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Abstract

Because of their complementary strengths, optimization and constraint pro-
gramming can be profitably merged. Their integration has been the subject of
increasing commercial and research activity. This paper summarizes and con-
trasts the characteristics of the two fields; in particular, how they use logical
inference in different ways, and how these ways can be combined. It sketches
the intellectual background for recent efforts at integration. In particular, it
traces the history of logic-based methods in optimization and the development
of constraint programming in artificial intelligence. It concludes with a re-
view of recent research, with emphasis on schemes for integration, relaxation
methods, and practical applications.

Optimization and constraint programming are beginning to converge, despite
their very different origins. Optimization is primarily associated with mathematics
and engineering, while constraint programming developed much more recently in
the computer science and artificial intelligence communities. The two fields evolved
more or less independently until a very few years ago. Yet they have much in com-
mon and are applied to many of the same problems. Both have enjoyed considerable
commercial success. Most importantly for present purposes, they have complemen-
tary strengths, and the last few years have seen growing efforts to combine them.

Constraint programming, for example, offers a more flexible modeling frame-
work than mathematical programming. It not only permits more succinct models,
but the models allow one to exploit problem structure and direct the search. It
relies on such logic-based methods as domain reduction and constraint propagation
to accelerate the search. Conversely, optimization brings to the table a number of
specialized techniques for highly structured problem classes, such as linear program-
ming problems or matching problems. It also provides a wide range of relaxations,
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which are often indispensable for proving optimality. They may be based on polyhe-
dral analysis, in which case they take the form of cutting planes, or on the solution
of a dual problem, such as the Lagrangean dual.

The recent interaction between optimization and constraint programming
promises to change both fields. It is conceivable that portions of both will merge
into a single problem-solving technology for discrete and mixed discrete/continuous
problems.

The aim of the present paper is to survey current activity in this area and sketch
its intellectual background. It begins with a general summary of the characteristics
of optimization and constraint programming: what they have in common, how they
differ, and what each can contribute to a combined approach. It then briefly recounts
developments that led up to the present state of the art. It traces the history of
boolean and logic-based methods for optimization, as well as the evolution of logic
programming to constraint logic programming and from there to the constraint
programming “toolkits” of today. It concludes with a summary of some current
work. Since a proper tutorial in these ideas would require a much longer paper,
only a cursory explanation of key concepts is provided, along with references to
more complete treatments.

The emphasis in this paper is on exact methods, because this is where most of
the collaboration is now occurring. Yet optimization and constraint programming
also share a strong interest in heuristic methods. Interaction between the two fields
in this area is hard to characterize in general, but both are unaware of much recent
research conducted by the other. This may present a second opportunity for cross-
fertilization in the near future.

1 Optimization and Constraint Programming

Compared

Optimization and constraint programming are similar enough to make their combi-
nation possible, and yet different enough to make it profitable.

1.1 Two Areas of Commonality

There are at least two broad areas of commonality between optimization and con-
straint programming. One is that both rely heavily on branching search, at least
when an exact method is required and the problem is combinatorial in nature.

The other is less obvious: both use logical inference methods to accelerate the
search. Constraint programming uses logical inference in the form of domain re-
duction and constraint propagation. In optimization, logical inference takes forms
that are not ordinarily recognized as such, including cutting plane algorithms and
certain duality theorems. A cutting plane, for example, is a logical implication of
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a set of inequalities. Preprocessing algorithms for mixed integer programming can
also be viewed as limited forms of domain reduction and constraint propagation.

When one takes a more historical view, the commonality becomes even more
visible. Boolean methods for operations research, which are based on logic process-
ing, date from the 1950’s. Implicit enumeration methods for integer programming
enjoyed only a brief moment of fame in the 1970’s but can be seen as an early form
of today’s constraint propagation methods.

1.2 Two Main Differences

As the names might suggest, constraint programming seeks a feasible solution, and
optimization seeks an optimal solution. But this is a superficial distinction, as
optimization is easily incorporated into the algorithms of constraint programming.
One need only place a bound on the objective function. As soon as a feasible
solution satisfying the bound is found at some point in the search tree, the bound is
tightened. The process continues until no further feasible solution can be found. The
main differences between optimization and constraint programming lie elsewhere.

1.2.1 Programming versus “Programming”

One key distinction between the two fields is that constraint programming formu-
lates a problem within a programming language. The formulation generally has
a declarative look, because one of the historical goals of the field is to allow one
to integrate constraints into programming. Yet the modeling language can give the
modeler considerable control over the search procedure. Thus the “programming” in
constraint programming actually refers to computer programming, unlike the “pro-
gramming” in mathematical programming, which recalls George Dantzig’s historical
application of linear models to military logistics.

1.2.2 Constraint Propagation versus Relaxation

Another distinction is that constraint programming uses logical inference in differ-
ent ways than optimization uses it. It uses inference to reduce the search space
directly through such techniques as domain reduction and constraint propagation.
Optimization uses inference (perhaps in the form of cutting planes) primarily to
create better relaxations, which accelerate the search indirectly.

Although optimization is not fundamentally distinguished by the fact that it op-
timizes, the presence of cost and profit functions (whether they occur in an objective
function or constraints) has nonetheless taken the field in a different direction than
constraint programming. Cost and profit functions tend to contain many variables,
representing the many activities that can incur cost or contribute to profit. This
often makes domain reduction and constraint propagation ineffective.
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The domain of a variable is the set of possible values it can take. Domain
reduction uses restrictions on the domain of one variable in a constraint to deduce
that the other variables can only take certain values, if the constraint is to be
satisfied. If the constraint does not contain too many variables, this can significantly
reduce domains. The smaller domains are passed to other constraints, where they
are further reduced, thus implementing a form of constraint propagation. If all
goes well, a combination of branching search and constraint propagation eventually
reduce each variable’s domain to a single value, and a feasible solution is identified.

When a constraint contains a cost or profit function of many variables, however,
domain reduction is ineffective. The optimization community escapes this impasse
by using relaxation techniques, generally continuous relaxations. The community
perhaps moved away from the early implicit enumeration techniques, which resemble
constraint propagation, because its business and engineering applications require
measurement of cost and profit.

The constraint satisfaction community, by contrast, developed to a large degree
through consideration of problems whose constraints are binary; that is, they contain
only two variables each. Many combinatorial problems discussed in the artificial
intelligence literature are of this sort. A standard example is the n-queens problem,
which asks one to place n queens on a chessboard so that no one attacks another.
Restricting the domain of one variable in a binary constraint can substantially reduce
the domain of the other variable, and propagation tends to be effective. It is not
surprising that domain reduction and constraint propagation methods have evolved
from a field that historically emphasized binary constraints. These methods can
work well when there are no sums over cost or profit, and when the objective is
some such criterion as a min/max or minimum makespan.

1.3 Opportunities for Integration

Many if not most practical problems have constraints that require relaxation as
well as constraints that propagate well. For this reason alone, it is natural to use
a combination of optimization and constraint satisfaction methods. In addition,
the versatile modeling framework of constraint satisfaction leads to models that are
more readable and easier to debug than traditional optimization models. Conversely,
powerful optimization methods can solve structured subproblems more efficiently
than constraint programming methods.

1.3.1 Global Constraints

Still another inducement to integration is that constraint programming’s global con-
straints provide a practical way for techniques from both fields to exploit problem
structure. When formulating a problem, one can often identify groups of constraints
that exhibit a “global” pattern. For instance, a set of constraints might require that
jobs be scheduled so that they do not overlap (or consume too many resources at
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any one time). These constraints can be represented by a single global constraint,
in this case a cumulative constraint.

An equally popular global constraint is all-different, which requires that a set of
variables all take different values. It can be used to formulate the traveling salesman
problem, for example, with a single constraint, rather than exponentially many as
in the most popular integer programming model. Let xj denote the jth city visited
by the salesman, and let cij be the distance from city i to city j. Then the traveling
salesman problem can be written

minimize
n
∑

j=1

cxjxj+1

subject to all-different(x1, . . . , xn)

(1)

where city n + 1 is identified with city 1.
Note the use of variables as indices in the objective function of (1). Variable

indices are a powerful modeling device disallowed in traditional mathematical pro-
gramming but accessible to constraint programming methods. They can be im-
plemented with another global constraint, element. An expression of the form ux,
where x is a discrete variable, is replaced by a new variable z, and the constraint

element(x, (u1, . . . , uk), z)

is added to the problem. If each uj is a constant, the element constraint sets z equal
to the xth constant in the list u1, . . . , uk. If each uj is a variable, it imposes the
constraint z = uj , where j is the current value of x.

