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Figure 1: A result of our method: given a character rig and a set of keyframes for some of its parameters, our method automatically produces
animation curves for the remaining parameters by solving the equations of motion in the space of deformations defined by the rig. The
resulting motion is physically plausible, maintains the original artistic intent, and is easily editable.

Abstract

We present a method that brings the benefits of physics-based sim-
ulations to traditional animation pipelines. We formulate the equa-
tions of motions in the subspace of deformations defined by an
animator’s rig. Our framework fits seamlessly into the workflow
typically employed by artists, as our output consists of animation
curves that are identical in nature to the result of manual keyfram-
ing. Artists can therefore explore the full spectrum between hand-
crafted animation and unrestricted physical simulation. To enhance
the artist’s control, we provide a method that transforms stiffness
values defined on rig parameters to a non-homogeneous distribu-
tion of material parameters for the underlying FEM model. In ad-
dition, we use automatically extracted high-level rig parameters to
intuitively edit the results of our simulations, and also to speed up
computation. To demonstrate the effectiveness of our method, we
create compelling results by adding rich physical motions to coarse
input animations. In the absence of artist input, we create realistic
passive motion directly in rig space.
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1 Introduction

Character animation is a vital component of contemporary com-
puter games and film productions. For animated movies in partic-
ular, a character’s movements are critical to conveying personality
and style. During the rigging stage, the range of meaningful de-
formations for a character is carefully designed by artists in terms
of a low-dimensional set of intuitive control parameters. The char-
acter’s movement is determined during the animation phase, when
animators set values for the control parameters over time in order
to bring the character to life and make it act.

Believable and compelling animation, however, requires careful
consideration of the complex physical forces involved in movement
in order to give weight and substance to an otherwise empty and
weightless shape [Whitaker and Halas 2002]. Manual keyframe an-
imation affords the greatest degree of creative freedom and permits
extremely expressive animation. However, grounding this expres-
sive acting with physically realistic motion due to inertia, defor-
mation propagation, or collision reaction can be extremely cumber-
some and time consuming. Physics-based methods excel at cre-
ating such realistic effects, but are inherently difficult to control
and do not respect the style of deformation chosen for the charac-
ter and encoded in its rigging controls. This disconnect between
the workflow used by artists (manually keyframing a small set of
rig parameters) and the output of physics-based simulations (a high
number of independent degrees of freedom) limits the effectiveness
of physical simulation in the animation pipeline. To date, artists
must choose between laboriously keyframing physical effects or
employing physics-based tools that offer limited control and may
not respect the envisioned range of meaningful deformations.

Our research addresses this shortcoming with a method that unifies
keyframing and physical simulation to create realistic motions for
rigged characters. To this end, we create an underlying representa-
tion of the character based on an elastic deformable material. We
then simulate the dynamics of the character in the sub-space of de-
formations described by the character’s rig. Our method treats all
rigging controls in a unified manner and thus works with skeletons,
blend shapes, spatial deformation fields, or any other rigging pro-
cedure. Moreover, the output of our system consists of animation
keyframes for the rig parameters, making editing convenient for the
artist.

http://doi.acm.org/10.1145/2185520.2185568
http://portal.acm.org/ft_gateway.cfm?id=2185568&type=pdf


Our approach provides artists with a tool to continuously move
in the spectrum between fully controlled hand-animation and free
physical simulation. We demonstrate our method as a plugin to a
general-purpose 3D animation software and show results on com-
plex characters using a variety of real-world rigging controls. Fur-
ther, we extend our basic framework in the following ways:

• Rig-space Materials: We present a novel approach to define
material stiffnesses directly on the rig parameters by inferring
the required stiffness distribution on the background finite el-
ement mesh.

• Physics-Based High-Level Rig Parameters: Analyzing phys-
ical deformations computed with our framework yields a set
of high-level rig parameters that capture the main dynamic
behavior of the simulated character. This enables artists to
intuitively edit the output of our system by modifying only
a small number of animation curves. Creating new motions
in this reduced parameter space results in significant perfor-
mance gains, while maintaining the expressive power of the
original set of parameters.

