
WebWatcher: A Tour Guide for the World Wide WebThorsten Joachims, Dayne Freitag, Tom MitchellSeptember 1996CMU-CS-96-xxxSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213
This research is sponsored by the Wright Laboratory, Aeronautical Systems Cen-ter, Air Force Materiel Command, USAF, and the Advanced Research Projects Agency(ARPA) under grant F33615-93-1-1330. The US Government is authorized to repro-duce and distribute reprints for Government purposes, notwithstanding any copyrightnotation thereon. Views and conclusions contained in this document are those ofthe authors and should not be interpreted as representing the o�cial policies, eitherexpressed or implied, of Wright Laboratory or the United States Government.

Keywords: Machine Learning, Intelligent Agents, Text Classi�cation, WorldWide Web

AbstractWe explore the notion of a tour guide software agent for assisting users browsingthe world wide web. A web tour guide agent provides assistance similar to thatprovided by a human tour guide in a museum { it guides the user along anappropriate path through the collection, based on its knowledge of the user'sinterests, of the location and relevance of various items in the collection, andof the way in which others have interacted with the collection in the past.This paper describes a simple but operational tour guide, called WebWatcher,which has given over 5000 tours to people browsing CMU's School of ComputerScience web pages. WebWatcher accompanies users from page to page, suggestsappropriate hyperlinks, and learns from experience to improve its advice-givingskills.

1 IntroductionBrowsing the World Wide Web is much like visiting a museum. In a museumthe visitor has general areas of interest and wants to see relevant artifacts. Butvisitors �nd it di�cult to locate relevant material given that they do not initiallyknow the contents of the museum. And in many cases their initial interests arepoorly de�ned, and become clear only after they begin to explore. In a museumthe user might rely on a tour guide who is familiar with the museum and howpeople interact with it. The visitor could describe their general initial inter-ests to the tour guide, who could then accompany the user, point out items ofinterest, and suggest which directions to turn next. During the tour the usercould communicate with the guide, express interest in certain artifacts, ask andanswer questions, as they explore and re�ne their interests.A collection of interconnected (hyperlinked) web pages is analogous to a mu-seum, and people browsing such collections often behave like museum goers. Forexample, a visitor to CMU's Computer Science web home page might have ageneral interest in \experimental research on intelligent agents." However, withno speci�c knowledge about the contents of the collection, the user may �ndit di�cult to locate relevant information. Until they become aware that CMUconducts signi�cant research on robotics, for example, they may not think tomention \learning robots" when describing their general interest in intelligentagents.We report here research toward software agents that act as tour guides forthe web. In its most general form, the metaphor of web agent as tour guideis very broad, suggesting systems that carry on general natural language di-alogs with their users, possess detailed knowledge about the semantic contentof the web pages they cover, and learn with experience. Here we describe a �rstexperiment with a more restricted, but operational, tour guide. In particular,we describe WebWatcher [AFJM95], a system that accompanies the user as heor she browses the web. Like a museum tour guide, WebWatcher interactivelysuggests where to go next. The user can communicate with the system andgive feedback. WebWatcher acts as a learning apprentice [MMS85, MCF+94],observing and learning from its users' actions. Over time WebWatcher learnsto become more expert for the parts of the World Wide Web that it has visitedin the past, and for the types of topics in which previous visitors have had aninterest.WebWatcher di�ers in several key respects from keyword-based search en-gines such as Lycos and AltaVista. First, such search engines require that theuser describe their interest in terms of speci�c words that match those in the tar-get web page. In contrast, WebWatcher can learn that a term such as \machinelearning" matches a hyperlink such as \neural networks," even though these1