There are efficient domain reduction (or “filtering”) procedures for the element,
cumulative, and all-different constraints. The algorithms for the element constraint
are straightforward, whereas those for the cumulative constraint are numerous, com-
plex, and largely proprietary.

The all-different constraint provides a good example of how optimization can
contribute to constraint programming. Suppose that the current domain of x1 and
of x2 is {1, 2}, and the domain of x3 is {1, 2, 3}. If all-different(x1, x2, x3) is to be
satisfied, x1 and x2 must take the values 1 and 2. This forces x3 = 3, and the domain
of x3 is reduced to {3}. This reduction is accomplished in general by applying an
algorithm for maximum cardinality bipartite matching and then using a theorem of
Berge [18] to identify arcs that cannot be part of any matching [129].

1.3.2 Exploiting Global Structure

Such global constraints as element, cumulative, and all-different tell the solver how
to exploit structure. Standard constraint propagation methods are likely to be
ineffective when applied “locally” to the individual constraints represented by the
global constraint. But the global constraint invokes a specialized domain reduction
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algorithm that exploits the global pattern. Thus constraint programming identifies
structure in a subset of constraints, rather than in a subset of problems, as is
typical of optimization. The idea of associating a procedure with a constraint is
a natural outgrowth of the constraint programmer’s computer science background.
In a computer program, a procedure is associated with every statement.

Global constraints also take advantage of the practitioner’s expertise. The pop-
ular global constraints evolved because they formulate situations that commonly
occur in practice. An expert in the problem domain can recognize these patterns
in practical problems, perhaps more readily than the developers of a constraint
programming system. By using the appropriate global constraints, a practitioner
who knows little about solution technology automatically invokes the best available
domain reduction algorithms that are relevant to the problem.

Global constraints can provide this same service to optimization methods. For
example, a global constraint that represents inequality constraints with special struc-
ture can bring along any known cutting planes for them. Much cutting plane tech-
nology now goes unused in commercial solvers because there is no suitable framework
for identifying when it applies. Existing optimization solvers identify some types
of structure, such as network flow constraints. But they do so only in a limited
way, and in any event it is inefficient to obliterate structure by modeling with an
atomistic vocabulary of inequalities and equations and then try to rediscover the
structure automatically. The vast literature on relaxations can be put to work if
practitioners write their models with as many global constraints as possible. This
means that modelers must change their modeling habits, but they may welcome
such a change.

In the current state of the art, a global constraint may have no known relaxation.
In this case the challenge to optimization is clear: use the well-developed theory on
this subject to find one.

2 Logic-Based Methods in Optimization

Boolean and logic-based methods have a long history in discrete optimization. Their
development might be organized into two overlapping stages. One is the classical
boolean tradition, which traces back to the late 1950’s and continues to receive
attention, even though it has never achieved mainstream status to the same extent
as integer programming. The second stage introduced logical ideas into integer and
mixed integer programming. This research began with the implicit enumeration and
disjunctive programming ideas of the 1970’s and likewise continues to the present
day. A more detailed treatment of this history is available in [85].
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2.1 Boolean Methods

George Boole’s small 1847 book, The Mathematical Analysis of Logic [23], laid the
foundation for all subsequent work in computational logic. In the 1950s and 1960s,
the new field of operations research was quick to notice the parallel between his
two-valued logic and 0-1 programming [50, 51, 76]. The initial phase of research
in boolean methods culminated in the 1968 treatise of Hammer and Rudeanu [73].
Related papers from this era include those of Hammer, Rosenberg, and Rudeanu
[72]; Balas and Jeroslow [11]; Granot and Hammer [64, 65]; and Hammer and Peled
[71].

These and subsequent investigators introduced three ideas that today play a
role in the integration of optimization with constraint programming: (a) nonserial
dynamic programming and the concept of induced width, (b) continuous relaxations
for logical constraints, and (c) derivation of logical propositions from constraints.

2.1.1 Nonserial Dynamic Programming

Nonserial dynamic programming is implicit in Hammer and Rudeanu’s “basic method”
for pseudoboolean optimization. Bertele and Brioschi [20] independently developed
the concept in the late 1960s and early 1970s, but boolean research took it an im-
portant step further. When Crama, Hansen, and Jaumard [38] revisited the basic
method more than twenty years after its invention, they discovered that it can ex-
ploit the structure of what they called the problem’s co-occurrence graph. The
same graph occurs in the constraint programming literature, where it is called the
dependency graph (or primal graph). Crama et al. found that the complexity of the
algorithm depends on a property of the graph known in the artificial intelligence
community as its induced width, which is defined for a given ordering of the vari-
ables. Consideration of the variables in the right order may result in a small induced
width and faster solution.

To elaborate on this a bit, the dependency graph G for an optimization problem
contains a vertex for each variable xj and an edge (i, j) whenever xi and xj occur in
the same constraint, or the same term of the objective function. To define the width
of G, suppose that one removes vertices from G in the order n, n− 1, . . . , 1. If dj is
the degree of j at the time of its removal, the width of G with respect to the ordering
1, . . . , n is the maximum of dj over all j. Now suppose that just before vertex j is
removed, one adds edges to G as needed to link all vertices that are connected to
j by an edge. The induced width of G with respect to the ordering 1, . . . , n is the
maximum of dj over all j. A small induced width indicates that the variables are
loosely coupled and the problem therefore easier, at least when solved by nonserial
dynamic programming.

Nonserial dynamic programming allows the state in a given stage of the recursion
to be a function of the control and the state of the system in several previous
stages, rather than only the immediately preceding stage as in classical dynamic
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programming. In particular, the state in stage j depends on the stages i for which i

is adjacent to j in the problem’s dependency graph G at the time of j’s removal. The
next state therefore never depends on more than w previous states, if w is the width
of G, which means that the complexity of the algorithm is at worst exponential in
w. It is clearly advantageous to order the variables so that w is small, although
finding the best ordering is an NP-hard problem.

This method is readily applied to pseudo-boolean optimization. Any (linear or
nonlinear) 0-1 programming problem with equality constraints can be viewed as the
unconstrained minimization of some pseudo-boolean function, which is a real-valued
function of boolean (two-valued) variables. Such a function can always be written
in the form

f(x) =
K
∑

k=1

αk

∏

j∈Jk

sjk (2)

where each sjk is xj or (1 − xj). An edge connects xi and xj in the dependency
graph for the problem if xi and xj occur in the same term of (2). Methods that
are essentially nonserial dynamic programming have also surfaced in the analysis of
Markov trees [135, 136], facility location [31], and Bayesian networks [105]. A graph
with induced width k is a partial k-tree, studied in [4, 5] and elsewhere.

2.1.2 Continuous Relaxations

A second contribution of Boolean research was to provide early examples of con-
tinuous relaxations for a logical conditions. Perhaps the best-studied relaxation is
the roof dual of a pseudo-boolean optimization problem, which is equivalent to a
specially structured linear programming problem. Hammer, Hansen, and Simeone
[70] introduced this concept for quadratic pseudoboolean optimization and demon-
strated its linear programming formulation, along with several other properties. Lu
and Williams [108] extended these ideas to general pseudoboolean polynomials, as
did Hansen, Lu, and Simeone [77]. Balas and Mazzola [12, 13] studied a family of
bounding functions of which the roof bound is one sort. The roof dual turns out to
be an instance of the well-known Lagrangean dual, applied to a particular integer
programming formulation of the problem. Adams and Dearing [1] demonstrated
this for the quadratic case, and Adams, Billionnet, and Sutter [2] generalized the
result. Today the formulation of continuous relaxations for logical and other discrete
constraints is an important research program for the integration of optimization and
constraint programming.