• Physics-Based Inverse Kinematics: Our framework can be
easily extended to solve the inverse kinematics problem in rig
space through the use of additional potential energy fields act-
ing on the underlying deformable model.

2 Related Work

Rigging a character typically refers to the process of embedding
a skeleton in a surface mesh and defining how the mesh vertices
are transformed according to skeletal motions. In this paper, we
use the term in a more general way to denote a nonlinear mapping
between a low-dimensional space of rig parameters and a high-
dimensional surface mesh. In practice, this mapping takes many
forms, including classic techniques such as skeleton-based meth-
ods [Magnenat-Thalmann et al. 1989], wire deformations [Singh
and Fiume 1998], nonlinear functions [Barr 1984], blend shape an-
imation [Lewis et al. 2000; Sloan et al. 2001], and free-form defor-
mation [Sederberg and Parry 1986], all of which are implemented
in some form in modern animation software. Active research in
the area of rigging focuses on problems such as automatic rig gen-
eration [Baran and Popović 2007], example-based rigging [Sum-
ner et al. 2005; Li et al. 2010], cage-based methods [Joshi et al.
2007; Ju et al. 2008; Savoye and Franco 2010], volume preserva-
tion [Rohmer et al. 2009], and many others. Capell et al. [2002]
augment purely geometric skeleton-based rigs with physics using
coarse finite element simulations, while McAdams et al. [2011]
obtain impressive performance using a corotational formulation on
hexahedral lattices for a similar problem setting. Since such a wide
variety of rigging methods exists, we design our rig-based physics
method to treat the rigging system as a black box so that it can work
with any of the methods mentioned above. We demonstrate results
using skeletons, cage and curve deformers, and blend shape rigs.

Model reduction James and Fatahalian [2003] employ model re-
duction techniques on a sequence of meshes to extract deformation
and illumination modes that are played back in response to user
interaction. Some of the subsequent work has used this subspace
to speed up collision detection for deformable models [Barbič and
James 2010] or to automatically generate GUI controllers for more
efficient animation of blend shape models [Seol et al. 2011]. Kim
and James [2009] use an online model reduction technique to speed
up the simulation of nonlinear deformable models, while Barbič
and Zhao [2011] assemble larger objects from reduced simulated
parts.

Faloutsos et al. [1997] propose a nonlinear freeform deformation
map as a simulation subspace. The internal potential energy em-
ployed is a function of the change in rig parameter values, and does
not take into account the deformations of the underlying dynamic
model. It therefore does not capture coupling between the different
rig parameters that could arise, for instance, from volume preserva-
tion. The proposed energy formulation is also, in general, not rota-
tion invariant. In contrast, our formulation is grounded on contin-
uum mechanics principles, and its well-established discretizations.

A different subspace formulation has been presented by Gilles et
al. [2011], building on physical simulation in the space of dual
quaternion skinning frames. This parameterization defines a rig that
our method could also be applied to. However, their work focuses
on efficient simulation in this specific space, while our approach
trades efficiency for generality by supporting the deformation space
described by arbitrary rigs.

3 Rig-Based Simulation

Input / Output Our method takes as input an arbitrary character
rig, and optionally, prescribed keyframed trajectories for a subset
of the rig parameters. The dynamics formulation that we propose
operates on the remaining subset of ”free” rig parameters, as dis-
cussed in the remainder of this chapter. After every time step, the
values output for these rig parameters are recorded. This results
in animation curves similar in nature to those that an artist might
create through keyframing.

The input animation rig is treated as a black-box, nonlinear map-
ping between rig parameters p and the rigged surface mesh s. In
other words, we only assume to have access to the map

p 7→ s(p). (1)

Solely requiring such a black-box map increases the generality of
our approach, making it applicable to virtually any type of rig pa-
rameterization. As will be described shortly, our method requires
the derivatives of the map ∂s

∂p
and ∂2s

∂p2 . If these are not provided
with the rig, we estimate them using finite differences. This allows
us to use our method with standard animation packages such as Au-
todesk Maya.

