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Abstract

We explore the notion of a tour guide software agent for assisting users browsing
the world wide web. A web tour guide agent provides assistance similar to that
provided by a human tour guide in a museum — i1t guides the user along an
appropriate path through the collection, based on its knowledge of the user’s
interests, of the location and relevance of various items in the collection, and
of the way in which others have interacted with the collection in the past.
This paper describes a simple but operational tour guide, called WebWatcher,
which has given over 5000 tours to people browsing CMU’s School of Computer
Science web pages. WebWatcher accompanies users from page to page, suggests
appropriate hyperlinks, and learns from experience to improve its advice-giving

skills.



1 Introduction

Browsing the World Wide Web is much like visiting a museum. In a museum
the visitor has general areas of interest and wants to see relevant artifacts. But
visitors find 1t difficult to locate relevant material given that they do not initially
know the contents of the museum. And in many cases their initial interests are
poorly defined, and become clear only after they begin to explore. In a museum
the user might rely on a tour guide who is familiar with the museum and how
people interact with it. The visitor could describe their general initial inter-
ests to the tour guide, who could then accompany the user, point out items of
interest, and suggest which directions to turn next. During the tour the user
could communicate with the guide, express interest in certain artifacts, ask and
answer questions, as they explore and refine their interests.

A collection of interconnected (hyperlinked) web pages is analogous to a mu-
seum, and people browsing such collections often behave like museum goers. For
example, a visitor to CMU’s Computer Science web home page might have a
general interest in “experimental research on intelligent agents.” However, with
no specific knowledge about the contents of the collection, the user may find
it difficult to locate relevant information. Until they become aware that CMU
conducts significant research on robotics, for example, they may not think to
mention “learning robots” when describing their general interest in intelligent
agents.

We report here research toward software agents that act as tour guides for
the web. In its most general form, the metaphor of web agent as tour guide
is very broad, suggesting systems that carry on general natural language di-
alogs with their users, possess detailed knowledge about the semantic content
of the web pages they cover, and learn with experience. Here we describe a first
experiment with a more restricted, but operational, tour guide. In particular,
we describe WebWatcher [AFJM95], a system that accompanies the user as he
or she browses the web. Like a museum tour guide, WebWatcher interactively
suggests where to go next. The user can communicate with the system and
give feedback. WebWatcher acts as a learning apprentice [MMS85, MCF*94],
observing and learning from its users’ actions. Over time WebWatcher learns
to become more expert for the parts of the World Wide Web that it has visited
in the past, and for the types of topics in which previous visitors have had an
interest.

WebWatcher differs in several key respects from keyword-based search en-
gines such as Lycos and AltaVista. First, such search engines require that the
user describe their interest in terms of specific words that match those in the tar-
get web page. In contrast, WebWatcher can learn that a term such as “machine
learning” matches a hyperlink such as “neural networks,” even though these



phrases share no words in common. Furthermore, search engines do not take
into account that documents are designed as hypertext and that links between
documents and the structure of documents contain important information. In
many cases only a sequence of pages and the knowledge about how they relate
to each other can satisfy the user’s information need.

In the following we present the design of WebWatcher, as well as experi-
mental results obtained from over 5000 tours given by WebWatcher to various
visitors on the web. We describe how WebWatcher learns from the experience
gained from each tour it gives. WebWatcher uses this learned knowledge to im-
prove the quality of advice it gives to subsequent users. We examine a variety
of algorithms for this learning task, and present experimental results comparing
their effectiveness. Finally, we summarize the lessons and perspectives gained
from these first experiment with a tour guide agent for the web.

2 WebWatcher

The following trace illustrates a typical tour given by WebWatcher, from the
front door web page of CMU’s School of Computer Science.

2.1 Typical Scenario

Imagine the following scenario. We enter the School of Computer Science Web
at the Front Door page (figure 1). On this page an instance of WebWatcher is
installed which can be invoked by clicking on the hyperlink “The WebWatcher
Tour Guide” in the bottom part of the page. Clicking on this hyperlink leads
us to the “Welcome to WebWatcher” page (figure 2) where we are asked for a
short description of our current interest. In this example, we enter “intelligent
agents” as our interest, then click on the start button. WebWatcher now returns
us to our initial page, prepared to guide our tour (figure 3). We are no longer
browsing alone, but will be accompanied by WebWatcher on any sequence of
hyperlinks we follow from this point forward.

