is par-
titionable as a measured quantity. For example, an allo-
cated instance of a resource might comprise some amount
of CPU power, memory, storage capability, and/or net-
work capability, measured by some standard units, and
with attributes to describe resources and the degree of iso-
lation.

Virtualized infrastructure exports control points to par-
tition and configure the underlying physical resources.
For servers, virtual machine technology expands the
range of privileged control options: the leading VM sys-
tems support live migration, checkpoint/restart, and fine-
grained allocation of server resources as a measured and
metered quantity (e.g., Xen [4, 7], VMware [30]).

Each server oractor in a leasing system maintains a
local store of lease objects representing the state of the
contracts it has entered into. The local lease store al-
lows each participant to track its resource holdings and
commitments independently, receive notifications about
changes to the state of its leases, and to renew or cancel a
lease contract or renegotiate its terms, as permitted by the
particular contract. The leasing system may be thought of
as a distributed lease manager: it defines a set of protocols
and conventions for actors to communicate to negotiate
and coordinate their lease contracts, and to invoke exter-
nal programs to configure the leased resources and deploy
guest applications or software environments on them.

System crashes, misbehaving extensions, and infras-
tructure failures may result in contract violations, and our
goal is to design a robust resource leasing system that
can effectively deal with such problems. In particular, the
leasing system must be able to handle transient failures of
actors or other elements in the leasing system with mini-
mal interruption of service for lease holders. In this con-
text, these techniques complement the standard mecha-
nism to reclaim resources unilaterally on lease expiration,
which is the “last line of defense” to protect availability
of resources if a lease holder fails or communication is
interrupted for an extended period [11].

2.1 Resource Leases
In this paper we focus on the SHARP resource leasing
model [11] and our implementation of that model in the
Shirako framework for distributed resource leasing [17].
Shirako consists of a compactleasing corethat con-
trols the workflow of obtaining and managing leased re-
sources. The core specifies the general rules for message
exchanges among the various servers that are involved in
the distributed leasing process.

In addition, there are upcall interfaces for user-supplied
plugin extension modules. Some extensions oversee indi-
vidual resource configuration actions and status monitor-
ing. Pluggablepolicy controllersmanage policy-related
decisions, for example, how to arbitrate among multiple

requests. The behavior of the overall system results from
the coordinated interactions among these elements.

This complex collection of interconnected components
is vulnerable to failures or deviations of its individual el-
ements. Viewing these elements as interacting state ma-
chines permits us to reason rigorously about failures and
recovery. We based all aspects of the recovery architec-
ture on a common model for recoverable cooperating state
machines.

2.2 Crash Recovery
An essential element of robust leases is the durability and
consistency of the lease manager. Resource leasing has
some important requirements and properties that affect
crash recovery.

Preserve service. Recovering from crash failures
should strive to minimize violations of existing contracts:
e.g., if some resources have already been allocated and
the lease term has not expired, the end user should not
observe any disruption of service1. Similarly, cross-actor
state transitions should not fail immediately if one actor
is currently unavailable. Since leases are valid for a pe-
riod of time, all efforts must be taken to avoid declaring a
failure until no other option is possible.

Local recovery. When a failure occurs it must be pos-
sible to recover locally using local information. Since
the other members of the distributed state machine may
be currently unavailable, recovery must limit the depen-
dency on the availability of other actors. While it may be
impossible to recover fully using only local information,
local recovery should strive to recreate sufficient state to
enable the actor to continue performing its role: for ex-
ample, a failed broker must be able to continue issuing
tickets (without violating prior contracts), despite the bro-
ker being unable to contact a service manager during the
recovery phase.

Eventual consistency. Transitions in the lease state
machine generally occur infrequently relative to the lease
term; transitions mostly occur during initial setup and
lease extensions. Therefore, some inconsistency in the
distributed state machine is tolerable: individual actors
may have inconsistent views of the the global state ma-
chine, but such inconsistencies are less critical. Thus,
eventual consistency is appropriate for a resource lease:
some temporary inconsistency can be exposed without
compromising the system. Since leases expire over time,
any inconsistency is guaranteed to be resolved; all leased
resources are eventually released and can be reallocated.

Loose coupling. In general, the actors involved with a
single lease are independently managed, autonomous, and
self-interested. Therefore, recovery must assume as little
as possible about the shared infrastructure among individ-
ual actors. This requirement makes distributed transac-

1Assuming that no global power failure or disaster occurred at the
site or the service manager.



tions problematic as they depend on shared transaction co-
ordinators and introduce additional dependencies among
actors.

2.3 Robust Extensions
A robust leasing system must ensure that not only the leas-
ing core, but also all extensions to the core behave as ex-
pected and do not violate the contractual agreements be-
tween the various actors involved in the leasing process.
In a resource leasing system individual actors can develop
their own extensions or use extensions supplied by third
parties. Such extensions may have bugs or they can ex-
hibit Byzantine failures. Even if the leasing core operates
correctly, a single misbehaving extension can affect the
correctness of the whole system.

At a low level, a policy extension is responsible for
triggering state transitions of the local state machine for
each lease managed by the actor. The rules for when and
what transition to trigger are specific to each policy and
the particular resource management protocol that it im-
plements: e.g., first-come, first-served or earliest dead-
line first. These rules reflect the contract expressed by the
lease and it is expected that each local state machine fol-
lows its specification correctly; a resource lease functions
correctly, only if each of the involved actors cooperate and
function correctly.

We deal with misbehaving policy extensions by iden-
tifying and enforcing a set oflease invariants. A lease
invariant is a property of the resource leasing model and
the resource leasing system, which is independent of the
particular implementation of plugin extensions; every cor-
rect plugin extension must not violate any lease invariants.
Lease invariants are essential for ensuring some minimal
guarantees about the correctness of plugin extensions.

In the rest of this paper we are going to examine the
problem of self-stabilizing state machines in a general
context. Next we present how that model applies to re-
source leasing systems. Implementing recovery is a chal-
lenging and lengthy process and we will describe our ex-
perience and the tools we had to build to make our job
easier.

3 Interacting Recoverable State Machines
Consider a system modeled as a graph or network of in-
terconnected processes or components, each of which is
a finite state machine (FSM), as discussed in more de-
tail below. The state space of the complete system is the
cross product of the states of its components. Some of
the states in this space are deemed as desirableconsis-
tent states. Some of the states are reachable after some
combination of faults; theserecovery statesmay include
some states that are not in the consistent set. The sys-
tem isself-stabilizingif it converges from any recovery
state to a consistent state in a finite number of message
exchanges, and remains in a consistent state until the next

fault occurs.
We define a class of simple self-stabilizing networks of

cooperating state machines as the basis for a general exe-
cution and recovery model for loosely coupled networked
systems. We define constraints and transitions to limit the
number of recovery states, converge the system rapidly
to a consistent state after a failure, and resume any in-
terrupted activity. Our approach generalizes the failure
and recovery model used in common distributed proto-
cols, including two-phase and three-phase commit. It is
useful as a basis for recovery in any system in which each
request must execute a sequence of functions at one or
more servers, and the servers are “loosely coupled” in the
sense that they commit and recover their local states inde-
pendently. Variants of this approach are commonly used
as an alternative to distributed transactions, e.g., see the
informal discussion in Helland [16] on the limitations of
distributed transactions for large-scale systems.

event

statei

work

outgoing message

event

statej

incoming message

Figure 1:A local state machine. Each local state machine tran-
sition is triggered by an event. Events are generated locally or
are the result of a receipt of a message from another state ma-
chine. Each transition into a state is associated with zero or more
units of work, which are performed after the transition. Work
can involve local operations (reads and/or updates) or sending
of messages to other state machines.