2.1.3 Implied Constraints

A third development in boolean research was the derivation of logical implications
from 0-1 inequality constraints. The derived implications can be used in either of
two ways. They have been primarily used as cutting planes that strengthen the
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continuous relaxation of the inequalities, as for example in [12, 13]. Of greater
interest here, however, is the purely logical use of derived implications. One can
solve a 0-1 problem by reducing its constraints to logical form so that inference
algorithms can be applied. The most advanced effort in this direction is Barth’s
recent pseudo-boolean solver [14].

The early boolean literature shows how to derive logical clauses from linear or
nonlinear 0-1 inequalities. A clause is a disjunction of literals, each of which is a
logical variable xj or its negation ¬xj. For instance, the clause x1 ∨ x2 ∨¬x3 states
that x1 is true or x2 is true or x3 is false (where the “or” is inclusive). A simple
recursive algorithm of Granot and Hammer [64] obtains all nonredundant clauses
implied by a single linear 0-1 inequality. Granot and Hammer[65] also stated an
algorithm for deriving all clausal implications of a single nonlinear inequality.

Barth took this a step further by deriving cardinality clauses from 0-1 inequal-
ities. A cardinality clause says that at least k of a set of literals are true (k = 1
in an ordinary clause). Cardinality clauses tend to capture numerical ideas more
succinctly than ordinary clauses and yet retain many of their algorithmic advan-
tages. Barth’s derivation is based on a complete inference method for 0-1 inequal-
ities presented in [82] and takes full advantage of the problem structure to obtain
nonredundant clauses efficiently.

Another motivation for deriving constraints is to make a problem more nearly
“consistent” (discussed below), so as to reduce backtracking. Constraints derived
for this reason can be contrasted with cutting planes, which are derived with the
different motivation of strengthening a continuous relaxation of the problem. To
appreciate the difference, note that facet-defining inequalities are in some sense the
strongest cutting planes but are not necessarily the most useful derived implications
for logic-based methods. A facet-defining cut can be strictly dominated, in a logical
sense, by an implied inequality that is not facet-defining [85].

2.2 Logic in Mixed Integer Programming

A second phase of research into logic-based methods, beginning in the 1970s, brought
logical ideas into integer programming.

2.2.1 Implicit Enumeration

In the early days of integer programming, problems were often solved by “implicit
enumeration.” This is a branching method that uses “preprocessing” to fix variables
or simplify the problem, but it typically does not use the continuous relaxations as-
sociated with branch-and-bound methods. As examples one might cite Hansen’s
work on boolean problems [74, 75], or Garfinkel and Nemhauser’s solution of a po-
litical districting problem [56]. Since preprocessing can be viewed as an elementary
form of constraint propagation, implicit enumeration has much in common with to-
day’s constraint programming methods. For reasons already discussed, the integer
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programming community soon moved away from implicit enumeration and toward
branch-and-bound and branch-and-cut methods.

2.2.2 Disjunctive Programming

Also in the 1970s, Balas introduced disjunctive programming [6, 7, 8, 9], which op-
timizes a linear objective function subject to logical disjunctions of linear inequality
systems, each of which takes the form,

(

A1x ≤ a1
)

∨ . . . ∨
(

Akx ≤ ak
)

(3)

A 0-1 formulation of the disjunction can be written,

Aixi ≤ aiyi, i = 1, . . . , k

x = x1 + . . . + xk

y ∈ {0, 1}k
(4)

The continuous relaxation of this formulation (obtained by replacing each yi ∈ {0, 1}
by 0 ≤ yi ≤ 1) provides a convex hull relaxation of the feasible set of (3). It does
so at the cost of adding variables yi and vectors xi of variables. Nonetheless (4)
provides a tool for obtaining continuous relaxations of logical constraints, including
constraints other than simple disjunctions. Sometimes the additional variables can
be projected out, or the formulation otherwise simplified.

In the meantime Jeroslow brought his background in formal logic to integer
programming (e.g., [11]). He proved what is perhaps the only general theorem of
mixed integer modeling: that representability by a mixed integer model is the same
as representability by disjunctive models of the form (4). From this he derived
that a subset of continuous space is the feasible set of some mixed integer model if
and only if it is the union of finitely many polyhedra, all of which have the same
set of recession directions. He proved a similar result for mixed integer nonlinear
programming [97, 98]. His analysis provides a general tool for obtaining continuous
relaxations for nonconvex regions of continuous space, which again may or may not
be practical in a given case.

2.3 Links between Logic and Mathematical Programming

Williams was among the first to point out parallels between logic and mathematical
programming [148, 149, 150, 151, 152, 153]. Laundy [104], Beaumont [15], and
Wilson [155, 156, 157] also contributed to this area.

2.3.1 Connections with Resolution

To take one parallel, the well-known resolution method for logical inference can be
viewed as Fourier-Motzkin elimination plus rounding. (Fourier-Motzkin elimination
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was one of the earliest linear programming algorithms, proposed for instance by
Boole [68, 69].) Given two logical clauses for which exactly one variable xj occurs
positively in one and negatively in the other, the resolvent of the clauses is the clause
consisting of all the literals in either clause except xj and ¬xj . For example, the
resolvent of the clauses

x1 ∨ x2 ∨ ¬x3

¬x1 ∨ x2 ∨ x4

(5)

is x2∨¬x3∨x4. The logician Quine showed in the 1950s [123, 124] that repeated ap-
plication of this resolution step to a clause set, and to the resolvents generated from
the clause set, derives all clauses that are implied by the set. To see the connection
with Fourier-Motzkin elimination, write the clauses (5) as 0-1 inequalities:

x1 + x2 + (1− x3) ≥ 1

(1− x1) + x2 + x4 ≥ 1

where 0-1 values of xj correspond to false and true, respectively. If one eliminates
x1, the result is the 0-1 inequality x2 + 1

2
(1 − x3) + 1

2
x4 ≥

1

2
, which dominates

x2 + (1 − x3) + x4 ≥
1

2
. The right-hand side can now be rounded up to obtain the

resolvent of (5). As this example might suggest, a resolvent is a rank 1 Chvátal
cutting plane. Further connections between resolution and cutting planes appear
in [80, 81, 82]. For example, deriving from a clause set all clauses that are rank 1
cuts is equivalent to applying the unit resolution algorithm or the input resolution
algorithm to the clause set [81]. (In unit resolution, at least one of the two parents
of a resolvent contains a single literal. In input resolution, at least one parent is a
member of the original clause set.)

Resolution is also related to linear programming duality, as shown by Jeroslow
and Wang [100] in the case of Horn clauses (generalized to gain-free Leontief flows
in [99]). Horn clauses are those with at most one positive literal and are conve-
nient because unit resolution can check their satisfiability in linear time. Jeroslow
and Wang pointed out that linear programming can also check their satisfiability.
Chandru and Hooker [29] showed that the underlying reason for this is related to an
integer programming rounding theorem of Chandrasekaran [28]. They used this fact
to generalized Horn clauses to a much larger class of “extended Horn” clauses that
have the same convenient properties, a class that was further extended by Schlipf
et al. [134].

Connections such as these suggest that optimization can help solve logical in-
ference problems, as well as the reverse. In fact there is a stream of research that
does just this, summarized in a book of Chandru and Hooker [30]. Recent work in
this area began with Blair, Jeroslow and Lowe’s use of branch-and-bound search to
solve the satisfiability problem [21]. The link between resolution and cutting planes
described above leads to a specialized branch-and-cut method for the same problem
[86]. Recent work shows that integer programming and Lagrangean relaxation can
yield a state-of-the-art method for the satisfiability and incremental satisfiability
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problems [17]. The earliest application of optimization to logic, however, seems to
be Boole’s application of linear programming to probabilistic logic [24, 68]. (It was
in this connection that he used elimination to solve linear programming problems.)
Optimization can also solve inference problems in first order predicate logic, modal
logic, such belief logics as Dempster-Shafer theory, and nonmonotonic logic.