We can see that WebWatcher accompanies us by the additions 1t makes to
the original page. The original page augmented with WebWatcher’s additions
can be seen in figure 3. Notice the changes made by WebWatcher include:

e A menubar is inserted above the original page. Through the menubar
we can communicate with WebWatcher by issuing commands or giving

feedback.

e A list of new hyperlinks has been added to the page, just below the menu
bar. These hyperlinks lead to pages that contain the keywords “intelligent
agents” which we typed in. This list is generated using a variant of the
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Figure 1: The original Front-Door page.




Figure 2: Entering WebWatcher.
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Figure 3: The Front-Door page with WebWatcher’s additions.



Figure 4: The list of project home pages.



Figure 5: Further down in the list of project home pages.



Figure 6: The user arrives at the home page of the WebWatcher project.



Lycos search engine, applied to the set of pages previously visited by
WebWatcher.

e Selected hyperlinks from the original page have now been highlighted
by WebWatcher, to suggest directions relevant to our browsing interests.

WebWatcher highlights these hyperlinks by inserting eyeball icons ( .ﬁ'ﬁ")
around the hyperlink, as shown in the last hyperlink visible in figure 3.
This is the most novel feature of WebWatcher. The advice it provides in
this fashion is based on knowledge learned from previous tours.

Let us follow WebWatcher’s suggestion (the highlighted hyperlink at the bot-
tom of figure 3). In general, the user may click on any hyperlink, recommended
or not. Each time the user selects a hyperlink, WebWatcher accompanies the
user to the next page, and logs this hyperlink selection as a training example
for learning to improve future advice.

When we follow the hyperlink suggested by WebWatcher in this case, we
reach a page containing a long list of research project pages (figure 4). Web-
Watcher again inserts the menubar on top of the page indicating that the system
1s still accompanying us. On this page WebWatcher suggests three hyperlinks it
Jjudges relevant to our interest in “intelligent agents.” Clicking on the “HERE”
button on top of the page gets us directly to the first of WebWatcher’s sugges-
tions (figure 5). By clicking on the eyeball icons next to the suggested hyperlinks,
we can jump from one suggestion to the next.

In this scenario we follow WebWatcher’s third suggestion, which takes us to
a page describing the WebWatcher research project. Again, WebWatcher gives
new suggestions there.

If we were particularly interested in a page, we could tell WebWatcher so
by clicking on “Show me similar pages” in the menubar. WebWatcher would
then display a list of pages which are similar based on a metric derived from
hypertext structure [JMFA95].

Two additional commands are available in WebWatcher’s menubar on any
page. Clicking on the command “how many followed each link?” asks Web-
Watcher to display for each hyperlink the number of previous visitors who took
that link. Clicking on the command “Email me if this page changes” asks Web-
Watcher to periodically monitor the page and send the user email if it should
change.

WebWatcher accompanies the user in this fashion along any hyperlink any-
where on the world wide web. To end the tour, the user clicks on one of two
commands in the menu bar: “Exit: Goal reached” or “Exit: Goal not reached.”
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Figure 7: WebWatcher is an interface agent between the user and the World
Wide Web.

This exit provides the user with a way of giving final feedback to WebWatcher
about the success of the tour in locating information relevant to the stated
interests.

2.2 How Does WebWatcher Accompany the User?

From the perspective of WebWatcher, which is implemented as a server
on a separate workstation on the network, the above scenario looks somewhat
different. When first invoked (i.e., when the user clicks on the WebWatcher
hyperlink in figure 1), the WebWatcher server accepts an argument, encoded
in the URL that accesses it, which contains a “return address.” This return
address is the URL of the web page from which the user came. Once the user
fills out the form specifying his or her interests, WebWatcher sends the user
back to an modified copy of this page. It makes three modifications:

1. First, the WebWatcher menubar is added to the top of the page.

2. Second, each hyperlink URL in the original page 1s replaced by a new URL
that points back to WebWatcher.
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3. Third, if WebWatcher finds that any of the hyperlinks on this page are
strongly recommended by its search control knowledge, then it highlights
the most promising links in order to suggest them to the user.

