ELSEVIER

Available online at www.sciencedirect.com

science (@oimeer:

Computer Communications xxx (2006) xxx—xxx

computer
communications

www.elsevier.com/locate/comcom

Quantifying the effects of recent protocol improvements to TCP:
Impact on Web performance

Michele C. Weigle **, Kevin Jeffay °, F. Donelson Smith °

& Department of Computer Science, Clemson University, Clemson, SC 29634-1906, USA
® Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, USA

Received 15 March 2005; received in revised form 19 April 2005; accepted 1 March 2006

Abstract

We assess the state of Internet congestion control and error recovery through a controlled study that considers the integration of stan-
dards-track TCP error recovery and both TCP and router-based congestion control. The goal is to examine and quantify the benefits of
deploying standards-track technologies for contemporary models of Internet traffic as a function of the level of offered network load. We
limit our study to the dominant and most stressful class of Internet traffic: bursty HTTP flows. We find that for HTTP flows (1) using
SACK only improves performance for larger-than-typical HTTP transfers, (2) unless congestion is a serious concern (i.e., unless average
link utilization is approximately 80% or higher), there is little benefit to using RED queue management, (3) above 80% link utilization
there is potential benefit to using Adaptive RED with ECN marking, however, complex performance trade-offs exist and the results are

dependent on parameter settings.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Congestion control; Simulations; TCP

1. Introduction

Improvements to TCP’s error recovery and congestion
control/avoidance mechanisms have been a mainstay of con-
temporary networking research. Representative innovations
in error control include the use of fast transmissions (TCP
Reno), fast retransmission in the face of multiple losses
(TCP New Reno), and selective acknowledgements (TCP
SACK). Representative innovations in congestion control
include the congestion avoidance and the additive-increase,
multiplicative decrease algorithm (TCP Tahoe), fast recov-
ery (TCP Reno), early congestion detection in routers
(RED), and explicit congestion notification (ECN).

While simulation studies have shown performance
improvements with the addition of each new piece of net-
working technology, the evaluations have often been simplis-

* Corresponding author. Tel.: +1 864 656 6753; fax: +1 864 656 0145.
E-mail address: mweigle@cs.clemson.edu (M.C. Weigle).

0140-3664/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2006.03.001

tic and have largely considered each improvement in
isolation. In this paper, which is based on our preliminary
work [1], we assess the state of congestion control and error
recovery proposed for the Internet through a controlled
study that considers the integration of standards-track TCP
error recovery and TCP/router-based congestion control.
The goal is to examine and quantify the benefits of deploying
these technologies for contemporary models of Internet traf-
fic as a function of the level of offered network load.
Although numerous modifications to TCP have been
proposed, we limit our consideration to proposals that
have either been formally standardized or are being pro-
posed for standardization as these are the most likely to
be widely deployed on the Internet. We report the results
of an extensive study into the impact of using TCP Reno
versus TCP SACK in networks employing drop-tail queue
management versus random early detection queue manage-
ment (specifically, adaptive, gentle RED) in routers. We
assess the performance of combinations of error recovery
and router queue management through traditional

mailto:mweigle@cs.clemson.edu

2 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

network-centric measures of performance such as link uti-
lization and loss-rates, as well as through user-centric mea-
sures of performance such as response time distributions
for Web request-response transactions.

Considering both network and end-user-centric mea-
sures of performance, for bursty HTTP traffic sources:

e There is no difference in performance between Reno and
SACK for typical short-lived HTTP flows independent
of load and pairing with queue management algorithm.
For larger flows, using SACK does improve perfor-
mance over that of Reno.

e Adaptive RED (ARED) with ECN marking performs
better than ARED with packet dropping, and the value
of marking increases as the offered load increases. ECN
also offers more significant gains in performance when
the target delay parameter is small (5 ms).

e However, unless congestion is a serious concern (i.e., for
average link utilizations of 80% or higher with bursty
sources), there is little benefit to using RED queue man-
agement in routers.

e In congested networks, a fundamental trade-off exists
between optimizing response time performance of short
responses versus long responses. If one favors short
responses, ARED with ECN marking and a small target
delay (5 ms) performs better than drop-tail independent
of the level of congestion (at the expense of long
responses). This conclusion should be tempered with
the caution that ARED performance is quite sensitive
to parameter settings. At all loads there is little differ-
ence between the performance of drop-tail and ARED
with ECN and a larger target delay (60 ms). If one
favors long responses, drop-tail performs better than
ARED with ECN marking. In addition, as load increas-
es drop-tail also results in higher link utilization.

In total, we conclude that for user-centric measures of
performance, router-based congestion control (active
queue management), especially when integrated with end-
system protocols (explicit congestion notification), has a
greater impact on performance than protocol improve-
ments for error recovery. However, for lightly to moderate-
ly loaded networks (e.g., 50% average utilization) neither
queue management nor protocol improvements significant-
ly impact performance.

The following sections provide background on the specif-
ic error recovery and congestion control improvements we
are considering as well as a summary of past evaluations of
each. Section 5 explains our experimental methodology,
and Section 6 presents a summary of our main results.

2. Background — congestion control and avoidance
2.1. TCP Reno

TCP Reno is de facto standard TCP implementation.
Reno congestion control consists of two major phases:

slow-start and congestion avoidance. In addition, conges-
tion control is integrated with related fast retransmit and
fast recovery error recovery mechanisms.

Slow-start restricts the rate of packets entering the net-
work to the same rate that acknowledgments (ACKs)
return from the receiver. The receiver sends cumulative
ACKs which acknowledge the receipt of all bytes up to
the sequence number carried in the ACK (i.e., the receiver
sends the sequence number of the next packet it expects to
receive). The congestion window, cwnd, controls the rate at
which data is transmitted and loosely represents the
amount of unacknowledged data in the network. For every
ACK received during slow-start, cwnd is incremented by
one segment.

The congestion avoidance phase conservatively probes
for additional bandwidth. The slow-start threshold,
ssthresh, is the threshold for moving from slow-start to
congestion avoidance. When cwnd is greater than ssthresh,
slow-start ends and congestion avoidance begins. Once in
congestion avoidance, cwnd is increased by one segment
every round-trip time, or as commonly implemented, by
1/cwnd of a segment for each ACK received.

When packet loss occurs, ssthresh is set to 1/2 the cur-
rent value of cwnd, and as explained below, the value of
cwnd is set depending on how the loss was detected. In
the simplest case, a loss that is detected by the expiration
of a timer, the connection returns to slow-start after a loss.

2.2. Random early detection

Internet routers today employ traditional FIFO queuing
(called “drop-tail” queue management). Random Early
Detection (RED) is a router-based congestion control
mechanism that seeks to reduce the long-term average
queue length in routers [2]. A RED router monitors queue
length statistics and probabilistically drops arriving packets
even though space exists to enqueue the packet. Such “ear-
ly drops” are performed as a means of signaling TCP flows
(and others that respond to packet loss as an indicator of
congestion) that congestion is incipient in the router. Flows
should reduce their transmission rate in response to loss (as
outlined above) and thus prevent router queues from
overflowing.

Under RED, routers compute a running weighted aver-
age queue length that is used to determine when to send
congestion notifications back to end-systems. Congestion
notification is referred to as “marking” a packet. For stan-
dard TCP end-systems, a RED router drops marked pack-
ets to signal congestion through packet loss. If the TCP
end-system understands packet-marking, a RED router
marks and then forwards the marked packet.