2.3.2 Mixed Logical/Linear Programming

Mixed logical/linear programming (MLLP) might be defined roughly as mixed dis-
crete/linear programming in which the discrete aspects of the problem are written
directly as logical conditions rather than with integer variables. For example, dis-
junctions of linear systems are written as (2) rather than with the convex hull
formulation (3) or the big-M formulation

Aix ≤ ai + Mi(1− yi), i = 1, . . . , k

y ∈ {0, 1}k
(6)

A logical formulation can be more natural and require fewer variables, but it raises
the question as to how a relaxation can be formulated. The traditional integer pro-
gramming formulation comes with a ready-made relaxation, obtained by dropping
the integrality requirement for variables. Solution of the relaxation provides a bound
on the optimal value that can be essential for proving optimality.

Beaumont’s 1990 paper [15] was apparently the first to address this issue in an
MLLP context. He obtained a relaxation for disjunctions (2) in which the linear
systems Aix ≤ bi are single inequalities aix ≤ bi. He did so by projecting the
continuous relaxation of the big-M formulation (6) onto the continuous variables x.
This projection simplifies to a single “elementary” inequality

(

k
∑

i=1

ai

Mi

)

x ≤
k
∑

i=1

bi

Mi

+ k − 1 (7)

An inexpensive way to tighten the inequality is presented in [88]. Beaumont also
identified some valid inequalities that are facet-defining under certain (strong) con-
ditions.

A generalization of Beaumont’s approach is to introduce propositional variables
and to associate at least some of them with linear systems. Logical constraints can
then express complex logical relationships between linear systems. One can also
process the logical constraints to fix values, etc., as proposed in [83] and [66]. In
the latter, Grossmann et al. designed chemical processing networks by associating
a propositional variable xj with processing units. When xj is true, processing unit
j and its associated arcs are present in the network. When xj is false, flow through
unit j is forced to zero. Purely logical constraints are written to ensure that a
unit is not installed unless units that supply its feedstock and receive its output
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are also present. A number of processing network design, process scheduling, and
truss structure design problems have been solved with the help of logic [25, 26, 118,
125, 126, 127, 142]. Some of these problems are nonlinear and are attacked with
mixed logical/nonlinear programming (MLNLP). A key advantage of MLNLP is that
situations in which an activity level drops to zero can be distinguished as logically
distinct states with different associated equations, thus avoiding the singularities
that tend to occur in traditional models.

In the mid-1990’s a general approach to MLLP was developed in [88, 114]. In
particular, Hooker and Osorio [88] critiqued the role of integer variables in optimiza-
tion and suggested guidelines for when a logical formulation is better. They, along
with Little and Darby-Dowman [106], proposed incorporating constraint program-
ming methods into mathematical programming.

3 Constraint Programming and Constraint Satisfaction

Constraint programming can be conceived generally as the embedding of constraints
within a programming language. This combination of declarative and procedural
modeling gives the user some control over how the problem is solved, even while
retaining the ability to state constraints declaratively.

It far from obvious how declarative and procedural formulations may be com-
bined. In a procedural code, for example, it is common to assign a variable different
values at various points in the code. This is nonsense in a declarative formulation,
since it is contradictory to state constraints that assign the same variable different
values. The developments that gave rise to constraint programming can in large part
be seen as attempts to address this problem. They began with logic programming
and led to a number of alternative approaches, such as constraint handling rules,
concurrent constraint programming, constraint logic programming, and constraint
programming. Constraint programming “toolkits” represent a somewhat more pro-
cedural version of constraint logic programming and are perhaps the most widely
used alternative.

Two main bodies of theory underlie these developments. One is the theory of
first-order logic on which logic programming is based, which was later generalized to
encompass constraint logic programming. The other is a theory of search developed
in the constraint satisfaction literature, which deals with such topics as consistency,
search orders, the dependency graph, and various measures of its width.

Lloyd’s text [107] provides a good introduction to logic programming, which is
further exposited in [33, 140]. Tsang [141] provides excellent coverage of the the-
ory of constraint satisfaction. Van Hentenryck [143] wrote an early exposition of
constraint logic programming, while Marriott and Stuckey’s text [110] is a valuable
resource for recent work in constraint programming and constraint logic program-
ming. Chapters 10-11 of [85] summarize these ideas.
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3.1 Programming with Constraints

Several schemes have been proposed for embedding constraints in a programming
language: constraint logic programming, constraint programming “toolkits,” con-
current constraint programming, and time-index variables. All of these owe a con-
ceptual debt to logic programming.

3.1.1 Logic Programming

One of the central themes of logic programming is to combine the declarative and
the procedural. As originally conceived by Kowalski [102] and Colmerauer [34], a
logic program can be read two ways: as a series of logical propositions that state
conditions a solution must satisfy, and as instructions for how to search for a solution.

To take a very simple example, rules 1 and 2 in the following logic program can
be read as a recursive definition of an ancestor:

1. ancestor(X,Y )←
parent(X,Y ).

2. ancestor(X,Z)←
parent(X,Y ),
ancestor(Y,Z).

3. parent(a, b).
4. parent(b, c).

(8)

Here X,Y and Z are variables, and a, b and c are constants. Rule 1 says that X is
an ancestor of Y if X is a parent of Y . One can deduce from statements 1 through
4 that a is c’s ancestor. This is the declarative reading of the program.

The procedural reading sees the program as directing a search. Suppose for
example that one poses the goal ancestor(a, c); that is, the goal of showing that a

is an ancestor of c. The search procedure first tries to interpret ancestor(a, c) as an
instance of the consequent (i.e., the then-part) of rule 1. (This is illustrated by the
left branch from the root node in Figure 1.) It is in fact an instance, because one
can substitute a for X and c for Y . This substitution unifies ancestor(a, c) with
ancestor(X,Y ). It poses the subgoal parent(a, c). If this subgoal succeeds, then the
original goal succeeds, and a is found to be an ancestor of c.

To make parent(a, c) succeed, it is necessary to unify it with the consequent of
some rule. (Rules 3 and 4 have no antecedent or if-part, and so their consequents
are always true.) In this case unification is not possible, and the subgoal parent(a, c)
fails.

The search next tries to unify the original goal with the consequent of rule 2 (right
branch of root node). Unification is possible, and it poses the subgoals parent(a, Y )
and ancestor(Y, c). Both subgoals eventually succeed with Y = b, which establishes
ancestor(a, c).
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parent(b, d)

Rule 4

succeed

Figure 1: Search tree for finding ancestors. Each node shows open goals or subgoals
that have yet to be achieved.

3.1.2 Constraint Logic Programming

The power of recursion allows one to define a wide range of constraints in a logic
program, but solution can be inefficient, particularly where numerical operators are
involved. To solve many practical problems, one must exploit the special proper-
ties of constraints, for instance, by using linear solvers or interval arithmetic for
inequalities and specialized propagation schemes for all-different constraints.

Constraint logic programming (CLP) addresses this problem. Its key idea is
to regard the unification step of logic programming as a special case of constraint
solving. The search tree of Figure 1 becomes the search tree of Figure 2). For
instance, unifying ancestor(a, c) with ancestor(X,Z) is tantamount to solving the
equation (a, c) = (X,Z) for X and Z. This is illustrated in the right descendant of
the root node in the figure. The process continues as before, except that constraints
are accumulated into a constraint store as subgoals are discharged. At the leaf nodes
only constraints remain, and the node succeeds if they are soluble.

In a pure logic programming language such as the early PROLOG (Colmer-
auer’s abbreviation for programmation en logique), the constraint store contains
only equations that unify predicates. One obtains CLP by expanding the reper-
tory of constraints and variables. Marriott and Stuckey [110] identify the first CLP
system to be Colmerauer’s 1982 language PROLOG II [34], in which unification re-
quires solution of disequations as well as equations. Jaffar and Stuckey [95] showed
in 1986 that the theory of pure logic programming can be extended to PROLOG II.
In 1987 Jaffar and Lassez [92] pointed out that PROLOG II is a special case of a
general scheme in which unification is viewed as a constraint-solving problem. The
term “constraint logic programming” originates from this paper.