It sends this modified copy of the web page to the user, and opens a file to begin
logging this user’s trace as training data. While it waits for the user’s next step,
it prefetches any web pages it has just recommended to the user to minimize
network delays. When the user clicks on a new hyperlink, WebWatcher updates
the log for this search, retrieves the page (unless it has already been prefetched),
performs similar substitutions, and returns the copy to the user.

This process continues, with WebWatcher tracking the user’s tour across the
Web, providing advice at each step, until the user elects to dismiss the agent.
At this point, WebWatcher closes the log file for this session (indicating either
success or failure in the search, depending on which button the user selected
when dismissing WebWatcher), and returns the user to the original, unmodified
copy of the web page he is currently at. For each such tour, the information
logged by WebWatcher summarizes the sequence of web pages and hyperlinks
followed by the user, along with a time stamp indicating exactly when each
hyperlink was requested.

2.3 What Gets Learned

What is the form of the knowledge required by WebWatcher? In general, its
task is to suggest an appropriate link given the current user, interest, and web
page. Hence, one general form of knowledge that would be useful corresponds
to knowledge of the function LinkUtility:

LinkUltility : Page x Interest x User x Link — [0,1]

where Page is the current web page, Interest is the set of words describing the
user’s interest, User is the identity of the user, and Link is one of the hyper-
links found on Page. The value of LinkUtility is the probability that following
Link from Page leads along a shortest path to a page that satisfies the current
Interest for the current User.

In the learning experiments reported here, we consider learning a simpler
function for which training data is more readily available, and which is still of

considerable practical use. This function is UserChoice?:

UserChoice? : Page x Interest x Link — [0, 1]

where the value of UserChoice? is the probability that an arbitrary user will
select Link given the current Page and Interest. Notice here the User is not
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an explicit input, and the function value predicts only whether users tend to se-
lect Link — not whether it leads optimally toward pages which satisfy the user’s
interest. Notice also that information about the search trajectory by which the
user arrived at the current page is not considered in this formulation of the
target function to be learned.

One reason for focusing on UserC'hoice? in our initial experiments is that
the data automatically logged by WebWatcher provides training examples of
this function. In particular, each time the user selects a new hyperlink, a train-
ing example 1s logged for each hyperlink on the current page, corresponding to
the Page, Interest, Link, and whether the user chose this Link.

To improve the accuracy of learning the function UserChoice?, WebWatcher
splits up this function so that it learns a separate function for each web page.
In other words, for every page p WebWatcher learns a function UserC'hoice?,

UserChoice?, : Interest x Link — [0, 1]

2.4 Learning Method

Learning is accomplished by annotating each hyperlink with the interests of the
users who took this hyperlink on tours with positive feedback (i.e., tours ending
with “Exit: Goal reached”). Thus, whenever a user follows a hyperlink on a
successful tour the description of this hyperlink 1s augmented with the keywords
the user typed in at the beginning of the tour. The initial description of a hy-
perlink is the underlined text. Figure 8 illustrates how each hyperlink has a list
of interests associated with it. Appendix A shows the description of a particular

hyperlink as learned by WebWatcher.

To suggest hyperlinks during a tour WebWatcher compares the current user’s
interest with the descriptions of all hyperlinks in the current page. WebWatcher
suggests those hyperlinks which have a description sufficiently similar to the
user’s interest. Figure 8 gives an example.

The metric used to compute similarity between an interest of a user and the
description of a hyperlink is based on a technique from information retrieval.
Interests and hyperlink descriptions are represented by very high-dimensional
feature vectors (figure 9), with each dimension representing a particular word in
the English language. The weight of a word w for a piece of text d is computed
using the TFIDF heuristic as described in [Sal91].

n
TFIDF(w,d) = TF(w,d) % log( ———
The term-frequency T'F (w, d) counts the number of times word w occurs in text
d. The document-frequency DF (w) is the number of texts that contain word w

12
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user’s interest keywords. Here, the interest of a new user in “intelligent agents”
matches the “projects” hyperlink better than the “Welcome from the Dean”
hyperlink, because of the keywords associated with this hyperlink from previous
tours.

and n is the total number of texts. The TFIDF measure assigns a word a higher
weight the more often it occurs in a piece of text. In addition, words that occur
more frequently throughout all texts receive a lower weight. In particular the
weight of a word is zero if 1t does not occur in a piece of text at all. Based on
this vector representation the similarity of two pieces of text can be calculated
as the cosine between their vectors [Sal91].