3.1 State Machine Model

Figure 1 illustrates a single finite state machine (FSM).
At any time, the FSM is in one of a finite set of states, as
determined by the values of one or more state variables.
The FSM transitions from one state to another in response
to events. Using the standard definition, each FSMM is
a tuple of the formM = (X, Σ, δ, x0), whereX is the set
of states,x0 is the initial state,Σ is the set of events, and
δ is the transition function mapping each(xi, σ) → xj

whereσ ∈ Σ andxi, xj ∈ X .
Events may be generated locally or externally. For ex-

ample, a local clock may generate events as time passes,
or some local activity may signal an event. The FSMs in
the system cooperate by exchangingmessages: each ar-
riving message is an event. Events are consumed in order.



To apply the model to real systems, we supplement the
FSM model of storage and computation in the following
way. Each FSM maintains arbitrarylocal datain addition
to its state variables. In addition, each FSM can perform
arbitrary computation with each transition. Specifically,
when the machine enters a statexi as a result of an event
σ, it initiates zero or moretasksto execute subprograms
given by a fixed setw(xi) for each statexi.

Most code specific to an application of the model—
such as the lease manager example discussed in the next
section—executes in the context of a task. A task may
access the local data and any data associated withσ, e.g.,
the contents of a message. Tasks may signal local events
to transitionM , for example, to record the completion of
some activity inM ’s state. Tasks may send messages to
neighbors in the network of FSMs.

Tasks may execute asynchronously, or they may have
sequencing and ordering dependencies with other tasks
or the consumption of subsequent events, as discussed in
Section 3.4. In our prototype, a server thread executes a
state machine transition under the control of a global lock,
and then releases the lock and executes the associated task
list as a sequence of procedure calls.

3.2 Failure Model
The failure model is as follows:

• Each machineM may fail and discard its state and
local data.

• Failures are fail-stop. If Byzantine faults may occur,
then it is the responsibility of the program to detect
and handle them: for example, we may suppose that
a Byzantine fault causesM to generate messages
that force its peers to transition into an identifiable
failure state such that the resulting global state is in
the consistent set.

• Suppose without loss of generality that a failedM

eventually restarts, and network partitions eventually
heal. In the lease manager example that is the focus
of this paper, a machine that is unreachable for a long
period of time is eventually abandoned by its peers
as the leases expire.

• Sent messages are eventually delivered unless the
sender fails before delivery or the receiver fails per-
manently. This property can be achieved by us-
ing a standard reliable communication protocol with
acknowledgements, retransmissions, and session re-
covery for a restarted receiver.

3.3 Commitment and Recovery
Each finite state machineM is responsible for recover-
ing its own state variables and local data when it restarts
after a failure. To allow recovery,M logs each state tran-
sition and associated data to a durable store.M commits
each transition into a statexi beforeexecuting the tasks
for w(xi) (write-ahead logging).

After M completes local recovery it executes a recov-
ery transition to synchronize with its neighbors and restart
any activities in progress. Specifically, the recovery sys-
tem generates a recovery eventσr after local recovery
completes. For each statexi, we add an additionalre-
covery transition(xi, σr) → xi. After completing the
recovery transition intoxi, M starts the tasks forw(xi)
in the usual fashion. These tasks redo any work that may
have been left incomplete at the time of the crash, and
send or resend any post-transition messages to neighbor-
ing FSMs.

The task redo approach places several requirements on
the operation of the state machines and associated tasks.
In particular, tasks must be:

• Restartable. To ensure that the restarted tasksw(xi)
behave as expected, each log contains all informa-
tion necessary to recover any data used by those
tasks. Restarted tasks operate on the most recent
non-recovery eventσ that causedM to transition
into xi.

• Idempotent. Since a task may have completed some
or all of its actions before the failure, actions taken
by tasks must beidempotent: the result of the ac-
tion is the same even if the action is invoked multiple
times.

Since actions inw(xi) may send messages to neighbor-
ing state machines, some messages that were already re-
ceived may be retransmitted during recovery. Logically,
M can process retransmitted messages received in state
xi by executing the recovery transition forxi. This means
that M must detect duplicate messages and restart tasks
in w(xi) as necessary. In particular,M must regenerate
any reply messages issued byw(xi).

Our approach allows a special case to ease recovery for
and FSM that issubsidiaryto a single neighbor and can
reattach to its dominant partner orparentafter recovery.
In this case, it is not necessary for the subsidiary machine
M to log its state independently.M can recover all of its
state from its parent, if the messages it sends to its parent
are sufficient to reconstructM ’s state variables and local
state.M cannot recover independently of its parent, but
this may be acceptable given that it can only interact with
the outside world through its parent.

3.4 Tasks

Tasks play an essential role in driving the state machines.
Messages sent by tasks are the basis for interaction among
cooperating state machines in the model.

A key requirement of the model is that the applica-
tion can manages the interactions among tasks outside of
the FSM model, e.g., by reordering the work queue, can-
celling tasks that are redundant or are overtaken by events,
and using standard synchronization mechanisms to coor-
dinate concurrent tasks. In particular, tasks must meet the



requirements of idempotence and restartability. Some ac-
tions are naturally idempotent and do not require special
handling. To the extent that tasks have non-idempotent
external side effects, they must record them in durable up-
dates to local state, and suppress any duplicate or overlap-
ping executions. For example, the lease manager assigns
unique identifiers for task actions that affect the persistent
state of external resources or guest applications. The iden-
tifiers are stored with the local data; if a task is restarted it
is guaranteed to receive the same identifier. These identi-
fiers allow detection and suppression of repeated actions
and messages.

One limitation of the model is that it only restarts tasks
associated with the last state transition. The work setWxi

is associated with the state, and not with the transition into
that state. On a recovery transition, asynchronous tasks
associated with any previous state are not restarted. We
chose this simple approach because in common cases it
is not necessary to restart a taskt if at the time of the
failureM had already exited the state in which it initiated
t. Consider these common examples:

• A task t prepares and sends a request to a neighbor,
andM transitions on receiving the reply. It is not
necessary to restart the task on recovery because it is
known to have completed before the transition was
taken.

• A task t prepares and sends a request to a neighbor,
andM transitions on a command to cancel the re-
quest. It is not necessary to restart the request after
recovery into the cancelled state.

