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Abstract
The use of ensemble Kalman filter techniques for continuous
updating of reservoir model is demonstrated. The ensemble
Kalman filter technique is introduced, and thereafter applied on
two 2-D reservoir models. One is a synthetic model with two
producers and one injector. The other model is a simplified 2-D
field model, which is generated by using a horizontal layer from
a North Sea field model.

By assimilating measured production data, the reservoir
model is continuously updated. The updated models give im-
proved forecasts. Both dynamic variables, as pressure and sat-
urations, and static variables as the permeability are updated in
the reservoir model.

Introduction
In the management of reservoirs it is important to utilize all
available data in order to make accurate forecasts. For short
time forecasts, in particular, it is important that the initial val-
ues are consistent with recent measurements. The ensemble
Kalman filter1 is a Monte Carlo approach, which is promising
with respect to achieving this goal through continuous model
updating and reservoir monitoring.

In this paper, the ensemble Kalman filter is utilized to up-
date both static parameters, such as the permeability, and dy-
namic variables, such as the pressure and saturation of the reser-
voir model. The filter computations are based on an ensemble
of realizations of the reservoir model, and when new measure-
ments are available new updates are obtained by combining the
model predictions with the new measurements. Statistics about
the model uncertainty is built from the ensemble. While new
measurements become available, the filter is used to update all

the realizations of the reservoir model. This means that an en-
semble of updated realizations of the reservoir model is always
available.

The ensemble Kalman filter has previously been success-
fully applied for large-scale nonlinear models in oceanography2

and hydrology3. In those applications only dynamic variables
were tuned. Tuning of model parameters and dynamic variables
was done simultaneously in a well flow model used for under-
balanced drilling4. In two previous papers5,6, the filter has been
used to update static parameters in near-well reservoir models,
by tuning the permeability field. In this paper, the filter has
been further developed to tune the permeability for simplified
real field reservoir simulation models.

We present results from a synthetic model as well as a sim-
plified real field model. The measurements are well bottom-
hole pressures, water cuts and gas/oil ratios. A synthetic model
gives the possibility of comparing the solution obtained by the
filter to the true solution, and the performance of the filter can
be evaluated. It is shown how the reservoir model is updated
as new measurements becomes available, and that good fore-
casts are obtained. The convergence of the reservoir properties
to the true solution as more measurements becomes available is
investigated.

Since the members of the ensemble are updated indepen-
dently of each other, the method is very suitable for parallel
processing. It is also conceptually straightforward to extend the
methodology to update other reservoir properties than the per-
meability.

Based on the updated ensemble of models, production fore-
casts and reservoir management studies may be performed on
a single ”average” model, which is always consistent with the
latest measurements. Alternatively, the entire ensemble may be
applied to estimate the uncertainties in the forecasts.

Updating reservoir models with ensemble Kalman fil-
ter
The Kalman filter was originally developed to update the states
of linear systems to take into account available measurements7.
In our case, the system is a reservoir model, using black oil, and
three phases (water, oil and gas). For this model, the solution
variables of the system are the pressure, the water saturation, in
addition to a third solution variable that depends on the oil and
gas saturation. If the gas saturation is zero, the third solution
variable becomes the solution gas/oil ratio, if the oil saturation

∗Now with Centre for Integrated Petroleum Research, University of Bergen



2 SPE 84372

is zero it becomes the vapor oil/gas ratio. Otherwise the third
solution variable is the gas saturation. The states of this system
are the values of the solution variables for each grid block of the
simulation model. This model is non-linear.

An early attempt to extend the ideas of the Kalman filter to
non-linear models is the extended Kalman filter which is based
on linearization of the non-linear model. The extended Kalman
filter is however not suitable for very large models and also fails
if the non-linearities are too severe. Therefore an alternative is
needed1. The ensemble Kalman filter has shown to be a promis-
ing approach for large scale non-linear atmospheric and oceano-
graphic models.

For the reservoir model, however, there are poorly deter-
mined model parameters that have a governing influence. In
this study we will focus on using the ensemble Kalman filter
to update the permeability, in addition to the above mentioned
state variables. This means that we extend the state vector with
the permeability of each grid block (assuming that the perme-
ability is isotropic). Note that in principle any input parameter
in the model can be updated.

The literature on estimating dynamic variables and model
parameters simultaneously for non-linear models using some
variants of a Kalman filter is modest. The topic is discussed
by Wan and Nelson8. They give further references, but do not
discuss the use of ensemble Kalman filter to solve such a task.

The ensemble Kalman filter has previously been used to up-
date both dynamic variables and model parameters for a two-
phase well flow model used in underbalanced drilling4,9. The
approach has also been used for updating the permeability and
dynamic variables in a two-phase near-well reservoir setting5,6.

The ensemble Kalman filter is based on a Monte-Carlo ap-
proach, using an ensemble of model representations to evalu-
ate the necessary statistics. We have used 100 members in the
ensemble, based on experience from atmospheric data assimila-
tion, where this have been sufficient10.

The filter consists of sequentially running a forecast step
followed by an analysis step. The input to the forecast step is
the result obtained from the analysis step, which is an updated
description of the model after assimilating a new set of mea-
surements. The forecast step consists of running the reservoir
simulator for each of the model realizations. The forward sim-
ulations are ending at the next point in time where new mea-
surements are to be assimilated. The state vector after running
the forecast step is denoted by s

f
k and the state vector after the

analysis step is denoted by sa
k.

The filter is initialized by generating an initial ensemble.
The generation of the initial ensemble can be described by the
equation

sa
0,i = sa

0
+ em

0,i, (1)

where i runs from 1 to the number of members in the ensemble.
Here sa

0
is the mean of the initial ensemble. The terms em

0,i are
drawn from a mixture distribution with zero mean (we use the
term mixture distribution11 if a random variable have a distribu-
tion that depends on a quantity which also have a distribution).
Further details on the distribution that we use in generating the
terms em

0,i is presented below.
The forecast step consists of running the model (i.e. the

simulator solving the reservoir model) and giving an expression
for the uncertainty in the model output. In these studies we

have used a commercial reservoir simulator. We denote running
the reservoir simulator forward to the next point in time where
measured data is going to be assimilated by f . The reservoir
simulator is run once for each member of the ensemble. For
the i’th member of the ensemble at time level k, we denote the
forecasted state vector by s

f
k,i and the analyzed state by sa

k,i. In
the forecast step the simulator is run from the current time (say
time level k−1) to the point in time where the next measurement
becomes available (time level k). To take into account the model
uncertainty, we add model noise to the ensemble members prior
to each simulation. This gives the equation

s
f
k,i = f(sa

k−1,i + em
k,i). (2)

The terms em
k,i is drawn from a mixture distribution.

Generation of the initial ensemble and the generation of the
model noise at each step is done along the same lines, repre-
sented by the terms em

0,i and em
k,i in Equations 1 and 2, respec-

tively. The model noise is basically placed in the permeability.
The noise added to the permeability is independent of the noise
added to the time dependent variables of the model (pressure,
saturations, etc.).

To generate stochastic realizations of the permeability field
we assume that the permeability is spatially correlated with a
Gaussian correlation model, i.e. that the permeability in grid
block (i1, j1) is correlated with the permeability in grid block
(i2, j2) with correlation coefficient

e−( i1−i2
l )

2

−( j1−j2
l )

2

. (3)

Using the correlations specified in Equation 3 a correlation ma-
trix C is computed. From this correlation matrix, the covariance
matrices used while generating the initial permeability field and
the model noise is computed as σ2C, where σ is the standard
deviation in the permeability of each grid block. The standard
deviation used while generating the initial permeability field
(Eq. 1) is usually much higher than the used while adding the
model noise in Eq. 2. The correlation length, l, is also treated
as a normally distributed stochastic variable. This means that
(the noise added to) each ensemble member is generated by first
drawing l from a normal distribution, then generating C and fi-
nally draw a permeability field from a multinormal distribution
with zero mean and covariance matrix σ2C.

To generate the noise added to time dependent variables
of the model, we draw from a normal distribution with zero
mean and covariance matrix Qd. In the examples we have used
Qd = εI, where ε ≈ 2 · 10−16. In generation of the initial en-
semble there is no noise in the state variables, as all the ensem-
ble members are started using the same equilibrium condition
of the reservoir.

The analyzed state at time level k is computed by taking
into account the measurement vector at time level k. The theory
assumes that there is a linear relationship between the measure-
ments, dk, and the states, sk, expressed by the equation

dk = Hsk. (4)

To take into account the fact that there is a non-linear rela-
tionship between the observed quantities (measurements in the
well), and the state variables, we extend the state vector by one



SPE 84372 3

state for each non-linear measurement. This brings the corre-
spondence between all measurements and the state variables
on the form (4). We assume that the measurement noise has
a multinormal distribution with zero mean and covariance ma-
trix Rk. The index k is included since the covariance matrix of
the measurement noise may be time dependent.

It is shown that if the measurement is not treated as a ran-
dom variable, the updated ensemble will have correct mean, but
to low variance12. This means that to get consistent error prop-
agation in the ensemble Kalman filter one has to treat the ob-
servations as random variables. This is done by using the actual
measurement as reference, and adding random noise, reflecting
our assumptions on the measurement noise. This means that
the actual measurement dk serves as the reference observation.
For each member of the ensemble an observation vector dk,i is
generated randomly as

dk,i = dk + eo
k,i (5)

where eo
k,i is drawn from a multinormal distribution with zero

mean and covariance Rk.
The error covariance matrix for the state variables of the

model is defined in terms of the true state as the expectation

E
(
(sf

k − st
k)(sf

k − st
k)T

)
. (6)

Since the true state is not known, we approximate the true state
by the mean of the ensemble

st
k ≈ ŝ

f
k =

1

N

N∑

i=1

s
f
k,i (7)

where N is the sample size of the ensemble. With this approxi-
mation of the true state, an approximation of a left factor of the
error covariance matrix of the model is

L
f
k =

1
√

N − 1

[
(sf

k,1 − ŝ
f
k) . . . (sf

k,N − ŝ
f
k)

]
, (8)

a matrix with N columns. The approximation of the model error
covariance matrix then becomes

P
f
k = L

f
k(Lf

k)T . (9)

The expression of the Kalman gain matrix is7

Kk = P
f
kH

T (HP
f
kH

T + Rk)−1. (10)

The analyzed state of each member of the ensemble is computed
as

sa
k,i = s

f
k,i + Kk(dk,i −Hs

f
k,i). (11)

The analyzed error covariance matrix, Pa
k, of the model can

be computed along the same lines as P
f
k . Since the updating of

the ensemble is linear, the new estimate of the true state, based
on the ensemble after the analysis step is

st
k ≈ ŝa

k = ŝ
f
k + Kk(dk −Hŝ

f
k), (12)

and the model error covariance matrix after the analysis step is

Pa
k = (I −KkH)Pf

k . (13)

The underlying assumptions behind the filter are that there is
zero covariance between the model error and the measurement
error and that both the model error and measurement error are
uncorrelated in time.

In evaluating the quality of the solution we use the root
mean square (RMS) error defined as

√√√√ 1

M

M∑

j=1

(
Xj − Xt

j

)2
, (14)

where M is the number of state variables, Xj is the estimate of
state variable j, and X t

j is the true value of state variable j.

Example 1: Synthetic case
A two-dimensional 50× 50× 1 grid is defined as shown in Fig-
ure 1, modeling a reservoir with a constant dip. The model con-
tains two production wells, P2 and P4, and a single water injec-
tor, WI. The water injector is located below the initial water-oil
contact, as shown in Figure 1.

A ”true” permeability distribution is created, where the per-
meability varies linearly as a function of the x-coordinate in the
interval [200, 2000] mD. A constant value of 0.15 is used for
the porosity in all grid cells. As relative permeabilities and PVT
properties we have used values similar to those used in a North
Sea field.

The production data is generated by running the reservoir
simulator using group control for the two production wells, with
a constant total liquid rate of 15.000 Sm3/d. This total rate is
distributed between the two production wells according to their
production potential. Voidage replacement is used for the injec-
tion well, leading to a water injection rate which may vary with
time if pressure fells below the bubble point and free gas is pro-
duced in either of the wells. No pressure constraints are used
for the wells. The measurements are generated by running the
simulator with the “true” permeability, and adding noise to the
resulting well pressures, oil rates, GORs and water cuts. Mea-
surement are assimilated after 4 days, then after 22 days, then
once every month for 50 months.

The measurement uncertainties are presented in Table 1. We
apply the filter to take into account the information gained from
8 measurements at each assimilation, 4 for each of the produc-
tion wells. The measured quantities are the pressure, the oil
production rate, the water cut and gas/oil ratio. There are no
measurements from the injector.

While running the ensemble Kalman filter we keep all quan-
tities constant except for the permeability (which is isotropic)
and the state variables, which are the pressure, the saturation of
gas and water, and the solution gas/oil ratio. In this case there
are no vaporized oil. The reservoir simulator is run in “history-
matching mode”, that is, the wells are controlled by reservoir
volume rates equal to the once used when generating the (syn-
thetic) history data. Thus the reservoir volume offtake is the
same for all ensemble members. The same applies for the in-
jection rates. In the computation with the Kalman filter we use
the natural logarithm of the permeability instead of the perme-
ability.

The ensemble consists of 100 members. The initial en-
semble is generated using a mean correlation length of 16 grid
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blocks with a standard deviation of 6. The initial ln-perme-
ability fields for the Kalman filter is generated using a standard
deviation of 0.5. For the model noise (Eq. 2) the standard devi-
ation is set to 5 · 10−4.

For comparison we have run a reference solution using the
mean permeability of the initial ensemble (i.e., approximately
1000mD). The initial ensemble is generated using the mean of
the ln-permeability of the three grid blocks perforated by a well.

In Figure 2 we present the outcome of the filter for each of
the 8 measured variables, together with the reference solution.
As we can see, the filter essentially tracks all the measurements,
with a small exception for the gas/oil ratio for the well P4.

In Figure 3 we show forecasts based on the ensemble mean
after 4 days, 604 days and 908 days. As expected, the quality of
the forecasts are generally improved as more data is assimilated.
It should be noted, however, that because of the pressure mea-
surements, the permeability trend is recovered by the filter very
soon. Already after 4 days, the permeability in the region from
P2 to P4 is almost correct, as can be seen in Figure 4 showing
the development in the estimated permeability. After 300 days,
long before any water breakthrough, the trend is correct in the
entire reservoir. At later times, however, the permeability esti-
mates move away from the correct values, and the effect of the
later measurements, including the water cut development, is not
quite clear. Still, the uncertainty estimates shown in Figure 5
seems reasonable, being lowest close to the producers, where
the measurements are obtained, and decreasing with time. The
highest uncertainty is close to the boundary of the reservoir.

In Figure 6 we show how the root mean square (RMS) er-
ror defined in Eq. 14 evolves. Again, we see that the error in
estimated permeability decreases very rapidly, before it starts
increasing. At late times the RMS error is the same as for the
reference solution. Here, the correct permeability trend is prob-
ably more important for the predictions than the global RMS
error, and since the trend is recovered, the forecasts will still
improve with time. However, an increase in the RMS error, de-
spite of more available data is not satisfactory, and the reason
for this behavior should be further investigated. For the dy-
namic variables, we should bear in mind that all the members
of the ensemble are initiated from a model with a known equi-
librium condition, giving zero RMS error. The RMS therefore
has to increase initially. Theoretically, the error should stabilize
at a level given by the data error and model error. It is seen that
RMS error of the dynamic variables stabilize after some time,
but because of the complicated relation between data, model
and state variables, it is difficult to verify that the stabilized val-
ues of the RMS are correct.

Example 2: Simplified field model
A simplified 2D field model has been constructed by taking out
a horizontal layer from a model of a North Sea field. The di-
mensions of the simplified model are 39 × 55, but with some
inactive blocks. There are 1931 active grid blocks. The simula-
tion spans a time range over 3955 days. The reservoir model is
shown in Figure 7.

Measurements are assimilated at least once a month, but
also when new wells are starting production, or when wells are
shut in. Altogether there are 171 points in time when measure-
ments are assimilated. The measurements are assimilated from

14 producing wells. Two of them are starting from the first day.
The reservoir is produced by gas injection, and the producers
are located along the oil-water contact. There are 4 gas injec-
tors. There are no measurements from the injectors.

In addition to the 14 producers and 4 injectors there are
some dummy wells included in the simulation to adjust for flow
through the boundary. The rates of the dummy wells are kept
constant while generating the data and running the ensemble
Kalman filter.

The quantities that are tuned with the Kalman filter are the
horizontal permeability, which is assumed to be the same in the
x- and y-direction, together with the dynamic variables, which
are the pressure, saturation of water and gas, the solution gas/oil
ratio and the vapor oil/gas ratio. This means that we both have
vaporized oil and dissolved gas.

The “true” model is obtained from a stochastic realization
of the field. Relative permeabilities and PVT properties were
taken from the original field model. The measurements are gen-
erated by running the simulator with the “true” permeability,
and adding noise to the values obtained.

While running the ensemble Kalman filter we keep all quan-
tities except the state variables described above constant. Like
in Example 1, the reservoir simulator is run in “history-match-
ing mode”, and the natural logarithm of the permeability is used
in the computations with the Kalman filter.

The ensemble consists of 100 members. The initial en-
semble is generated using a mean correlation length of 16 grid
blocks with a standard deviation of 6 grid blocks. The initial
ln-permeability fields for the Kalman filter is generated using
a standard deviation of 0.5. For the model noise (Eq. 2) the
standard deviation is set to 5 ·10−4. The initial mean of the per-
meability of the ensemble is set to 1000 for all the grid blocks.

The measurement uncertainties are as in Example 1 (Ta-
ble 1). We apply the filter to take into account the information
gained from 4 measurements for each of the production wells.
The measured quantities are pressure, oil production rate, water
cut and gas/oil ratio.

In Figure 8 the development in the estimated permeability is
shown together with the “true” permeability and the reference
solution. The reference solution is the mean of the initial en-
semble, and since the initial ensemble is based on a model with
constant mean permeability of 1000 mD, the reference model
will have a permeability of approximately 1000 mD in all cells.
One can observe that after 1611 days a good match of the per-
meability field is obtained, especially close to the producing
wells. The location of the producers are shown with circles. For
the permeabilities along the boundaries, the permeability starts
drifting towards the end of the simulation. Further development
of the filter is needed to avoid this effect.

The uncertainty in the ln-permeability is presented in Fig-
ure 9. The uncertainty is lowest close to the producers, where
the measurements are obtained. The highest uncertainty is close
to the boundary of the reservoir. The uncertainty is decreasing
as more measurements are assimilated.

In Figure 10 we present the outcome of the filter for some of
the measured variables, together with the reference solution. We
have selected to present results from measurements that have
among the largest relative deviations between the truth and the
solution obtained from the Kalman filter.
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In Figure 11 we show forecasts based on the ensemble mean
after 4 days, 819 days and 3050 days for the same measure-
ments as presented in Figure 10. As expected, the quality of the
forecasts is improved as more data is assimilated.

In Figure 12 we show how the root mean square (RMS) er-
ror defined in Eq. 14 evolves. Like in Example 1, the RMS
error for the permeability decreases very rapidly and then in-
creases. Still the predictions clearly improve with time as addi-
tional measurements become available. Note also that with the
exception for RS and RV, the RMS values for the state variables
stabilize relatively fast at quite low levels.

Discussion
The ensemble Kalman filter technology seems promising for
tuning permeability and dynamic variables, such as the pressure
and saturations, in reservoir simulator models. In both the ex-
amples presented, the filter were able to recover the main trends
of the permeability field rapidly due to the continuous down-
hole pressure measurements. However, although new measure-
ments are added continuously, the error in the estimated perme-
ability increases late in time. The reason for this instability is
not fully understood.

At this stage, all the variables that are not tuned, are kept
fixed while running the reservoir simulator. This includes the
initial state of the reservoir. Therefore the difference between
the estimate obtained from the filter and the true value of the
dynamic variables have to increase in the beginning. After a
while the differences stabilize.

It is crucial for a successful application of the methodology
that the ensemble of models correctly reflects the uncertainty at
all times. So the generation of the initial ensemble and how to
add model noise are important questions which also have to be
further addressed.

Technically, there is no limit with respect to how many
model parameters which can be updated, but the effect of adding
a large number of parameters on filter stability, etc., has not yet
been considered.

Conclusions
An ensemble Kalman filter technology is developed for contin-
uous updating of reservoir simulation models. Examples are
shown in 2D, but the methodology can easily be extended to 3D
and applied to any existing reservoir simulator.

The filter is used to tune the permeability and dynamic vari-
ables like pressure and saturations. The continuous updating
ensures that the predictions always start from a solution that
matches the observed production data.

The methodology is applied on two 2D reservoir models:
One synthetic model with one injector and two producers, and
one simplified field model with 14 producers and 3 injectors.
In both examples the ensemble Kalman filter is able to track
the measurements and tune the permeability field, and as more
measurements are assimilated, the forecasts are improved.

Although the presented results are promising, this technol-
ogy is novel to reservoir simulation, and further development of
the filter is needed for this application.
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Nomenclature
C = correlation matrix
d = measurement vector
E = expectation
e = stochastic noise
f = output from reservoir simulator
H = measurement matrix
i = index (members of ensemble / grid block coordinates)
I = identity matrix
j = index (state variables / grid block coordinates)
k = index (assimilation time)
K = Kalman gain matrix
l = correlation length
L = left factor of covariance matrix of model unceratinty
M= number of states
N = number ensemble members
P = covariance matrix of model unceratinty
Q = covariance matrix of modelling error
R = covariance matrix of measurement error
s = state vector
σ = standard deviation
σ2= variance

Subscripts

d = dynamic variables
i = index (ensemble members)
j = index (state variables)
k = index (assimilating time)

Superscripts

a = analyzed (aposteriori)
f = forecasted (apriori)
m = model noise
T = matrix transpose
t = true
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Figure 2– Example 1: Measured values (blue dots), filter solution (blue line), true solution (red stapled) and the reference value (green line) for
the measured quantities. The reference value is the solution obtained from the simulation with the mean of the initial ensemble.
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Figure 3– Example 1: Forecasted values. The forecast based on the mean of the initial ensemble (green), the forecast after 4 days (blue), the
forecast after 604 days (magneta) and the forecast after 908 days (black) and the true solution (red stapled).
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Figure 4– Example 1: True and estimated permeabilities. The wells are located by small circles. The injector, WI, in the bottom, the producer P2
up to the left and the producer P4 up to the right.The upper left plot shows the reference permeability which is the mean of the initial ensemble.
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Figure 5– Example 1: Uncertainty in estimated ln-permeabilities
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Figure 6– Example 1: RMS error between estimated and true variables (blue) and between the reference solution and the true variables (green).
PERMX is the ln-permeability.
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Figure 7– Example 2: Description of reservoir.
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Figure 8– Example 2: True and estimated permeabilities. The reference solution is the mean of the initial ensemble (before assimilating any
measurements). The location of the producers where the measurements are obtained are shown by circles. In the plot of the estimated
permeabilities, only the wells that have been producing prior to the time of obtaining the estimate are included.
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Figure 9– Example 2: Uncertainty in estimated ln-permeabilities. The plots in the bottom row use the same color as the upper right plot.
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Figure 10– Example 2: Measured values (blue dots), filter solution (blue line), true solution (red stapled) and the reference solution (green) for
some measured quantities. The true solution is mostly hidden behind the filter solution.
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Figure 11– Example 2: Forecasted values for some of the measured quantities. The forecast based on the mean of the initial ensemble (green),
the forecast after 4 days (blue), after 819 days (magneta), after 3050 days (black) and the true solution (red stapled).
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Figure 12– Example 2: RMS error between estimated and true variables (blue) and between the reference solution and the true variables (green).
PERMX is the ln-permeability.