phrases share no words in common. Furthermore, search engines do not takeinto account that documents are designed as hypertext and that links betweendocuments and the structure of documents contain important information. Inmany cases only a sequence of pages and the knowledge about how they relateto each other can satisfy the user's information need.In the following we present the design of WebWatcher, as well as experi-mental results obtained from over 5000 tours given by WebWatcher to variousvisitors on the web. We describe how WebWatcher learns from the experiencegained from each tour it gives. WebWatcher uses this learned knowledge to im-prove the quality of advice it gives to subsequent users. We examine a varietyof algorithms for this learning task, and present experimental results comparingtheir e�ectiveness. Finally, we summarize the lessons and perspectives gainedfrom these �rst experiment with a tour guide agent for the web.2 WebWatcherThe following trace illustrates a typical tour given by WebWatcher, from thefront door web page of CMU's School of Computer Science.2.1 Typical ScenarioImagine the following scenario. We enter the School of Computer Science Webat the Front Door page (�gure 1). On this page an instance of WebWatcher isinstalled which can be invoked by clicking on the hyperlink \The WebWatcherTour Guide" in the bottom part of the page. Clicking on this hyperlink leadsus to the \Welcome to WebWatcher" page (�gure 2) where we are asked for ashort description of our current interest. In this example, we enter \intelligentagents" as our interest, then click on the start button. WebWatcher now returnsus to our initial page, prepared to guide our tour (�gure 3). We are no longerbrowsing alone, but will be accompanied by WebWatcher on any sequence ofhyperlinks we follow from this point forward.We can see that WebWatcher accompanies us by the additions it makes tothe original page. The original page augmented with WebWatcher's additionscan be seen in �gure 3. Notice the changes made by WebWatcher include:� A menubar is inserted above the original page. Through the menubarwe can communicate with WebWatcher by issuing commands or givingfeedback.� A list of new hyperlinks has been added to the page, just below the menubar. These hyperlinks lead to pages that contain the keywords \intelligentagents" which we typed in. This list is generated using a variant of the2

Figure 1: The original Front-Door page.3

Figure 2: Entering WebWatcher.4

Figure 3: The Front-Door page with WebWatcher's additions.5

Figure 4: The list of project home pages.6

Figure 5: Further down in the list of project home pages.7

Figure 6: The user arrives at the home page of the WebWatcher project.8

Lycos search engine, applied to the set of pages previously visited byWebWatcher.� Selected hyperlinks from the original page have now been highlightedby WebWatcher, to suggest directions relevant to our browsing interests.WebWatcher highlights these hyperlinks by inserting eyeball icons ()around the hyperlink, as shown in the last hyperlink visible in �gure 3.This is the most novel feature of WebWatcher. The advice it provides inthis fashion is based on knowledge learned from previous tours.Let us follow WebWatcher's suggestion (the highlighted hyperlink at the bot-tom of �gure 3). In general, the user may click on any hyperlink, recommendedor not. Each time the user selects a hyperlink, WebWatcher accompanies theuser to the next page, and logs this hyperlink selection as a training examplefor learning to improve future advice.When we follow the hyperlink suggested by WebWatcher in this case, wereach a page containing a long list of research project pages (�gure 4). Web-Watcher again inserts the menubar on top of the page indicating that the systemis still accompanying us. On this page WebWatcher suggests three hyperlinks itjudges relevant to our interest in \intelligent agents." Clicking on the \HERE"button on top of the page gets us directly to the �rst of WebWatcher's sugges-tions (�gure 5). By clicking on the eyeball icons next to the suggested hyperlinks,we can jump from one suggestion to the next.In this scenario we follow WebWatcher's third suggestion, which takes us toa page describing the WebWatcher research project. Again, WebWatcher givesnew suggestions there.If we were particularly interested in a page, we could tell WebWatcher soby clicking on \Show me similar pages" in the menubar. WebWatcher wouldthen display a list of pages which are similar based on a metric derived fromhypertext structure [JMFA95].Two additional commands are available in WebWatcher's menubar on anypage. Clicking on the command \how many followed each link?" asks Web-Watcher to display for each hyperlink the number of previous visitors who tookthat link. Clicking on the command \Email me if this page changes" asks Web-Watcher to periodically monitor the page and send the user email if it shouldchange.WebWatcher accompanies the user in this fashion along any hyperlink any-where on the world wide web. To end the tour, the user clicks on one of twocommands in the menu bar: \Exit: Goal reached" or \Exit: Goal not reached."9

UserUser

World Wide Web

User

WebWatcher

Page
+ Menubar
+ Advice
+ Replaced URLs

Request

Page

Request

.

Figure 7: WebWatcher is an interface agent between the user and the WorldWide Web.This exit provides the user with a way of giving �nal feedback to WebWatcherabout the success of the tour in locating information relevant to the statedinterests.2.2 How Does WebWatcher Accompany the User?From the perspective of WebWatcher, which is implemented as a serveron a separate workstation on the network, the above scenario looks somewhatdi�erent. When �rst invoked (i.e., when the user clicks on the WebWatcherhyperlink in �gure 1), the WebWatcher server accepts an argument, encodedin the URL that accesses it, which contains a \return address." This returnaddress is the URL of the web page from which the user came. Once the user�lls out the form specifying his or her interests, WebWatcher sends the userback to an modi�ed copy of this page. It makes three modi�cations:1. First, the WebWatcher menubar is added to the top of the page.2. Second, each hyperlink URL in the original page is replaced by a new URLthat points back to WebWatcher.10