Dynamic Model In order to formulate the dynamics of de-
formable objects in the subspace of deformations defined by the in-
put animation rig, we first consider the equations of motion (EOM)
for deformable materials

ρẍ = f(x)

for the continuous solution x(X, t), where X represents the unde-
formed configuration, t denotes time, ρ describes the mass density
of the material and f(x) represents the density of internal and exter-
nal forces acting on the system. We choose to discretize the equa-
tions of motions in time first (see, e.g., [Krause and Walloth 2009])
and apply the implicit Euler integration scheme to obtain

ρ
(xn+1 − xn

h2
− vn

h

)
= f(xn+1),

where h is the size of the timestep. This specific choice of time
integration allows us also to look at the problem in its variational
form [Martin et al. 2011] as the minimization of the following non-
linear functional:

H[xn+1] =
ρh2

2

∣∣∣(xn+1 − xn

h2
− vn

h

)∣∣∣2 +W (xn+1), (2)



where W represents the sum of internal and external potential en-
ergies Wint + Wext such that −∂xW = f . The external potential
energy accounts for the effects of gravity and penalty-based colli-
sions.

Using this variational form, we can now choose an appropriate spa-
tial discretization to obtain the final formulation of the equations of
motion for deformable objects.

Spatial Discretization To spatially discretize the variational
problem (2) and make use of the provided rig parameterization (1)
we first create a volumetric representation of the input character. To
do so, the vertices of the rigged surface mesh s (or a subset, if the
input mesh is too dense) serve as the boundary of a tetrahedral mesh
that we generate in a preprocessing step. The resulting volumetric
mesh defines a set of distinct finite elements with nodal degrees of
freedom (DOFs) x:

x = {n}
⋃
{s}

The set s of nodal DOFs provides a direct mapping between the
surface of the deformable object and the rig, and the internal DOFs
n are required in order to ensure a good-quality spatial discretiza-
tion irrespective of the input surface mesh that is rigged. We note
that the internal DOFs are independent of the rig parameters p, be-
cause the input rig generally deforms a surface mesh, and not an
arbitrary volumetric region in space. The volumetric solution field
approximating the continuous solution x is given by

x(X) ≈
∑
i

xiNi(X) =
∑
j

njNj(X) +
∑
k

skNk(X),

where N(X) are basis functions associated with the nodal DOFs.

Our formulation is independent of the FEM discretization and ma-
terial model chosen, as long as the nodal degrees of freedom s can
be incorporated. For simplicity, we use tetrahedral elements with
linear basis functions in combination with standard Saint-Venant
Kirchhoff or Neo-Hookean material models [Irving et al. 2004] to
define the internal energy Wint. Specifically, this allows us to re-
place the continuous mass and energy densities with their discrete
counterparts

ρ→Mn,Ms

W (x(X))→W (n, s),

where standard mass lumping is used. Further, this allows us to
now reformulate (2) in this discrete setting as

H(n,p) =
h2

2

(n− nn

h2
− vn

h

)T
Mn

(n− nn

h2
− vn

h

)
+
h2

2

(
s(p)− sn

h2
− wn

h

)T

Ms

(
s(p)− sn

h2
− wn

h

)
(3)

+W (n, s(p)),

where v and w are the velocities of n and s, respectively, and the
subscript n indicates the previous time step. To perform simula-
tions in the reduced subspace provided by the rig, we minimize
Equation (3) as a function of the interior vertices n and rig param-
eters p, as described in Section 4.

4 Minimization

The problem formulation derived in the previous section allows us
to describe the timestepping procedure as a minimization of the

Figure 2: A sphere with scaling and global translation rig param-
eters. Top left: artist-created animation, top right: constrained
global translation with scaling parameters being simulated, bot-
tom: all rig parameters being simulated.

nonlinear objective function presented in Equation (3). In order
to efficiently minimize this objective for each timestep, we extend
a simple Newton-Raphson minimization scheme to achieve better
performance for the specific setting presented here.

