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Abstract

Experimentation is at the core of research in the behavioral and neural sciences, yet ob-
servations can be expensive and time-consuming to acquire (e.g., MRI scans, responses
from infant participants). A major interest of researchers is designing experiments that
lead to maximal accumulation of information about the phenomenon under study with
the fewest possible number of observations. In addressing this challenge, statisticians
have developed adaptive design optimization methods. This paper introduces a hierar-
chical Bayes extension of adaptive design optimization that provides a judicious way to
exploit two complementary schemes of inference (with past and future data) to achieve
even greater accuracy and efficiency in information gain. We demonstrate the method
in a simulation experiment in the field of visual perception.

Keywords: optimal experimental design, hierarchical Bayes, mutual information,
visual spatial processing

1 Introduction
Accurate measurement is essential in the behavioral and neural sciences to ensure
proper model inference. Efficient measurement in experimentation can also be critical
when observations are costly (e.g., MRI scan fees) or time-consuming, such as requir-
ing hundreds of observations from an individual to measure sensory (e.g., eyes, ears)
abilities or weeks of training (e.g., mice). The field of design optimization (Atkinson
& Donev, 1992; see Section 2 for a brief review) pursues methods of improving both,
with adaptive optimization (e.g., DiMattina & Zhang, 2008, 2011) being one of the
most promising approaches to date. These adaptive design optimization (ADO) meth-
ods capitalize on the sequential nature of experimentation by seeking to gain as much



information as possible from data across the testing session. Each new measurement is
made using the information learned from previous measurements of a system so as to
achieve maximal gain of information about the processes and behavior under study.

Hierarchical Bayesian modeling (HBM) is another approach to increasing the effi-
ciency and accuracy of inference (e.g., Gelman, Carlin, Stern, & Rubin, 2004; Jordan,
1998; Koller & Friedman, 2009; Rouder & Lu, 2005). It seeks to identify structure
in the data-generating population (e.g., the kind of groups to which an individual be-
longs) in order to infer properties of an individual given the measurements provided. It
is motivated by the fact that data sets, even if not generated from an identical process,
can contain information about each other. Hierarchical modeling provides a statistical
framework for fully exploiting such mutual informativeness.

These two inference methods, ADO and HBM, seek to take full advantage of two
different types of information, future and and past data, respectively. Because both
can be formulated in a Bayesian statistical framework, it is natural to combine them
to achieve even greater information gain than either alone can provide. Suppose, for
instance, that one has already collected data sets from a group of participants in an
experiment measuring risk tolerance, and data are about to be collected from another
person. A combination of HBM and ADO allows the researcher to take into account
the knowledge gained about the population in choosing optimal designs. The procedure
should propose designs more efficiently for the new person than ADO alone, even when
no data for that person have been observed.

Despite the intuitive appeal of this dual approach, to the best of our knowledge, a
general, fully Bayesian framework integrating the two methods has not been published.
In this letter, we provide one. In addition, we show how each method and their combina-
tion contribute to gaining the maximum possible information from limited data, in terms
of Shannon entropy, in a simulation experiment in the field of visual psychophysics.

2 Paradigm of Adaptive Design Optimization (ADO)
The method for collecting data actively for best possible inference, rather than using
a data set observed in an arbitrarily fixed design, is known as optimal experimental
design in statistics, which goes back to the pioneering work in the 1950s and 1960s
(Lindley, 1956; Chernoff, 1959; Kiefer, 1959; Box & Hill, 1967). Essentially the
same technique has been studied and applied in machine learning as well, known as
query-based learning (Seung, Opper, & Sompolinsky, 1992) and active learning (Cohn,
Ghahramani, & Jordan, 1996). Since in most cases data collection occurs sequentially
and optimal designs are best chosen upon immediate feedback from each data point, the
algorithm is by nature adaptive, hence the term adaptive design optimization (ADO) that
we use here.