RED’s marking algorithm depends on the average
queue size and two thresholds, min,, and max,;. When
the average queue size is below min,,, RED acts like a
drop-tail router and forwards all packets with no modifica-
tions. When the average queue size is between min,, and
max,,, RED marks incoming packets with a certain

M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx 3

probability. When the average queue size is greater than
max,,, all incoming packets are dropped. The more packets
a flow sends, the higher the probability that its packets will
be marked. In this way, RED spreads out congestion noti-
fications proportionally to the amount of space in the
queue that a flow occupies.

The RED thresholds min,, and max,, the maximum
drop probability max,, and the weight given to new queue
size measurements w,, play a large role in how the queue is
managed. Recommendations [3] on setting these RED
parameters specify that max,, should be set to three times
min,,, w, should be set to 0.002, or 1/512, and max, should
be 10%.

2.3. Adaptive RED

Adaptive RED (ARED) [4] is a modification to RED
which addresses the difficulty of setting appropriate RED
parameters. ARED adapts the value of max, so that the
average queue size is halfway between min,, and max,,.
The maximum drop probability, max, is kept between
1% and 50% and is adapted gradually. ARED includes
another modification to RED, called “gentle RED” [5].
In gentle RED, when the average queue size is between
max,, and 2 X max,,, the drop probability is varied linearly
from max, to 1, instead of being set to 1 as soon as the
average is greater than max,,. When the average queue size
is between max,, and 2 x maxy, selected packets are no
longer marked, but always dropped.

ARED’s developers provide guidelines for the automat-
ic setting of min,;,, max,,, and w,. Setting min,, results in a
trade-off between throughput and delay. Larger queues
increase throughput, but at the cost of higher delays. The
rule of thumb suggested by the authors is that the average
queuing delay should only be a fraction of the round-trip
time (RTT). If the target average queuing delay is tar-
getqeiqy and C is the link capacity in packets per second,
then min,, should be set to target .., x C/2. The guideline
for setting max,, is that it should be 3 x min,, resulting
in a target average queue size of 2 x min,,. The weighting
factor w, controls how fast new measurements of the queue
affect the average queue size and should be smaller for
higher speed links. This is because a given number of pack-
et arrivals on a fast link represents a smaller fraction of the
RTT than for a slower link. It is suggested that w, be set as
a function of the link bandwidth, specifically,
1 —exp(=1/0C).

Although many extensions to RED have been proposed,
we use ARED in our study because it includes the “gentle”
mode, which is now the recommended method of using
RED, and because we believe ARED is the most likely
RED variant to be standardized and deployed.

2.4. Explicit congestion notification

Explicit congestion notification (ECN) [6,7]is an optimi-
zation of active queue management that allows routers to

notify end systems when congestion is present in the net-
work. When an ECN-capable router detects that its aver-
age queue length has reached a threshold, it marks
packets by setting the CE (“congestion experienced’’) bit
in the packets” TCP headers. (The decision of which pack-
ets to mark depends on the queue length monitoring algo-
rithm in the router.) When an ECN-capable receiver sees a
packet with its CE bit set, an ACK with its ECN-Echo bit
set is returned to the sender. Upon receiving an ACK with
the ECN-Echo bit set, the sender reacts in the same way as
it would react to a packet loss (i.e., by halving the conges-
tion window). Ramakrishnan and Floyd [7] recommend
that since an ECN notification is not an indication of pack-
et loss, the congestion window should only be decreased
once per RTT, unless packet loss does occur. A TCP sender
implementing ECN thus receives two notifications of con-
gestion, ECN and packet loss. This allows senders to be
more adaptive to changing network conditions.

ECN is recommended for use in routers that monitor
their average queue lengths over time (e.g., routers running
RED), rather than those that can only measure instanta-
neous queue lengths. This allows short bursts of packets
without triggering congestion notifications.

3. Background — error recovery
3.1. Error recovery in TCP Reno

TCP Reno provides two methods of detecting packet
loss: the expiration of a timer and the receipt of three dupli-
cate acknowledgements. Whenever a new packet is sent,
the retransmission timer (RTO) is set. If the RTO expires
before the packet is acknowledged, the packet is assumed
to be lost. When the RTO expires, the packet is retransmit-
ted, ssthresh is set to 1/2 cwnd, cwnd is set to 1 segment, and
the connection re-enters slow-start.

Fast retransmit specifies that a packet can be assumed
lost if three duplicate ACKs are received. This allows
TCP Reno to avoid a lengthy timeout during which no
data is transferred. When packet loss is detected via three
duplicate ACKs, fast recovery is entered. In fast recovery,
ssthresh is set to 1/2 cwnd, and cwnd is set to ssthresh + 3.
For each additional duplicate ACK received, cwnd is incre-
mented by 1 segment. New segments can be sent as long as
cwnd allows. When the first ACK arrives for the retrans-
mitted packet, cwnd is set back to ssthresh. Once the lost
packet has been acknowledged, TCP leaves fast recovery
and returns to congestion avoidance.

Fast recovery also provides a transition from slow-
start to congestion avoidance. If a sender is in slow-start
and detects packet loss through three duplicate ACKs,
after the loss has been recovered, congestion avoidance
is entered. The only other way to enter congestion avoid-
ance is if cwnd > ssthresh. In many cases, though, the
initial value of ssthresh is set to a very large value, so
packet loss is often the only trigger to enter congestion
avoidance.

4 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

TCP Reno can only recover from one packet loss during
fast retransmit and fast recovery. Additional packet losses
in the same window may require that the RTO expire
before being retransmitted. The exception is when cwnd is
greater than 10 segments. In this case, Reno could recover
from two packet losses by entering fast recovery twice in
succession. This causes cwnd to effectively be reduced by
75% in two RTTs [8].

3.2. Selective acknowledgments

A recent addition to the standard TCP implementation
is the selective acknowledgment option (SACK) [8,9]. The
SACK option contains up to four (or three, if RFC 1323
timestamps are used) SACK blocks, which specify contigu-
ous blocks of received data. Each SACK block consists of
two sequence numbers which delimit the range of data the
receiver holds. A receiver can add the SACK option to
ACKSs it sends back to a SACK-enabled sender. In the case
of multiple losses within a window, the sender can infer
which packets have been lost and should be retransmitted
using the information in the SACK blocks.

A SACK-enabled sender can retransmit multiple lost
packets in one RTT. The SACK recovery algorithm only
operates once fast recovery has been entered via the receipt
of three duplicate ACKs. Whenever an ACK with new
information is received, the sender adds to a list of packets
(called the ‘“‘scoreboard’) that have been acknowledged.
These packets have sequence numbers past the current val-
ue of the highest cumulative ACK. At the beginning of fast
recovery, the sender estimates the amount of unacknowl-
edged data “in the pipe” based on the highest packet sent,
the highest ACK received, and the number of packets in
the scoreboard. This estimate is saved in the variable pipe.
Each time a packet is sent the value of pipe is incremented.
The pipe counter is decremented whenever a duplicate
ACK arrives with a SACK block indicating that new data
was received. When pipe is less than cwnd, the sender can
either send retransmissions or transmit new data. When
the sender is allowed to send data, it first looks at the score-
board and sends any packets needed to fill gaps at the
receiver. If there are no such packets, then the sender can
transmit new data. The sender leaves fast recovery when
all of the data that was unacknowledged at the beginning
of fast recovery has been acknowledged.

