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Abstract

Let R be a commutative ring. A finitely generated R-module M
can be converted into an R[X]−module by an R−endomorphism of M
(see for example [4]). In this work, we first give a structure Theorem
for finitely generated modules over local rings in term of Fitting ideals.
And then we consider an R[X]/(f(X))−finitely generated module Mu,f

induced on M by an endomorphism u which annihilate a monic poly-
nomial f(X). We establish a structure Theorem for Mu,f which shall
have interesting applications in linear algebra.
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1 Introduction

In this paper, and except supplementary indication , R will be a commu-
tative ring with unit. Let M be a finitely generated R−module, and u an
R−endomorphism ofM. The endomorphism u convertsM into anR[X] finitely
generated module by X.m = u(m) for all m ∈ M. We denote M as R[X]-
module via u by Mu.

In the classical case, i.e. when R = K is a field and E = Kn, Eu is a
K[X] torsion module. The structure Theorem for finitely generated modules
over principal ideal domains says that Eu decompose into a direct sum of
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cyclic torsion modules (i.e. there exists an integer r and elements p1, ..., pm in
K[X] with p1|p2...|pm such that Eu

∼= ∑i=r
i=1R/(pi)). It is well known that this

structure Theorem is used to recover the possible canonical forms for matrices
of endomorphisms over K−vector spaces.

In the general case, i.e. when R is a commutative ring, the R[X]−module
structure induced by an endomorphism was used to study the classical problem
of classification of M−endomorphisms (see for example [4]). But the structure
of R[X] still an obstacle since there is no structure theorems over this ring.

In this paper we are concerned with the M−endomorphisms which annihi-
late monic polynomials in R[X]. So, if f(X) is a monic polynomial inR[X] can-
celled by an R−endomorphism u of M, we consider the ring Λ = R[X]/(f(X))
and define a Λ−module structure on M via u in the same way as above. Our
goal is to give a structure theorem for these modules. A structure theorem
for a finitely generated modules M over a commutative ring R is a cyclic de-
composition M ∼= ⊕i=n

i=1R/(ai), with ai divides ai+1. The uniqueness of such a
decomposition is always assured (see for example [6, Theorem 2.4]).

This paper is organized in the following way. In section 2, we exhibit some
properties of Fitting ideals of direct sum of finitely generated modules. This
properties allows us to show Theorem 2.6 , a structure theorem for finitely
generated modules over local rings.

In section 2, we suppose that u annihilates a monic polynomial f(X) in
R[X], we define the R[X]/(f(X))−module Mu,f associated to Mu and f(X).
Then we investigate a case in which Mu,f shall have a structure theorem.
We give Theorem 3.5 which can be used to characterize, under assumptions,
invariant factors and canonical forms for endomorphisms and matrices over
some local rings.

2 A structure Theorem for finitely generated

modules over local rings

Let R be a commutative ring and M a finitely generated R-module. Let
x = (x1, ..., xn) be a set of generators of M . A relation of M is a vector
(a1, ..., an) in Rn such that

∑n
i=1 aixi = 0. For a positive integer k = 0, ..., n−1,

the kth Fitting ideal of M is defined to be the ideal Fk(M) generated by the
determinants of all (n− k) × (n− k)-submatrices of the matrix

K(M) =

⎛
⎜⎜⎜⎜⎜⎝

a11 . . . a1n
...

ai1 . . . ain
...

⎞
⎟⎟⎟⎟⎟⎠ ,
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where the vectors (ai1, ..., ain) are the relations of M. If k ≥ n, we define
Fk(M) = R. These ideals form an ascending sequence of invariant ideals for
M, independently of the choice of x, and have nice properties(see [7]).

In the following, we will denote by μ(M) the minimal number of generators
of M. We define ω(M) := min{k | Fk(M) �= 0}.

Proposition 2.1 Suppose R is a local ring. Let M1 and M2 be two finitely
generated R-modules. Then μ(M1 ⊕M2) = μ(M1) + μ(M2).