The recent surge of interest in this field can be attributed largely to the advent of
fast computing, which has made it possible to solve more complex and a wider range
of optimization problems, and in some cases do so in real-time experiments. ADO
is gaining traction in neuroscience (Paninski, 2003, 2005; Lewi, Butera, & Paninski,
2009; DiMattina & Zhang, 2008, 2011), and a growing number of labs are applying
it in various areas of psychology and cognitive science, including retention memory
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(Cavagnaro, Pitt, & Myung, 2009; Cavagnaro, Myung, Pitt, & Kujala, 2010), decision
making (Cavagnaro, Gonzalez, Myung, & Pitt, 2013; Cavagnaro, Pitt, Gonzalez, &
Myung, 2013), psychophysics (Kujala & Lukka, 2006; Lesmes, Jeon, Lu, & Dosher,
2006), and the development of numerical representation (Tang, Young, Myung, Pitt, &
Opfer, 2010). In what follows, we provide a brief overview of the ADO framework.

ADO is formulated as a Bayesian sequential optimization algorithm that is executed
over the course of an experiment.1 Specifically, on each trial of the experiment, on
the basis of the present state of knowledge (prior) about the phenomenon under study,
which is represented by a statistical model of data, the optimal design with the highest
expected value of a utility function (defined below) is identified. The experiment is then
carried out with the optimal design, and measured outcomes are observed and recorded.
The observations are subsequently used to update the prior to the posterior using Bayes’
theorem. The posterior in turn is used to identify the optimal design for the next trial of
the experiment. As depicted in the shaded region of Figure 1, these alternating steps of
design optimization, measurement, and updating of the individual-level data model are
repeated in the experiment until a suitable stopping criterion is met.

In formal statistical language, the first step of ADO, design optimization, entails
finding the experimental design (e.g., stimulus) that maximizes a utility function of
the following form (Chaloner & Verdinelli, 1995; Nelson, McKenzie, Cottrell, & Se-
jnowski, 2011; Myung, Cavagnaro, & Pitt, 2013):

U(dt) =

∫∫ [
log

p(θ|y(1:t), dt)
p(θ|y(1:t−1))

]
p(y(t)|θ, dt) p(θ|y(1:t−1)) dy(t) dθ, (1)

where θ is the parameter of a data model (or measurement model) that predicts observed
data given the parameter, and y(1:t) is the collection of past measurements made from
the first to (t − 1)-th trials, denoted by y(1:t−1), plus an outcome, y(t), to be observed
in the current, t-th trial conducted with a candidate design, dt. In this equation, note
that the function p(y(t)|θ, dt) specifies the model’s probabilistic prediction of y(t) given
the parameter θ and the design dt, and p(θ|y(1:t−1)) is the posterior distribution of the
parameter given past observations, which has become the prior for the current trial.
Finally, log p(θ|y(1:t),dt)

p(θ|y(1:t−1))
, referred to as the sample utility function, measures the utility of

design dt, assuming an outcome, y(t), and a parameter value (often a vector), θ.
U(dt) in Eq. (1) is referred to as the expected utility function, and is defined

as the expectation of the sample utility function with respect to the data distribution
p(y(t)|θ, dt) and the parameter prior p(θ|y(1:t−1)). Under the above particular choice of
the sample utility function, the expected utility U(dt) admits an information theoretic
interpretation. Specifically, the quantity becomes the mutual information between the

1In the present study, we consider a particular form of ADO that assumes the use of
a Bayesian model and the information-theoretic utility (discussed further in the text).
While this choice has straightforward justification from the Bayesian perspective as
the quality of inference is evaluated on the level of a posterior distribution, there are
other forms of ADO that assumes a non-Bayesian model or achieves other types of
optimality (e.g., minimum quadratic loss of a point estimate). Chaloner and Verdinelli
(1995) provide a good review of various approaches to design optimization.
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Figure 1: Schematic illustration of the steps involved in adaptive design optimization
(ADO; shaded region only) and hierarchical ADO (HADO; whole diagram). See text
for further details.

parameter variable Θ and the outcome variable Y (t) conditional upon design dt, i.e.,
U(dt) = I(Θ;Y (t)|dt) (Cover & Thomas, 1991), which also represents the so-called
Bayesian D-optimality (Chaloner & Verdinelli, 1995). Accordingly, the optimal de-
sign that maximizes U(dt), or d∗t = arg maxU(dt), is the one that yields the largest
information gain about the model parameter(s) upon the observation of a measurement
outcome.2

The second, measurement step of ADO involves administering the optimal design
d∗t and observing the measurement outcome y(t), as illustrated in Figure 1. The final,
third step of the ADO application is updating the prior p(θ|y(1:t−1)) to the posterior
p(θ|y(1:t)) by Bayes’ theorem on the basis of the newly observed outcome y(t).