Several CLP systems quickly followed. Colmerauer and his colleagues added con-
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(X ′, Y ′) = (b, c)

succeed

Figure 2: Search tree in which unification is interpreted as constraint solving.

straint solving over strings, boolean variables, and real linear arithmetic in PROLOG
III [35, 36]. Jaffar et al. added real arithmetic to obtain CLP(ℜ) [93, 94]. Dincbas
et al. added constraints over finite domains, including domains of integers, in their
system CHIP [3, 46].

Although unification is not a hard problem in classical PROLOG, it can quickly
become hard when one adds such constraints as inequalities over integers or con-
straints over finite domains. For this reason the constraint solver may be incomplete;
it may fail to find a solution even if one exists. More often constraint solvers narrow
the range of possible solutions through domain reduction. In such cases the con-
straint store does not contain the hard constraints but only such very simple ones
as “in-domain” constraints; i.e., constraints stating that each variable must take a
value within a certain domain. Domain reduction algorithms add to the constraint
store by deriving new in-domain constraints.

If the constraint solvers and domain reduction fail to find a solution (i.e., fail
to reduce the domains to singletons), one can branch further by splitting variable
domains. The constraint solvers are reapplied after branching, and the domains
further reduced. This in turn reduces the amount of further branching that is
necessary.

Constraint programming “toolkits” are based on CLP but do not require the
model to be written in a strict logic programming framework. Early toolkits include
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the CHARME system of Oplobedu, Marcovich, and Tourbier [113] and the PECOS
language of Puget [119], both of which evolved from CHIP. Puget later developed
the initial ILOG Solver [120, 121], which embeds constraints in the object-oriented
language C++. The toolkit provides a library of C++ objects that implement many
of the same constraint propagation algorithms found in CLP systems. Constraints
are defined by using the abstraction and overloading facilities of C++.

3.1.3 Other Approaches

Still other schemes include concurrent constraint programming, constraint handling
rules, and time-indexed variables.

Concurrent constraint programming (CCP) is very similar to CLP but differs
in the way that it processes rules. In CLP, the user cannot control and does not
know in what order the rules will be invoked. When a subgoal is encountered, there
may be a number of rules that could potentially establish it, and the order in which
the solver tries these rules is unpredictable. This is sometimes called “don’t know
nondeterminism.”

In CCP, the user can state conditions as to when a rule is activated. Rules can be
understood as having the form, C ← G|A, in which the subgoal A is augmented with
a guard G. (The actual syntax of rules may differ.) The guard states a condition
that must be satisfied before the rule is invoked. For example, the guard may require
that certain variables be assigned values, a certain list be nonempty, or a certain
constraint be implied by the constraint store.

If the guards in two or more applicable rules are satisfied, the system will invoke
only one of the rules. The user is not supposed to care which rule is used, because any
rule whose guard is satisfied should be appropriate. If the rule that is chosen fails,
the system does not try any of the other rules. It therefore does not conduct the kind
of combinatorial search that characterizes CLP. This approach is sometimes called
“don’t care nondeterminism.” CCP programs are generally designed to manage
a system rather than to deliver an answer to a particular problem. Applications
include database management and transaction handling.

CCP evolved from concurrent logic programming, introduced by Clark and Gre-
gory [32]. Maher [109] generalized the synchronization conditions in concurrent logic
programming to constraint entailment, which resulted in CCP. The term CCP is due
to Saraswat, who is a major contributor to its theory [132]. Shapiro [137] provides
a survey of CLP languages.

Constraint handling rules are used to simplify constraints. They may be used
in the context of CLP or other constraint programming schemes to write solvers
for constraints. Constraint handling rules have a guarded structure similar to rules
in CCP. They state that under certain conditions, a constraint may be rewritten
in a simpler form. Constraint handling rules are also used to generate valid con-
straints. Constraint handling rules were introduced by Frühwirth [54, 55] and are
implemented in a number of systems, such as ECLiPSe.
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Another scheme for integrating constraints into a procedural language is to use
time-indexed variables. Rather than update a variable X with the assignment X ←
X + 1, one states the constraint Xt+1 = Xt + 1. This immediately raises the
problem of preserving variable values as time passes. The problem can be addressed
by stating Vt+1 = Vt as a default constraint for all variables V . This constraint is
overridden by higher priority constraints if one wishes to alter V . In general, every
constraint is given a priority, and at any given time conflicts between constraints
are resolved by the priority scheme.

This approach was implemented by Freeman-Benson and Borning in the Kalei-
doscope language [52] but has not seen wide acceptance. One difficulty is that
the programmer must micromanage the values of variables throughout the solution
procedure. CLP macromanages variables by automatically updating the variable
domains each time a constraint is processed.

3.1.4 Links with Optimization

Linear and even nonlinear programming have played a role in constraint program-
ming systems for some years. They appear in such systems as CHIP [3], the ILOG
Solver [120] and PROLOG III and IV [36, 37]. Beringer and De Backer [19] used
linear programming to tighten upper and lower bounds on continuous variables. Sol-
non [139] proposed that a linear programming solver minimize and maximize each
variable, to obtain bounds on it, at each node of a branch-and-bound tree. Using a
somewhat different approach, McAloon and Tretkoff developed a system 2LP [112]
that allows one to invoke linear programming in a script that implements logic-based
modeling.

3.2 Theories of Search

The constraints community has developed at least two related theories of search.
One, which comprises much of the constraint satisfaction field, examines factors
that govern the amount of backtracking necessary to complete a branching search.
It is fully explained in Tsang’s text [141] and summarized from a mathematical
programming perspective in [84]. Another explores the idea of constraint-based
search, which combines inference and branching. It is exposited in Chapter 18 of
[85].

3.2.1 Constraint Satisfaction

The fundamental concept of constraint satisfaction is that of a consistent constraint
set, which is not the same as a satisfiable or feasible constraint set. A consistent
constraint set is fully ramified in the sense that all of its implications are explicitly
stated by constraints.
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To be more precise, let the vector x = (x1, . . . , xn) be arbitrarily partitioned
x = (x1, x2). Then the assignment x1 = v1 is a partial assignment (or compound
label). By convention, a partial assignment x1 = x1 can violate a constraint only
when x1 contains all the variables that occur in the constraint. Let D1 be the
cartesian product of the domains of the variables in x1, and similarly for D2. Then
if v1 ∈ D1, the partial assignment x1 = v1 is redundant for a constraint set C if
it violates no constraints in C but cannot be extended to a feasible solution. That
is, x1 = v1 violates no constraint in C, but (x1, x2) = (v1, v2) is infeasible for all
v2 ∈ D2. A constraint set is consistent if there are no redundant partial assignments.
In other words, any redundant partial assignment is explicitly ruled out because it
violates some constraint. It is not hard to see that one can find a feasible solution
for a consistent constraint set, if one exists, without backtracking.

The concept of consistency also provides a theoretical link between the amount
of backtracking and the branching order, a link that has not been achieved in
the optimization literature. A constraint set C is k-consistent if for any parti-
tion x = (x1, x2) in which x1 contains k − 1 variables, and for any xj in x2, any
partial assignment x1 = v1 that violates no constraints in C can be extended to an
assignment (x1, xj) = (v1, vj) that violates no constraints in C, where vj ∈ Dj . A
constraint set is strongly k-consistent if it is t-consistent for t = 1, . . . , k. Suppose
that one seeks a solution for a strongly k-consistent constraint set C by branching
on the variables in the order x1, . . . , xk. Freuder [53] showed that no backtracking
will occur if the dependency graph for C has width less than k with respect to the
ordering x1 . . . , xn.

Consistency is closely related to logical inference. For instance, applying the
resolution algorithm to a set of logical clauses makes the set consistent. If the al-
gorithm is modified so that it generates only resolvents with fewer than k literals,
it makes the clause set strongly k-consistent. In general, drawing inferences from a
constraint set tends to make it more nearly consistent and to reduce backtracking.
This contrasts with mathematical programming, where inferences in the form of
cutting planes are drawn to tighten the continuous relaxation of the problem. Cut-
ting planes can have the ancillary effect of making the constraint set more nearly
consistent, although the optimization literature has never formally recognized the
concept of consistency.