Derivatives Let us first state the necessary condition for a min-
imum as [∂nH, ∂pH]T = 0, corresponding to the conventional
equations of motion for interior vertices

∂nH = Mn

(n− nn

h2
− vn

h

)
+ ∂nW (n, s(p)) = 0

as well as rig parameters

∂pH = Js(p)TMs

(
s(p)− sn

h2
− wn

h

)
+ Js(p)T ∂sW (n, s(p)) = 0,

where we make use of the notation Js(p) = ∂s
∂p

. In order to solve
this coupled system of nonlinear equations using a Newton scheme,
we need to solve for correction directions [∆nk,∆pk]T in each
iteration by solving the linear system[

Hnn Hnp

Hpn Hpp

] [
∆nk

∆pk

]
= −

[
∂nH
∂pH

]
, (4)

that involve second derivatives of the objective function. They are
given analytically as

Hnn =
1

h2
Mn + ∂nnW (n, s(p))

Hpn = Js(p)T ∂snW (n, s(p)) (5)

Hpp = Js(p)T
(

1

h2
Ms + ∂ssW (n, s(p))

)
Js(p)

+ ∂pJs(p)TMs

(
s(p− sn

h2
− wn

h

)
+ ∂pJs(p)T ∂sW (n, s(p)).

Once the correction directions are computed, we use a line search
method to find an appropriate scalar value α. The updated values
for the unknowns n and p are then given by:

nk+1 = nk + αk∆nk

pk+1 = pk + αk∆pk.

The line search parameter αk is computed by performing cubic in-
terpolation to previous function and gradient evaluations while sat-
isfying the Wolfe conditions for sufficient descent, as described in
[Nocedal and Wright 2006]. An example of this approach applied
to a rigged sphere is shown in Figure 2.



BFGS Evaluating second derivatives analytically can be compu-
tationally expensive when a black box rig is used, as the Jacobian
derivatives ∂pJs(p) need to be approximated with finite differ-
ences. This requires O(p2) rig evaluations s(p) for each Newton
iteration. This is currently the bottleneck in our implementation
when using black box rigs evaluated by Maya.

In order to circumvent this problem, it is preferable to choose
solutions that require as little use of the black box rig as possi-
ble. If analytic rig jacobians are not provided, we can use super-
linearly convergent quasi-Newton methods such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [Nocedal and Wright
2006]. This method updates an approximate Hessian B̃k+1 at each
Newton step by using a series of rank-2 updates involving the gra-
dient:

B̃k+1 = B̃k +
yky

T
k

yT
k dk

− B̃kdkd
T
k B̃k

dT
k Hkdk

,

where dk = [∆nT ,∆pT ]T and yk is the gradient difference be-
tween the current and the last iteration’s gradient of H . In practice,
we only use BFGS to update the Hpp block of the full system Hes-
sian. Hnn is much larger, sparse, and easy to evaluate analytically.
In our experiments, the performance gained by reducing the num-
ber of calls to the black box rig outweighs the loss in convergence
introduced by using approximate Hessians.

Schur Complement Solver The blocks of the system matrix in
Equation (4) have different sparsity structures. While Hnn is very
sparse, the blocks Hpn and Hpp are dense due to the subspace
projection with Js. Naı̈vely solving this system leads to poor per-
formance of either iterative or direct solvers.

In the spirit of [Levin et al. 2011], we first perform a Schur com-
plement decomposition of the linear system in order to separate the
dense and sparse blocks. We do this by performing a Block-Gauss-
elimination of Equation (4), and thus solving the following equa-
tions in sequence

(Hpp −HpnH
−1
nnHnp)∆p = ∂pH −HpnH

−1
nn∂nH

Hnn∆n = ∂nH −Hnp∆p.

Since Hnn can be prefactorized by a direct linear solver, the sep-
arate solves required on the relatively small number of columns of
Hnp, ∂nH as well as in the second equation, can be performed
efficiently using back substitution. Given that the number of pa-
rameters of typical animation rigs is relatively small, the cost of the
dense solve required to compute ∆p is negligible.

5 Rig-Space Material Control

As discussed thus far, the input to our system consists of an anima-
tion rig and a surface mesh. The surface mesh is used to define the
deformable object that drives the dynamic behavior of the simula-
tion. The material properties of this deformable object, of course,
have a large influence on the motions resulting from our system. It
is therefore very important to provide an intuitive way for the user
to manipulate these parameters. A simple approach would be to al-
low users to manually adapt the material properties of the simulated
finite element mesh, which could be done, for instance, by using a
painting interface. We believe that such an approach, however, does
not fit well in an artist’s typical workflow, as this would require an
intimate knowledge of the underlying dynamical model, the mean-
ing of the various material parameters, and the coupling between
the rig and the simulated object.