Allowing up to three SACK blocks per SACK option
ensures that each SACK block is transmitted in at least
three ACKs, providing some amount of robustness in the
face of packet loss.

4. Related work

TCP SACK has been studied by many and the reviews
are mixed. Some researchers [10] have shown that using
TCP SACK does not hurt competing TCP Reno flows. It
was also shown that TCP SACK flows avoid some retrans-
missions and receive better throughput than if TCP Reno

had been used [8]. Further research [11,12] has narrowed
the benefits of TCP SACK to environments with medium
loss levels. With low levels of loss, TCP Reno can use fast
retransmit and fast recovery to repair lost packets without
experiencing a timeout. With high levels of loss, TCP
SACK flows also experience timeouts because timeouts
are necessary even in TCP SACK to recover from lost
retransmissions or the loss of several consecutive ACKs.
There is also the potential with TCP SACK to cause large
persistent queues when coupled with drop-tail routers [13].
TCP SACK can avoid timeouts, which hurt a flow’s perfor-
mance, but also serve to help drain the queue during times
of severe congestion. Finally, a study of a busy web server
[14] found that although 50% of the packet drops were
detected via timeouts, TCP SACK would have only avoid-
ed 4% of the timeouts.

RED has been put forth by the IETF as an essential part
of congestion control in the Internet [15]. Subsequent stud-
ies [16,17] of RED in the context of web traffic has shown
that the use of RED routers offers little or no improvement
over drop-tail routers. Additionally, these studies also
showed that setting the parameters of RED for best perfor-
mance was non-intuitive. One study [18]looked at the com-
bination of TCP SACK running over RED routers. They
found that the benefit of TCP SACK was diminished when
coupled with RED. Since RED smoothes packet loss over
many flows, there were fewer packets drops for a single
flow in the same window. Because of this, TCP Reno’s fast
retransmit and fast recovery mechanisms could recover
from the loss without needing SACK information.

RED coupled with ECN marking has the same param-
eter setting difficulty as RED with dropping, but should
offer some benefit to TCP flows. Studies of RED with
ECN [19] have found that with bulk transfer traffic, using
ECN results in low levels of loss. With web-like traffic,
the advantage of using ECN increased with the level of
congestion in the network. Another study of RED with
ECN marking [20] found that using ECN did reduce the
number of packet drops, but did not necessarily improve
the goodput received by the flows.

There have been many studies that look at TCP SACK
and RED (with and without ECN marking) individually.
We extend these previous studies to analyze the interac-
tions of TCP SACK, RED, and ECN marking and their
effects on two-way web traffic. Our traffic model (and
RTT model) is based on the analysis of recent Internet traf-
fic traces, combining both short-lived and long-lived flows.

5. Methodology
5.1. Experimental setup

HTTP traffic consists of communication between web
clients and web servers. In non-persistent HTTP 1.0, a cli-
ent opens a TCP connection to make a single request from
a server. The server receives the request and sends the
response data back to the client. Once the response has

M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx 5

been successfully received, the TCP connection is closed.
The time elapsed between the client opening the TCP con-
nection and closing the TCP connection is the HTTP
response time and represents the completion of a single
HTTP request-response pair.

We ran simulations in NS-2' [21] with varying levels of
two-way non-persistent HTTP 1.0 traffic. These two-way
traffic loads provide roughly equal levels of congestion on
both the “forward” path (server-to-client) and ‘“‘reverse”
path (client-to-server). The following pairings of error
recovery and queue management techniques were tested:
Reno with drop-tail queuing in routers, Reno with ARED
using packet drops, ECN-enabled Reno with ARED using
ECN packet-marking, SACK with drop-tail, SACK with
ARED using packet drops, and ECN-enabled SACK with
ARED using packet marking. Table 1 presents a summary
of the error-recovery and queue management pairings that
were run.

The HTTP traffic we generate comes from the Pack-
Mime model [22] developed at Bell Labs. This model is
based on the analysis of HTTP connections in a trace of
a 100 Mbps Ethernet link connecting an enterprise network
of 3000 hosts to the Internet [23,24]. The fundamental
parameter of PackMime is the TCP/HTTP connection ini-
tiation rate (a parameter of the distribution of connection
interarrival times). The model also includes distributions
of the size of HTTP requests and the size of HTTP
responses.

The request size distribution and the response size distri-
bution are heavy-tailed (Figs. 1 and 2). There are a large
number of small request sizes and a few very large request
sizes. Almost 90% of the HTTP requests are under 1 KB
and can fit in a single 1420-byte® packet. The largest
request is almost 1 MB. Sixty percent of the HTTP
responses can fit into one packet, and 90% of the responses
fit into 10 packets, yet the largest response size is over
100 MB. Using this distribution, we will have many
short-lived transfers, but also some very long-lived flows.
These PackMime HTTP request and response size distribu-
tions are similar to those presented in a recent traffic mea-
surement study [25].

In each experiment, we examine the behavior of traffic
that consists of over 250,000 flows, with a total simulated
time of 40 min. Crovella and Lipsky [26] have shown that
simulations with heavy-tailed workloads (such as HTTP
response sizes) can take a very long time to reach steady-
state. Running a simulation for only a few minutes would
take into account a small portion of the rich behavior of
the traffic model. We ran our simulations as long as the

! In order to use SACK and ECN in Full-TCP, we had to modify the ns-
2.1b9 source code. See http://www.cs.clemson.edu/~mweigle/ns/ for
details.

2 We assume an Ethernet MTU of 1500 bytes and use a TCP MSS of
1420 bytes, counting for 40 bytes of base TCP/IP header and 40 bytes
maximum of TCP options.

Table 1
Experiments
TCP Queuing Queue length ARED delay
method (1250 B packets) delay g (min . max,,)
111 pckts (1.5 x BDP)
Reno Drop-tail 148 pckts (2 x BDP)
5ms (5,15)
Reno ARED 370 pckts (5 x BDP) 60 ms (30,90)
Sms (5,15)
Reno ARED + ECN 370 pckts (5 x BDP) 60 ms (30,90)

111 pckts (1.5 x BDP)
SACK Drop-tail 148 pckts (2 x BDP)
Sms (5,15)
60 ms (30,90)
Sms (5,15)
60 ms (30,90)

SACK ARED 370 pckts (5 x BDP)

SACK ARED + ECN 370 pckts (5 x BDP)

100

80 /

60 /

40 /

0

10 100 1000 10000 100000 1e+06 1e+07
Request Size (bytes)

Cumulative Probability

Fig. 1. Distribution of HTTP request sizes for a typical experiment
(250,000 request/response pairs) using PackMime.

100
80

60 /
40
S/

0

Cumulative Probability

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
Response Size (bytes)

Fig. 2. Distribution of HTTP response sizes for a typical experiment
(250,000 request/response pairs) using PackMime.

available hardware and software environments would sup-
port to capture a significant amount of this behavior.