There are other results that connect backtracking with the search order. Dechter
and Pearl [45] showed that a given search order results in no backtracking if the
constraint set has adaptive consistency (a kind of local consistency) with respect to
that ordering. The bandwidth of a constraint set’s dependency graph with respect
to an ordering xi1, . . . , xin is the maximum of |j − k| over all arcs (ij , ik) in the
dependency graph. The bandwidth with respect to an ordering is the maximum
number of levels one must backtrack on encountering an infeasible solution during
a tree search that branches on variables in that same order. The bandwidth is an
upper bound on the induced width [159], and a minimum bandwidth ordering can
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be computed by dynamic programming [67, 133].
Because commercial solvers process constraints primarily by reducing variable

domains, they tend to focus on types of consistency that relate to individual do-
mains. The ideal is hyperarc consistency, which is achieved when the domains have
been reduced as much as possible. Thus a constraint set is hyperarc consistent
when any individual assignment xj = v that violates no constraint is part of some
feasible solution. Hyperarc consistency does not imply consistency; it implies 2-
consistency but is not equivalent to it. When all the constraints are binary (contain
two variables), hyperarc consistency reduces to arc consistency, which in this case
is equivalent to 2-consistency. Domain reduction procedures often do not achieve
hyperarc consistency. A popular weaker form of consistency is bounds consistency,
which applies to integer-valued variables. A constraint set is bounds consistent when
any integer-valued variable assumes the smallest value in its domain in some feasi-
ble solution and assumes the largest value in its domain in some feasible solution.
Bounds consistency can be achieved by interval arithmetic, which is a standard fea-
ture of constraint programming systems but is especially important in such nonlinear
equation solvers as Newton [145, 146].

Domain reduction can be viewed as the generation of “in-domain” constraints
that restrict the values of variables to smaller domains. The resulting set of in-
domain constraints is in effect a relaxation of the problem. Constraints generated
by some other type of consistency maintenance can conceivably issue in a stronger
relaxation that consists of more interesting constraints.

3.2.2 Constraint-Based Search

Depth-first branching and constraint-based search represent opposite poles of a fam-
ily of search methods. Depth-first branching incurs little overhead but is very in-
flexible. Once it begins to explore a subtree, it must search the entire subtree even
there seems little chance of finding a solution in it. Constraint-based search can be
much more intelligent, but the mechanism that guides the search exacts a computa-
tional toll. After exploring an initial trial solution, it generates a constraint, called
a nogood, that rules out the trial solution just explored (and perhaps others that
must fail for the same reason). At any point in the search, a set of nogoods have
been generated by past trial solutions. The next candidate solution is identified
by finding one that satisfies the nogoods. One might, for example, optimize the
problem’s objective function subject to the nogoods, which may result in a more
intelligent search. Benders decomposition, a well-known optimization method, is a
special case of constraint-based search in which the nogoods are Benders cuts.

Constraint-based search requires solution of a feasibility problem simply to find
the next trial solution to examine. One way to avoid solving such a problem is to
process the nogood set sufficiently to allow discovery of the next candidate solution
without backtracking. A depth-first search can be interpreted as applying a very
weak inference method to the nogoods, which suffices because the choice of the next
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solution is highly restricted. By strengthening the inference method, the freedom
of choice can be broadened, until finally arriving at full constraint-based search.
Such dependency-directed backtracking strategies as backjumping, backmarking and
backchecking [57, 58] are intermediate methods of this kind. More advanced methods
include dynamic backtracking and partial-order dynamic backtracking [60, 61, 111].
All of these search methods represent a compromise between pure branching and
pure constraint-based search. As shown in [85], they can be organized under a
unified scheme in which each search method is associated with a form of resolution.

4 Recent Work

Recent work on the boundary of optimization and constraint programming con-
sists largely of three activities. One is the proposal of schemes for combining them.
Another is the formulation of relaxations for predicates found in constraint program-
ming models. A third is the adaptation of hybrid methods for a variety of practical
applications, many of them in scheduling or design. A brief overview of some of this
research appears in [154], and a detailed discussion is available in [85].

4.1 Schemes for Integration

Previous sections reviewed several ways in which logic can assist optimization, and
in which optimization can play a role in constraint programming. Several more
recent schemes have been proposed for integrating optimization and constraint pro-
gramming on a more equal basis.

4.1.1 Double Modeling

One straightforward path to integration is to use a double modeling approach in
which each constraint is formulated as part of a constraint programming model,
or as part of a mixed integer model, or in many cases both. The two models are
linked and pass domain reductions to each other. Rodošek et al. [131] and Wallace
et al. [147], for example, implemented this idea. They adapted the constraint logic
programming system ECLiPSe so that linear constraints could be dispatched to
commercial linear programming solvers (CPLEX and XPRESS-MP).

Several investigations have supported the double modeling approach. Heipcke
[78, 79] proposed several variations on it. Darby-Dowman and Little [39] studied
the relative advantages of integer programming and constraint programming mod-
els. Focacci, Lodi, and Milano [48, 49] addressed the difficulties posed by cost and
profit functions with “cost-based domain filtering.” It adapts to constraint pro-
gramming the old integer programming idea of using reduced costs to fix variables.
A double modeling scheme can be implemented with ILOG’s OPL Studio [144], a
modeling language that can invoke both constraint programming (ILOG) and linear
programming (CPLEX) solvers and pass some information from one to the other.
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4.1.2 Branch and Infer

In 1998 Bockmayr and Kasper [22] proposed an interesting perspective on the inte-
gration of constraint programming with integer programming, based on the parallel
between cutting planes and inference. It characterizes both constraint programming
and integer programming as using a branch-and-infer principle. As the branch-
ing search proceeds, both methods infer easily-solved primitive constraints from
nonprimitive constraints and pool the primitive constraints in a constraint store.
Constraint programming has a large repertory of nonprimitive constraints (global
constraints, etc.) but only a few, weak primitive ones: equations, disequations, and
in-domain constraints. Integer programming enjoys a much richer class of primitive
constraints, namely linear equalities and equations, but it has only one nonprim-
itive constraint: integrality. Bockmayr and Kasper’s scheme does not so much
give directions for integration as explain why more explicit integration schemes are
beneficial: they enrich constraint programming’s primitive constraint store, thus
providing better relaxations, and they enlarge integer programming’s nonprimitive
constraint vocabulary, thus providing a more versatile modeling environment.

4.1.3 Integrated Modeling

It is possible for the very syntax of the problem constraints to indicate how constraint
programming and optimization solvers are to interact. One scheme for doing so,
introduced by Hooker and Osorio [88], is to write constraints in a conditional fashion.
The model has the form

minimize f(u)

subject to gi(x)→ Si(u), all i

In the conditional constraints gi(x) → Si(u), gi(x) is a logical formula involving
discrete variables x, and S(u) is a set of linear or nonlinear programming constraints
with continuous variables u. The constraint says that if gi(x) is true, then the
constraints in Si(u) are enforced. In degenerate cases a conditional can consist of
only a discrete part ¬gi(x) or only a continuous part Si(u).

The search proceeds by branching on the discrete variables; for instance, by
splitting the domain of a variable xj. At each node of the search tree, constraint
propagation helps reduce the domains of xj ’s, perhaps to the point that the truth
or falsehood of gi(x) is determined. If gi(x) is true, the constraints in Si(u) become
part of a continuous relaxation that is solved by optimization methods:

minimize f(u)

subject to Si(u), all i for which gi(x) is true

The relaxation also contains cutting planes and inequalities that relax discrete con-
straints. Solution of the relaxation provides a lower bound on the optimal value
that can be used to prune the search tree.
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To take a simple example, consider a problem in which the objective is to min-
imize the sum of variable and fixed cost of some activity. If the activity level u is
zero, then total cost is zero. If u > 0, the fixed cost is d and the variable cost is cu.
The problem can be written

minimize z

subject to x→ (z ≥ cu + d, 0 ≤ u ≤M)

¬x→ (z = u = 0)

(9)

where x is a propositional variable. One could also write the problem with a global
constraint that might be named inequality-or:

minimize z

subject to inequality-or

(

(x,¬x),

(

z ≥ cu + d

0 ≤ u ≤M

)

,

(

u = 0
z = 0

))

(The constraint associates propositions x,¬x respectively with the two disjuncts.)
The inequality-or constraint can now trigger the generation of a convex hull relax-
ation for the disjunction:

z ≥

(

c +
d

M

)

x

0 ≤ x ≤M

(10)

These constraints added to the continuous relaxation at the current node if x is
undetermined.

In general, the antecedent gi(x) of a conditional might be any constraint from a
class that belongs to NP, and the consequent Si(x) any set of constraints over which
one can practically optimize. Global constraints can be viewed as equivalent to a
set of conditional constraints. These ideas are developed further in [85, 87, 91].

4.1.4 Benders Decomposition

Another promising framework for integration is a logic-based form of Benders decom-
position, a well-known optimization technique [16, 59]. The variables are partitioned
(x, y), and the problem is written,

minimize f(x)

subject to h(x)

gi(x, y), all i

(11)

The variable x is initially assigned a value x̄ that minimizes f(x) subject to h(x).
This gives rise to a feasibility subproblem in the y variables:

gi(x̄, y), all i
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The subproblem is attacked by constraint programming methods. If it has a feasible
solution ȳ, then (x̄, ȳ) is optimal in (11). If there is no feasible solution, then a
Benders cut Bx̄(x) is formulated. This is a constraint that is violated by x̄ and
perhaps by many other values of x that can be excluded for a similar reason. In the
Kth iteration, the master problem minimizes f(x) subject to h(x) and all Benders
cuts that have been generated so far.

minimize f(x)

subject to h(x)

Bxk(x), k = 1, . . . ,K − 1

The master problem would ordinarily be a problem for which optimization methods
exist, such as a mixed integer programming problem. A solution x̄ of the master
problem is labeled xK , and it gives rise to the next subproblem. If the subproblem
is infeasible, one generates the next Benders cut BxK (x). The procedure terminates
when the subproblem is feasible, or when the master problem becomes infeasible.
In the latter case, (11) is infeasible.

Logic-based Benders decomposition was introduced in [85, 89]. Jain and Gross-
mann [96] used what is essentially the above framework to solve a machine as-
signment and scheduling problem. Each job is assigned to one of several machines
(which operate at different speeds), where each assignment incurs a processing cost.
There is release date and a due date for each job. The objective is to minimize
processing cost while observing release and due dates. The problem has two parts:
the assignment of jobs to machines, and the scheduling of jobs on each machine.
The assignment problem is treated as the master problem and solved with mixed
integer programming methods. Once the assignments are made, the subproblems
are dispatched to a constraint programming solver to find a feasible schedule. If the
subset S of jobs assigned to a particular machine i cannot be scheduled in any order
within the time windows, a Benders cut (in the form of an integer programming in-
equality) is generated to prevent any subset of jobs containing S from being assigned
to machine i. Although these Benders cuts are weak, Jain and Grossmann achieved
dramatic improvements in computation time relative to a pure mixed integer pro-
gramming or pure constraint programming approach. The cuts can be strengthened
by finding a smaller subset of jobs that cannot be scheduled on machine i.

The Benders approach can be generalized so that the subproblem is an opti-
mization problem. Just as a classical Benders cut is obtained by solving the linear
programming dual of the subproblem, a generalized cut can be obtained by solving
the inference dual of the subproblem. These ideas are developed in [85, 89].

4.2 Relaxations

A key step in the integration of constraint programming and optimization is to find
good relaxations for global constraints and the other versatile modeling constructs
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of constraint programming. In many cases, useful continuous relaxations exist. In
other cases, such as that of the all-different constraint, one may wish to explore
discrete relaxations.

4.2.1 Continuous Relaxations

There are basically two strategies for generating continuous relaxations of a con-
straint. One is to introduce integer variables as needed to write an integer program-
ming model of the constraint. Then one can relax the integrality constraint on the
integer variables. This might be called a lifted relaxation. Specialized cutting planes
can be added to the relaxation as desired. The integer variables need not serve any
role in the problem other than to obtain a relaxation; they may not appear in the
original model or play in part in branching.

If a large number of integer variables are necessary to write the model, one may
wish to write a relaxation using only the variables that are in the original constraint.
This might be called a projected relaxation. It conserves variables, but the number
of constraints could multiply.

Disjunctive programming and Jeroslow’s representability theorem, both men-
tioned earlier, provide general methods for deriving lifted relaxations. For example,
Balas’ disjunctive formulation (4) provides a convex hull relaxation for disjunctions
of linear systems. The big-M formulation (6) for such a disjunction, as well as many
other big-M formulations, can be derived from Jeroslow’s theorem. This lifted re-
laxation can be projected onto the continuous variables x to obtain a projected
relaxation. In the case of a disjunction of single linear inequalities, the projected
relaxation is simply Beaumont’s elementary inequality (7). In addition, one can
derive optimal separating inequalities for disjunctions of linear systems [88], using
a method that parallels cut generation in the lift-and-project method for 0-1 pro-
gramming [10]. This is one instance of a separating constraint, a key idea of integer
programming that may be generalizable to a broader context.

Many logical constraints that do not have disjunctive form are special cases of
a cardinality rule:

If at least k of x1, . . . , xm are true, then at least ℓ of y1, . . . , yn are true.

Yan and Hooker [158] describe a convex hull relaxation for propositions of this sort.
It is a projected relaxation because no new variables are added.

Another example is the convex hull relaxation (10) of the fixed charge problem
(9). It is also a projected relaxation because it contains only the continuous variables
u, z. When a fixed charge network flow problem is relaxed in this manner, the
relaxation is a minimum cost network flow problem [85]. It can be solved much
more rapidly than the traditional relaxation obtained from the 0-1 model, which
has no special structure that can be exploited by linear solvers.

Piecewise linear functions can easily be given a convex hull relaxation without
adding variables. Such a relaxation permits both a simpler formulation and faster
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solution than using mixed integer programming with specially ordered sets of type
2 [116]. Réfalo [128] shows how to use the relaxation in “tight cooperation” with
domain reduction to obtain maximum benefit.

The global constraint all-different(x1, . . . , xn) can be given a convex hull relax-
ation. For simplicity let the domain of each xj be {1, . . . , n}. The relaxation is
based on the fact that the sum of any k distinct integers in {1, . . . , n} must be at
least 1+2+ · · ·+ k. As shown in [85, 153], the following is a convex hull relaxation:

n
∑

j=1

xj = 1

2
n(n + 1)

∑

j∈J

xj ≥
1

2
|J |(|J | + 1), all J ⊂ {1, . . . , n} with |J | < n

Unfortunately the relaxation is rather weak.
An important relaxation is the one for element(x, (u1, . . . , uk), z), because it

implements variable indices. If each ui is a variable with bounds 0 ≤ ui ≤ mi, the
following relaxation is derived in [85, 90] from Beaumont’s elementary inequalities:
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where Dx is the current domain of x. If each ui satisfies 0 ≤ ui ≤ m0, then [85]
shows that the convex hull relaxation of the element constraint simplifies to

∑

i∈Dx

ui − (K − 1)m0 ≤ z ≤
∑

i∈Dx

ui

These relaxations can be very useful in practice, particularly when combined with
domain reduction.

De Farias et al. [42] have developed relaxations, based on a lifting technique
of integer programming, for constraints on which variables may be positive. For
instance, one might required that at most one variable of a set be positive, or
that only two adjacent variables be positive. These relaxations can be useful when
imposing type 1 and type 2 specially ordered constraints without the addition of
integer variables.

4.2.2 Discrete Relaxations

Discrete relaxations have appeared in the optimization literature from time to time.
An early example is Gomory’s relaxation for integer programming problems [63]. It
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would be useful to discover discrete relaxations for constraint programming predi-
cates that do not appear to have good continuous relaxations, such as all-different.
Research in this area has scarcely begun.

One approach is to solve a relaxation dual, which can be viewed as a generaliza-
tion of a Lagrangean or surrogate dual. Given a problem of minimizing f(x) subject
to constraint set S, one can define a parameterized relaxation:

minimize f(x, λ)

subject to S(λ)
(12)

Here λ ∈ Λ is the parameter, S ⊂ S(λ) for all λ ∈ Λ, and f(x) ≤ f(x, λ) for
all x satisfying S(x) and all λ ∈ Λ. In a Lagrangean relaxation, λ is a vector
of nonnegative real numbers, S is a set of inequalities gi(x) ≤ 0, and f(x, λ) =
f(x) +

∑

i λigi(x), where the sum is over inequalities i in S \ S(λ). In a surrogate
relaxation [62], f(x) = f(x, λ) and S(λ) = {

∑

i λigi(x) ≤ 0}, where the sum is over
all inequalities i in S.

For any λ ∈ Λ, the optimal value θ(λ) of (12) is a lower bound on the minimum
value of f(x) subject to x ∈ S. The relaxation dual is the problem of finding the
tightest possible bound over all λ; it is the maximum of θ(λ) subject to λ ∈ Λ. One
strategy for obtaining a discrete relaxation is to solve a relaxation dual when λ is a
discrete variable.

For example, one can create a relaxed constraint set S(λ) by removing arcs from
the dependency graph G for S, resulting in a sparser graph G(λ). The parameter
λ might be the set of arcs in G(λ). The set Λ might contain λ’s for which G(λ)
has small induced width. The relaxation could then be solved by nonserial dynamic
programming. An arc (xi, xj) can be removed from G by projecting each constraint
C of S onto all variables except xi, and onto all variables except xj , to obtain new
constraints. The new constraints are added to S and C is deleted. This approach
is explored in [85]. It can be augmented by adding other relaxations that decouple
variables. The relaxation obtained by the roof dual discussed earlier has a depen-
dency graph with induced width of one, because it is a linear inequality. Dechter
[43, 44] used a similar relaxation in “bucket elimination” algorithms for solving influ-
ence diagrams; these algorithms are related to the nonserial dynamic programming
methods for Bayesian networks mentioned earlier..

The relaxation just described is ineffective for all-different, but there are other
possibilities. One can relax the traveling salesman problem, for example, as follows
[85]. Here f(x) =

∑

j cxjxj+1
and S contains all-different(x1, . . . , xn). Let S(λ) = ∅

and

f(x, λ) =
∑

j

cxjxj+1
+ α

∣

∣

∣

∣

∣

∣
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λxj
−
∑

j
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∣

∣

∣

∣

∣

∣

where Λ consists of vectors of integers, perhaps primes, and α is a constant. The
second term vanishes when x satisfies the all-different constraint. Classical dynamic
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programming can compute θ(λ), and a heuristic method can be applied to the dual
problem of maximizing θ(λ) with respect to λ.

4.3 Applications

A wide variety of applications demonstrate the potential of combining optimization
with constraint programming or logic-based methods. Applications to engineering
design were mentioned earlier. These include chemical process synthesis (processing
network design) [66, 88, 125, 127, 142] and truss structure design [25].

In transportation, hybrid methods have been applied to vehicle routing with
time windows [49], vehicle routing combined with inventory management [103], crew
rostering [27, 101], and the classical transportation problem with piecewise linear
costs [128].

Other applications include inventory management [131], office cleaning [79],
product configuration [115], and generalized assignment problems [40]

Most applications seem to have been to scheduling. These include machine
scheduling [78, 126], sequencing with setups [48], hoist scheduling [130], employee
scheduling [117], dynamic scheduling [47], and lesson timetables [48]. Production
scheduling applications include scheduling with resource constraints [118] and with
labor resource constraints in particular [79], two-stage process scheduling [96], ma-
chine allocation and scheduling [122], production flow planning with machine as-
signment [79], scheduling with piecewise linear costs [116], and organization of a
boat party [88, 138].

These applications only begin to tap the potential of integrated methods. New
ones are rapidly appearing as this article is written.

5 Future Research

Several research needs surfaced in the course of the foregoing discussion. One might
begin with two broad research goals:

• Develop a robust and widely acceptable integration scheme for optimization
and constraint programming. Perhaps the first step is to take the three
schemes discussed earlier—double modeling, conditional modeling, and Ben-
ders decomposition—deeper into practical applications to see how they fare.

• Develop a generic modeling language that can serve as the basis for one or more
viable commercial products that integrate optimization and constraint pro-
gramming. The language should (a) strike a balance between the procedural
and the declarative, (b) indicate by its syntactic structure how optimization
and constraint programming should interact, and (c) allow the user to encode
knowledge of problem structure, for instance by using global constraints.
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Domain reduction and relaxation compare in an interesting way. Domain reduction
algorithms tend to see immediate application, due to their association with the
global constraints used in models. Yet due to their closeness to practical application,
they tend to be proprietary, and an underlying theory has been developed only
to a limited extent in the open literature. By contrast, relaxations are discussed
extensively in academic journals, leading to a highly developed theory. Yet many of
them are not used. This leads to a third goal:

• Find some compromise between these extremes for both relaxation and domain
reduction.

Some more specific research projects might also be mentioned.

• Understand more precisely how the three interaction schemes mentioned above
are related. Is double modeling simply an option within either of the other
two? Can conditional modeling and Benders decomposition be combined in a
single framework?

• Develop a repertory of useful global constraints for each of several application
domains. They should succinctly capture characteristic modeling situations of
the domain and be amenable to logic processing and/or relaxation.

• Take advantage of the optimization community’s experience with continuous
relaxations to develop such relaxations for constraint programming predicates.

• Explore discrete relaxations for constraint programming predicates, such as
those based on discrete relaxation duals.

• Move from the exclusive focus on domain reduction to other types of consis-
tency maintenance as well. Rather than generate in-domain and other very
simple constraints, generate a wider variety of constraints that comprise tighter
and yet soluble relaxations.

• Generalize the integer programming idea of a separating constraint to a broader
context.

There is something to be said for isolated research groups working in parallel.
They may develop complementary approaches that at some point can be profitably
combined. This seems to be the situation with optimization and constraint pro-
gramming. Their ignorance of each other over a period of years was perhaps a good
thing. It is hard to pick the right time for interaction to begin, but in any event it
has begun.
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[38] Crama, Y., P. Hansen, and B. Jaumard, The basic algorithm for pseudo-
boolean programming revisited, Discrete Applied Mathematics 29 (1990): 171-
185.

[39] Darby-Dowman, K., and J. Little, Properties of some combinatorial optimiza-
tion problems and their effect on the performance of integer programming and
constraint logic programming, INFORMS Journal on Computing 10 (1998):
276-286.

32



[40] Darby-Dowman, K., J. Little, G. Mitra, and M. Zaffalon, Constraint logic
programming and integer programming approaches and their collaboration in
solving an assignment scheduling problem, Constraints 1 (1997): 245-264.

[41] Dawande, M., and J. N. Hooker, Inference-based sensitivity analysis for mixed
integer/linear programming, to appear in Operations Research.

[42] De Farias, I. R., E. L. Johnson and G. L. Nemhauser, A branch-and-cut ap-
proach without binary variables to combinatorial optimization problems with
continuous variables and combinatorial constraints, manuscript, Georgia In-
stitute of Technology, 1999.

[43] Dechter, R., Bucket elimination: A unifying framework for reasoning, Artificial
Intelligence 41 (1999) 41-85.

[44] Dechter, R., An anytime approximation for optimizing policies under un-
certainty, presented in Workshop on Decision Theoretic Planning, AIPS2000
(2000).

[45] Dechter, R., and J. Pearl, Tree-clustering schemes for constraint processing,
Proceeedings, National Conference on Artificial Intelligence, AAAI (1988):
150-154.

[46] Dincbas, M., P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Bertier,
The constraint programming language CHIP, Proceedings on the International
Conference on Fifth Generation Computer Systems, Tokyo (December 1988).

[47] El Sakkout, L., T. Richards, and M. Wallace, Minimal perturbance in dy-
namic scheduling, in H. Prade, ed., Proceedings, 13th European Conference on
Artificial Intelligence, Wiley (New York, 1998), 504-508.

[48] Focacci, F., A. Lodi, and M. Milano, Cost-based domain filtering, Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science
1713 (1999): 189-203.

[49] Focacci, F., A. Lodi, and M. Milano, Solving TSP with time windows with con-
straints, presented at 16th International Conference on Logic Programming,
(Las Cruces, NM, 1999).
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