3. Third, if WebWatcher �nds that any of the hyperlinks on this page arestrongly recommended by its search control knowledge, then it highlightsthe most promising links in order to suggest them to the user.It sends this modi�ed copy of the web page to the user, and opens a �le to beginlogging this user's trace as training data. While it waits for the user's next step,it prefetches any web pages it has just recommended to the user to minimizenetwork delays. When the user clicks on a new hyperlink, WebWatcher updatesthe log for this search, retrieves the page (unless it has already been prefetched),performs similar substitutions, and returns the copy to the user.This process continues, with WebWatcher tracking the user's tour across theWeb, providing advice at each step, until the user elects to dismiss the agent.At this point, WebWatcher closes the log �le for this session (indicating eithersuccess or failure in the search, depending on which button the user selectedwhen dismissing WebWatcher), and returns the user to the original, unmodi�edcopy of the web page he is currently at. For each such tour, the informationlogged by WebWatcher summarizes the sequence of web pages and hyperlinksfollowed by the user, along with a time stamp indicating exactly when eachhyperlink was requested.2.3 What Gets LearnedWhat is the form of the knowledge required by WebWatcher? In general, itstask is to suggest an appropriate link given the current user, interest, and webpage. Hence, one general form of knowledge that would be useful correspondsto knowledge of the function LinkUtility:LinkUtility : Page� Interest � User � Link ! [0; 1]where Page is the current web page, Interest is the set of words describing theuser's interest, User is the identity of the user, and Link is one of the hyper-links found on Page. The value of LinkUtility is the probability that followingLink from Page leads along a shortest path to a page that satis�es the currentInterest for the current User.In the learning experiments reported here, we consider learning a simplerfunction for which training data is more readily available, and which is still ofconsiderable practical use. This function is UserChoice?:UserChoice? : Page� Interest � Link ! [0; 1]where the value of UserChoice? is the probability that an arbitrary user willselect Link given the current Page and Interest. Notice here the User is not11

an explicit input, and the function value predicts only whether users tend to se-lect Link { not whether it leads optimally toward pages which satisfy the user'sinterest. Notice also that information about the search trajectory by which theuser arrived at the current page is not considered in this formulation of thetarget function to be learned.One reason for focusing on UserChoice? in our initial experiments is thatthe data automatically logged by WebWatcher provides training examples ofthis function. In particular, each time the user selects a new hyperlink, a train-ing example is logged for each hyperlink on the current page, corresponding tothe Page, Interest, Link, and whether the user chose this Link.To improve the accuracy of learning the function UserChoice?, WebWatchersplits up this function so that it learns a separate function for each web page.In other words, for every page p WebWatcher learns a function UserChoice?pUserChoice?p : Interest � Link ! [0; 1]2.4 Learning MethodLearning is accomplished by annotating each hyperlink with the interests of theusers who took this hyperlink on tours with positive feedback (i.e., tours endingwith \Exit: Goal reached"). Thus, whenever a user follows a hyperlink on asuccessful tour the description of this hyperlink is augmented with the keywordsthe user typed in at the beginning of the tour. The initial description of a hy-perlink is the underlined text. Figure 8 illustrates how each hyperlink has a listof interests associated with it. Appendix A shows the description of a particularhyperlink as learned by WebWatcher.To suggest hyperlinks during a tour WebWatcher compares the current user'sinterest with the descriptions of all hyperlinks in the current page. WebWatchersuggests those hyperlinks which have a description su�ciently similar to theuser's interest. Figure 8 gives an example.The metric used to compute similarity between an interest of a user and thedescription of a hyperlink is based on a technique from information retrieval.Interests and hyperlink descriptions are represented by very high-dimensionalfeature vectors (�gure 9), with each dimension representing a particular word inthe English language. The weight of a word w for a piece of text d is computedusing the TFIDF heuristic as described in [Sal91].TFIDF (w; d) = TF (w; d) � log(nDF (w))The term-frequency TF (w; d) counts the number of times word w occurs in textd. The document-frequency DF (w) is the number of texts that contain word w12