Proof. Suppose R is a local ring with maximal ideal m. Let M = M1 ⊕
M2 be the direct sum of two finitely generated R-modules. So M/mM ∼=
M1/mM1 ⊕M2/mM2. Let (x1, ..., xn1) and (y1, ..., yn2) be respective bases of
the R/m-vector spaces M1/mM1 and M2/mM2. It is known that n1 = μ(M1)
and n2 = μ(M2). Since (x1, ..., xn1 , y1, ..., yn2) is a R/m-basis of M/mM, we
have μ(M) = n1 + n2 = μ(M1) + μ(M2).

Proposition 2.2 Let M = M1 ⊕M2 be the direct sum of two finitely gen-
erated R-modules M1 and M2. Then :
(i) Fk(M1) ⊆ Fn2+k(M) and Fk(M2) ⊆ Fn1+k(M), ∀ k ≥ 0, with n1 and n2

the sizes of two sets of generators of M1 and M2 respectively.
(ii) Fk(Mi) ⊆ Fk+1(Mi).Fn−1(M) for any positive integer k ≤ ni − 1, where
i = 1, 2 and n = n1 + n2.

Proof. (i) Let x1 = (x1, ..., xn1) be a set of generators of M1 and x2 =
(y1, ..., yn2) a set of generators of M2. Then M is generated by (x1, x2).
Consequently, any relation of Mi can be completed to a relation of M, for
i = 1, 2. Let k be a positive integer < n1 and n = n1 + n2. Then any
(n1 − k) × (n1 − k)-submatrix of a matrix whose rows are relations of x is
an (n− (n2 + k))× (n− (n2 + k))-submatrix of a matrix whose rows are rela-
tions of (x1, x2). So, ∀k ≤ n1, Fk(M1) ⊆ Fn2+k(M). This inclusion is trivial if
k ≥ n1. Then we have (i).
(ii) Let k be a positive integer ≤ ni − 1 (i=1,2). The first step in computing,
by the Laplace method, the determinant of any (ni − k) × (ni − k)-submatrix
of a matrix whose rows are relations of xi gives an element

∑
j αjβj , where

αj is a coefficient of some row of K(M) and βj is the determinant of some
(ni− (k+1))× (ni− (k+1))-submatrix of a matrix whose rows are relations of
xi, ∀i. Since the coefficients of K(M) are generators of Fn−1(M) and Fk+1(Mi)
is generated by the determinants of the (ni−(k+1))×(ni−(k+1))-submatrices
from K(Mi) (by Definition). This is true for i = 1, 2, and then we have the
result.

Proposition 2.3 Let M and M
′
be two finitely generated R-modules such

that M=M
′ ⊕ R/Fr−1(M), where r = μ(M). Then Fk(M) = Fk(M

′
)Fr−1(M)

for any positive integer k ≤ r − 1.
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Proof. Let k be a positive integer ≤ r− 1. If M = M
′ ⊕R/Fr−1(M), then

Fk(M) = Fk(M
′
)Fr−1(M)+Fk−1(M

′
)+ ...+F0(M

′
) (by Proposition 10.8 page

487 in [5]). So Fk(M) = Fk(M
′
)Fr−1(M)+Fk−1(M

′
) (the Fitting ideals form an

ascending sequence). So, by (ii) in Proposition 2.2, Fk(M) = Fk(M
′
)Fr−1(M).

Recall that an element in R is said to be regular if it is not a zero divisor
in R. We say that an ideal is regular if it contains a regular element. We also
say that an ideal I of R can be simplified if for any ideals J and J

′
in R we

have IJ=IJ
′
implies J=J

′
.

Proposition 2.4 Suppose R is a local ring. Let M and M
′
be two finitely

generated R-modules such that M=M
′ ⊕R/Fr−1(M), r = μ(M). If the Fitting

ideals of M are principal regular ideals that can be simplified then
(i) ω(M) = ω(M

′
).