To bypass this problem, we present a novel approach that allows
novice users to intuitively influence the material parameters directly

Figure 3: Top row: An elastic bar rigged by four rig deformation
modes, affecting the outmosts (p1, p4) and the combination of the
two outer joints (p2, p3), respectively. Homogeneous materials re-
sult in symmetric deformations (second row), stiffening p3 and p4
results in overall stiffer right part of the bar (third row), while when
stiffening only p4, our approach leads to the expected behavior, de-
spite the influence region of p3 (last row).

in rig-space. We allow artists to define a stiffness scale value Si for
each rig parameter pi, that roughly corresponds to its desired stiff-
ness relative to the default stiffness of the homogeneous material
chosen for the FEM model.

In an initial analysis step, we compute an inhomogeneous stiffness
scale distribution µe over all simulation elements that results in the
desired behavior for the rigged object. The distribution found in
this step does not change our simulation framework. It only affects
the stiffness of the material used during simulations.

Technically, we achieve this by treating the interior vertices n not as
independent DOFs, but as being always in static equilibrium given
the boundary conditions defined by the rigged surface points s(p).
In other words, we treat every FEM node as if it was directly con-
trolled by the rig q(p) = (n(p), s(p)). While this explicit map is
only known through a nonlinear static solve, it allows us to analyze
the influence of each rig parameters on the deformation of the en-
tire FEM mesh geometry, and not only the rig-controlled boundary.
We also define the derivative of this map as Jq = ∂q

∂p
which we

evaluate with finite differences.

At the rest configuration, q(0), internal elastic forces are zero and
their rate of change is described locally by the tangent stiffness ma-
trix ∂qqW . According to Equation (5), and only considering contri-
butions due to internal potential energy, the Hessian Hpp becomes:

Hpp = JT
q ∂qqWintJq,

where ∂qqW describes the energy Hessian with respect to all mesh
DOFs. The columns of this Hessian describe how a change ∆p
introduces restoring generalized forces fp that act on the rig param-
eters as fp = −Hpp∆p. We seek to automatically scale these
restoring generalized forces using the user-specified rig-space ma-
terial parameters Si.

An alternate way of assembling the Hessian Hpp is to consider the
per element energy contributions ∂qqWe:

Hpp = JT
q

(∑
e

∂qqWe

)
Jq =

∑
e

(
JT
q ∂qqWeJq

)



In this formulation we can now introduce the scaling factors µe

which we aim to compute per element. These scaling factors have
the effect of stiffening or softening each element individually. For-
mally, we ask that:

SHpp =
∑
e

JT
q ∂qqWeJq · µe, (6)

where S is the diagonal scaling matrix containing the desired rig
stiffness scales Si. This is a linear system with p2 equations and
#e unknowns. We solve this system in a least squares sense us-
ing a quadratic programming approach [Nocedal and Wright 2006],
where we additionally introduce inequality constraints µe ≥ 0 to
obtain positive element stiffnesses and a simple L2-regularizer pro-
portional to

∑
e(µe − 1)2 that encourages the use of the default

material stiffnesses.

Geometrically speaking, this approach anisotropically adapts the
elastic energy landscape around the rest shape in order to reflect
the desired scaling of the generalized forces. While we perform
this analysis only in the neighborhood of the undeformed configu-
ration, we have also observed intuitive resulting behaviors for large
deformations. The example shown in Figure 3 demonstrates the
effectiveness of this method.

6 Extensions

In the previous sections we described our simulation framework
that operates directly in the space of deformations defined by an
animation rig. In this section we discuss several extensions that
increase the usefulness of our method.

Physics-Based High-Level Rig Parameters Many animation
packages allow artists to define high-level rig parameters that com-
bine several low-level deformers. These high-level parameters are
often more intuitive to use, as they capture synergies that naturally
occur in the motions being created. Our rig-space simulation frame-
work allows us to easily create such high-level rig parameters that
capture the main physical deformation modes that the underlying
physical object induces on the rig parameters. The high-level pa-
rameters that we expose to the artist can be used for manual editing
of physically plausible motions or as a further reduced subspace
that significantly increases the speed of our simulations.