The particular algorithm WebWatcher uses to suggest hyperlinks goes through
all the hyperlinks on the current page. For each hyperlink the list of interests
(including the original underlined words) associated with it is ranked according
to the similarity with the current user’s interest. The value of UserChoice?
for each hyperlink is estimated as the average of the similarities of the & (usu-
ally 5) highest ranked keyword sets. A hyperlink is suggested if its value for
UserChoice? is above a threshold. The maximum number of hyperlinks sug-
gested on a page is three.

2.5 Results

We present results based on 5822 tours given by WebWatcher between August
2, 1995, and March 4, 1996, starting at the SCS-FrontDoor page. About 55%
of the tours were more than one step long, 18% are more than five steps long.
The longest tour consists of 135 steps. In 25% of the searches the user did not
provide an interest.

As shown in figure 10, in 20.8% of the pages WebWatcher visited during
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Figure 9: Pieces of text are represented as high dimensional vectors.

Advice given | Accuracy
Random 20.8% 15.3%
Learning 20.8% 43.9%

Figure 10: WebWatcher’s performance over about 5800 tours.

those tours, it highlighted at least one hyperlink. In 43.9% of these cases the
user followed the advice given by WebWatcher (excluding cases where the user
exited the system or backed out without following any hyperlink). We define
this percentage to be the accuracy of WebWatcher’s suggestions. To give a
lower bound on the accuracy for comparison, WebWatcher would have achieved
15.3% if it highlighted an equivalent number of hyperlinks at random on each
of these pages. Note that this accuracy measurement is biased by the fact that
WebWatcher’s suggestions influenced the decisions of users.

2.6 Comparison with Human Experts

To get a better feel for the nature of the task of suggesting hyperlinks and
to evaluate WebWatcher’s performance, we conducted an experiment in which
we asked humans to do WebWatcher’s task. To make the experiment more
tractable we focused on one page, namely an earlier version of the SCS-Front-
Door page shown in figure 1. From the 408 training examples for this page we
took 8 random subsets of 15 examples and presented them to eight people. For
each example they were asked to suggest the 3 hyperlinks the user was most

14



Advice given | Accuracy
Random 100% 22.4%
Learning 100% 42.9%
Human 100% 47.5%

Figure 11: A comparison to human performance on the SCS-Front-Door page.

likely to follow out of the 18 hyperlinks on this page. The test subjects were all
familiar with the page and its locale.

As figure 11 summarizes, the human performance was at 47.5%. The learning
algorithm achieved an accuracy of 42.9% under the same conditions. The 22.4%
for random suggestion again provides a baseline.

3 Additional Learning Methods

Can WebWatcher’s suggestion accuracy be increased? Are there other sources
of information that can help WebWatcher improve at its task? This section
explores two ideas for improving the accuracy of WebWatcher’s advice. The
first idea is to take the hypertext web structure into account in order to create
more refined descriptions of hyperlinks. We adopt an approach based on rein-
forcement learning to create these descriptions. The second idea is to combine
the results of several learning methods to improve accuracy.

3.1 Reinforcement Learning on the Web

As described above the initial description of a hyperlink is only the underlined
anchor text. The approach described here elaborates these sparse initial de-
scriptions. The basic idea is to associate with the hyperlink a weighted word
vector estimating which words occur on pages downstream of the hyperlink.
The weight given to a downstream word is its TFIDF value discounted expo-
nentially with its distance from the page under consideration (i.e., the number
of hyperlinks that must be traversed to reach it). This approach is based on
reinforcement learning, as described below.