We implemented PackMime traffic generation in NS-2
using Full-TCP, which includes bi-directional TCP connec-
tion flows, connection setup, connection teardown, and
variable packet sizes. In our implementation, one

http://www.cs.clemson.edu/~mweigle/ns/

6 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

PackMime node represents a cloud of HTTP clients or
servers. The traffic load is driven by the user-supplied con-
nection rate parameter, which is the number of new con-
nections starting per second. The connection rate
corresponding to each desired link loading was determined
by a calibration procedure described below. New connec-
tions begin at their appointed time, whether or not any pre-
vious connection has completed.

The network we simulate consists of two clouds of web
servers and clients positioned at each end of a 10 Mbps
bottleneck link (Fig. 3). There is a 10 Mbps bottleneck link
between the two routers, a 20 Mbps link between each
PackMime cloud and its corresponding aggregation node,
and a 100 Mbps link between each aggregation node and
the nearest router. This configuration is designed to ensure
that all congestion in the network occurs on the bottleneck
link between the two routers.

The aggregation nodes in our simulations are NS-2
nodes that we developed called DelayBox to delay packets
in the simulation. DelayBox is an NS analog to dummynet
[27], which is used in FreeBSD network testbeds to delay
packets. With DelayBox, packets from a TCP connection
can be delayed before being passed on to the next node.
This allows each TCP connection to experience a different
minimum delay, and hence a different round-trip time,
based on random sampling from a delay distribution. In
our experiments DelayBox uses an empirical delay distribu-
tion from the PackMime model. This results in RTTs rang-
ing from 1 ms to 3.5 s. The median RTT is 54 ms, the mean
is 74 ms, and the 90th percentile is 117 ms. RTTs are
assigned independently of request or response size, repre-
sent only propagation delay, and do not include queuing
delays.

The mean packet size for the HTTP traffic (excluding
pure ACKs, but including headers) is 1250 bytes. This
includes the HTTP responses for the forward path and
the HTTP requests for the reverse path. For a target bottle-
neck bandwidth of 10 Mbps, we compute the bandwidth-

delay product (BDP) to be 74 1250-byte packets. In all
cases, we set the maximum send window for each TCP con-
nection to the BDP.

The simulation parameters used for TCP and Adaptive
RED are listed in Tables 2 and 3.

5.2. Queue management

5.2.1. Drop-tail settings

Christiansen et al. [16] recommend a maximum queue
size between 1.25x BDP and 2 x BDP for reasonable
response times for drop-tail queues. The maximum queue
buffer sizes tested in our drop-tail experiments were
1.5 x BDP and 2 x BDP.

Table 2

TCP parameters

TCP parameter Value
Initial window size 2 segments
Timestamp option False
TCP tick 10 ms
BSD 4.2 bug fix True

Min RTO ls

Initial RTO 6s

RFC 2988 RTT calculation True
Delayed ACK False
SACK block size 8 bytes
Max SACK blocks 3

Table 3

Adaptive RED parameters

ARED parameter Value
Packet mode True
Alpha 0.01
Beta 0.9
Interval for adaptations 500 ms
max max, 0.5
min max, 0.01

PackMime PackMime
client server
PackMime forward congested path PackMime
client — server
DelayBox Router Router 100 DelayBox

Mbps Mbps
. —_— .
PackMime reverse congested path PackMime!
server client
PackMime, PackMime,
server client

Fig. 3. Simulated network environment.

M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

5.2.2. Adaptive RED settings

We ran sets of ARED experiments using the default
ARED settings in NS-2 (target delay = 5 ms) and with
parameters similar to those suggested by Christiansen,
ming, = 30 and max,, = 90, giving a target delay of 60 ms.
Note that in both cases, min,, and max,, are computed
automatically based on the mean packet size, target delay,
and link speed. The maximum router queue length was set
to 5 x BDP. This ensured that there would be no tail drops,
in order to isolate the effects of ARED.

5.3. Performance metrics

In each experiment, we measured the HTTP response
times (the time from sending an HTTP request to receiving
the entire HTTP response), link utilization, throughput
(number of bytes entering the bottleneck), average loss
rate, average percentage of flows that experience loss, and
average queue size. These summary statistics are given
for the Reno experiments in Figs. 4-7 (as reported below,
we found no large difference between Reno and SACK per-
formance). HTTP response time is our main metric of per-
formance. We report the CDFs of response times for
responses that complete in 1500 ms or less. When discuss-
ing the CDFs, we discuss the percentage of flows that com-
plete in a given amount of time. It is not the case that only
small responses complete quickly and only large responses
take a long time to complete. For example, between a
500 KB response that has a RTT of 1 ms and a 1 KB
response that has a RTT of 1 s, the 500 KB response will
likely complete before the smaller response.

5.4. Levels of offered load and data collection

The levels of offered load used in our experiments are
expressed as a percentage of the capacity of a 10 Mbps link.
We initially ran our network at 100 Mbps and determined
the PackMime connection rates (essentially the HTTP
request rates) that will result in average link utilizations
(in both forward and reverse directions) of 5, 6, 7, 8, 8.5,

110 T T T T T T T T T

+
100 - + B
+]
=
. 90r] g g 1
X A [
< B 35 e
S sof ¥ . 1
© ° d
N
5 70) 1
< UTILIZATION
3 e Calibration ~ +
60 - Reno-DT-111q = 1
Reno-ARED-5ms e
s Reno-ARED+ECN-5ms &
50 Reno-DT-148q O 1
Reno-ARED-60ms o
0))) Reno-ARED+ECN-60ms »

50% 60% 70% 80% 85% 90% 95% 100% 105%
Offered Load

Fig. 4. Average link utilization.

7
ol T 0SS T T T T T])
® Reno-DT-111q
e Reno-ARED-5ms
14 4 Reno-ARED+ECN-5ms 1
O Reno-DT-148q .
12 | © Reno-ARED-60ms ° 4
—_ A Reno-ARED+ECN-60ms
2
g 10 b . 8 -
S
5 8r -] -
{) ® o
& 6f . . © i
° o o
4+] = b
m o
2t . & & B -
° a B a
0 [..] B n L L L L L L
50% 60% 70% 80% 85% 90% 95% 100% 105%
Offered Load
Fig. 5. Average loss rates.
"FLOWS WITH LOSS T
50+ ® Reno-DT-111q]
e Reno-ARED-5ms
4 Reno-ARED+ECN-5ms ° R
O Reno-DT-148q
= 40 + o Reno-ARED-60ms ° ° 1
1> 4 Reno-ARED+ECN-60ms
g L
= L[]
a6 30r ° [] 7
<
'E °] A [a]
A
£ 20f ° . |
o
[° a 4 o
® E o
L [} -
10 : R g o o
g B 8
0 1 1 1 1 1 1 1 1
50% 60% 70% 80% 85% 90% 95% 100% 105%
Offered Load
Fig. 6. Average percentage of flows experiencing drops.
120 T T T T T T T
QUEUE SIZE
® Reno-DT-111q
e Reno-ARED-5ms
100« Reno-ARED+ECN-5ms __
O Reno-DT-148q
I © Reno-ARED-60ms N
T 80 A Reno-ARED+ECN-60ms o 4
X
S o 8
8
- [m]
9 60f g 6 u 1
2} 5 g =
@ [m]
3 o) n
S 40} <
a o] L]
B n
20+] 4
e a s
o ° ® ° ® ¢ é ° °

50% 60% 70% 80% 85% 90% 95% 100% 105%
Offered Load

Fig. 7. Average queue sizes.