(ii) The Fitting ideals of M
′
are principal regular ideals that can be simplified.

Proof. (i) Set ω(M) = s and ω(M
′
) = s

′
. Then s, s

′ ≤ r−1 and,by Propo-
sition 2.3, Fs−1(M) = Fs−1(M

′
)Fr−1(M) . So Fs−1(M

′
)Fr−1(M) = 0. Hence

Fs−1(M
′
) = 0 and s ≤ s

′
. So Fs′−1(M) = Fs′−1(M

′
)Fr−1(M). So Fs′−1(M) = 0

(Fs′−1(M
′
) = 0). Hence s

′ ≤ s. Thereby s = s
′
.

(ii) One has μ(M
′
) = r − 1 (by Proposition 2.1). So if k is a positive integer

≥ r − 1 then Fk(M
′
) = R. Suppose k < r − 1. Proposition 2.3 implies that

Fk(M) = Fk(M
′
)Fr−1(M). Let’s put Fk(M) = (αk) for k = 0, ..., r − 1. Since

Fk(M) ⊆ Fr−1(M), there exists an element βk in R such that αk = βk.αr−1 for
k = 0, ..., r − 2. So (βk)Fr−1(M) = Fk(M

′
)Fr−1(M). Consequently Fk(M

′
) =

(βk) (since Fr−1(M)) can be simplified). Therefore it remains to show that
all the Fk(M

′
) can be simplified. Let I and J be two ideals in R and k a

positive integer such that Fk(M
′
)I = Fk(M

′
)J. Hence Fk(M

′
)Fr−1(M)I =

Fk(M
′
)Fr−1(M)J ( Fr−1(M) is not nil). So Fk(M)I = Fk(M)J. Consequently,

by hypothesis, I = J. Hence the Fitting ideals of M
′
can be simplified.

Proposition 2.5 Let I1 ⊆ I2 ⊆ ... ⊆ In be an increasing sequence of ideals
in R. Let k be a positive integer. Set M = ⊕i=n

i=1R/Ii. Then

Fk(M) =

{
Ik+1...In if k = 0, 1, . . . , n− 1.
R if k ≥ n.

In particular, if a1, ..., an are elements of R such that ai divides ai+1 for
i=1,...,n-1 then Fk(⊕i=n

i=1R/(ai)) = (a1...an−k), for k ≤ n− 1.

Proof. We have Fk(⊕n
i=1R/Ii) =

∑
i1+...+in=k Fi1(R/I1)...Fin(R/In)(by

[5, Proposition 10.8]). So, by [5, Corollary 10.6], Fk(⊕i=n
i=1R/Ii) is sum of ideals

of the form Ii1...Iin−k
where (i1, ..., in−k) are the (n− k)-tuples of {1, ..., n}.
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Since Ii ⊆ Ii+1 for 1 ≤ i ≤ n, Ii1 ...Iin−k
⊆ Ik+1...In for any n − k-tuple

(i1, ..., in−k) . Consequently Fk(⊕i=n
i=1R/Ii) = Ik+1...In.

Recall that a structure theorem for a finitely generated module M over a
commutative ring R is a cyclic decomposition M ∼= ⊕i=n

i=1R/(ai) with ai divides
ai+1. The following theorem gives a structure theorem for a finitely generated
R-module over a local ring.

Theorem 2.6 Suppose R is a local ring. Let M be a finitely generated R-
module. Let μ(M) = r. Suppose that the Fitting ideals of M are principal
regular ideals. Then M ∼= ⊕r−s

i=1R/(ai) ⊕ Rs, where ai divides ai+1 for 1 ≤ i ≤
r − s− 1, s = ω(M) and a1R �= R.