2In defining the mutual information here, we assume that the goal of ADO is to
maximize the information about all parameter elements of a model jointly, rather than
some of them. In another situation, for example, the model may be a mixture model
whose parameter θ contains an indicator to a sub-model, and the goal of ADO may be
to maximize the information about the indicator variable (i.e., the problem of model
discrimination; e.g., Cavagnaro et al., 2010). In this case, the required change is to
redefine the sample utility function in Eq. (1) by integrating out the parameters of no
interest (e.g., sub-model parameters) from each of the distributions inside the logarithm.
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In implementing ADO, a major computational burden is finding the optimal design
d∗, which involves evaluating the multiple integrals in both the sample and the expected
utility functions in Eq. (1) (integral is implicit in the sample utility). The integrals
generally have no closed-form solutions and need to be calculated many times with
candidate designs substituted during optimization. Further, online data collection re-
quires that the integration and optimization be solved numerically on computer in real
time. Advances in parallel computing (e.g., general purpose GPU computing) have
made it possible to solve some problems using grid-based algorithms. In situations
in which grid-based methods are not suitable, several promising Markov chain Monte
Carlo (MCMC) methods have been developed to perform the required computation
(Müller, Sanso, & De Iorio, 2004; Amzal, Bois, Parent, & Robert, 2006; Cavagnaro et
al., 2010; Myung et al., 2013).

3 Hierarchical Adaptive Design Optimization (HADO)
As currently used, ADO is tuned to optimizing a measurement process at the indi-
vidual participant level, without taking advantage of information available from data
collected from previous testing sessions. Hierarchical Bayesian modeling (HBM; for
theory, Good, 1965; de Finetti, 1974; Bernado & Smith, 1994; for application exam-
ples, Jordan, 1998; Rouder, Speckman, Sun, & Jiang, 2005; Rouder & Lu, 2005; Lee,
2006) not only provides a flexible framework for incorporating this kind of prior infor-
mation but is also well suited for being integrated within the existing Bayesian ADO
paradigm to achieve even greater efficiency of measurement.

The basic idea behind HBM is to improve the precision of inference (e.g., power
of a test) by taking advantage of statistical dependencies present in data. For example,
suppose that there are previous measurements taken from different individuals who are
considered a random sample from a certain population. It is highly likely that measure-
ments taken from a new individual drawn from the same population will share similar-
ities with others. In this situation, adaptive inference will enjoy greater benefit when
taking the specific data structure into account rather than starting with no such informa-
tion. That is, data sets, as a collection, contain information about one another, lending
themselves to more precise inference. Since individual data sets require themselves to
be modeled (i.e., a measurement model), the statistical relationship among them needs
to be modeled on a separate level, hence the model being hierarchical (for more exam-
ples of the upper-level structure in a hierarchical model, see Koller & Friedman, 2009;
Gelman et al., 2004).

From the perspective of Bayesian inference, HBM is a way, given a certain data
model, to form an informative prior for model parameters by learning from data. An
informative prior, however, may be obtained not only by learning newly from empirical
observations but also by incorporating established knowledge about the data-generating
structure. Since the use of prior information is one of the major benefits of Bayesian
optimal experimental design (Chaloner & Verdinelli, 1995), it is no surprise to find
examples of using informative priors in the literature of design optimization. These
applications focus on imposing theoretically sensible constraints on the prior in a con-
servative manner, in which the constraints are represented by a restricted support of
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the prior (Tulsyan, Forbes, & Huang, 2012), regularization (Woolley, Gill, & Theunis-
sen, 2006), structured sparsity (Park & Pillow, 2012), and modeled covariance structure
(Ramirez et al., 2011). Some of these studies employ hierarchical models because mod-
eling a prior distribution with hyper-parameters naturally entails hierarchical structure.
The present study, by contrast, focuses on learning prior knowledge from data, which
is useful when the phenomenon being modeled has yet to permit effective, theoretical
(or algorithmic) constraints to be used as a prior or when, if certain constraints have
already been incorporated, inference can further benefit from information elicited from
a specific empirical condition.