graduate studies

welcome from the dean

admission information

studying at cmu

projects

machine learning

interface agents

speech recognition

intelligent agentsFigure 8: Whenever a user follows a hyperlink, the link is annotated with theuser's interest keywords. Here, the interest of a new user in \intelligent agents"matches the \projects" hyperlink better than the \Welcome from the Dean"hyperlink, because of the keywords associated with this hyperlink from previoustours.and n is the total number of texts. The TFIDF measure assigns a word a higherweight the more often it occurs in a piece of text. In addition, words that occurmore frequently throughout all texts receive a lower weight. In particular theweight of a word is zero if it does not occur in a piece of text at all. Based onthis vector representation the similarity of two pieces of text can be calculatedas the cosine between their vectors [Sal91].The particular algorithmWebWatcher uses to suggest hyperlinks goes throughall the hyperlinks on the current page. For each hyperlink the list of interests(including the original underlined words) associated with it is ranked accordingto the similarity with the current user's interest. The value of UserChoice?for each hyperlink is estimated as the average of the similarities of the k (usu-ally 5) highest ranked keyword sets. A hyperlink is suggested if its value forUserChoice? is above a threshold. The maximum number of hyperlinks sug-gested on a page is three.2.5 ResultsWe present results based on 5822 tours given by WebWatcher between August2, 1995, and March 4, 1996, starting at the SCS-FrontDoor page. About 55%of the tours were more than one step long, 18% are more than �ve steps long.The longest tour consists of 135 steps. In 25% of the searches the user did notprovide an interest.As shown in �gure 10, in 20.8% of the pages WebWatcher visited during13

graphics

baseball

hockey
car
clinton

space

computer

.

.

.

0

0

0
0
0

0

0

welcome from the dean

welcome

dean

the

from

0.7

0.1

0.2

0.7

TFIDF weights

Figure 9: Pieces of text are represented as high dimensional vectors.Advice given AccuracyRandom 20.8% 15.3%Learning 20.8% 43.9%Figure 10: WebWatcher's performance over about 5800 tours.those tours, it highlighted at least one hyperlink. In 43.9% of these cases theuser followed the advice given by WebWatcher (excluding cases where the userexited the system or backed out without following any hyperlink). We de�nethis percentage to be the accuracy of WebWatcher's suggestions. To give alower bound on the accuracy for comparison, WebWatcher would have achieved15.3% if it highlighted an equivalent number of hyperlinks at random on eachof these pages. Note that this accuracy measurement is biased by the fact thatWebWatcher's suggestions in
uenced the decisions of users.2.6 Comparison with Human ExpertsTo get a better feel for the nature of the task of suggesting hyperlinks andto evaluate WebWatcher's performance, we conducted an experiment in whichwe asked humans to do WebWatcher's task. To make the experiment moretractable we focused on one page, namely an earlier version of the SCS-Front-Door page shown in �gure 1. From the 408 training examples for this page wetook 8 random subsets of 15 examples and presented them to eight people. Foreach example they were asked to suggest the 3 hyperlinks the user was most14

Advice given AccuracyRandom 100% 22.4%Learning 100% 42.9%Human 100% 47.5%Figure 11: A comparison to human performance on the SCS-Front-Door page.likely to follow out of the 18 hyperlinks on this page. The test subjects were allfamiliar with the page and its locale.As �gure 11 summarizes, the human performance was at 47.5%. The learningalgorithm achieved an accuracy of 42.9% under the same conditions. The 22.4%for random suggestion again provides a baseline.3 Additional Learning MethodsCan WebWatcher's suggestion accuracy be increased? Are there other sourcesof information that can help WebWatcher improve at its task? This sectionexplores two ideas for improving the accuracy of WebWatcher's advice. The�rst idea is to take the hypertext web structure into account in order to createmore re�ned descriptions of hyperlinks. We adopt an approach based on rein-forcement learning to create these descriptions. The second idea is to combinethe results of several learning methods to improve accuracy.3.1 Reinforcement Learning on the WebAs described above the initial description of a hyperlink is only the underlinedanchor text. The approach described here elaborates these sparse initial de-scriptions. The basic idea is to associate with the hyperlink a weighted wordvector estimating which words occur on pages downstream of the hyperlink.The weight given to a downstream word is its TFIDF value discounted expo-nentially with its distance from the page under consideration (i.e., the numberof hyperlinks that must be traversed to reach it). This approach is based onreinforcement learning, as described below.3.1.1 Reinforcement LearningReinforcement learning is a framework allowing agents to learn control strategiesthat select optimal actions in certain settings. Consider an agent navigating15

Figure 12: Example state space.from state to state by performing actions. At each state s the agent receivesa certain reward R(s). The goodness of an action a can be expressed in termsof an evaluation function Q(s; a), de�ned for all possibe state-action pairs. Thevalue of Q(s; a) is the discounted sum of future rewards that will be obtained ifthe agent performs action a in state s and subsequently chooses optimal actions.If the agent can learn this function, then it will know how to act in any state.More precisely, Q(st; a) = 1Xi=0
i �R(st+1+i)where st is the state the agent is in at time t, and where
 is a discount factor0 <
 < 1 that determines how severely to discount the value of rewards re-ceived further into the future. Under certain conditions, the Q function can beiteratively approximated by updating the estimate for Q(s; a) each time actiona is performed by the agent in state s, as follows (see [Bel57]):Qn+1(s; a) = R(s0) +
 maxa02actions in s0[Qn(s0; a0)]where s0 is the state resulting from performing action a in state s. Once Q(s; a)is known, the optimal control strategy for the agent is simply to pick the actionthat maximizes Q for whatever state it �nds itself in.Figure 12 gives an example. Boxes represent possible states of the agent.The edges represent actions that bring the agent from one state to another. Theedges are annotated with values of the function Q(s; a). In the rightmost statethe agent receives a reward of 1. The reward is 0 in all other states. If the agentalways follows the action with the highest Q value, it will get to the reward16

Figure 13: Having a value function for every word. The reward for a word on apage is its TFIDF value.state in the smallest number of steps and thus maximize the discounted rewardit receives.3.1.2 Reinforcement Learning for Navigating HypertextAn analogous navigation problem for an agent on the web is to navigate frompage to page by taking hyperlinks to get to good sources of information. Pagescorrespond to states and hyperlinks correspond to actions. The reward a webagent receives for a page is the degree to which this page �ts the user's interests.An agent using Q-learning will therefore seek tours through the web that leadas directly as possible to pages of greatest interest to the user.How shall we measure whether a page �ts the user's interest? The particu-lar reward function used here is again based on the vector space retrieval modeland the TFIDF heuristic [Sal91] already introduced in section 2.4. Pages arerepresented as vectors of words and the vector length is normalized to one. Thevalues of the vector give an estimate of how important the corresponding wordis on the page. For each word w that is encountered on any of the pages inthe training data a separate Q-function Qw(s; a) is learned. Given the rewardfunction as described above, the Q-function for a particular word is trained tomaximize the discounted TFIDF values for that word when following a sequenceof hyperlinks (�gure 13).To suggest hyperlinks at runtime, the system can use the Q-functions itlearned for each word. If the user's interest consists only of a single word w, the17

corresponding Q-function Qw(s; a) is used and those hyperlinks are suggestedfor which the Q-function plus an immediate reward, given w occurs in the anchortext, is maximum. If the user's interest consists of multiple words w1; : : : ; wn,the suggested hyperlinks are those that maximize the sum of the correspondingQ-functions plus the immediate rewards.Because WebWatcher cannot expect that users will always stick to pagesit has already seen, a core question in implementing this approach is how tolearn a general approximation for each of the Q-functions Qw(s; a). The systemmust be able to estimate the signi�cance of novel states and actions in terms ofstates and actions (pages and hyperlinks) it already knows. We chose to use asimilarity-weighted 3-nearest neighbor function approximator for this purpose,because of the many features needed to describe pages and hyperlinks, andbecause of certain theoretical advantages [Gor95]. Each hyperlink a is describedby the TFIDF vector representation of the underlined anchor text. Each pages is represented in an analogous way using the text in its title. For purposes ofdetermining similarity, the distance between the hyperlink a1 on page s1 andthe hyperlink a2 on page s2 is de�ned to be the distance between a1 and a2,plus twice the distance between s1 and s2. The distance between two vectors isde�ned to be the cosine of the angle between the vectors, in keeping with thestandard similarity measure used in TFIDF.3.1.3 Experimental SetupThe experiments presented in this section were conducted using a subset of thetraces starting at the SCS-FrontDoor page WebWatcher collected from August2, 1995, to March 4, 1996. We used only tours where the user typed in aninterest and where the tour was at least four steps long. There were 1777 suchtours. Five di�erent test-training splits were used with 2/3rd of the traces beingused for training. Of the remaining example traces, 90% were used for testingand 10% were used for purposes that are described in section 3.2.In addition to the Q-learning approach, the results for four other methodsare presented.� RANDOM. This strategy suggests hyperlinks at random from the currentpage.� POPULARITY. This method simply counts the frequency with whicheach hyperlink on a page has been followed in the past. The most fre-quently followed hyperlinks are suggested in the future. The informationabout the user's interest is ignored.� ANNOTATE. This is the strategy introduced in section 2.4. In the experi-ments described in this section all tours were used independent of whetherthey were marked successful or not.18

Accuracy Accuracy Accuracy(on all pages) (on known pages) (on unknown pages)Random 31.6% 23.8% 39.7%Popularity 41.8% 43.7% 39.7%Match 40.3% 33.8% 46.0%Annotate 42.0% 37.0% 46.0%Q 44.5% 41.5% 47.8%Figure 14: Results for Q-Learning and several other learning methods (all resultsare averages over �ve di�erent test training splits).� MATCH. This method is similar to \ANNOTATE", with the exceptionthat links are not annotated with user interests. Instead, only the under-lined anchor text is used to describe the hyperlink.3.1.4 Experimental ResultsThe results in �gure 14 provide a comparison of several learning methods. Eachexample corresponds to a page, from which each learner was allowed to choosethree hyperlinks. Accuracy measures the percentage of times in which the userfollowed one of the chosen hyperlinks. We required each learning algorithm tomake a prediction regardless of how con�dent it was.The �rst column of �gure 14 shows the accuracy on all pages in the test set.Q-learning performs signi�cantly better than the other methods. The secondand third columns show the accuracy over known and unknown pages (pagesthat do or do not appear in tours in the training set). Surprisingly, the accuracyon unknown pages is higher than on known pages. This is due to the fact thatthose pages happened to contain on average fewer hyperlinks, making it easierfor random guesses to be correct.3.2 Combining Multiple Learning AlgorithmsFour methods were presented which were able to suggest hyperlinks with rea-sonable accuracy. Can those learning methods be combined to achieve betterresults?3.2.1 MethodIn section 2.3 we introduced the function UserChoice?. This is the target func-tion WebWatcher is designed to learn. The value of UserChoice? is ideally theprobability Pr(choicejh; i; p) that a user with interest i will follow hyperlink h19

Accuracy Accuracy (known) Accuracy (unknown)Random 31.6% (.7) 23.8% 39.7%Popularity 41.8% (.7) 43.7% 39.7%Match 40.3% (.7) 33.8% 46.0%Annotate 42.0% (.9) 37.0% 46.0%Q 44.5% (.4) 41.5% 47.8%Combine 49.0% (.6) 50.0% 47.9%Figure 15: Results for combining learning methods. Reported accuracies areaaverages over �ve train/test splits. Standard errors are given in parentheses.on page p. Can we estimate this probability and use it for decision making?For each hyperlink h we know the predictions of the learning methodsAnnotate(h; i), Match(h; i), Q(h; i), and Popularity(h; p). These predictionscan be used to estimate the probabilityPr(choicejAnnotate(h; i);Match(h; i); Q(h; i); P opularity(h; p))The output values of Annotate(h; i) and Match(h; i) for hyperlink h andinterest i are each cosine distances. For Q(h; i) it is the sum of the Q-valuesdivided by the number of words in i. The output of Popularity(h; p) is an esti-mate of the probability Pr(choicejh; p) that a user follows hyperlink h on pagep independent of a particular interest. To estimate Pr(choicejh; p) a Bayesianestimator is used with uniform prior [Vap82] (often called Laplace estimator).Applied to our problem this estimator can be written as:P̂r(choicejPopularity(h)) = #of times h was chosen + 1#of examples +#of hyperlinks on pageNote that before observing any training examples this estimator assigns equalprobability to any hyperlink on the page.To estimate Pr(choicejAnnotate(h; i);Match(h; i); Q(h; i); P opularity(h; p))logistic regression [Mit96] is used. An additional small amount of data is usedas training data for regression (see section 3.1.3).3.2.2 Experimental ResultsThe table in �gure 15 shows the results of combining the predictions of allfour learning algorithms. The combined method achieves an accuracy of 49.0%,outperforming each of the individual methods. Our conjecture is that this is dueto the diversity of the methods and sources of information that are combined.20

Popularity uses frequency informationderived from user behavior an a particularpage, Match uses the underlined text in hyperlinks, Annotate uses the interestdescriptions from the user traces and Q-Learning makes use of the hypertextstructure.4 Related WorkLetizia [Lie95] is similar to WebWatcher in the sense that the system accom-panies the user while browsing. One di�erence is that the system serves onlyone particular user. Letizia is located on the users machine and learns his orher current interest. By doing lookahead search Letizia can recommend pagesin the neighborhood of where the user is currently browsing.Syskill and Webert [PMB96] o�ers a more restricted way of browsing thanWebWatcher and Letizia. Starting from a manually constructed index page fora particular topic, the user can rate hyperlinks o� this page. The system usesthe ratings to learn a user speci�c topic pro�le that can be used to suggest un-explored hyperlinks on the page. Syskill and Webert can also use search engineslike LYCOS to retrieve pages by turning the topic pro�le into a query.Lira [BS95] works in an o�ine setting. A general model of one user's interestis learned by asking the user to rate pages. Lira uses the model to browse theweb o�ine and returns a the set of pages that match the user's interest.5 Summary and Future ResearchWebWatcher provides one case study of a tour guide agent for the world wideweb. By \tour guide agent" we mean any agent that accompanies users frompage to page, providing assistance based on a partial understanding of thatuser's interests and of the content of the web pages. WebWatcher provides oneoperational example of a tour guide agent that has served several thousandpeople browsing CMU's School of Computer Science web pages. WebWatcheris characterized by the following properties:� WebWatcher provides several types of assistance. Most importantly, ithighlights interesting hyperlinks as it accompanies the user, pointing outthose hyperlinks it expects will be most appropriate given the user's statedinterest. In addition, it provides a keyword search over all pages it haspreviously visited and o�ers user commands such as \how many previoususers followed each hyperlink on this page?" \show me pages similar tothe one I am at," and \email me if this page is updated."� WebWatcher learns from experience. Each tour given by WebWatcherprovides training data consisting of some topic of interest to some user,21

a trajectory taken by that user through the graph of web pages, anda �nal statement by the user indicating whether the tour succeeded inlocating appropriate information. From each such trace, WebWatcher canderive multiple training examples. WebWatcher generalizes from suchtraining examples to improve its ability to suggest appropriate hyperlinksfor subsequent users. The most e�ective learning method we found inour experiments was a multi-strategy approach that rates the signi�canceof a hyperlink based on a combination of factors: the frequency withwhich the hyperlink was taken in the past, the stated interests of previousvisitors who took this hyperlink, the words occuring on pages downstreamfrom this hyperlink, and the underlined words associated directly with thehyperlink.� WebWatcher is implemented as a Web server on a workstation distinctfrom the user's workstation, and is capable of assisting any web user run-ning any type of browsing software, tracking them to any page anywhereon the world wide web. Because it is a centralized system (as opposed tosoftware running on the workstations of each individual user), it can col-lect and combine training data from thousands of di�erent users to learnto improve the advice it provides to subsequent users.Our experience with WebWatcher leads us to believe that self-improvingtour guide agents will play an important role on the web in the future. Web-Watcher demonstrates that it is possible for such an agent to provide helpfuladvice to many users, and that it is possible to automatically learn from thethousands of users with whom it interacts. Given that popular web sites aretypically visited by many thousands of users, and that the content of the webchanges frequently, it appears that machine learning will play a crucial role infuture tour guide agents.Our experience with WebWatcher has also shown that despite its ability tohelp some users, its highlighted hyperlinks are followed by users in only 48% ofall cases. Interestingly, when we assigned expert humans the same task, theycould do no better. Examining many speci�c tours given by WebWatcher, we�nd the following partial explanation for this disappointing level of accuracy:� Users tend to have a fairly short attention span. The traces of many usersshow that even though they initially state an interest in some technicalsubject such as \algorithmic complexity," once they notice that there isan online coke machine their path veers in a new direction.� There is great diversity in the interests of users browsing CMU's SCSFront Door, ranging from technical interests such as \machine learning"to non-technical interests such as \windsur�ng." Even after thousands oftours it is not uncommon for the next user to express an interest thatWebWatcher has not yet encountered.22

Together, these two factors suggest that WebWatcher might achieve higheraccuracy if the web locale it had to cover had a narrower, more focused scope.For example, WebWatcher could be installed for a collection of web pages de-scribing online documentation for some software library, or describing the prod-ucts of some particular vendor. We are currently exploring the use of Web-Watcher for giving tours begining at a web page describing research on machinelearning1. More generally, our experience with WebWatcher suggests a numberof topics for future research:� Personalized WebWatcher. Whereas WebWatcher learns to specialize to aspeci�c web locale, one could instead develop tour guide agents that learnto specialize to a particular user. Such an agent could learn a model of thelonger-term interests of users by observing which pages they do and do notvisit, then use this learned interest model to provide future advice. Wehave recently begun experiments with such a personalized WebWatcher.One system that demonstrates the feasibility of learning such long-termuser interest models is the NewsWeeder system [Lang95], which learnsuser interests in reading net news. One example of a person-speci�c webagent is Letizia [Lie95].� Combining user-speci�c and web locale-speci�c learning. Note that oneway to implement a personalized WebWatcher is to simply adapt the cur-rent system to maintain a separate set of training data for each user.Because it serves multiple users, it could in principle learn user-speci�cinterests at the same time that it retains the capability to annotate hy-perlinks based on tours given to many users. In this context, one couldexplore a variety of methods for combining the bene�ts of single-user mod-eling and learning simultaneously from/about multiple users.� Richer dialogs with users. One major shortcoming of the current Web-Watcher is that it allows the user only to express a few keywords, andonly at the beginning of the tour. A more
exible approach would involvean ongoing dialog with the user, much more like that a museum visitormight have with a human guide.� New machine learning algorithms for characterizing hyperlinks. The learn-ing methods used by WebWatcher succeed in improving its performanceover time. However, a large space of possible learning methods for thisproblem remains unexplored. For example, all the methods reported inthis paper are based on \bag of words" representations of pages and hyper-links in which no syntactic or semantic analysis of the text is performed.One interesting research direction would be to explore learning methodsthat combine linguistic analysis with the statistical techniques describedhere.1http://www.ai.univie.ac.at/oefai/ml/ml-resources.html23

� Intelligent distributed hyperlinks. WebWatcher learns by associating newinformation with hyperlinks based on its experience. Note this learningcould be performed in a much more distributed fashion, with each hyper-link separately building up its own model of itself and making recommen-dations to the user. Due to its distributed nature, this design would scalewell even to very large sets of pages. The idea of intelligent hyperlinkslearning in a distributed fashion could also be implemented directly bya web server. Currently hyperlinks consist only of an anchor text andthe URL they point to. They could be extended by more semantic in-formation. This information could be assigned manually when designingthe web page. More interestingly, as WebWatcher demonstrates part ofthis knowledge could be learned automatically by observing user behav-ior. Knowing more about the semantics of hyperlinks, an intelligent servercould then adapt to particular users. Given information about the generalinterests of a user, which could be sent along with the request for a page,the server might then give a personalized view of the information.6 AcknowledgementsThis research is supported by a Rotary International fellowship grant, an NSFgraduate fellowship, and by Arpa under grant number F33615-93-1-1330.
24

References[AFJM95] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Web-watcher: A learning apprentice for the world wide web. In AAAISpring Symposium on Information Gathering from Heterogeneous,Distributed Environments, March 1995.[Bel57] Richard Bellman. Dynamic Programming. Princeton UniversityPress, 1957.[BS95] M. Balabanovic and Y. Shoham. Learning information retrievalagents: Experiments with automated web browsing. In AAAI SpringSymposium Series on Information Gathering from Distributed, Het-erogeneous Environments, Working Notes. AAAI-Press, 1995.[Gor95] G. Gordon. Stable function approximation in dynamic program-ming. In International Conference on Machine Learning, 1995.[JMFA95] T. Joachims, T. Mitchell, D. Freitag, and R. Armstrong. Web-watcher: Machine learning and hypertext. In K. Morik and J. Her-rmann, editors, GI Fachgruppentre�en Maschinelles Lernen. Univer-sity of Dortmund, August 1995.[Lie95] H. Lieberman. Letizia: An agent that assists web browsing. InInternational Joint Conference on Arti�cial Intelligence, Montreal,August 1995.[MCF+94] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, andD. Zabowski. Experience with a learning personal assistent. Com-munications of the ACM, 37(7):81{91, July 1994.[Mit96] T. Mitchell. Machine Learning. McGraw-Hill, 1996.[MMS85] T. Mitchell, S. Mahadevan, and L. Steinberg. Leap: A learningapprentice for vlsi design. In Ninth International Joint Conferenceon Arti�cial Intelligence, August 1985.[PMB96] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill & webert: Identi-fying interesting web sites. In AAAI Conference, Portland, August1996.[Sal91] G. Salton. Developments in automatic text retrieval. Science,253:974{979, 1991.[Vap82] V. Vapnik. Estimation of Dependencies Based on Empirical Data.Springer-Verlag, 1982. 25

A Annotations for link projects on SCS-FrontDoorpageA�nnotations for link projects on SCS-FrontDoor page in �gure 1. All the inter-ests of users going through this link are shown independent of feedback given.projects, natural language systems, reinforcement learning, study compilercomputer theory, warez, intelligent tutoring systems, speech recognition, ma-chine learning, information about real time mach, machine learning at cmu,apple iigs stu�, admission information intelligent agents, intelligent tutoring,robotics, machine learning, geo, newsweeder, ai, information on a life or ai, an-drew, electronic documents, tom mitchell, informedia multimedia, architectureoperating systems distributed systems, browser, reinforcement learning, projectlisten, interesting computer graphics, text learning, ai, browsers, reinforce-ment learning, reinforcement learning, fast program, human computer inter-faces, mathematica, graduate school, network management, projects, robotics,inex, robotics, australia, robotics, robot, punch recipes, 70703 161 compuservecom, 72457 1460 compuserve com, credit based, callback, lamborghini, xavier,information retrieval knowledge representation, information retrieval, arti�cialintelligence and music, technology info, recipes

26