Proof. To prove that (i) implies (ii) we proceed by induction on r = μ(M).
For r=1, we have M ∼= R/F0(M) (by [1, Proposition 4], since F0(M) is
principal). The assertion is then true for r=1. For r > 1, [1, Proposition 4]
implies M ∼= R/Fr−1(M) ⊕M

′
, M

′
is a finitely generated R-module and

μ(M
′
) = r − 1 (by Proposition 2.1). Furthermore, according to Proposition

2.4, the Fitting ideals of M
′

are principal and I(M
′
) is regular (since the

Fitting ideals of M are principal and regular). So, by induction hypothesis,
M

′ ∼= (⊕i=r−1−s
i=1 R/biR) ⊕ Rs where bi divides bi+1 for 1 ≤ i ≤ r − s − 1, s =

ω(M
′
). Hence M ∼= R/Fr−1(M)⊕ (⊕i=r−1−s

i=1 R/biR)⊕Rs. Let a1R = Fr−1(M)
and ai+1 = bi for i = 1, ..., r − 1 − s. We have Fr−2(M

′
) = b1R = a1R and

Fr−2(M
′
) ⊆ Fr−1(M) (see Proposition 2.2 and 2.5). Then a1 divides a2. So

by Proposition 2.4, s = ω(M
′
) = ω(M). So M ∼= (⊕i=r−s

i=1 R/aiR) ⊕ Rs where
ai|ai+1 for 1 ≤ i ≤ r − s − 1 and s = ω(M). Furthermore, Proposition 2.5
implies a1R = Fr−1(M) �= R.

3 Module induced by an endomorphism which

annihilate a monic polynomial

Let M be a finitely generated R−module, and u an R−endomorphism of M.
Let f(X) be a monic polynomial in R[X] cancelled by the endomorphism u.
Then, an R[X]−module associated to u can be defined on M by X.m = u(m)
for all m ∈ M. We denote M as R[X]-module via u by Mu. Furthermore,
since f(X)R[X] ⊆ AnnR[X](Mu), we can converts the R[X]−module Mu into
a R[X]/(f(X))-module by g(X).m = g(u)(m), for all g(x) ∈ Λ and all
m ∈M, where g(X) is the image of an element g(X) of R[X] in R[X]/(f(X)).
We put Λ = R[X]/(f(X)) and we will denote Mu as R[X]/(f(X))-module by
Mu,f . Mu,f is an R[X]/(f(X))-lattice, i.e., a R[X]/(f(X))-finitely generated
module, R−torsion free module.

Recall that the kth determinantal ideal of an n× n square matrix A is the
ideal Dk(A) generated by all the (k× k)-minors of A. We put D0(A) = R and
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Dk(A) = 0 if k ≥ n.
Recall also that if M is a finitely presented module with finite presentation

Rm v→ Rn v
′

→ M → 0, the kth Fitting ideal of M is the ideal Dk(A), where A
is a matrix of the homomorphism v (see [7]),

In the following proposition, we suppose M to be free of finite rank n
and we establish the link between the Fitting ideals of Mu,f and the ideals
Dk(XIn − A), where A is the image in Mn(Λ) of a matrix A of u and In the
unit matrix of size n.

Proposition 3.1 Suppose M is a free R-module of rank n. Then

(i) Λ⊗RM
Ψu−→ Λ⊗RM

Φu−→Mu,f −→ 0 is an exact sequence, where Ψu(g(X)⊗
m) = Xg(X)⊗m−g(X)⊗u(m) and Φu(g(X)⊗m) = g(X).m, for all g(X) ∈ Λ
and all m ∈M .
(ii) Fk(Mu,f ) = Dn−k(X.In − A), forallk ≥ 0, A is the image in Mn(Λ) of
a matrix A of u.