• A taskt performs a synchronous activity and signals
a local event upon its completion, transitioning to
a new state. Ift is short, then events (e.g., incom-
ing messages) may be blocked until the new state is
reached.

If this simple single-state recovery model is too limit-
ing, it is possible in general to transform a state machine
to recover arbitrary asynchronous actions on recovery, by
expanding the state space to maintain more history.

x
t
i

xi t

xj

σ

(a)

t

σ

xj

xi

x
t
j t

(b)

Figure 2: An example of transforming a state machine to add
states that encode history. This technique is useful to apply the
state machine recovery model to restart asynchronous tasksini-
tiated by earlier transitions.

Consider the example depicted in Figure 2. Taskt is
started after entry into statexi. An eventσ could occur
in statexi and is to be handled by transitioning to state
xj . Suppose that it is not suitable to block processing of
σ while waiting fort to complete. IfM transitions toxj

and then fails in statexj , thent is not restarted on recov-
ery. One solution is to add two new states,xt

i andxt
j , to

correspond to statesxi andxj while encoding the fact that
t is to be running. In the transformed state machineM ′,
xt

i replacesxi, andM ′ can handle the eventσ in statext
i

by transitioning to the new statext
j . If t completes while

in statext
i andxt

j , it signals a local event to transition to
the corresponding statexi or xj . The task setsW (xt

i)
and W (xt

j) are identical toW (xi) and W (xj), except
that they also startt if it is not already running. IfM ′

fails while in statext
i andxt

j , thent restarts on recovery:
in other respects these states are identical toW (xi) and
W (xj).

3.5 Summary
The essence of the recovery approach is that any local ac-
tivities are restarted on recovery; the restarted tasks “con-
tinue where they left off” and resynchronize with neigh-
boring state machines. While it is possible that the neigh-
bors may have moved on, each failedM recovers at most
one step out of sync with its state at the time of its fail-
ure. That is, at most one transition is incomplete, and this
transition is restarted. If neighbors can take transitions
without interaction with the failed machineM , then they
must be able to interact withM when it recovers into the
same state it was in at the time of the failure. In particular,
neighboring machines are never seen to regress to a previ-
ous state: each FSM logs its transitions internally before
they are visible externally.

4 Robust Leasing Services
This section presents the design of a robust distributed
lease manager based on the principles of the recoverable
cooperating state machine model presented in Section 3.

The key question for the state machine model is how we
map a distributed program onto the state machine model.
Exploring use of the model for robust lease management
illustrates the value of a common model for recovery, and
it shows how we can simplify the state space and inter-
actions by decomposing the program into multiple FSMs
with well-defined interactions. In particular, we represent
user-supplied extension modules—policy controllers and
configuration modules for particular resource types and
guest applications—as separate FSMs interacting through
well-defined interfaces and protocols.

We prototyped our approach in Shirako [17], a toolkit
for building leasing services and clients based on the
SHARP [11] resource leasing model. The lease man-
ager applies the state machine model at the granularity
of individual leases. Although Shirako includes a vari-



service manager

broker

site

physical 
resources

virtual
machines

leased virtual
machines

Figure 3:A resource lease is the joint effort of several interact-
ing state machines. Each state machine is responsible for a spe-
cific part of the protocol: sites own the physical resources and
create virtual machines on demand, service managers use leased
resources and procure them on demand, brokers arbitrate there-
quests from multiple service managers and schedule resource
usage. Each local state machine transition occurs as the result of
local events or the interaction with another state machine.The
combination of all state machines provides the global view of
one distributed lease state machine.

ety of mechanisms for grouping and sequencing related
leases [17], we may consider leases to be independent of
one another for our purposes. In particular, leases may
transition and recover their state independently of other
leases. This property simplifies the state machines and al-
lows for higher concurrency and independent recovery of
leases managed by the same server. The remainder of our
discussion applies to an individual lease.

4.1 Leases as Cooperating State Machines

Each lease is modeled as a network of interacting state
machines (FSMs). Each FSM is built around the lo-
cal lease object for one of the actors participating in the
lease contract. The FSMs transition in response to timing
events, protocol exchanges among the actors, changes in
resource status or demand, and decisions by plug-in ex-
tension modules controlling resource management policy
for each actor.

More specifically, a lease is a contract involving a re-
source consumer, a resource provider, and one more bro-
kering intermediaries (Figure 3). We use terminology
from the SHARP leasing model, although the terms used
in related systems such as the emerging GENI architec-
ture is slightly different. Asite authoritycontrols infras-
tructure resources in a particular sphere of authority, e.g.,
servers, storage units, network elements, or other compo-
nents in a virtual data center or autonomous system un-
der common ownership and control. Aservice manager
procures lease contracts granting rights to use specific re-
sources at one or more sites, and deploys a guest envi-

ronment or software application on the resources it holds.
Finally, a broker mediates resource discovery and arbi-
tration by controlling the scheduling of resources at one
or more sites over time. Each actor may manage large
numbers of independent leases involving different partic-
ipants.

The global state machine for a lease consists of thelo-
cal state machines representing a given actor role. A lease
has one local FSM in the actor performing each of these
roles. Each actor is a server that maintains local lease ob-
jects and participates in the leasing protocols. The state
transitions in each local FSM are driven by the logic of its
specific role. The FSMs and protocol exchanges are man-
aged by the Shirako core, which is essentially a library
linked into each actor: it is a collection of classes and
data structures supporting distributed lease management,
state transition rules and functions for each role, upcall
interfaces for user-supplied extension modules, and other
functions needed to implement the actors.

In general, actors execute autonomously and are not
mutually trusting. However, the different roles and ac-
tors may execute on the same physical node and thus to
fail concurrently. Different components or elements of a
distributed system may be represented as separate FSMs,
even if they execute on the same node and share the same
fate if that node crashes.

4.2 Basic Recovery

Upon restarting after a crash, each actor obtains a list of
leases from its local data store and rebuilds the lease states
and local data. Since lease objects are small, the leasing
core commits the entire state of the lease on each state
transition. Our current prototype uses a MySQL database
for each actor. The committed state includes resource
attributes and other data describing the state of the re-
sources. In essence, the commit is acheckpointof the
lease state. Once the state is rebuilt, the recovery sequence
executes the recovery transition for each lease FSM to
restart any activities associated with its current state (see
Section 3.3).

These restarted tasks will restart any interrupted work-
flow by reissuing any messages sent from the state be-
fore the failure. Lease FSMs maintain a send and receive
sequence number for each neighbor they interact with
(there are at most two of them). Send sequence numbers
are incremented on message transmission, and receive se-
quence numbers are incremented on message receipt. Im-
portantly, the state machines are designed so that there is
at most one message to a given lease state machine per
local state transition. This property, together with com-
mitting sequence numbers to the data store, ensures that
during recovery retransmitted messages will be assigned
the same sequence number that was assigned to the orig-
inal message. It also ensures that messages are delivered
in order even across restarts of the transport session.



Before accepting an incoming message, the receiving
FSM examines the message sequence number to detect
duplicate messages. Messages with the same sequence
number are identified as duplicates. A duplicate message
may be blocked, if the state machine is still processing
the original message. In any case, the result is returned,
whether or not the operation is reexecuted.