9, 9.5, 10, and 10.5 Mbps. The connection rate that results
in an average utilization of 8% of the (clearly uncongested)
100 Mbps link will be used to generate an offered load on
the 10 Mbps link of 8 Mbps or 80% of 10 Mbps link. Note
that this 80% load (i.e., the connection rate that results in
8 Mbps of traffic on the 100 Mbps link) will not actually

8 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

result in 8 Mbps of traffic on the 10 Mbps link. The bursty
HTTP sources will cause congestion on the 10 Mbps link
and the actual utilization of the link will be a function of
the protocol and router queue management scheme used.
(And the link utilization achieved by a given level of offered
load is a metric for comparing protocol/queue manage-
ment combinations. See Fig. 4.)

Given the bursty nature of our HTTP traffic sources, we
used a 120-s “warm-up” interval before collecting any
data. After the warm-up interval, we allow the simulation
to proceed until 250,000 HTTP request-response pairs
have been completed. We also require that at least one
10 MB response has started a transfer before 1000 s after
the warm-up period. This ensures that we will have some
very long transfers in the network along with the typical
short-lived web transfers.

6. Results

We first present the results for different queue manage-
ment algorithms when paired with TCP Reno end-systems.
Next, results for queue management algorithms paired with
TCP SACK end-systems are presented and compared to
the Reno results. Finally, the two best scenarios are com-
pared. In the following response time CDF plots, the
response times obtained in a calibration experiment with
an uncongested 100 Mbps link are included for a baseline
reference as this represents the best possible performance.
Table 4 lists the labels we use to identify experiments.

We report here the results from experiments at offered
loads of 80% and 105% (i.e., connection rates that would
generate 8 and 10.5 Mbps of traffic, respectively, on an
uncongested network). These offered loads correspond
intuitively to “moderate” and “‘severe” levels of congestion
on a 10 Mbps link. Complete results, for all offered loads,
can be found in [28]. The results included here are also sup-
ported by the data from those experiments.

6.1. Reno + droptail

Fig. 8 shows the CDFs of response times for Reno-
DT-111q and Reno-DT-148q. There is little performance
difference between the two queue sizes, though there is a
crossover point in the response times. The crossover is
described here only for illustration purposes, since the dif-
ference is minimal. At 80% load, the crossover is at coordi-
nate (700 ms, 80%). This means that for both DT-111q and

Table 4
Summary of labels and abbreviations

Abbreviation Description

DT-111q Drop-tail with 111 packet queue (1.5 x BDP)
DT-148q Drop-tail with 148 packet queue (2 x BDP)
ARED-5 ms Adaptive RED with 5 ms target delay
ARED-60 ms Adaptive RED with 60 ms target delay

ARED + ECN-5 ms
ARED + ECN-60 ms

Adaptive RED with ECN and 5 ms target delay
Adaptive RED with ECN and 60 ms target delay

100
k*_af——k——%—‘
e e
80 */*/!/‘/“ v
z o
3 %’X
©
S 60
: /////
(]
=
S 40
: Y
(6] DROP-TAIL
Calibration ~ +
20 }0/ Reno-DT-111q (80%) ®]
Reno-DT-148q (80%) O
Reno-DT-111q (105%) e
0 Reno-DT-148q (105%) ©

0 200 400 600 800 1000 1200 1400
Response Time (ms)

Fig. 8. Distribution of HTTP response times for drop-tail queuing.

DT-148q, 80% of the HTTP responses completed in 700 ms
or less. For a given response time less than 700 ms, DT-
111q produces a slightly higher percentage of responses
that complete in that time or less than does DT-148q.
For a given response time greater than 700 ms, DT-148q
yields a slightly higher percentage of responses that com-
plete in that time or less than DT-111q does. For simplic-
ity, when comparing drop-tail to other queuing methods,
we will show only DT-148q results.

6.2. Reno + adaptive RED

Response time CDFs for Reno-DT-148q, Reno-ARED-
5ms, and Reno-ARED-60 ms are shown in Figs. 9 and 10.
At almost all loads both of the drop-tail queues perform no
worse than ARED-60 ms. There is a distinct crossover
point between Reno-ARED-5ms and Reno-ARED-60 ms
(and Reno-DT-148q and Reno-DT-111q) near 400 ms.
This points to a trade-off between improving response
times for some flows and causing worse response times
for others. For responses that complete in less than
400 ms, ARED-5ms offers better performance. For
responses that complete in over 400 ms, ARED-60 ms,

100

" e

!
|4
/

4/*_--;’—4—‘%—‘
;35@%3 s
—o —

AR

Cumulative Probability

80% LOAD
Calibration
Reno-DT-148q

Reno-ARED-5ms

20
0 % Reno-ARED-GO‘ms

0 200 400 600 800 1000 1200 1400
Response Time (ms)

O e+

Fig. 9. Distribution of HTTP response times for drop-tail and ARED at
80% offered load.

M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx 9

100
k—*"*’*‘*’_‘
"
/ /
80 % e
> g—a E/E/a/
e}
£ 60 i
° o
o / JZ/Z/ ./
S 40
IS
3
/ % 105% LOAD
20 ﬁ Calibration +
Reno-DT-148q O
Reno-ARED-5ms e
0 Reno-ARED-BO‘ms o

0 200 400 600 800 1000 1200 1400
Response Time (ms)

Fig. 10. Distribution of HTTP response times for drop-tail and ARED at
105% offered load.

Reno-DT-111q, or Reno-DT-148q are preferable. As the
load increases, the crossover remains near a response time
of 400 ms, but the percentage of completed responses in
that time or less decreases. Also, as load increases, the per-
formance of ARED-5ms for longer responses is poor.

ARED-5ms keeps a much shorter average queue than
ARED-60 ms (Fig. 7), but at the expense of longer
response times for many responses. With ARED-5ms,
many flows experience packet drops. Many of these con-
nections are very short-lived, often consisting of a single
packet (60% of responses consist of only one packet and
80% consist of five or fewer packets) and when they expe-
rience packet loss, they are forced to suffer a retransmission
timeout, increasing their HTTP response times. For
ARED-5ms, the CDF of response times levels off after
the crossover point and does not increase much until after
1's, which is the minimum RTO in our simulations. This
indicates that a significant portion of the flows suffered
timeouts.

As congestion increased toward severe levels, the
response time benefits from the drop-tail queue became
substantially greater. At 105% load about 60% of responses
(those taking longer than 300-400 ms to complete) have
better response times with the drop-tail queue while only
40% of responses are better with ARED-5ms. For this
same 60% of responses, ARED-60 ms is also superior to
ARED-5ms.

ARED should give better performance than the original
RED design without the gentle option. At high loads, a sig-
nificant number of packets arrive at the queue when the
average queue size is greater than max,,. Without the gentle
option, these packets would all be dropped, rather than
being dropped probabilistically. To see the full difference
between ARED including the gentle option and the origi-
nal RED design we compared the results between the two
designs at loads of 80% (Fig. 11) and 90% (Fig. 12). In
these comparisons, two configurations of the original
RED minimum and maximum thresholds were used:
(5,15) and (30,90) which correspond roughly to the 5

100
4/*_4’—4——%—‘
et
/ %Qs
80 */ /E/a —r =
z pﬁjﬁj'/'/
:
g 60 /
o
(o]
=
8 40
=}
g t
'} 80% LOAD
2 Calibration
0 Reno-RED-5-15]

Reno-RED-30-90

Reno-ARED-5ms

Reno-ARED-60ms

0 200 400 600 800 1000 1200 1400
Response Time (ms)

Oemlm +

Fig. 11. Distribution of HTTP response times for RED and ARED at
80% offered load.

100

W—;———}——-ﬁ———
— — o—]
80 */ aa:g:%ia/
././{l/i
e
60

/ %/’
/ 90% LOAD
Calibration

20 Reno-RED-5-15
Reno-RED-30-90
Reno-ARED-5ms

F{eno-ARED—GQms

0 200 400 600 800 1000 1200 1400
Response Time (ms)

Cumulative Probability

\

i

oOe[rm +

Fig. 12. Distribution of HTTP response times for RED and ARED at
90% offered load.

and 60 ms target queue lengths used for ARED. For the
original RED experiments, we used the recommended set-
tings of w,=1/512 and max,=10%. For the ARED
experiments, w, was set automatically based on link speed
to 0.001, and max, was adapted between 1% and 50%.

Taken together, Figs. 11 and 12 show that the adapta-
tion of max, and the linear increase in drop probability
from max, to 1.0 in ARED is an improvement over the ori-
ginal RED design and that the improvement is more signif-
icant as the level of congestion increases.

6.3. Reno + adaptive RED + ECN

The full value of ARED is realized only when it is cou-
pled with a more effective means of indicating congestion
to the TCP endpoints than the implicit signal of a packet
drop. ECN is the congestion signaling mechanism intended
to be paired with ARED. Fig. 13 (80% load) and Fig. 14
(105% load) present the response time CDFs for Reno-
ARED-5ms, Reno-ARED-60 ms, Reno-ARED + ECN-
5ms, and Reno-ARED + ECN-60 ms. Up to 90% load,

10 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

100

80 */

A o1

W
3
:

Cumulative Probability
[}
o
\1\
N

80% LOAD
20 Calibration
Reno-ARED-5ms
Reno-ARED-60ms
Reno-ARED+ECN-5ms
Reno-ARED+ECN-60ms

0 200 400 600 800 1000 1200 1400
Response Time (ms)

\‘\\

>»rO e +

Fig. 13. Distribution of HTTP response times for ARED with and
without ECN at 80% offered load.

100

80 x/

Reno-ARED-5ms

g A—A— T3
3 60 R /./%%
: / D
: gy ./-/
-2 /A/ ~ s% o—o
S 40 —
:
. / 105% LOAD
20 /] Calibration

Reno-ARED-60ms
Reno-ARED+ECN-5ms
Ren‘o-AF{EDJ‘rECN—GO‘ms

200 400 600 800 1000 1200 1400
Response Time (ms)

> rOe +

o

Fig. 14. Distribution of HTTP response times for ARED with and
without ECN at 105% offered load.

ARED + ECN-5 ms delivers superior or equivalent perfor-
mance for all response times. Further, ECN has a more sig-
nificant benefit when the ARED target queue is small. As
before, there is a trade-off where the 5 ms target delay set-
ting performs better before the crossover point and the
60 ms setting performs slightly better after the crossover
point. The trade-off when ECN is paired with ARED is
much less significant. ARED + ECN-5ms does not see as
much drop-off in performance after the crossover point.
For the severely congested case, ECN provides even more
advantages, especially when coupled with a small target
delay.

Figs. 4-7 give summary network-centric performance
measures. Overall, ARED + ECN-5ms produces lower
link utilization than ARED + ECN-60 ms. This trade-off
between response time and link utilization is expected.
ARED + ECN-5ms keeps the average queue size small
(Fig. 7) so that packets see low delay as they pass through
the router. Flows that experience no packet loss (Fig. 6)
should see very low queuing delays, and therefore, low
response times. On the other hand, larger flows may receive

ECN notifications and reduce their sending rates so that
the queue drains more often. As expected, drop-tail results
in the highest link utilization and the lowest drop rates.

We also ran a set of experiments with one-way traffic to
see how well ECN and ARED would perform in a less
complex environment. By one-way traffic, we mean that
there was HTTP response traffic flowing in only one direc-
tion on the link between routers. Thus the reverse-path car-
rying ACKs and HTTP request packet was very lightly
loaded. This means that ACKs are much less likely to be
lost or “compressed” at the router queue and that (1)
TCP senders will receive a smoother flow of ACKs to
“clock” their output segments and (2) ECN congestion sig-
nals will be more timely. In some sense, this is a best case
scenario for ARED with ECN. The results for this case
are given in Fig. 15. With two-way traffic, performance is
significantly reduced over the one-way case especially for
the severe congestion at 105% offered load. These results
clearly illustrate the importance of considering the effects
of congestion in both directions of flow between TCP
endpoints.

6.4. SACK

The experiments described above were repeated by pair-
ing SACK with the different queue management mecha-
nisms in place of Reno. Figs. 16 and 17 show a
comparison between Reno and SACK based on response
time CDFs when paired with drop-tail and ARED + ECN.
Overall, SACK provides no better performance than Reno.
When paired with ARED + ECN, SACK and Reno are
essentially identical independent of load. When paired with
drop-tail, Reno appears to provide somewhat superior
response times especially when congestion is severe.

We expected to see improved response times with SACK
over Reno with drop-tail queues. SACK should prevent
some of the timeouts that Reno would have to experience
before recovering from multiple drops in a window. Why
is there not a large improvement with SACK over Reno

100

kf*”k*—r/k_w

80

1 7
L

v
/ / ARED+ECN

20 Calibration
Reno-ARED+ECN-5ms (1-way, 80%)
Reno-ARED-ECN-5ms (2-way, 80%)
Reno-ARED+ECN-5ms (1-way, 105%)
Beno-AR‘ED+ECN-5ms (27way, 105%)

0 200 400 600 800 1000 1200 1400
Response Time (ms)

RRW

o
o—o
l/'/./
R

LR

Cumulative Probability

omEOe +

Fig. 15. Distribution of HTTP response times for ARED/ECN with 1-
way and 2-way traffic.

M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx 11

100

et

80

¥
. / %
40
/ / 80% LOAD
20 Calibration

Reno-DT-148q
Reno-ARED+ECN-5ms
SACK-DT-148q
SACK-ARED+ECN-5ms

0 200 400 600 800 1000 1200 1400
Response Time (ms)

&

Cumulative Probability

OO e m +

Fig. 16. Distribution of HTTP response times for drop-tail and ARED/
ECN at 80% offered load.

SACK-ARED+ECN-5ms
0 200 400 600 800 1000 1200 1400
Response Time (ms)

100
k_k——f———}——‘%—‘
.
//

80 2 -
= ./I/"J/E././E//E/
] M/E/E/ P
0/ % s
o
[}

2 7
S 4
: /
o 105% LOAD
Calibration +
20 Reno-DT-148q ®]|
Reno-ARED+ECN-5ms e
A/ SACK-DT-148q ©
[0}
0

Fig. 17. Distribution of HTTP response times for drop-tail and ARED/
ECN at 105% offered load.

with drop-tail? Recall that with HTTP most TCP connec-
tions only send a few segments and for loss events in these
connections, SACK never comes into effect.

For longer flows (those with responses larger than
50 KB), we find improvement in response times when using
SACK as opposed to Reno. In Fig. 18, we show response
time CDFs up to 20,000 ms at 80% load for flows that con-
tain HTTP responses larger than 50 KB. Drop-tail and
ARED + ECN are the queue management techniques
shown. Although we have show that ARED + ECN with
a 5 ms target delay performs well for flows that have short
responses and finish quickly, the performance for larger
flows is very poor. Using SACK improves performance
for ARED + ECN a bit, but it is still far below that of
drop-tail. With drop-tail, SACK improves performance
of these long flows over that of Reno. This performance
improvement is attributed to the ability of the flows using
SACK to avoid timeouts by recovering from multiple loss-
es in a single fast retransmission period.

Even though the difference between Reno and SACK
and drop-tail and ARED + ECN are dramatic for larger

100 e e —————m e =
80 / ijrz ﬁrﬁ f//fjf//f:/‘ =
N

Sos
\‘\W’si\

Cumulative Probability
IN o
o o
—

/ 80% LOAD, RESPONSES > 50KB
20 Calibration
Reno-DT-148q
SACK-DT-148q
Reno-ARED+ECN-5ms

SACK-ARED+ECN-5ms

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Response Time (ms)

>orOm+

Fig. 18. Distribution of HTTP response times for flows with responses
larger than 50 KB for Reno and SACK with drop-tail and ARED/ECN at
80% offered load.

flows, these flows only represent 1.4% of the total flows
(but almost half of the total bytes) in our workload. These
performance differences are only revealed when we look at
the larger flows in isolation.

6.5. Drop-tail vs. ARED + ECN

Here, we compare the performance of the two “best”
error recovery and queue management combinations for
overall web traffic. Figs. 19 and 20 present the response time
CDFs for Reno-DT-148q and Reno-ARED + ECN-5 ms.
With these scenarios, the fundamental trade-off between
improving response times for some responses and making
them worse for other responses is clear. Further, the extent
of the trade-off is quite dependent on the level of congestion.
At 80% load, Reno-ARED + ECN-5ms offers better
response-time performance for nearly 75% of responses
but marginally worse for the rest. At levels of severe conges-
tion the improvements in response times for Reno-ARE-
D + ECN-5ms apply to around 50% of responses while
the response times of the other 50% are degraded significant-

100
Wk‘*"k—»—q_‘
/ A——————k—————?::_
80 / e
- E/rr
> /‘// 5 /5/4}/5/‘3,»43
% / L
g 60 ///
a
[}
=)
g 'y
/
iV 80% LOAD 1
I Calibration +
/ Reno-DT-148q ©
O / Reno-ARED+ECN-6ms =+

0 200 400 600 800 1000 1200 1400
Response Time (ms)

Fig. 19. Distribution of HTTP response times for best drop-tail and best
AQM at 80% offered load.

12 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

100

R R
*/*/_*/4’/
80] - -
g g8 =
60 / Z/B/ T

Cumulative Probability

T
NN

105% LOAD

Calibration ~ +

Reno-DT-148q O
A

20

/P
o ,.z/ Reno-ARED+ECN-5ms ‘
0 200 400 600 800 1000 1200 1400
Response Time (ms)

Fig. 20. Distribution of HTTP response times for best drop-tail and best
AQM at 105% offered load.

ly, Reno-DT-148q and Reno-ARED + ECN-5 ms are on
the opposite ends of the queue-management spectrum, yet,
they each offer better HTTP response times for different por-
tions of the total set of responses. Further complicating the
trade-off is the result that Reno-DT-148q gives higher link
utilization along with a high average queue size, while
Reno-ARED + ECN-5 ms gives low average queue sizes,
but also lower link utilization.

6.6. Performance for offered loads less than 80%

We have presented results for offered loads of 80% and
105% as these are representative of moderately and severely
congested networks. For load levels lower than 80%, there
is an advantage for ARED + ECN-5 ms over DT-148q for
shorter responses. The same trade-off is present for 50-80%
load as with loads over 80% and hence is a fundamental
trade-off. ARED + ECN-5 ms has lower average queue siz-
es and the corresponding better response time performance
for shorter responses, with similar link utilization as DT-
148q. DT-148q performs better for responses that take
longer than 600 ms to complete.

Much below 80% offered load, SACK and Reno have
identical performance, and ARED + ECN performs only
marginally better than drop-tail. At these loads, there is
no difference in link utilization between any of the queue
management techniques. There is also very little packet loss
(no average loss over 3%). For loads under 80%, given the
complexity of implementing RED, there is no compelling
reason to use ARED + ECN over drop-tail. Fig. 21 is rep-
resentative of these results, comparing the performance for
our best queue management/protocol combination at 50%
offered load.

7. Conclusions
Our results provide an evaluation of the state-of-the-art in

TCP error recovery and congestion control in the context of
Internet traffic composed of “mice” and “‘elephants.” We

100

——
80 e
7
g 60 //,
o f
4
= ./
g 40
g '/’,ﬁ
3 /
O ’r
20 ;U 50% LOAD B
’ Calibration +
Reno-DT-148q O
N7 SACK-ARED+ECN-5ms

0 200 400 600 800 1000 1200 1400
Response Time (ms)

Fig. 21. Distribution of HTTP response times for best drop-tail and best
AQM at 50% offered load.

used bursty HTTP traffic sources generating a traffic mix
with a majority of flows sending few segments (less than 5),
a small number sending many segments (more than 50),
and a number in the [5, 50] segment range.

Using NS-2 simulations, we evaluated how well various
pairings of TCP Reno, TCP SACK, drop-tail, Adaptive
RED (with both packet-marking and dropping), and
ECN perform in the context of HTTP traffic. Our primary
metric of performance was the response time to deliver
each HTTP object requested along with secondary metrics
of link utilization, router queue size and packet loss per-
centage. Our main conclusions based on HTTP traffic
sources and these metrics are:

e There is no difference in performance between Reno and
SACK for typical short-lived HTTP flows independent
of load and pairing with queue management algorithm.
For larger flows, using SACK does improve perfor-
mance over that of Reno.

As expected, ARED with ECN marking performs better
than ARED with packet dropping and the value of ECN
marking increases as the offered load increases. ECN
also offers more significant gains in performance when
the target delay is small (5 ms).

e Unless congestion is a serious concern (i.e., for average
link utilizations of 80% or higher with bursty sources),
there is little benefit to using RED queue management
in routers.

ARED with ECN marking and a small target delay
(5ms) performs better than drop-tail with 2 x BDP
queue size at offered loads having moderate levels of
congestion (80% load). This finding should be tempered
with the caution that, like RED, ARED is also sensitive
to parameter settings.

At loads that cause severe congestion, there is a complex
performance trade-off between drop-tail with 2 x BDP
queue size and ARED with ECN at a small target delay.
ARED can improve the response time of about half the
responses but worsens the other half. Link utilization is
significantly better with drop-tail.

M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx 13

e At all loads there is little difference between the perfor-
mance of drop-tail with 2 x BDP queue size and ARED
with ECN marking and a larger target delay (60 ms).

Acknowledgements

We thank Jin Cao, Bill Cleveland, Yuan Gao, Dong
Lin, and Don Sun from Bell Labs for help in implementing
their PackMime model in NS-2. This work supported in
parts by grants from the National Science Foundation
(grants ITR-0082870, CCR-0208924, EIA-0303590, and
ANI-0323648), Cisco Systems Inc., and the IBM
Corporation.

References

[1] M. C. Weigle, K. Jeffay, F. D. Smith. Quantifying the effects of recent
protocol improvements to standards-track TCP, in: Proceedings of
the 11th TEEE/ACM International Symposium on Modeling, Anal-
ysis and Simulation of Computer Telecommunication Systems
(MASCOTS), Orlando, FL, 2003, pp. 226-229.

[2] S. Floyd, V. Jacobson, Random early detection gateways for
congestion avoidance, IEEE/ACM Transactions on Networking 1
(4) (1993) 397-413.

[3] S. Floyd. RED: discussions of setting parameters, <http://www.icir.-
org/floyd/REDparameters.txt/> (Nov. 1997).

[4] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: an algorithm for
increasing the robustness of RED’s active queue management,
Technical Note (August 2001).

[5] S. Floyd, Recommendation on using the gentle variant of RED.
Technical Note, <http://www.icir.org/floyd/red/gentle.html/> (March
2000).

[6] S. Floyd, TCP and explicit congestion notification, ACM Computer
Communication Review 24 (5) (1994) 10-23.

[7] K. K. Ramakrishnan, S. Floyd. A proposal to add explicit congestion
notification (ECN) to IP, RFC 2481, experimental (January 1999).

[8] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno,
and SACK TCP, ACM Computer Communication Review 26 (3)
(1996) 5-21.

[9] M. Mathis, J. Mahdivi, S. Floyd, A. Romanow, TCP selective
acknowledgement options, RFC 2018, October 1996.

[10] S. Floyd, Issues of TCP with SACK, Tech. rep., LBL (March 1996).

[11] R. Bruyeron, B. Hemon, L. Zhang, Experimentations with TCP
selective acknowledgement, ACM Computer Communication Review
28 (2) (1998) 54-717.

[12] J. Bolliger, U. Hengartner, T. Gross, The effectiveness of end-to-end
congestion control mechanisms. Tech. rep., ETH Zurich (February
1999).

[13] M. Mathis, J. Semke, J. Mahdivi, The macroscopic behavior of the
tcp congestion avoidance algorithm, ACM Computer Communica-
tion Review 27 (3) (1997) 67-82.

[14] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, R. Katz.
TCP behavior of a busy Internet server: analysis and improvements,
in: Proceedings of IEEE INFOCOM, 1998.

[15] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.
Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K.
Ramakrishnan, S. Shenkar, J. Wroclawski, L. Zhang. Recommenda-
tions on queue management and congestion avoidance in the Internet,
RFC 2309 (April 1998).

[16] M. Christiansen, K. Jeffay, D. Ott, F.D. Smith, Tuning RED for web
traffic, IEEE/ACM Transactions on Networking 9 (3) (2001) 249-264.

[17] M. May, J.-C. Bolot, C. Diot, B. Lyles, Reasons not to deploy RED,
in: Proceedings of IWQoS, London, UK, 1999.

[18] Y. Zhang, L. Qiu, Understanding the end-to-end performance impact
of RED in a heterogeneous environment, Tech. Rep. 2000-1802,
Cornell CS (July 2000).

[19] J.H. Salim, U. Ahmed, Performance evaluation of explicit congestion
notification (ECN) in IP Networks, RFC 2884 (July 2000).

[20] K. Pentikousis, H. Badr, B. Kharmah, On the performance gains
of TCP with ECN, in: Proceedings of the 2nd European Confer-
ence on Universal Multiservice Networks (ECUMN), Colmar,
France, 2002.

[21] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.
Huang, S. McCanne, K. Varadhan, Y. Xu, H. Yu, Advances in
Network Simulation, IEEE Computer 33 (5) (2000) 59-67.

[22]J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay, F.D. Smith, M.C. Weigle.
Stochastic models for generating synthetic HTTP source traffic, in:
Proceedings of IEEE INFOCOM, Hong Kong, 2004.

[23] W.S. Cleveland, D. Lin, D.X. Sun, IP packet generation: statistical
models for TCP start times based on connection-rate superposition,
in: Proceedings of ACM SIGMETRICS, Santa Clara, CA, 2000, pp.
166-177.

[24]J. Cao, W.S. Cleveland, D. Lin, D.X. Sun, On the nonstationarity of
Internet traffic, in: Proceedings of ACM SIGMETRICS, Cambridge,
MA, 2001, pp. 102-112.

[25] F. Hernandez-Campos, F.D. Smith, K. Jeffay, Tracking the evolution
of web traffic: 1995-2003, in: Proceedings of the 11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunication Systems (MASCOTS), Orlando, FL,
2003, pp. 16-25.

[26] M. Crovella, L. Lipsky, Long-lasting transient conditions in simula-
tions with heavy-tailed workloads, in: Proceedings of the 1997 Winter
Simulation Conference, 1997, pp. 1005-1012.

[27] L. Rizzo, Dummynet: a simple approach to the evaluation of network
protocols, ACM Computer Communication Review 27 (1) (1997) 31—
41.

[28] M.C. Weigle, Investigating the use of synchronized clocks in TCP
congestion control. Ph.D. thesis, University of North Carolina at
Chapel Hill (August 2003).

Michele Weigle is an Assistant Professor of
Computer Science at Clemson University. She
received her Ph.D. from the University of North
Carolina at Chapel Hill in 2003. Her research
interests include network protocol evalation,
network simulation and modeling, Internet con-
gestion control, and mobile ad-hoc networks.

Kevin Jeffay is S. Shepard Jones Distinguished
Term Professor of Computer Science in the
Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill. He also
serves as the director of Undergraduate Studies
for the department. He received his Ph.D. from
the University of Washington in 1989. His
research and teaching interests are in real-time
systems, operating systems, networking, and
multimedia systems. He and his students focus on
the general problem of providing real-time com-
putation and communication services across the Internet. Dr. Jeffay is
currently the editor-in-chief of the ACM/Springer-Verlag journal Multi-
media Systems. He is the program chair of the 2000 IEEE Real-Time
Systems Symposium and the 2000 International Workshop on Network
and perating System Support for Digital Audio and Video (NOSSDAYV).

http://www.icir.org/floyd/REDparameters.txt
http://www.icir.org/floyd/REDparameters.txt
http://www.icir.org/floyd/red/gentle.html

ARTICLE IN PRESS

14 M.C. Weigle et al. | Computer Communications xxx (2006) xxx—xxx

F. Donelson Smith is a Research Professor of
Computer Science at the University of North
Carolina at Chapel Hill. His current research
interests include networking, operating systems,
and distributed systems.

	Quantifying the effects of recent protocol improvements to TCP: Impact on Web performance
	Introduction
	Background - congestion control and avoidance
	TCP Reno
	Random early detection
	Adaptive RED
	Explicit congestion notification

	Background - error recovery
	Error recovery in TCP Reno
	Selective acknowledgments

	Related work
	Methodology
	Experimental setup
	Queue management
	Drop-tail settings
	Adaptive RED settings

	Performance metrics
	Levels of offered load and data collection

	Results
	Reno+droptail
	Reno+adaptive RED
	Reno+adaptive RED+ECN
	SACK
	Drop-tail vs. ARED+ECN
	Performance for offered loads less than 80%

	Conclusions
	Acknowledgements
	References