3.1.1 Reinforcement Learning

Reinforcement learning is a framework allowing agents to learn control strategies
that select optimal actions in certain settings. Consider an agent navigating
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Figure 12: Example state space.

from state to state by performing actions. At each state s the agent receives
a certain reward R(s). The goodness of an action a can be expressed in terms
of an evaluation function Q(s, a), defined for all possibe state-action pairs. The
value of Q(s, a) is the discounted sum of future rewards that will be obtained if
the agent performs action a in state s and subsequently chooses optimal actions.
If the agent can learn this function, then it will know how to act in any state.
More precisely,

Qse,a) =D 7' Rlsep1i)
=0

where s; is the state the agent is in at time ¢, and where ~ is a discount factor
0 < v < 1 that determines how severely to discount the value of rewards re-
ceived further into the future. Under certain conditions, the @ function can be
iteratively approximated by updating the estimate for Q(s, a) each time action
a is performed by the agent in state s, as follows (see [Bel57]):

Qnti(s,a) = R(s') +v  max  [Qn(s',a')]
a’Eactions_in_s
where s’ is the state resulting from performing action @ in state s. Once Q(s, a)
is known, the optimal control strategy for the agent is simply to pick the action
that maximizes QQ for whatever state it finds itself in.

Figure 12 gives an example. Boxes represent possible states of the agent.
The edges represent actions that bring the agent from one state to another. The
edges are annotated with values of the function @(s,a). In the rightmost state
the agent receives a reward of 1. The reward is 0 in all other states. If the agent
always follows the action with the highest @ value, it will get to the reward

16
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Figure 13: Having a value function for every word. The reward for a word on a
page is its TFIDF value.

state in the smallest number of steps and thus maximize the discounted reward
it receives.

3.1.2 Reinforcement Learning for Navigating Hypertext

An analogous navigation problem for an agent on the web is to navigate from
page to page by taking hyperlinks to get to good sources of information. Pages
correspond to states and hyperlinks correspond to actions. The reward a web
agent receives for a page is the degree to which this page fits the user’s interests.
An agent using Q-learning will therefore seek tours through the web that lead
as directly as possible to pages of greatest interest to the user.

How shall we measure whether a page fits the user’s interest? The particu-
lar reward function used here is again based on the vector space retrieval model
and the TFIDF heuristic [Sal91] already introduced in section 2.4. Pages are
represented as vectors of words and the vector length is normalized to one. The
values of the vector give an estimate of how important the corresponding word
is on the page. For each word w that is encountered on any of the pages in
the training data a separate Q-function @y (s, a) is learned. Given the reward
function as described above, the Q-function for a particular word is trained to
maximize the discounted TFIDF values for that word when following a sequence

of hyperlinks (figure 13).

To suggest hyperlinks at runtime, the system can use the Q-functions it
learned for each word. If the user’s interest consists only of a single word w, the
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corresponding Q-function @y (s, a) is used and those hyperlinks are suggested
for which the Q-function plus an immediate reward, given w occurs in the anchor
text, is maximum. If the user’s interest consists of multiple words w1, ..., wy,,
the suggested hyperlinks are those that maximize the sum of the corresponding
Q-functions plus the immediate rewards.

Because WebWatcher cannot expect that users will always stick to pages
it has already seen, a core question in implementing this approach is how to
learn a general approximation for each of the Q-functions @y (s, a). The system
must be able to estimate the significance of novel states and actions in terms of
states and actions (pages and hyperlinks) it already knows. We chose to use a
similarity-weighted 3-nearest neighbor function approximator for this purpose,
because of the many features needed to describe pages and hyperlinks, and
because of certain theoretical advantages [Gor95]. Each hyperlink a is described
by the TFIDF vector representation of the underlined anchor text. Each page
s 1s represented in an analogous way using the text in its title. For purposes of
determining similarity, the distance between the hyperlink a; on page s; and
the hyperlink as on page sy is defined to be the distance between a; and as,
plus twice the distance between s; and s5. The distance between two vectors 1s
defined to be the cosine of the angle between the vectors, in keeping with the
standard similarity measure used in TFIDF.

3.1.3 Experimental Setup

The experiments presented in this section were conducted using a subset of the
traces starting at the SCS-FrontDoor page WebWatcher collected from August
2, 1995, to March 4, 1996. We used only tours where the user typed in an
interest and where the tour was at least four steps long. There were 1777 such
tours. Five different test-training splits were used with 2/3rd of the traces being
used for training. Of the remaining example traces, 90% were used for testing
and 10% were used for purposes that are described in section 3.2.