4.2.1 Expired Leases
Expired leases require special attention during recovery.
If an actor is unavailable for an extended period of time,
some of the leases that it manages will expire. During re-
covery, the actor can simply release the resources bound
to expired leases. While this approach is correct, it may
cause some instability in the system. For example, if an
unavailable site closes an expired lease during recovery,
the site may terminate access to resources legitimately
used by a service manager. The service manager may
have already extended the ticket and attempted to renew
the lease, but since the site was unavailable, the site never
received the extension request.

To avoid interruption of service for already existing
leases our current policy implementations delay the re-
leasing of resources until either an explicit close request
is received, or the actor must release those resources to
serve future requests. This “lazy close” policy ensures
that temporary unavailability of either of the actors partic-
ipating in a distributed lease does not terminate the lease
prematurely. For increased robustness, it is possible in
principle for site authorities to preserve snapshots of the
leased resources (virtual machines and storage), so that if
a lease is terminated prematurely, its leased resources can
be recreated at a later time, with little or no loss of data.

4.3 Robust Extension Modules
The lease state machines and transitions for the actor roles
are generic across all uses of the lease abstraction, so they
may be implemented fully within the core. However, key
aspects of lease management are specific to the types of
resource being leased, the nature of the guest application
to be deployed on those resources, and the resource man-
agement policies that control how lease requests are is-
sued and handled.

In Shirako, these elements of lease management are
implemented in replaceable user-supplied extension mod-
ules. The core invokes the extensions on specific transi-
tions of the lease state machine. In this way the lease
manager is designed to be neutral to resource types, guest
software environments, and resource management policy.

Extension modules are viewed as sets of user-supplied
tasks for “subsidiary” state machines (see Section 3.3)
driven by the local lease FSM for an actor. These plug-
in tasks complete management activities and/or schedul-
ing decisions asynchronously, and signal a local event to
transition the subsidiary FSM on completion. They may

also monitor their internal states asynchronously, and may
initiate local state transitions to expose failures or other
conditions to the parent.

The parent lease state machine polls its subsidiaries to
drive state transitions in the parent. This structure protects
the system from user-supplied plugins that fail to com-
plete, and it enables a simple recovery scheme for exten-
sion modules.

We consider three kinds of extension modules: policy
controllers, resource handlers, and resource drivers.

4.3.1 Policy Controllers
Each actor invokes apolicy controllerperiodically in re-
sponse to clock events. These resource management poli-
cies interact with the lease state machines. The policy
controllers may operate on collections of leases, create or
close leases, and generate events on leases. For example,
broker policies execute periodically to decide whether to
grant or deny resource requests from service managers.
If a request is granted, the policy task marks the local
lease object, prompting the broker FSM to transition to
a ticketedstate and issue aticket to the requesting service
manager. Similarly, service managers incorporate policy
controllers to formulate their requests for resources, and
site authorities incorporate policy controllers to determine
placement of ticketed requests on specific resource units
according to the attributes of the request (e.g., placement
of virtual machines on specific servers in a data center).

We have investigated several policy variants, including
broker policies for arbitrating access to shared infrastruc-
ture based on fair-share scheduling, simple auctions, and
value-maximizing heuristics. These policy issues are out-
side the scope of this paper. What is important here is
the recovery of any local data maintained by the policy
controller in the event of a failure. A second issue is se-
lection of recovery transitions to cope with a misbehaving
controller, since these extension modules are outside the
control of the lease manager. Both issues are addressed in
more detail below.

Policy controllers may attach arbitrary local data to the
lease objects as property lists, so that they are saved and
recovered on lease state transitions. As part of the ini-
tial recovery sequence, each policy controller is informed
about every recovered lease. This gives the policy mod-
ule an opportunity to rebuild its local data from attributes
attached to each lease object. For example, broker poli-
cies must determine what resources from the inventory
are available for allocation, what resources are currently
allocated, what requests are pending, and when allocated
resources will expire.

Since the controller’s local data pertaining to each lease
is committed only on the next transition of the parent FSM
for that lease, decisions made by the policy are atomically
durable with respect to each lease. That is, if the policy
decision was recorded in a state transition of the parent



lease FSM, then it was recovered in its entirety. In this
case, the parent restarts any task actions resulting from
the policy choice: for example, a broker may reissue a
ticket to a waiting service manager, or a site authority may
restart configuration of a specific resource unit that has
been allocated and assigned to a request. On the other
hand, if the policy decision was incomplete or had not
been recorded in a parent state transition when the actor
failed, then the prior lease data is recovered, indicating to
the policy controller that a decision is still pending (e.g.,
an open request has not yet been filled).

4.3.2 Resource Handlers and Drivers
The leasing abstraction can apply to a wide range of
physical assets. Virtualized infrastructure exports con-
trol points to partition and configure the underlying re-
sources. For example, virtual machine hypervisors ex-
port commands or interfaces to create and manage vir-
tual machines hosted on servers. Server management co-
processors enable programmatic imaging and configura-
tion of physical servers. Some network and storage el-
ements export control actions to the network via proto-
cols such as SNMP, Web Services protocols, or (more
frequently) by remote login to a command-line interface
from a privileged IP address.

In Shirako, these underlying control operations are in-
voked by handler and resource driverplugins invoked
from the core on lease state transitions. Handlers and
drivers are registered and selected according to the types
and attributes of the specific resource units assigned to a
lease. The various actors control the behavior of handlers
and drivers by means of property lists passed through the
leasing protocols and core.

Handlersare task scripts that run within an actor to
execute configuration actions on a logical resource unit.
In particular, the system defines prologue/epilogue inter-
faces for handler tasks to initialize and uninitialize a re-
source at the start and end of a lease term; these task invo-
cations map to a registered handler action for the given re-
source type. The site authority invokes such tasks tosetup
andteardowneach resource; the service management in-
vokes tasks for each resource unit tojoin and leavethe
guest application or environment. We script handlers us-
ing ant, which can be invoked directly from the Java core
and supports direct invocation of SNMP, LDAP, Web con-
tainer management, and driver actions.

Many resource units can be viewed asnodes. Exam-
ples include physical servers, virtual machines, or any re-
source that can be controlled by scripts or programs run-
ning at some IP address, such as a domain-0 control inter-
face for a virtual machine hypervisor. The Shirako pack-
age includes a module for manipulating node resources as
a node state machine composed of states that indicate the
status of the resource: priming, active, closing, failed, etc.

Handler tasks for nodes may invoke actions that run

on the node itself. These control actions are invoked
through a standardnode agentthat runs on a node (e.g.,
in a guest virtual machine or in a Xen dom0 control do-
main) and accepts SOAP/WS-Security or XMLRPC re-
quests from an authorized actor on the network. Anode
driver is a packaged set of actions that run under the node
agent to perform configuration actions that are specific
to a resource type or guest software environments. The
node agent accepts authenticated, authorized requests to
install, upgrade, and invoke drivers. Shirako includes
drivers for several types of resources and applications
used in our testbed, e.g., Xen virtual machine monitors,
volume cloning on local storage and Network Appliance
file servers, and application packages such as the Rubis
Web service and SGE batch job manager.