3.1 Formulation
To integrate HBM into ADO, let us first specify a common form of a hierarchical Bayes
model. Suppose that an individual-level measurement model has been given as a prob-
ability density or mass function, p(yi|θi), given the parameter (vector), θi, for indi-
vidual i, and the relationship among individuals is described by an upper-level model,
p(θ1:n|η) (e.g., a regression model with η as coefficients), where θ1:n = (θ1, · · · , θn)
is the collection of model parameters for all n individuals. Also commonly assumed
is conditional independence between individuals such that p(yi|θ1:n, y−.i) = p(yi|θi)
where y−.i denotes the collection of data from all individuals except individual i (i.e.,
y1:n = (y1, · · · , yn) minus yi). Then, the joint posterior distribution of the hierarchical
model given all observed data is expressed as

p(θ1:n, η|y1:n) =
1

p(y1:n)
p(y1:n|θ1:n)p(θ1:n|η)p(η)

=
1

p(y1:n)

[
n∏
i=1

p(yi|θi)

]
p(θ1:n|η)p(η), (2)

where p(η) is the prior distribution for the upper-level model’s parameter, η, and the
marginal distribution p(y1:n) is obtained by integrating the subsequent expression over
θ1:n and η.

The model also needs to be expressed in terms of an entity about which the mea-
surement seeks to gain maximal information. In most measurement situations, it is
sensible to assume that the goal is to estimate the traits of a newly measured individual
most accurately. Suppose that a measurement session is currently underway on the n-th
individual, and data from previous measurement sessions, y1:n−1, are available. Then,
the posterior distribution of θn for this particular individual given all available data is
derived from (2) as

p(θn|y1:n) =
1

p(y1:n)

∫∫ [ n∏
i=1

p(yi|θi)

]
p(θ1:n|η)p(η) dη dθ1:n−1 (3)

where the marginal distribution p(y1:n) is obtained by integrating the integrand further
over θn. From a computational standpoint, it is advantageous to turn the above posterior
distribution into a sequentially predictive form. Under the assumption of conditional
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independence, Eq. (3) can be rewritten as

p(θn|y1:n) =
p(yn|θn)p(θn|y1:n−1)∫
p(yn|θn)p(θn|y1:n−1) dθn

, (4)

where

p(θn|y1:n−1) =
1

p(y1:n−1)

∫∫ [n−1∏
i=1

p(yi|θi)

]
p(θ1:n|η)p(η) dη dθ1:n−1 (5)

is the posterior predictive distribution of θn given the data from previous measurement
sessions, y1:n−1 (assuming that yn is yet to be observed).3 An interpretation of this form
is that, as far as θn is concerned, the predictive distribution in Eq. (5) fully preserves
information in the previous data y1:n−1 and, in turn, serves as an informative prior for
the current, n-th individual, which is updated upon actually observing yn.

Having established the basic building blocks of hierarchical adaptive design opti-
mization (HADO), we now describe how measurement within the HADO framework
is carried out. Suppose that a measurement has been taken in trial t − 1 for the n-th
individual, and the session is in need of an optimal design to make the next observation,
y
(t)
n , in trial t. Then, the optimal design, d∗t , is the one that maximizes the following

mutual-information utility:

U(dt) =

∫∫ [
log

p(θn|y1:n−1, y(1:t)n , dt)

p(θn|y1:n−1, y(1:t−1)n )

]
p(y(t)n |θn, dt)p(θn|y1:n−1, y(1:t−1)n ) dy(t)n dθn,

(6)

where y1:n−1 denotes the data from previous n − 1 measurement sessions, and y(1:t)n

contains the n-th individual’s measurements from past t− 1 trials (i.e., y(1:t−1)n ) plus an
observation, y(t)n , that is to be made in trial t using a candidate design, dt. Note that this
utility function of HADO, similar as it may seem in its form to that of ADO in Eq. (1),
takes all previously observed data into account through the hierarchical model, not just
that from the current measurement session.

For HADO to be adaptive, Bayesian updating for posterior distributions inside the
above utility function is performed recursively on two different levels (Figure 1). First,
on the individual level (shaded region), updating is repeated over each measurement
trial (i.e., to find the optimal design d∗t+1 after observing y(t)n ) using Eq. (4) (i.e., Bayes’
theorem). Note that what is modified in Eq. (4) is only the individual data model (i.e.,
p(yn|θn)) with yn = y

(1:t−1)
n augmented with a new measurement, y(t)n . Next, when

the session ends and a new one is to begin for the next participant (outside the shaded
region), the hierarchical model is updated, again using Bayes’ theorem, on the basis
of all n sessions’ data, y1:n, and expressed in a posterior predictive form for θn+1 (Eq.
(5) with n + 1). The session counter n now shifts to n + 1, the trial counter t is reset

3Although the term predictive distribution is usually associated with a Bayesian
model’s prediction of a future observation, it may also be used to mean the prediction
of a future, latent variable in a hierarchical model, such as θn in the present context.
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to 1, and the posterior predictive distribution becomes the prior for the new session to
start with (i.e., p(θn+1|y(1:0)n+1 ) = p(θn+1|y1:n)). This two-stage adaptation is a defining
characteristic of HADO, hence the term “hierarchical adaptive.”

Although not implemented as an application example in the present study, there are
additional forms of HADO that are worth mentioning. The idea of combining the tech-
niques of hierarchical Bayes and optimal experimental design is more general than de-
scribed above. For example, suppose that one wants to understand the population-level
parameters but it is difficult to collect a sufficient amount of data from each individual
(e.g., in developing a human-computer interaction model that functions robustly in a
general setting). This problem is best addressed by hierarchical modeling but the appli-
cation of hierarchical modeling alone is merely ad hoc in the sense that the acquisition
of data is not planned optimally. In this case, introduction of ADO will make it pos-
sible to choose optimal designs adaptively, not only within but also across individual
measurement sessions, so that the maximum possible information is gained about the
population-level parameters. That is, it is possible for the algorithm to probe different
aspects of individuals across sessions that best contribute to the goal of learning the
common functioning, not necessarily learning that particular individual. In achieving
this, the optimal design maximizes the following information-theoretic utility:

U ′(dt)

=

∫∫ [
log

p(η|y1:n−1, y(1:t)n , dt)

p(η|y1:n−1, y(1:t−1)n )

]
p(y(t)n |θn, dt)p(θn, η|y1:n−1, y(1:t−1)n ) dy(t)n dθn dη,

(7)

which measures the expected information gain from a deign dt of the next trial about the
population-level parameter(s) η. As with the preceding formulation, Bayesian updating
needs to be performed on both individual and higher levels, but in this case, updating
p(θn, η|·).

One may also want to optimize an experiment to infer both the higher-level structure
and the individual-level attributes. The formal framework employed in the present study
is general enough to address this problem (i.e., meeting seemingly multiple goals of
inference). The utility function to maximize for an optimal design in the next trial is a
slight modification of Eq. (7):

U ′′(dt)

=

∫∫ [
log

p(θn, η|y1:n−1, y(1:t)n , dt)

p(θn, η|y1:n−1, y(1:t−1)n )

]
p(y(t)n |θn, dt)p(θn, η|y1:n−1, y(1:t−1)n ) dy(t)n dθn dη,

(8)

which equals I(Θn, H;Y
(t)
n |dt) by the notation of mutual information (H denotes the

random variable corresponding to η). A simple yet notable application example of this
formulation is a situation in which the goal of an experiment is to select among multiple,
alternative models, assuming that one of them is the underlying data-generating process
for all individuals, and at the same time to estimate distinct parameter values for each
individual. The utility that captures this goal is a special case of Eq. (8) in which the
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higher-level parameter η turns into a model index m and the corresponding integration
is replaced by summation over the indexes. In fact, a similar approach to choosing op-
timal designs for model selection and parameter learning has been proposed previously
(Sugiyama & Rubens, 2008) but the current framework is more general in that any type
of hierarchical structure can be inferred and the optimality of a design with respect to
the goal is understood from a unified perspective.

3.2 Implementation Considerations
In typical applications of hierarchical Bayes, posterior inference is conducted mainly
to incorporate the data that have already been collected, and all the parameters of inter-
est are updated jointly in a simulation-based method (e.g., via MCMC). This approach,
however, is not well suited to HADO. Many applications of adaptive measurement re-
quire the search for an optimal design between trials to terminate in less than a second.
To circumvent this computational burden, we formulated HADO, as described in the
preceding section, in a natural way that suits its domain of application (experimenta-
tion), allowing the required hierarchical Bayes inference to be performed in two stages.
Below we describe specific considerations for implementing these steps.

Once a numerical form of the predictive distribution (Eq. (5)) is available, updating
the posterior distribution (Eq. (4)) within each HADO measurement session concerns
only the current individual’s parameter and data just as in the conventional ADO. Ac-
cordingly, the recursive updating on the individual level will be no more demanding
than the corresponding operation in conventional ADO since they involve essentially
the same computation. Beyond the individual level, an additional step is required to
revise the posterior predictive distribution of θn given all previous data upon the termi-
nation of each measurement session, which is shown outside the shaded area in Figure
1. The result becomes a prior for the next session, serving as an informative prior for
the individual to be newly measured.4

Critical, then, to the implementation of HADO is a method for obtaining a numer-
ical form of the predictive distribution of θn before a new measurement session begins
for individual n. Fortunately, in most cases this distribution conforms to smoothness
and structured sparsity (a prior distribution with a highly irregular shape is not sensi-
ble), being amenable to approximation. Furthermore, in modeling areas dealing with
high-dimensional feature space, certain theoretical constraints that take advantage of
such regularity are often already studied and modeled into a prior (e.g., Park & Pillow,
2012; Ramirez et al., 2011), which can also be utilized to represent the predictive dis-
tribution. Otherwise, various density estimation techniques with built-in regularization
mechanisms (e.g., kernel density estimator) may be used to approximate the distribu-
tion (Scott, 1992). For a lower-dimensional case, a grid representation may be useful.
In fact, grid-based methods can handle multidimensional problems with high efficiency

4The same, two-level updating can also apply to the case where the inference in-
volves the population-level parameters with optimal designs satisfying the utility func-
tion shown in Eq. (7) or Eq. (8), as long as the predictive distribution p(θn, η|y1:n−1) is
computable.
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when combined with a smart gridding scheme that exploits regularity (e.g., sparse grids;
Pflüger, Peherstorfer, & Bungartz, 2010).

Another consideration is that the predictive distribution of θn must be obtained by
integrating out all other parameters numerically, particularly other individuals’ param-
eters θi’s. If θi’s (or groups of θi’s) are by design conditionally independent in the
upper-level model (p(θ1:n|η)p(η) in Eq. (5)), it is possible to phrase the integral as re-
peated integrals that are easier to compute. Also, note that the shape of the integrands
is highly concentrated with a large number of observations per individual (i.e., large t)
and the posterior predictive of θn tends to be localized as well with accumulation of
data over many sessions (i.e., large n). Various techniques for multidimensional nu-
merical integration are available that can capitalize on these properties. Monte Carlo
integration based on a general sampling algorithm such as MCMC is a popular choice
for high-dimensional integration problems (Robert & Casella, 2004). However, unless
the integrand is highly irregular, multivariate quadrature is a viable option because,
if applicable, it generally outperforms Monte Carlo integration in regard to efficiency
and accuracy and, with recent advances, scales well to high-dimensional integration
depending on the regularity (Griebel & Holtz, 2010; Holtz, 2011; Heiss & Winschel,
2008).

Note that, although an estimate of θn (e.g., posterior mean) is obtained at the end
of the measurement session, the main purpose of posterior updating for θn within the
session is to generate optimal designs. Thus, the resulting estimate of θn may not nec-
essarily be taken as a final estimate, especially when the employed posterior predictive
approximation is not highly precise. If needed, additional Bayesian inference based on
the joint posterior distribution in Eq. (2) may be conducted after each test session with
added data (top right box in Figure 1). This step will be particularly suitable when the
upper-level structure (i.e., η) needs to be analyzed, or precise estimates of all previously
tested individuals’ parameters are required for a certain type of analysis (e.g., to build a
classifier that categorizes individuals based on modeled traits in the parameters).

It is also notable, from the computational perspective, that the procedure inside the
shaded area in Figure 1 requires online computation during the measurement session,
whereas the posterior predictive calculation outside the area (i.e., computing its grid
representation) is performed offline between sessions. In case multiple sessions need
to be conducted continually without an interval sufficient for offline computation, the
same predictive distribution may be used as a prior for these sessions; for example,
offline computation is performed overnight to prepare for the next day’s measurement
sessions. This approach, though not ideal, will provide the same benefit of hierarchical
modeling as data accumulate.

Lastly, in applying HADO we may want to consider two potential use cases. One is
a situation in which there is no background database available a priori and therefore the
hierarchical model in HADO might learn some idiosyncrasies from the first few data
sets (i.e., small n). The other, more likely use case is where there is a fairly large number
of pretested individuals that can be used to build and estimate the hierarchical model.
While HADO can be applied to both cases, it would be no surprise that its benefit
should be greater in the latter situation. Even so, the behavior of HADO with small
n is worth noting here. First, if there exists a prior that has been used conventionally
for the modeling problem, the prior of the upper-level structure in HADO should be
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set in such a way that when n = 0 or 1 it becomes comparable to that conventional
prior, if the hyper-parameters are marginalized out. Second, unless the model is overly
complex (e.g., in this context, the higher-level structure is highly flexible with too many
parameters), Bayesian inference is generally robust against overfittting to idiosyncrasies
in a small data sample because the posterior of model parameters given the data would
not deviate much from the prior. Otherwise, if overfitting is suspected, HADO inference
should start being applied and interpreted once an adequate sample is accumulated.

In sum, ADO for gaining maximal information from sequential measurements has
been extended to incorporate the hierarchical Bayes model to improve information gain
further. Conceptually, HADO improves the estimation of an individual data model by
taking advantage of the mutual informativeness among individuals tested in the past.
While there may be alternative approaches to forming an informative prior from past
data for a Bayesian analysis, hierarchical Bayes is the method that enables both the
generations of individual-level data and the relationship among them to be modeled and
inferred jointly in a theoretically justified manner. The formulation and implementation
of HADO provided above exploit the benefits of both hierarchical Bayes and ADO by
integrating them within a fully Bayesian framework.

4 Application Example
The benefits of HADO were demonstrated in a simulated experiment in the domain of
visual perception. Visual spatial processing is most accurately measured using a con-
trast sensitivity test, in which sinewave gratings are presented to participants at a range
of spatial frequencies (i.e., widths) and luminance contrasts (i.e., relative intensities).
The objective of the test is to measure participants’ contrast threshold (detectability)
across a wide range of frequencies, which together create a participant’s contrast sen-
sitivity function (CSF). The comprehensiveness of the test makes it useful for detect-
ing visual pathologies. However, because the standard methodology can require many
hundreds of stimulus presentations for accurate threshold measurements, it is a prime
candidate for the application of ADO and HADO.

Using the Bayesian framework described in Section 2, Lesmes, Lu, Baek, and Al-
bright (2010) introduced an adaptive version of the contrast sensitivity test called qCSF.
Contrast sensitivity, S(f), against grating frequency, f , was described using the trun-
cated log-parabola with four parameters (Watson & Ahumada, 2005):

S(f) =


γmax − δ if f < fmax − β

2

√
δ

log10 2
;

γmax − (log10 2)

(
f − fmax

β/2

)2

otherwise,
(9)

where γmax is the peak sensitivity at the frequency fmax, β denotes the bandwidth of
the function (full width at half the peak sensitivity), δ is the low-frequency truncation
level, and all variables and parameters are on base-10 log scales. The optimal stimulus
selection through ADO, along with the parametric modeling, was shown to reduce the
number of trials (<100) required to obtain a reasonably accurate estimate of CSF at
only a minimal cost in parameter estimation compared to non-adaptive methods.
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To demonstrate the benefits of HADO, the current simulation study considered four
conditions in which simulated subjects were tested for their CSFs by means of four
different measurement methods. We begin by describing how these conditions were
designed and implemented.