In addition to the Q-learning approach, the results for four other methods
are presented.
o RANDOM. This strategy suggests hyperlinks at random from the current
page.
e POPULARITY. This method simply counts the frequency with which
each hyperlink on a page has been followed in the past. The most fre-

quently followed hyperlinks are suggested in the future. The information
about the user’s interest is ignored.

e ANNOTATE. This is the strategy introduced in section 2.4. In the experi-
ments described in this section all tours were used independent of whether
they were marked successful or not.
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Accuracy Accuracy Accuracy
(on all pages) | (on known pages) | (on unknown pages)
Random 31.6% 23.8% 39.7%
Popularity 41.8% 43.7% 39.7%
Match 40.3% 33.8% 46.0%
Annotate 42.0% 37.0% 46.0%
Q 14.5% A15% 17.8%

Figure 14: Results for Q-Learning and several other learning methods (all results
are averages over five different test training splits).

e MATCH. This method is similar to “ANNOTATE”, with the exception
that links are not annotated with user interests. Instead, only the under-
lined anchor text is used to describe the hyperlink.

3.1.4 Experimental Results

The results in figure 14 provide a comparison of several learning methods. Each
example corresponds to a page, from which each learner was allowed to choose
three hyperlinks. Accuracy measures the percentage of times in which the user
followed one of the chosen hyperlinks. We required each learning algorithm to
make a prediction regardless of how confident it was.

The first column of figure 14 shows the accuracy on all pages in the test set.
Q-learning performs significantly better than the other methods. The second
and third columns show the accuracy over known and unknown pages (pages
that do or do not appear in tours in the training set). Surprisingly, the accuracy
on unknown pages is higher than on known pages. This is due to the fact that
those pages happened to contain on average fewer hyperlinks, making it easier
for random guesses to be correct.

3.2 Combining Multiple Learning Algorithms

Four methods were presented which were able to suggest hyperlinks with rea-
sonable accuracy. Can those learning methods be combined to achieve better
results?

3.2.1 Method

In section 2.3 we introduced the function UserChoice?. This is the target func-
tion WebWatcher is designed to learn. The value of UserChoice? is ideally the
probability Pr(choice|h, i, p) that a user with interest ¢ will follow hyperlink A
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Accuracy | Accuracy (known) | Accuracy (unknown)
Random 31.6% (.7) 23.8% 39.7%
Popularity | 41.8% (.7) 43.7% 39.7%
Match 10.3% (.7) 33.8% 16.0%
Annotate | 42.0% (.9) 37.0% 46.0%
Q 145% (4) 5% 17 8%
Combine | 49.0% (.6) 50.0% 17.9%

Figure 15: Results for combining learning methods. Reported accuracies are
aaverages over five train/test splits. Standard errors are given in parentheses.

on page p. Can we estimate this probability and use it for decision making?

For each hyperlink & we know the predictions of the learning methods
Annotate(h, i), Match(h,i), Q(h,i), and Popularity(h,p). These predictions
can be used to estimate the probability

Pr(choice| Annotate(h, i), Match(h, i), Q(h, i), Popularity(h,p))

The output values of Annotate(h,i) and Match(h,i) for hyperlink ~ and
interest ¢ are each cosine distances. For Q(h,¢) it is the sum of the Q-values
divided by the number of words in ¢. The output of Popularity(h,p) is an esti-
mate of the probability Pr(choice|h, p) that a user follows hyperlink 2 on page
p independent of a particular interest. To estimate Pr(choice|h, p) a Bayesian
estimator is used with uniform prior [Vap82] (often called Laplace estimator).
Applied to our problem this estimator can be written as:

. ] ) #of times_h_was_chosen 4+ 1
Pr(ch Popularity(h)) =
r(choice| Popularity(h)) Ftof _examples + #of _hyperlinks_on_page

Note that before observing any training examples this estimator assigns equal
probability to any hyperlink on the page.

To estimate Pr(choice| Annotate(h, i), Match(h, i), Q(h, i), Popularity(h, p))
logistic regression [Mit96] is used. An additional small amount of data is used
as training data for regression (see section 3.1.3).