4.3.3 Node State Machine

Handlers and drivers execute in separate node state ma-
chines within the actor and within the node agent respec-
tively. These tasks execute asynchronously, and task com-
pletions generate events to transition the node state ma-
chine. The actor FSM for a lease polls the node FSM
for each of its resource units, and initiates lease state
transitions as operations complete or the subsidiary state
changes. When an actor recovers, the node state machines
recover the state and local data at the time of the last com-
pleted transition. Any handler tasks associated with that
state are restarted, and these tasks reissue any driver op-
erations that are not known to have completed before the
failure.

Each node state machine, together with the associ-
ated lease state machine, contains sufficient information
to recreate the arguments to a resource handler so that
the handler can be rexecuted during recovery. The por-
tion of information contained in the lease is transmitted
in the message from the lease to the node state machine.
This information is then combined with the local informa-
tion inside the node state machine. The resulting request
is self-contained and complete and obviates the need for
drivers to maintain their own state; the request contains
all required information. However, since driver calls may
overlap, drivers, similarly to state machines, must handle
overlapping actions by either waiting for the completion
of or canceling the action in progress.

Handlers and drivers must conform to the idempotence
requirement. The basic principle of our approach is that
the type-specific resource handlers should follow thetog-
gle principle. From the perspective of the actor lease
FSM, each resource is in either of two basic states: on
or off (possibly failed). The handlers hide intermediate
states. Although handlers execute asynchronously from
the core, the actor FSM invokes the handlers for each re-
source unit in a serial order. The handler and the drivers
it uses must ensure that the final state reflects the last ac-
tion issued by the core, independent of any intermediate



states, incomplete operations, or transient failures. If han-
dlers are deterministic and serial, then it is sufficient for
actions to be (logically) serialized and idempotent at the
driver level. That property may require persistent state
in the driver (e.g., as in package managers, which typi-
cally adhere to the toggle principle); at minimum, it re-
quires a persistent and consistent name space for any ob-
jects created by the driver (e.g., cloned storage luns or
resource partitions). Drivers must also suppress redun-
dant/duplicate operations triggered by the core to avoid
disrupting the guest.

4.4 Misbehaving Extensions
Since extensions recovery is an essential component of
the recovery of the leasing system, even a flawless imple-
mentation of the core may fail to recover the system if ex-
tensions are buggy or exhibit Byzantine failures. Misbe-
having extensions can violate the contractual agreements
represented in a lease. To protect the affected parties, a ro-
bust leasing system must take actions to ensure that mis-
behaviors do not remain undetected. Critically, extensions
can misbehave not only during recovery but also during
normal system execution.

We deal with the problem of misbehaving policy exten-
sions in two stages. First, we identify a set of rules about
the state transitions and actions of the lease state machine.
Theselease invariantsare likely to apply to most policies
and are generally independent of the specific leasing pro-
tocol a policy implements. Each lease invariant is then
actively verified against the running system; any leases
and actors who violate these invariants are exposed. Sec-
ond, for additional protection, we enable the specification
of protocol or policy-specific verifiers. These verifiers use
their knowledge of the policy protocol to verify the pol-
icy’s action.

Unlike policy extensions, resource handlers are not ver-
ified at runtime. Our current approach is to verify the
behavior of resource handlers before adding them to a
running system. This form of debugging ensures that no
handlers with exposed bugs will be added to the system.
However, it is still possible for a handler to exhibit Byzan-
tine behavior at runtime. We return to this issue in Sec-
tion 5.3.

5 Experience
A Shirako instance has been executing within our depart-
ment for the last several months. Our deployment consists
of one site authority, one broker, and a number of service
managers. This particular deployment is used to allocate
resources as virtual machines. Virtual machines are allo-
cated specific slices of the host virtual machine monitor’s
memory and CPU cycles. Some service managers repre-
sent end users, who need virtual machines for experimen-
tation and development. Other service managers represent
dynamic services, who need resources for their execution.

Some example dynamic services include a modified ver-
sion of the SGE batch service and an in house virtual
machine-based, job execution service called JAWS [14].
The resources required by each group changes dynami-
cally over time, and Shirako is responsible for multiplex-
ing all services and users onto the available physical re-
sources.

5.1 Recovery Checker
To assist recovery implementation and testing we built a
recovery checker. The checker receives a list of states to
check. For each for each input state, the checker injects a
failure that crashes the lease state machine (and the con-
taining actor) at a particular point of execution, depending
on the input state. The checker then restarts the actor and
ensures that the affected lease, the actor, and the actor pol-
icy module, are recovered correctly.

The checker has two modes of execution. In the first,
recovery is performed while the term of the lease is still
active. If the term is sufficiently long, recovery should
succeed and the lease should self-stabilize and behave as
if no failure occurred. In the second, the checker delib-
erately delays recovery to ensure that lease terms are ex-
pired at the time of recovery. In such cases, the checker
verifies that the resources bound to expired leases are re-
leased and reused to satisfy subsequent requests.

To implement the checker we added an event notifica-
tion system to the leasing core. The notification system
exposes key events to which testing and monitoring code
can subscribe. Events include, but are not limited to, state
machine transitions, sending and receiving of messages,
resource handler invocations, etc. A subscriber for an
event can consume the event, alter the objects emitted by
the event, or can throw an exception to terminate the ac-
tion that raised the event. In normal execution mode the
system may catch and mask the exception. For recovery
testing purposes we added a new exception type which
is explicitly propagated up the call stack, so that we can
cause the lease state machine and the actor to crash. In
addition to the recovery checker, the notification system
is used in a number of testing and verification tools we
developed.

The combination of all local lease state machines re-
sults into a distributed state machine with approximately
360 states, from which about 30 are legal and reachable.
For each of the reachable states, the recovery checker con-
tains a condition that describes the point of execution at
which failure must be injected. For most states, there is
a single point, but for states that contain multiple tasks in
their work list, there may be multiple points, each corre-
sponding to the completion of a combination of tasks.

With the help of the recovery checker we discovered a
number of bugs in our implementation. We can classify
the observed bugs into several categories.

Serialization. As node and lease objects evolved over



Number Description

1. Every lease must have a valid ticket. Tickets should have at least one unit.
2. The number of assigned nodes should equal the number of ticketed units.
3. The number of ticketed units, and their properties, should change only on ticket extensions.
4. The number of leased units, and their properties, should change only on lease extensions.
5. Extend ticket requests must be made before the end of the lease.
6. Brokers should respond to extend ticket requests before theend of the lease.
7. Sites should not terminate a lease before the end of its term unless the service manager explicitly closes.
8. Sites should not terminate a lease if they have received an extend lease request with a valid ticket.
9. Resource handlers should terminate within a reasonable time.