4.1 Simulation Design
The two most interesting conditions were the ones in which ADO and HADO were used
for stimulus selection. In the first, ADO condition, the qCSF method of Lesmes et al.
(2010) was applied and served as the existing, state-of-the-art technique against which,
in the second, HADO condition, its hierarchical counterpart developed in the present
study was compared. If the prior information captured in the upper-level structure of
the hierarchical model can improve the accuracy and efficiency of model estimation,
then performance in the HADO condition should be better than that in the ADO (qCSF)
condition. Also included for completeness were two other conditions to better under-
stand information gain achieved by each of the two components of HADO: hierarchical
Bayes modeling (HBM) and ADO. To demonstrate the contribution of HBM alone to
information gain, in the third, HBM condition, prior information was conveyed through
HBM but no optimal stimulus selection was performed during measurement (i.e., stim-
uli were not selected by ADO but sampled randomly). In the fourth, non-adaptive con-
dition, neither prior data nor stimulus selection was utilized, so as to provide a baseline
performance level against which improvements of the other methods could be assessed.

The hierarchical model in the HADO condition comprised two layers. On the in-
dividual level, each subject’s CSF was modeled by the four-parameter, truncated log-
parabola specified in Eq. (9). The model provided a probabilistic prediction through a
psychometric function so that the subject’s binary response to a presented stimulus (i.e.,
detection of a sinusoidal grating with chosen contrast and frequency) could be predicted
as a Bernoulli outcome. The log-Weibull psychometric function in the model has the
form:

Ψ(c, f) = .5 + (.5− λ/2)
[
1− exp

(
−10κ(log10 c+log10 S(f)

)]
, (10)

where c and f denote the contrast and the spatial frequency, respectively, of a stimu-
lus being presented (i.e., design variables), and S(f) is the contrast sensitivity (or the
reciprocal of the threshold) at the frequency f (i.e., CSF) modeled by the truncated log-
parabola in Eq (9). The two parameters of the psychometric function, λ (lapse rate; set
to .04) and κ (psychometric slope; set to 3.5), were given particular values following
the convention in previous studies (Lesmes et al., 2010; Hou et al., 2010).

On the upper level, the generation of a subject’s CSF parameters was described
by a two-component, four-variate Gaussian mixture distribution, along with the usual,
normal-inverse-Wishart prior on each component and the beta prior on mixture weights.
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Symbolically,

(γmax
i , fmax

i , βi, δi) ∼
2∑
j=1

φj N (µj,Σj), i = 1, · · · , n

(µj,Σj) ∼ NIW (µ0, κ0,Λ0, ν0), j = 1, 2 (11)

φ1 ∼ Beta(α0, β0), φ2 = 1− φ1,

where the parameter values of the normal-inverse-Wishart prior (µ0 = (2, 0.40, 0.78,
0.5), κ0 = 2, Λ0 = 1

3
π2 I, ν0 = 5) were chosen on the following grounds: When

there is little accumulation of data, the predictive distribution of CSF parameters should
be comparable to the prior distribution used in the previous research (i.e., the prior of
the non-hierarchical CSF model in Lesmes et al., 2010). The beta prior was set to
α0 = β0 = 0.5. The choice of a two-component mixture was motivated by the na-
ture of the data which are assumed to be collected from two groups under different
ophthalmic conditions. In practice, when this type of information (i.e., membership
to distinct groups) is available, the use of a mixture distribution will be a sensible ap-
proach to lowering the entropy of the entity under estimation. While a more refined
structure might be plausible (e.g., CSFs covary with other observed variables), we did
not further investigate the validity of alternative models since the current hypothesis
(i.e., individuals are similar to each other in the sense that their CSFs are governed by a
Gaussian component in a mixture model) was simple and sufficient to show the benefits
of HADO.

The procedure for individual-level measurement with optimal stimuli (i.e., shaded
area in Figure 1) followed the implementation of qCSF (Lesmes et al., 2010) in which
all required computations for design optimization and Bayesian updating were per-
formed on a grid in a fully deterministic fashion (i.e., no Monte Carlo integration; see
Lesmes et al., 2010 for detail). The posterior inference of the upper-level model, or
the formation of a predictive distribution given the prior data (i.e., outside the shaded
region in Figure 1), also involved no sampling-based computation. This was possible
because the upper-level model (i.e., