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What is physiologic complexity and how does it change
with aging and disease?

Ary L. Goldbergera,*, C.-K. Penga, Lewis A. Lipsitzb

aCardiovascular Division, Department of Medicine, and Margret and H.A. Rey Laboratory for Nonlinear Dynamics in Medicine,
Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA

bGerontology Division, Department of Medicine, Beth Israel Deaconess Medical Center; Division on Aging, Harvard Medical School;
Research and Training Institute, Hebrew Rehabilitation Center for the Aged, Boston, MA, USA

Accepted 5 June 2001

1. Introduction

A defining but elusive feature of physiologic systems is
their daunting complexity. This complexity arises from the
interaction of a myriad of structural units and regulatory
feedback loops that operate over a wide range of temporal
and spatial scales, enabling the organism to adapt to the
stresses of everyday life. Quantifying and modeling the
remarkable and often bewildering repertoire of behaviors
exhibited by living organisms is one of the major challenges
of contemporary science [4,7]. The combination of nonlin-
earity and nonstationarity, more the rule than the exception
in the output of physiologic systems, poses a major chal-
lenge to conventional biostatistical assessments and stan-
dard reductionist modeling stratagems. To describe and
quantify the mechanisms of these “nonhomeostatic” behav-
iors, investigators have employed new techniques derived
from complexity theory, including fractal analysis and non-
linear dynamics. The appropriate application and interpre-
tation of such metrics, however, remains incompletely ex-
plored. What is clear is that reliance on any single test may
give a misleading representation of physiological complexity.

In this issue, Vaillancourt and Newell critique and sug-
gest modifications to a general dynamical model of patho-
physiology that we and others have elaborated over the past
two decades [5,6,8,10,13,14,16,20,21,27]. The theory of
complexity loss in aging and disease, as currently formu-
lated, has two central postulates:

1. The output of healthy systems, under certain param-
eter conditions, reveals a type of complex variability

associated with long-range (fractal) correlations,
along with distinct classes of nonlinear interactions;

2. This type of multi-scale, nonlinear complexity breaks
down with aging and disease, reducing the adaptive
capabilities of the individual.

The term nonlinear applies to systems whose compo-
nents interact in a non-additive way. Nonlinear coupling
may lead to an extraordinary range of dynamics, including
different classes of abrupt changes, (such as bifurcations),
deterministic chaos, nonlinear phase transitions, pacemaker
entrainment and resetting, stochastic resonance, wave phe-
nomena (including spiral waves, solitons, and scroll waves),
emergent phenomena, and certain types of fractal scaling.
Understanding the specific classes of nonlinear interactions
seen in healthy physiology and characterizing their pertur-
bations with aging and disease is just beginning [4,16,27].

The term fractal applies to complex-like objects, which
may be generated by stochastic or nonlinear deterministic
mechanisms. Fractal objects show self-similarity (scale-in-
variance), such that the smaller-scale structure resembles
the larger-scale form [10]. Examples in anatomy include the
His-Purkinje network and the tracheobronchial tree. The
fractal concept also extends to complex processes that lack
a characteristic, or a single, time scale. Fractal processes
generate fluctuations over multiple time scales, and their
frequency spectra typically show an inverse power-law (1/
f-like) scaling pattern. Of particular interest is a class of
fractal processes that demonstrates long-range correlations.
This type of “memory” effect has been identified in the
fluctuations of the healthy heartbeat, as well as in the inter-
stride interval fluctuations in the walking patterns of healthy
adults [14,15,21,22].

A central caveat when applying concepts and techniques
from complexity theory to biomedicine is the recognition
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that no single statistical measure can be used to assess the
complexity of physiologic systems. Instead, a “toolkit” of
extensive, still-evolving (and as yet undiscovered) metrics
is needed to probe different aspects of these extraordinarily
complicated behaviors under both healthy and pathophysi-
ologic conditions [7]. A case in point is approximate en-
tropy (ApEn). This measure was designed to quantify the
degree of predictability of a series of data points [9,24–26].
Therefore, ApEn is fundamentally a “regularity” statistic,
not a direct index of physiologic complexity. Further, ApEn
does not probe the nonlinear properties of the signal, nor
does it quantify fractal scaling behavior. Vaillancourt and
Newell themselves acknowledge that an increase in ApEn is
not necessarily synonymous with an increase in physiologic
complexity. The following experiment demonstrates this
point (Fig. 1). Take a sequence of data points representing
the interbeat interval time series of a healthy heartbeat, an
output that has recently been found to represent one of the
most complex (i.e. multifractal) processes in nature [16].
Next, shuffle the order of the data points, creating a ran-
domized surrogate dataset. The ApEn value of the new
dataset will increase. However, this reordered or random-
ized white noise signal – in which the fractal correlation
properties, as well as the nonlinear interactions, have been
destroyed – is less, and not more physiologically complex
by the definition given above. In this case, a loss of phys-
iologic complexity (despite an increase in ApEn) is better
assessed using scaling techniques and other measures that
can detect and quantify the presence of long-range correla-
tions in nonstationary time series, as well as possible non-

linear interactions [16,21,22]. Thus, increased irregularity
does not imply increased physiologic complexity [5].

Previous and recent work by our group and others has
demonstrated the utility of fractal scaling measures as one
class of tools to help quantify certain features of physiolog-
ical complexity [2,5,16–18,21–23,28]. We [21,23] have
noted, specifically, that the breakdown of long-range (frac-
tal) correlations in a physiological system can ultimately
lead to at least three dynamical “end-states”: (1) highly
periodic (predictable) behavior (e.g. Parkinsonian tremors)
[6,20]; (2) a random walk (brown noise) (e.g. fluctuations in
the center of pressure when a patient with a balance disorder
stands on a force-plate) [3]; or (3) completely uncorrelated
(white) noise (e.g. short-term heart rate variability in atrial
fibrillation) [5]. States 1 and 2 both indicate only trivial
long-range correlations. State 1, emphasized in our 1992
paper [20], cited by Vaillancourt and Newell, will indeed be
associated with reduced ApEn. However, State 3 will be
associated with increased ApEn, despite the fact that it
represents the degradation of normal physiologic control
mechanisms governing healthy function (Fig. 1).

Vaillancourt and Newell seek to modify the original
complexity loss theory of disease and aging by proposing
that the complexity of physiologic signals may not only
decrease, but also actually increase under certain pathologic
conditions. They base their latter claim primarily on data
showing increased irregularity in the output of certain per-
turbed systems. For example, ApEn values computed for
cortisol fluctuations in subjects with Cushing’s disease were
found to be higher than those of healthy controls [11].

Fig. 1. A. Heartbeat time series from a healthy individual showing multi-scale, complex patterns of variability. The frequency spectrum (log power vs. log
frequency) shows a 1/f-like scaling pattern (exponent b � 1) consistent with long-range (fractal) correlations. B. The same time series in A has been shuffled
so the data points are randomized. The flat spectrum (exponent b � 0) indicates uncorrelated (white) noise. However, note that ApEn is higher for the less
physiologically complex time series in B, in which the fractal and nonlinear properties have been destroyed by the randomization procedure. This example
illustrates one of the limitations in relying on a single mathematical measure, such as ApEn, to assess physiologic complexity.

24 A.L. Goldberger et al. / Neurobiology of Aging 23 (2002) 23–26



However, as noted above, an increase in the ApEn value for
a given time series (implying an increase in irregularity/
decrease in predictability) does not necessarily indicate an
increase in physiologic or physical [29] complexity. Instead,
this finding may simply be related to a breakdown in multi-
scale correlations, such as one sees in the example of the
randomized heartbeat time series (Fig. 1), or due to more
subtle perturbations in nonlinear control.

To support their contention that physiological complex-
ity may increase with disease, Vaillancourt and Newell also
cite data from our own laboratory [12,13] demonstrating a
loss of correlations in inter-stride interval fluctuations in
subjects with Huntington’s chorea as compared to healthy
controls. Here again, their definition of physiologic com-
plexity is based entirely on an increase in unpredictability or
irregularity, and fails to incorporate other essential features,
such as the presence of long-range fractal correlations [21,
29]. Indeed, when one examines the fractal complexity of
inter-stride interval fluctuations in health and disease, a
breakdown of long-range correlation properties is observed
[13], in keeping with the general complexity-loss hypothe-
sis presented above.

Vaillancourt and Newell make two additional claims to
support their speculations regarding possible bases for a
paradoxic increase in biologic complexity with pathophys-
iology. First, they cite the healthy heartbeat as an example
of a fixed-point attractor, in which the heart rate fluctuates
around a homeostatic set point (steady state). Attractors are
usually identified in phase-space maps that plot a given
value in a time series (e.g. heart rate) against a subsequent
value, separated by a fixed time lag. In fact, phase-space
(delay map) representations of the healthy heartbeat reveal
a very complex type of “attractor” [10]. In contrast, behav-
ior resembling a limit cycle or fixed-point attractor is actu-
ally seen in the most severe pathologic conditions, including
end-stage heart failure.1 Second, the authors contend that
healthy human gait can be modeled as a limit cycle attrac-
tor-type process. However, Hausdorff and colleagues [14,
15] have shown that fluctuations in inter-stride intervals
during usual walking display a type of long-range correla-
tion quite different from a limit cycle. Based on such find-
ings, Hausdorff et al. [14,21] have proposed a reconsidera-
tion of classic central pattern generator oscillatory models
underlying the control of locomotion.

The actual data supporting some of the cited reports on
the complex dynamics of human heartbeat and gait are now
available via the NIH-sponsored Research Resource for

Complex Physiologic Signals [7] website (www.physionet.
org). Readers may explore the original time series data from
our own and other studies. We believe that the open-source
availability of the actual raw signals, as well as the diag-
nostic algorithms, is essential to this purpose, and invite
others to contribute their data and analytic source codes to
the NIH PhysioBank and PhysioToolkit archives. For ex-
ample, re-exploration of the original hormone assay datasets
described by Vaillancourt and Newell (in which ApEn re-
portedly increased with disease) would help determine
whether this pathologic increase in irregularity represents an
actual increase in physiologic complexity, or is instead
associated with a breakdown of correlation properties and
alteration of nonlinear interactions, indicating a complexity-
loss mechanism [5,16,21]. Availability of original data al-
lows for continual reassessment of such invaluable datasets
using new techniques as they become available, as well as
modifications and refinements of older ones.

Finally, we note that the resolution of questions and
debates regarding definitions of physiologic versus other
types of complexity and their quantitative evaluation does
not simply represent “in-house” sparring over semantic
technicalities. Answers to these questions hold enormous
promise for providing new understanding of the fundamen-
tal mechanisms underlying some of the most complicated
signaling networks in nature and how they change with
disease and aging. The elucidation of novel assays for drug
effects and toxicities, as well as non-pharmacologic inter-
ventions, the development of “dynamical phenotyping” in
the post-genomic era, and the description of new clinical
diagnostic and prognostic measures in a wide range of
life-threatening conditions all depend critically on this mul-
tidisciplinary, 21st-century enterprise.
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