Proof. (i) Let g(X) in R[X] and m in M. Then Φu.Ψu(g(X) ⊗ m) =
Φu(Xg(X) ⊗ m − g(X) ⊗ u(m)) = Xg(X).m − g(X).u(m) = g(X).u(m) −
g(X).u(m) = 0. So, Im(Ψu) ⊆ Ker(Φu). Conversely, Let z ∈ Ker(Φu)
and z =

∑i=r
i=0 Xi ⊗ mi. Then we have, Φu(z) =

∑i=r
i=0 u

i(mi) = 0. So, z =∑i=r
i=0(X

i ⊗ mi − 1 ⊗ ui(mi)) =
∑i=r

i=0(X̃
i − ui)(1 ⊗ mi) =

∑i=r
i=0(X̃

i − ui)(1 ⊗
mi). Since u and X̃ commute, X̃ i − ui = (X̃ − u)

∑j=i−1
j=0 X̃j.ui−j−1. Then

z =
∑i=r

i=0 Ψu(
∑j=i−1

j=0 X̃j.ui−j−1)(1 ⊗mi) ∈ Im(Ψu). Consequently Ker(Φu) ⊆
Im(Ψu). So Ker(Φu) = Im(Ψu). The sequence is then exact.
(ii) According to (i), Fk(Mu) = Fk(Ψu), for any integer k ≥ 0. Let (xi)1≤i≤n be
an R-basis of M .Then (1⊗xi)1≤i≤n is a basis of the Λ-free module Λ⊗RM. So,
if A = (aij)1≤i,j≤n, Ψu(1⊗ xj) = x⊗ xj − 1⊗ xj = X⊗ xj − 1Λ ⊗∑i=n

i=1 aijxi =
X⊗xj−∑i=n

i=1 aij(1⊗xi) = X(1Λ⊗xj)−∑i=n
i=1 aij(1⊗xi) =

∑i=n
i=1 x(δij(1Λ⊗xi)−

aij(1 ⊗ xi), where δij is the kronecker symbol. Hence X.In −A is a matrix of
Ψu. The Fitting ideals of Mu,f are then the determinantal ideals of X.In −A.

Proposition 3.2 Suppose M is a free R-module of rank n. Then

(i) Mu,f

Λ∼= Λ ⊗R[X] Mu.
(ii) Fk(Mu,f ) = Fk(Mu).Λ, for any integer k ≥ 0.

Proof. The assertion (ii) is a direct consequence of (i) (by [3, Corollary
20.5]). For the assertion (i), we consider the bilinear map :

ϕ : Λ ×Mu −→ Mu,f

(λ, x) �−→ λ.x.

The universal property of the tensor product ensure the existence of an homo-
morphism of R[X]−module Lϕ : Λ ⊗R[X] Mu −→Mu,f such that Lϕ(λ⊗ x) =
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λ.x, ∀λ ∈ Λ, ∀x ∈ Mu. Lϕ is also an homomorphism of Λ-module :
Lϕ(λ

′
(λ ⊗ x)) = Lϕ((λ

′
λ) ⊗ x) = (λ

′
λ).x = λ

′
(λ.x) = λ

′
Lϕ(λ ⊗ x). We will

show that Lϕ has an inverse. Consider the application

ψ : Mu,f −→ Λ ⊗R[X] Mu

x �−→ 1 ⊗ x.

ψ is an homomorphism of Λ-module. Let λ⊗x ∈ Λ⊗R[X]Mu. So ψLϕ(λ⊗x) =
v(λ.x) = 1 ⊗ λx. Put λ = λ(X) + f(X)R[X]. So ψLϕ(λ ⊗ x) = λ(X) ⊗ x.
Hence Lϕ = IdΛ⊗Mu . This on the one hand, and on the other hand one has,
Lϕψ(x) = Lϕ(1 ⊗ x) = x, for any x ∈ M. Then Lϕψ = IdMu. So ψ is the
inverse of Lϕ, and hence Lϕ is an isomorphism of Λ−module.

If R is local with maximal ideal m we denote by ḡ(X) the image of a
polynomial g(X) of R in k[X], where k = R/m is the residue field or R.

Proposition 3.3 Suppose R is a local ring with maximal ideal m and residue
field k. If f̄(X) = ḡ(X)α, where ḡ(X) is irreducible in k[X] and α a positive
integer, then R[X]/(f(X)) is a local ring with maximal ideal (m,g(x)), gen-
erated by m and g(x).

Proof. This result comes directly from [8, Lemma 4].

Proposition 3.4 Suppose R is a local ring with maximal ideal m and residue
field k. Suppose f̄(X) = ḡ(X)α, where ḡ(X) is irreducible in k[X] and α is
a positive integer. If Fr−1(Mu,f ) is principal, then Λ/Fr−1(Mu,f ) is a direct
summand of Mu,f , r = μ(Mu,f ).

Proof. By the previous Proposition, Λ is a local ring. So the result comes
from [1, Proposition 4].

Theorem 3.5 Suppose R is a local ring with residue field k. Suppose f̄(X) =
ḡ(X)α, where ḡ(X) irreducible in k[X] and α a positive integer. Suppose
Fω(Mu,f )(Mu,f ) is regular and Fk(Mu,f ) is principal for any k ≥ ω(Mu,f ). Then

Mu,f
∼= ⊕i=r−s

i=1 Λ/gi(X)Λ ⊕ Λs, where r = μ(Mu,f ), gi(X)|gi+1(X) for i =
1, ..., r − s− 1 and s = ω(Mu,f).

Proof. According to Proposition 3.3, Λ is a local ring. So we apply Theorem
2.6 to get the result.

Proposition 3.6 Suppose R is a local ring with only one prime ideal m. Let
k = R/m be residue field of R. Suppose f(X) is a monic polynomial. If f̄(X) =
ḡ(X)α, where ḡ(X) is irreducible in k[X] and α is a positive integer. If h(X) ∈
R[X] divide f(X) then h(X)R[X] can be generated by a monic polynomial in
R[X].
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Proof. Since h̄(X) divides f̄(X) in k[X], there exists a positive integer β
such that h̄(X) = ḡ(X)β. Let s be the degree of h̄(X). Set h(X) = anX

n +
...+ a0. Then n ≥ s and as is the coefficient of smaller index not belonging to
m. So as is a unit in R. Besides, for any i > s, if ai �= 0 then ai ∈ m. Since m
is the unique prime ideal of R, m is the nil radical of R. Then ai is nilpotent,
for i > s . Consequently, according to [1, Corollary 10.1], h(X)R[X] can be
generated by a monic polynomial in R[X].

Corollary 3.7 Suppose R is a local ring with only one prime ideal m and
residue field k/m. Let M be a free R-module of rang n. Suppose f(X) is a monic
polynomial and f̄(X) = ḡ(X)α, where ḡ(X) is irreducible in k[X] and α is a
positive integer. If Dk(X.In−A) is principal, ∀k ≥ 0, and Dn−ω(Mu,f )(X.In−A)

is regular then Mu
∼=R[X] ⊕i=r−s

i=1 R[X]/(gi(X)) ⊕ (R[X]/(f(X))s, where the
gi(X) are monic polynomials such that gi(X) divides gi+1(X) and s a positive
integer.

Proof. Let s = ω(Mu,f). We have Mu,f
∼= ⊕i=r−s

i=1 Λ/gi(X)Λ ⊕ Λs, with
r = μ(Mu,f ) and gi(X) divides gi−1(X) for i = 2, ..., r − s (by (ii) in the
previous theorem). Since Λ/gi(X)Λ ∼= R[X]/(gi(X)) ( gi(X) divides f(X), for
i = 1, ..., r−s, since f(X) ∈ AnnR[X](Mu) ), Mu

∼=R[X] ⊕i=r−s
i=1 R[X]/(gi(X))⊕

(R[X]/(f(X))s, where f(X) is monic, gi(X) divides gi+1(X) and the gi(X)
can be chosen monic (by Proposition 3.6).
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