Our approach is similar in spirit to kernel PCA methods [Dambre-
ville et al. 2006], where linear data analysis is not performed in the
original vertex space, but rather in a warped or ”unfolded” space.
In this setting, a linear model can better capture the structure of
the data. The results of our simulation in rig-space, pi, provide a
space that already captures the nonlinearities in vertex space (i.e.
si). Similarly to [Krysl et al. 2001] we perform our analysis on
data stemming from our rig-space simulation. Alternatively, we
could use existing animations to build a model of the rig parameter
coupling that artists are accustomed to using.

Since we want the undeformed configuration p = 0 to always be
representable in the reduced rig subspace, we choose to represent
our rig parameters p by the span of column vectors of U, i.e., we
have a representation

p = Ur,

and do not choose an affine space positioned at a mean vector
as commonly done in PCA. The columns of U are computed
straightforwardly as the right singular vectors of the data matrix
P = [p1, ...,pm]. As an illustration, different deformation modes
obtained by performing this analysis on the belly motion for the
elephant walk cycle are given in Figure 4. For this example, 30
parameters were initially simulated.

Figure 4: PCA modes for the belly rig parameters on the walk cy-
cle example. Left: first mode characterizing vertical motion, right:
second mode for horizontal motion.

As already mentioned, these physics-based high-level rig parame-
ters r can be used as a further reduced subspace in order to speed
up simulations. Incorporating this subspace into our formulation
is very simple: we simply replace p by Ur in the discrete simu-
lation energy (3) and apply the chain rule correspondingly for its
derivatives.

Physics-Based Inverse Kinematics Inverse kinematics – the
process of computing state variables to satisfy higher-level kine-
matic goals – is a well studied problem in different areas of anima-
tion [Yamane 2004; Sumner et al. 2005; Fröhlich and Botsch 2011].
A key ingredient of such systems is the definition of a quality mea-
sure that eliminates the redundancy that exists when there are more
degrees of freedom than there are goals. Our physical energy model
W (n, s(p)) formulated in rig-space can be naturally used as such a
quality measure, independently of the type of rig that is provided as
input. Because the physical energy model measures internal defor-
mation on the simulation FEM mesh, virtually all types of rigging
methods can be collectively treated in a unified manner. By mini-
mizing

min
p,n

H(n, s(p)) + α
∑
k∈H

|sk(p)− hk|2, (7)

where H is a set of handles, we find the best configuration of rig
parameters such that the surface points sk are as close as possible
to the goal positions hk. Using our flexible formulation of H , we
can apply this inverse kinematics solver for static modeling but also
to add dynamic effects when the momentum terms are considered.

Interior Secondary Motion The energy-based formulation de-
fined in (3) allows us to easily switch between dynamic and static
solves. The difference between the two consists of the additional
momentum terms which can be omitted for static problems.

Since we decouple the treatment of the rigged vertices s(p), and
the interior vertices n, this formulation allows us to use different
solvers for the two classes of degrees of freedom. It is possible, for
instance, to use a static solve for the interior vertices, while using a
dynamic solve for the rig parameters. In this case, during each time
step, the interior points aim to reach a static equilibrium configu-
ration due to absence of any mass and momentum. This strategy
gives intuitive results for rigged objects that are meant to be more
rigid. If, however, we keep the mass term for the interior points,
we can achieve more complex (and interesting) secondary motion
effects such as waves that propagate through the solid and affect
the free DOFs of the rigged surface (cf. accompanying video). This
approach works best for rigged objects that are meant to be softer.
The option of using either strategy is exposed as a high-level control
parameter to the users of our system.



Figure 5: The top row shows different views of two artist-rigged
examples, whereas the second row shows our approach with simu-
lated rig parameters for the belly, shoulder, trunk and tail.

7 Results

The framework we propose provides animators with a helpful tool
that can be used to enhance their existing rigged animations with
physical effects and to create controllable animation of deformable
objects. The approach is particularly attractive for animators since
it can be seamlessly integrated in their workflow. As such, editing
and post-processing of simulation results becomes as effortless as
editing any other existing keyframed animation.

We demonstrate the effectiveness of our method by animating sev-
eral simple rigs that are used to showcase various concepts. In addi-
tion, we animate two artist-created rigs: Prof. Peanuts and Flower.
Please note that our results are best seen in the accompanying video.

To demonstrate the benefit of our approach on a practical exam-
ple, we apply it to an artist-created walk cycle animation of Prof.
Peanuts. Figure 5 compares our simulated animation to the coarse
input animation provided by the artist. Simply specifying a subset
of rig parameters to be simulated allows our framework to enrich
the provided coarse, manually keyframed motion with many inter-
esting physical details. This can be seen in the motion of the belly,
trunk, ears and tail of the elephant.

Our rig-based approach also allows us to quickly iterate over ani-
mation sequences and simulate individual parts of the rig separately.
Although this can potentially lead to a loss of interesting coupling
between different parts of the rig, the gain in simulation speed can
be significant. While using this mode of operation, the result of a
previous simulation is taken as an input keyframed sequence and
is treated as boundary condition for the free rig parameters. This
technique has been applied for the sequence shown in Figures 1
and 5.

Rig-Space Material Control Our rig-based material model en-
hances the basic simulation framework presented in Section 3 by
allowing the artist to specify individual stiffnesses for each rig pa-
rameter. This enriches the space of dynamic behaviors that can be
generated and also allows for more accurate control over the elastic
characteristics of individual parts of the rigged characters. Figure 6
shows the approach applied to the Flower rig, where neither uni-
formly stiff nor uniformly soft materials give satisfactory results.
However, selectively weakening the blossom and the leafs, while
maintaining the stiffness of the stem, leads to a desirable behavior.

Figure 6: In each column, the rigged flower is simulated with dif-
ferent rig stiffness parameters. First: homogeneous soft material,
second: homogeneous stiff material, third: soft material for blos-
som rig, last: soft material for blossom and leaves rigs

Physics-Based Rig Parameters To further enhance the artist’s
editing capabilities, and to enforce the concept of keeping the an-
imator in the loop, our PCA-based approach automatically deter-
mines additional, physically meaningful control parameters. For
the walk cycle example shown in Figure 5, the main two modes
capture most of the elastic deformation of the belly during the walk.
By manipulating these high-level parameters, animators can easily
edit the animation curves generated by our system, in order to em-
phasize or reduce their effect, as illustrated in Figure 9. In our ex-
perience, this manual editing process, if not taken to an extreme,
still results in plausible-looking motions.

The high-level rig parameters that we expose also provide a conve-
nient space for our simulations to work with. As will be discussed
shortly, this significantly decreases the computational overhead of
our method. However, it is important to ensure that this does not
negatively impact the quality of our results. To test this, we simu-
lated the belly of the dancing elephant using the subspace built from
the walk sequence. We repeated the experiment by then animating
the walk sequence using the subspace obtained by simulating the
full set of belly parameters for the dance motion. In both cases, the
high-level rig parameters proved to generalize very well, and the vi-
sual differences between performing the simulations in the reduced
space, or with the full set of parameters is almost imperceptible.
This is illustrated in Figure 7.

Inverse Kinematics Defining the elastic energy on the back-
ground FEM mesh and working on abstract rig mappings s(p)
allows us to perform inverse kinematics operations on arbitrary
rigged objects. Figure 8 shows Prof. Peanuts performing a work
out routine. This sequence was created by providing several handle
trajectories, as described in Section 6. For the editing process, sec-
ondary motion can either be enabled or disabled (non-zero or zero

Figure 7: The overlay of the original (blue, 30 DOFs) and reduced
(grey, 6 DOFs) simulation shows the good approximation quality of
our high-level controllers.



Figure 8: Different inverse kinematics edits at deformation handles
depicted as red spheres.

mass matrices Mn and Ms in Equation (3), respectively), depend-
ing on the application.

Timing Information The performance of our method is influ-
enced by several factors. First, the number of nodal degrees of
freedom of the underlying deformable model, the number of rig pa-
rameters and the complexity of their evaluation directly influence
the time required to compute the energy and its derivatives. Sec-
ond, different sets of rig parameters result in energy landscapes of
varying complexity. This is reflected by the varying number of iter-
ations required for convergence.

Table 1 summarizes timing and model complexity information for
the examples we ran using the BFGS solver. For the Flower and
the Prof. Peanuts test sets, the Newton solver generally converged
in less than 5 iterations, while the BFGS solver needed between 10
and 20 iterations to reach a predefined threshold for the gradient
norm.

The computational bottleneck of our framework is caused by the
black box communication interface to Maya. To assess this, we
created a rig based on linear blend shapes in Maya, then replicated
it in our framework with both finite difference derivatives and ana-
lytic derivatives. We used the Newton solver and enforced exactly 5
iterations per time step in all cases in order to obtain a direct perfor-
mance comparison. Even with our non-optimized rig implementa-
tion that behaves identically to the one used in Maya, the processing
time is reduced by a factor of 18 when using finite difference deriva-
tives. When using analytic derivatives, the performance is further
increased by a factor of more than 3. We note that this difference is
likely to be more extreme as the complexity of the rigging elements
is increased.

Figure 9: A high-level rig parameter is scaled up (right) and down
(left) by a factor of 1.5 to amplify or attenuate the belly motion.

It is also interesting to note the large performance gain obtained
when running simulations using the high-level parameters obtained
through the PCA analysis. This is due to the fact that estimating the
required derivatives needs O(p2) rig evaluations.

Model dim p dim n dim s tframe (s)
elephant belly 36 3990 2253 46.47
elephant belly (PCA) 6 3990 2253 3.77
elephant trunk 13 3990 2253 7.24
elephant tail 12 3990 2253 3.45
elephant shoulder 3 3990 2253 2.51
elephant ears 2 3990 2253 1.14
flower 24 1089 987 10.54
sphere scaling 3 5430 2580 1.41
sphere passive 5 5430 2580 0.53
bar material 4 489 174 0.29
interior dynamics 12 489 174 1.22

Table 1: Timings taken on a Intel Core i7-930 4 x 2.8Ghz

8 Limitations and Future Work

The framework we present allows animators to exploit the benefits
of dynamic simulations without any change to the typical workflow
they follow when creating animations. Our method treats any ani-
mation rig as a black box, nonlinear map between a high-level set
of rig parameters and the vertices of the mesh being animated. The
output of our method is a set of animation curves that are virtually
identical to the ones created by animators through key-framing. We
show the effectiveness of our method by animating several Maya
rigs. In particular, two of the examples we show consist of complex
rigs that allow for a large space of deformations. To increase the
usefulness of our framework, we introduce a method that allows
animators to non-homogeneously change the stiffness of each rig
parameter.

The animation curves produced by our system can readily be edited
by artists. Scaling the animation curves in their entirety empha-
sizes or reduces the physical effects we introduce. We believe that
investigating additional ways in which our method can enhance the
productivity of artists presents a very interesting direction for future
work.

Our implementation does not currently create animations at inter-
active rates when a large number of rig parameters is considered.
To a large extent, this is caused by the relatively slow data transfer
between Maya and our software. We are particularly encouraged
by the effectiveness of the high-level rig parameters that we obtain
by analyzing the results of our simulations. Working within this
further reduced parameter space could be a key to the development
of methods that allow artists to use our system at interactive or real-
time rates.

Fast input motions for the rigged characters can cause numerical
stability problems. This is because the boundary conditions can
change drastically from one time step to the next. For our current
implementation, we occasionally had to slow down the input anima-
tion, run our simulation and then re-sample the resulting motions.

The analysis performed in order to automatically control mate-
rial stiffnesses only locally considers the change in internal energy
caused by the various rig parameters. However, because the anima-
tion rigs we work with are nonlinear in nature, this may not lead
to intuitive simulation behaviors in all regions of the rig parameter
space. This limitation could be addressed by performing a global
analysis, or by re-computing the material stiffnesses when the ini-
tial local model is no longer appropriate.
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