Table 1: Lease invariants. The table lists some of the most important invariants for ensuring that lease state
machines function correctly. The listed invariants can expose a range of violations resulting from either code
errors or infrastructure failures.

Number Description

1. A virtual machine monitor with an active virtual machine reboots and fails to recreate the hosted virtual machines.
2. NFS mounts become unavailable (automounter process fails). Critical data become inaccessible and drivers fail.
3. Xen domain0 runs out of memory and kills the driver host server. Handlers fail to invoke drivers.
4. Filesystem errors cause vmm hosts to reboot with a read only file system. Operations that require disk writes fail.
5. An IP address is used concurrently by two hosts. Hosts becometemporarily unavailable.

Table 2:Infrastructure failures detected as violations of lease invariants.

time new attributes and data structures were being added
to each object. Often we would add a field, but would
forget to update the serialization and deserialization code.
As a result, during recovery, the object’s snapshot is in-
complete and key attributes are missing.

Checkpointing. Our failure approach requires that
checkpoints occur concurrently with state transitions. The
checker helped us discover cases, where, by accident or
negligence, we would perform a checkpoint after starting
the tasks associated with a given state. As a result, the
checkpoint contains inconsistent data, as some state ma-
chine attributes represent updates from the tasks executed
after the state machine transition.

Communication. Earlier versions of our implementa-
tion failed the lease state machine if one actor is unable
to contact another actor. For example, a service manager
would fail a lease if the site is currently unavailable, even
though, the allocated ticket is far from expiration. We
observed similar behavior when brokers and sites would
send updates to service managers. The checker was in-
strumental for detecting bugs of this type and helped us
ensure that actors “hang as long as they can”—if an ac-
tor is currently unavailable and a lease is still active, no
failure should be declared unless absolutely necessary.

Idempotency. Key state machine tasks must be idem-
potent so that recovery can complete successfully. Due to
a bug we did not serialize the outgoing sequence number
for one of the lease classes. During recovery, the sys-
tem was unable to recreate the required sequence number
and the destination state machine ignored the retransmit-
ted message, as it had sequence number smaller than the

current receive sequence number.
Resource Handlers. Most of the bugs in this cate-

gory are due to incorrect implementation of idempotency.
Idempotent resource handlers took some time to imple-
ment correctly. New handlers would often introduce some
instability due to the fact that different people would be
involved in their development, and information of idem-
potency and how to achieve it in the specific context was
not available. Another annoying source of errors in this
category was due to updates of the underlying hardware
and software controlled by a resource driver. Our system
administrator would roll a routine update only for us to
find out that the system no longer works. The transition
from Xen 3.0 to 3.1 is one memorable example.

Policies. Bugs in policy recovery would often affect
the recovery of a lease. The most common bugs was
“stuck leases”, leases which experience no progress, as
if the policy “forgot” about them. Such bugs were easy
to detect, the checker would fail with a timeout, but diag-
nosing them was difficult. This process was additionally
complicated by the fact that our team was concurrently
working on multiple policies. The different policy types
also follow somewhat different rules for recovery, which
further complicates the task of a developer who is trying
to implement a correct policy. The recovery checker, how-
ever, provided a powerful tool with the help of which such
problems were easily exposed.

5.2 Resource Handlers

The recovery architecture requires that care must be taken
with resource handlers to meet the idempotency require-



ment. In the most common case an actor would fail, while
one or more resource handlers are being executed. How-
ever, drivers and handlers can be engineered to be quite
robust. Our current prototype offers drivers for the fol-
lowing resources:

• Xen Virtual Machine Monitor. The driver can cre-
ate/destroy/and manage Xen [4] virtual machines.

• ZFS File Server. The driver can create/destroy file
system images using ZFS [29] and file system-level
cloning. Images are exported using the NFS proto-
col.

• NetApp Filer. The driver can create/destroy file sys-
tem images using a Network Appliance filer using
block-level cloning. Images are exported using the
iSCSI protocol.

• Logical Volume Manager. The driver can cre-
ate/destroy file system partition using the Linux Vol-
ume Manager (LVM) [23].

• Virtual Machine. The driver offers functions to
manage a running virtual machine, e.g., register ssh
host keys, add public IP addresses, install monitoring
software, etc.

• PlanetLab. This handler installs and runs a pri-
vate PlanetLab using MyPLC which instantiates new
PlanetLab machines as applications need them.

The above resource drivers are used to construct re-
source handlers to deal with the creation, management,
and destruction of leased resources. We have imple-
mented a number of handlers, which integrate some or
most of the above drivers. For example, our standard
handler creates virtual machines with ZFS-backed NFS
root disks. An alternative handler uses NetApp root disks
exported using iSCSI. Each of these handlers can create
additional local disk partitions to be used by the virtual
machine, for example, as swap swap space or for extra
storage.

In addition to authority-side handlers and drivers, we
have developed a number of service manager handlers
and drivers. These handlers and drivers deal with the in-
stallation and management of guest applications and envi-
ronments. We have constructed idempotent handlers and
drivers for the following services:

• NFS. The handler installs and manages an NFS
server.

• Fstress. The handler installs and runs fstress, a file
system performance tool.

• Rubis. The handler installs and runs the Rubis web
application, a research implementation of an auction
web service.

• SGE. The handler installs and manages a modified
version of the Sun Grid Engine. The handler has
multiple variants: one deals with setting up the mas-
ter server, the other deals with setting an registering
worker serves.

• Globus. The handler can install and run an instance
of the Globus Toolkit.

To aid driver development, we developed a test harness
for each driver and resource handler. The driver harness
tests the idempotency of individual driver actions. All
developers are required to run the associated tests before
committing changes to drivers. The handler harness tests
whether the composition of multiple driver invocations
has some unexpected side effects. The test harness exe-
cutes multiple instances of a single handler concurrently
(using the same arguments) in an attempt to expose con-
currency bugs. While this approach is not as exhaustive,
as we would like it to be, it helped expose concurrency
errors due to improper overlapping of subsequent driver
invocations. The harness also helped us discover concur-
rency problems in third-party software we are using: a
version of the Axis2 web services toolkit.

5.3 Enforcing Lease Invariants
Lease invariants are essential for verifying the runtime be-
havior of a leasing system. Over time our failure analy-
sis would show that most bugs resulted in violations of a
set of basic lease invariants. At first, those violations oc-
curred during normal execution. Once we started spend-
ing more time on recovery, we would start observing such
violations due to buggy recovery code. In most cases, pol-
icy extensions were to blame.

In an attempt to verify the runtime behavior of poli-
cies, both during normal execution and during recovery,
we implemented a lease verification tool. The verification
tool works similarly to the recovery checker: it subscribes
to key events from the leasing core. As the system exe-
cutes, the lease verifier stores observed events into a rela-
tional database. The tool uses its knowledge of high-level
objects (leases and nodes) to transform the events into
database records. Most lease invariants can then be ex-
pressed as SQL queries. Each lease invariant can be con-
sidered as continuous query that executes over the event
stream generated by the leasing core.

Table 1 lists some of the most important lease invari-
ants. These invariants target the basic guarantees of the
leasing protocol and apply to all policies we have cur-
rently developed. In particular, the listed invariants look
for violations of the leasing protocol which are expresses
as lease with less resources than required, leases that last
shorter than supposed to, and leases that fail to extend. We
also consider timing: the time spent configuring resources
should be bounded.

Lease invariants can expose a range of policy bugs but
are not sufficient to verify if a policy is following its speci-
fication, i.e., it is servicing requests according to a specific
algorithm. Such verification requires knowledge of the
policy specification and is the subject of our future work.
In general, the verification approach has application be-
yond debugging: coalitions of actors may use a common



auditing and verification system to ensure that each actor
complies to its contractual obligations. A primary chal-
lenge in this context is ensuring that actors emit all events
and that no “fake” events are emitted.

5.4 Infrastructure Failures
The lease invariants have been instrumental not only in
detecting policy bugs, but they have also revealed prob-
lems caused by infrastructure failures. We use the term
infrastructure to refer to all machinery within a site au-
thority required to create and manage resources bound to
resource leases. These include but are not limited to phys-
ical machines, storage servers, network links, routers, etc.
Failures of an infrastructure component can propagate and
eventually can cause a violation of one or more of the
lease invariants. In particular, we have observed that vi-
olations of invariant 2, 4, and 9 are usually caused by a
failure of an underlying infrastructure resource.

Failures can occur at many levels: each actor may con-
trol and manipulate a deep software stack on many dif-
ferent resources distributed across multiple infrastructure
providers. For example, the root cause of an apparent fail-
ure of a guest component may be failure of the server
hardware, hypervisor, guest OS kernel, a JVM running
in a process, node agent, a configuration action issued
either by the guest or the hosting site, or failure of the
guest component itself—or it could be caused by inter-
rupted network connectivity. Virtualization offers pow-
erful management functions but it also introduces subtle
infrastructure dependencies.

During our experience we have observed a number of
infrastructure failures. Table 2 lists some of them. We
discovered these failures while diagnosing the cause of a
violation of a lease invariant.

Infrastructure failures affect existing resource leases
and can result in contract violations. It is important that
sites detect infrastructure problems so that they can at-
tempt to repair the failure and provide continuous service.
Similarly, infrastructure failures can affect the site’s abil-
ity to service future requests. In either case, detecting,
diagnosing, and repairing infrastructure failures is critical
for the robustness of a resource leasing system.

In general, dealing with infrastructure failures proceeds
in three stages. First, one mustdetecta problem. The
problem may be detected at a high level, for example a
lease invariant may be affected, or specific detectors may
be written, which operate on a low level, e.g., by moni-
toring syslog events. The next step is todiagnosethe
problem from the observed symptoms. Diagnosis is a
complex and challenging process and may rely on code-
book techniques, machine learning, or interaction with an
expert. Once diagnosis completes the cause of the prob-
lem must be eliminated by performingrepair actions.

The choice of repair action can have serious conse-
quences. For example, earlier versions of our system at-

tempted to ensure that sites always try to instantiate the
ticketed number of leased units even if unit creation re-
sults in an error; the policy would retry the create re-
quest until it succeeds, choosing different infrastructure
elements as hosts. While this approach was successful
with intermittent failures, a faulty virtual machine image
was sufficient to exhaust the server resources at a site.

Diagnosis and selection of repair actions is a topic of
future work. However, the cooperating state machine
model does provide a range of “sledgehammers” and
“scalpels” for repair. In particular, the policy can gen-
erate a recovery event for any state machine element. The
recovery event forces it to execute its recovery transition
and restart any actions associated with its current state.
For example, if a hypervisor fails and restarts, a site au-
thority has sufficient information in its database to deter-
mine what VMs are hosted on that resource. Executing
the recovery transition in a node generates a fully quali-
fied handler invocation tosetupthe lost virtual machine
and/orjoin it to a guest.

6 Related Work
A number of systems for on-demand resource manage-
ment exist [2, 3, 5, 12, 20, 24]. However, to the best of
our knowledge, those systems do not implement a coher-
ent way to recover from component failures short of lease
termination. Leases have also been proposed as a mecha-
nism for dealing with distributed system failures [13] but
in our system, lease expiration is a recovery method of last
resort. Our goal is to have leased resources be available
even in the presence of failures rather than become unus-
able as soon as any component fails. This requirement is
of great importance since leases represent contractual re-
lationships, and involved parties can be held accountable
for any contract violations.

There are many ways to deal with failures in distributed
systems. One way is to make sure that all transactions are
consistent. The approach we have taken is a generaliza-
tion of the approaches taken by 2 and 3-phase commit
protocols, paxos and others [8, 22, 28]. Since our leas-
ing model can tolerate some temporary inconsistency, we
use an alternative approach which has lower consistency
guarantees, but avoids the need for tight coupling needed
by distributed transactions. The actors in our system are
self-interested and do not necessarily share the same in-
centives. As such, the sytem makes progress with a very
loose coupling among the actors. This is different from a
traditional distributed transaction, but is similar to alter-
native techniques proposed by Pat Helland [16].

Pat Helland makes the claim that distributed transac-
tions are unsuited for systems that need to scale to extreme
sizes because the performance and reliability costs of dis-
tributed transactions make such systems impractical. In-
stead, he proposes a set of new abstractions to build large
scale distributed systems. The fundamental abstraction is



an “entity” which is a set of data that is also the scope
of serializability. Transactions are local and operate on a
single entity at a time. Our approach is similar but unlike
Helland, who is motivated primarily by scalability, we are
driven by the need for loose coupling between compo-
nents.

Techniques like checkpointing and restart of transac-
tions have been in use for many years [6, 15, 25]. Like
previous techniques, the unit of recovery in our system is
a transaction. There has also been previous work in re-
covering state machines [10, 18]. However, they focus
on replicated state machines, where a number of identical
state machines are trying to stay consistent. Our model
consists of a number of interacting, cooperating but dif-
ferent state machines. The set of reachable states is a
small subset of the cross product of the states of all par-
ticipating state machines. Our interacting state machine
model is self-stabilizing as defined by Dijkstra and oth-
ers [1, 9, 27] because it is capable of reaching a consistent
state from a non-consistent state.

7 Conclusion
This paper demonstrates how we handle failures and re-
covery in the Shirako leasing system. We show how the
state update model takes advantage of the fact that we can
tolerate temporary inconsistencies and avoids the need for
expensive distributed transactions. We do this by confin-
ing the need to serialize transactions to a single lease.

Our model consists of interacting state machines that
make independent transitions in response to events. Each
state machine is independently recoverable and check-
points its status after every state transition. In addition,
logging of all incoming messages is performed before any
acknowledgements are sent. In combination with idempo-
tent actions, ensures that every state machine will eventu-
ally reach a consistent state.

We also show how extensions to the leasing system can
be incorporated into the system by treating them as black
boxes that implement fixed interfaces which include re-
covery operations. Recovery is driven by the core leasing
system, but extensions are ultimately responsible for re-
covering their own state.

References
[1] Arora A. and Gouda M.. Closure and Convergence: A

Foundation of Fault-Tolerant Computing. InIEEE Trans-
actions on Software EngineeringVolume 19(11):1015–
1027, 1993.

[2] Sumalatha Adabala, Vineet Chadha, Puneet Chawla, Re-
nato Figueiredo, Jose Fortes, Ivan Krsul, Andrea Mat-
sunaga, Mauricio Tsugawa, Jian Zhang, Ming Zhao, Lip-
ing Zhu and Xiaomin Zhu. From Virtualized Resources to
Virtual Computing Grids: The in-VIGO System. InFuture
Generation Computing Systems21(6), April 2005.

[3] Sam Averitt, Michael Bugaev, Aaron Peeler, Henry Shaf-
fer, Eric Sills, Sarah Stein, Josh Thompson and Mladen

Vouk. Virtual Computing Laboratory (VCL). In Proceed-
ings of theInternational Conference on the Virtual Com-
puting Initiative, pages 1-6, Research Triangle Park, North
Carolina, May 2007.

[4] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Timothy L. Harris, Alex Ho, Rolf Neugebauer, Ian Pratt
and Andrew Warfield. Xen and the Art of Virtualization. In
Proceedings of theSymposium on Operating Systems Prin-
ciples, pages 164-177, Bolton Landing, New York, Octo-
ber 2003.

[5] Andy C. Bavier, Mic Bowman, Brent N. Chun, David E.
Culler, Scott Karlin, Steve Muir, Larry L. Peterson, Timo-
thy Roscoe, Tammo Spalink and Mike Wawrzoniak. Op-
erating Systems Support for Planetary-Scale Network Ser-
vices. In Proceedings of theSymposium on Networked
System Design and Implementation, pages 253-266, San
Francisco, California, March 2004.

[6] Mohan C., Haderle D., Lindsay B., Pirahesh H. and
Schwarz P.. ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. InACM Transactions on
Database SystemsVolume 17(1):94–162, ACM Press New
York, NY, USA, 1992.

[7] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt and Andrew
Warfield. Live Migration of Virtual Machines. In Proceed-
ings of theSymposium on Networked System Design and
Implementation, Boston, Massachusetts, May 2005.

[8] Skeen D. and Stonebraker M.. Formal Model of Crash
Recovery in a Distributed System. InIEEE Transactions
on Software EngineeringVolume 9(3):219–228, 1983.

[9] Edsgar Dijkstra. Self-Stabilizing Systems in Spite of Dis-
tributed Control. InCommunications of the ACM, 1974.

[10] Schneider F.B.. Implementing Fault-Tolerant Services Us-
ing the State Machine Approach: A Tutorial. InACM Com-
puting Surveys22(4), 1990.

[11] Yun Fu, Jeffrey S. Chase, Brent N. Chun, Stephen Schwab
and Amin Vahdat. SHARP: An Architecture for Se-
cure Resource Peering. In Proceedings of theSymposium
on Operating Systems Principles, pages 133-148, Bolton
Landing, New York, October 2003.

[12] Simson Garfinkel. Commodity Grid Computing with
Amazon’s S3 and EC2. In;login: The USENIX Magazine
Volume 32(1):7-13, February 2007.

[13] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consis-
tency. InSIGOPS Operating Systems Review23(5), ACM
Press, New York, NY, USA, 1989.

[14] Laura Grit, David Irwin, Varun Marupadi, Piyush Shivam,
Aydan R. Yumerefendi, Jeff Chase and Jeannie Albrecht.
Harnessing Virtual Machine Resource Control for Job
Management. In Proceedings of theWorkshop on System-
level Virtualization for High Performance Computing, Lis-
bon, Portugal, March 2007.

[15] Theo Haerder and Andreas Reuter. Principles of
Transaction-Oriented Database Recovery. InACM Com-
puting SurveysVolume 15(4):287–317, 1983.

[16] Pat Helland. Life Beyond Distributed Transactions: An
Apostate’s Opinion. In Proceedings of theConference on



Innovative Data Systems Research, pages 132-141, Jan-
uary 2007.

[17] David Irwin, Jeffrey Chase, Laura Grit, Aydan
Yumerefendi, David Becker and Kenneth G. Yocum.
Sharing Networked Resources with Brokered Leases. In
Proceedings of theUSENIX Annual Technical Conference,
pages 199-212, Boston, Massachusetts, June 2006.

[18] Rushby J.. Reconfiguration and Transient Recovery in
State-Machine Architectures. InFault Tolerant Computing
Symposium26:6–15, 1996.

[19] Xuxian Jiang and Dongyan Xu. SODA: A Service-on-
Demand Architecture for Application Service Hosting in
Utility Platforms. In Proceedings of theIEEE Symposium
on High Performance Distributed Computing, pages 174-
183, Seattle, Washington, June 2003.

[20] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan,
David E. Lowell, Mike Wray, Tom Christian, Nigel Ed-
wards, Chris I. Dalton and Frederic Gittler. SoftUDC:
A Software-Based Data Center for Utility Computing.
InComputerVolume 37(11):38-46, November 2004.

[21] Katarzyna Keahey, Karl Doering and Ian Foster. From
Sandbox to Playground: Dynamic Virtual Environments in
the Grid. In Proceedings of theIEEE/ACM International
Workshop on Grid Computing, Pittsburgh, Pennsylvania,
November 2004.

[22] Leslie Lamport. The Part-Time Parliament. InACM Trans-
actions on Computer Systems16(2), ACM Press, New
York, NY, USA, 1998.

[23] ”Logical Volume Management”.
http://sourceware.org/lvm2.

[24] Marvin McNett, Diwaker Gupta, Amin Vahdat and Geof-
frey M. Voelker. Usher: An Extensible Framework for
Managing Clusters of Virtual Machines. In Proceedings of
theLarge Installation System Administration Conference,
Dallas, Texas, November 2007.

[25] Strom R. and Yemini S.. Optimistic Recovery in Dis-
tributed Systems. InACM Transactions on Computer Sys-
tems (TOCS)Volume 3(3):204–226, ACM Press New
York, NY, USA, 1985.

[26] Sriya Santhanam, Pradheep Elango, Andrea Arpaci-
Dusseau and Miron Livny. Deploying Virtual Machines
as Sandboxes for the Grid. In Proceedings of theWork-
shop on Real, Large Distributed Systems, San Francisco,
California, December 2005.

[27] Marco Schneider. Self-Stabilization. InACM Computing
SurveyVolume 25(1):45–67, ACM Press, New York, NY,
USA, 1993.

[28] Dale Skeen. Nonblocking Commit Protocols. In Proceed-
ings of the1981 ACM SIGMOD international conference
on Management of data, ACM Press, New York, NY, USA,
1981.

[29] ”ZFS filesystem on Solaris”. http://www.sun.com/2004-
0914/feature/.

[30] Carl A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of theSymposium
on Operating System Design and Implementation, Boston,
Massachusetts, December 2002.