3.2.2 Experimental Results

The table in figure 15 shows the results of combining the predictions of all
four learning algorithms. The combined method achieves an accuracy of 49.0%,
outperforming each of the individual methods. Our conjecture is that this is due
to the diversity of the methods and sources of information that are combined.
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Popularity uses frequency information derived from user behavior an a particular
page, Match uses the underlined text in hyperlinks, Annotate uses the interest
descriptions from the user traces and Q-Learning makes use of the hypertext
structure.

4 Related Work

Letizia [Lie95] is similar to WebWatcher in the sense that the system accom-
panies the user while browsing. One difference is that the system serves only
one particular user. Letizia is located on the users machine and learns his or
her current interest. By doing lookahead search Letizia can recommend pages
in the neighborhood of where the user is currently browsing.

Syskill and Webert [PMB96] offers a more restricted way of browsing than
WebWatcher and Letizia. Starting from a manually constructed index page for
a particular topic, the user can rate hyperlinks off this page. The system uses
the ratings to learn a user specific topic profile that can be used to suggest un-
explored hyperlinks on the page. Syskill and Webert can also use search engines
like LYCOS to retrieve pages by turning the topic profile into a query.

Lira [BS95] works in an offline setting. A general model of one user’s interest
is learned by asking the user to rate pages. Lira uses the model to browse the
web offline and returns a the set of pages that match the user’s interest.

5 Summary and Future Research

WebWatcher provides one case study of a tour guide agent for the world wide
web. By “tour guide agent” we mean any agent that accompanies users from
page to page, providing assistance based on a partial understanding of that
user’s interests and of the content of the web pages. WebWatcher provides one
operational example of a tour guide agent that has served several thousand
people browsing CMU’s School of Computer Science web pages. WebWatcher
is characterized by the following properties:

e WebWatcher provides several types of assistance. Most importantly, it
highlights interesting hyperlinks as it accompanies the user, pointing out
those hyperlinks it expects will be most appropriate given the user’s stated
interest. In addition, it provides a keyword search over all pages it has
previously visited and offers user commands such as “how many previous
users followed each hyperlink on this page?” “show me pages similar to
the one I am at,” and “email me if this page is updated.”

e WebWatcher learns from experience. FEach tour given by WebWatcher
provides training data consisting of some topic of interest to some user,
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a trajectory taken by that user through the graph of web pages, and
a final statement by the user indicating whether the tour succeeded in
locating appropriate information. From each such trace, WebWatcher can
derive multiple training examples. WebWatcher generalizes from such
training examples to improve its ability to suggest appropriate hyperlinks
for subsequent users. The most effective learning method we found in
our experiments was a multi-strategy approach that rates the significance
of a hyperlink based on a combination of factors: the frequency with
which the hyperlink was taken in the past, the stated interests of previous
visitors who took this hyperlink, the words occuring on pages downstream
from this hyperlink, and the underlined words associated directly with the
hyperlink.

e WebWatcher is implemented as a Web server on a workstation distinct
from the user’s workstation, and is capable of assisting any web user run-
ning any type of browsing software, tracking them to any page anywhere
on the world wide web. Because it is a centralized system (as opposed to
software running on the workstations of each individual user), it can col-
lect and combine training data from thousands of different users to learn
to improve the advice it provides to subsequent users.

Our experience with WebWatcher leads us to believe that self-improving
tour guide agents will play an important role on the web in the future. Web-
Watcher demonstrates that it is possible for such an agent to provide helpful
advice to many users, and that it is possible to automatically learn from the
thousands of users with whom it interacts. Given that popular web sites are
typically visited by many thousands of users, and that the content of the web
changes frequently, it appears that machine learning will play a crucial role in
future tour guide agents.

Our experience with WebWatcher has also shown that despite its ability to
help some users, its highlighted hyperlinks are followed by users in only 48% of
all cases. Interestingly, when we assigned expert humans the same task, they
could do no better. Examining many specific tours given by WebWatcher, we
find the following partial explanation for this disappointing level of accuracy:

e Users tend to have a fairly short attention span. The traces of many users
show that even though they initially state an interest in some technical
subject such as “algorithmic complexity,” once they notice that there is
an online coke machine their path veers in a new direction.

o There is great diversity in the interests of users browsing CMU’s SCS
Front Door, ranging from technical interests such as “machine learning”
to non-technical interests such as “windsurfing.” Even after thousands of
tours 1t is not uncommon for the next user to express an interest that
WebWatcher has not yet encountered.
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Together, these two factors suggest that WebWatcher might achieve higher
accuracy 1f the web locale it had to cover had a narrower, more focused scope.
For example, WebWatcher could be installed for a collection of web pages de-
scribing online documentation for some software library, or describing the prod-
ucts of some particular vendor. We are currently exploring the use of Web-
Watcher for giving tours begining at a web page describing research on machine
learning!. More generally, our experience with WebWatcher suggests a number
of topics for future research:

e Personalized WebWatcher. Whereas WebWatcher learns to specialize to a
specific web locale, one could instead develop tour guide agents that learn
to specialize to a particular user. Such an agent could learn a model of the
longer-term interests of users by observing which pages they do and do not
visit, then use this learned interest model to provide future advice. We
have recently begun experiments with such a personalized WebWatcher.
One system that demonstrates the feasibility of learning such long-term
user interest models is the NewsWeeder system [Lang95], which learns
user interests in reading net news. One example of a person-specific web
agent is Letizia [Lie95].

e Combining user-specific and web locale-specific learning. Note that one
way to implement a personalized WebWatcher is to simply adapt the cur-
rent system to maintain a separate set of training data for each user.
Because it serves multiple users, it could in principle learn user-specific
interests at the same time that i1t retains the capability to annotate hy-
perlinks based on tours given to many users. In this context, one could
explore a variety of methods for combining the benefits of single-user mod-
eling and learning simultaneously from /about multiple users.

o Richer dialogs with users. One major shortcoming of the current Web-
Watcher is that 1t allows the user only to express a few keywords, and
only at the beginning of the tour. A more flexible approach would involve
an ongoing dialog with the user, much more like that a museum visitor
might have with a human guide.

e New machine learning algorithms for characterizing hyperlinks. The learn-
ing methods used by WebWatcher succeed in improving its performance
over time. However, a large space of possible learning methods for this
problem remains unexplored. For example, all the methods reported in
this paper are based on “bag of words” representations of pages and hyper-
links in which no syntactic or semantic analysis of the text is performed.
One interesting research direction would be to explore learning methods
that combine linguistic analysis with the statistical techniques described
here.

Thttp://www.ai.univie.ac.at/oefai/ml/ml-resources.html
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e Intelligent distributed hyperlinks. WebWatcher learns by associating new
information with hyperlinks based on its experience. Note this learning
could be performed in a much more distributed fashion, with each hyper-
link separately building up its own model of itself and making recommen-
dations to the user. Due to its distributed nature, this design would scale
well even to very large sets of pages. The idea of intelligent hyperlinks
learning in a distributed fashion could also be implemented directly by
a web server. Currently hyperlinks consist only of an anchor text and
the URL they point to. They could be extended by more semantic in-
formation. This information could be assigned manually when designing
the web page. More interestingly, as WebWatcher demonstrates part of
this knowledge could be learned automatically by observing user behav-
ior. Knowing more about the semantics of hyperlinks, an intelligent server
could then adapt to particular users. Given information about the general
interests of a user, which could be sent along with the request for a page,
the server might then give a personalized view of the information.
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A Annotations for link projects on SCS-FrontDoor
page

Annotations for link projects on SCS-FrontDoor page in figure 1. All the inter-
ests of users going through this link are shown independent of feedback given.

projects, natural language systems, reinforcement learning, study compiler
computer theory, warez, intelligent tutoring systems, speech recognition, ma-
chine learning, information about real time mach, machine learning at cmu,
apple 1igs stuff, admission information intelligent agents, intelligent tutoring,
robotics, machine learning, geo, newsweeder, ai, information on a life or ai, an-
drew, electronic documents, tom mitchell, informedia multimedia, architecture
operating systems distributed systems, browser, reinforcement learning, project
listen, interesting computer graphics, text learning, ai, browsers, reinforce-
ment learning, reinforcement learning, fast program, human computer inter-
faces, mathematica, graduate school, network management, projects, robotics,
inex, robotics, australia, robotics, robot, punch recipes, 70703 161 compuserve
com, 72457 1460 compuserve com, credit based, callback, lamborghini, xavier,
information retrieval knowledge representation, information retrieval, artificial
intelligence and music, technology info, recipes
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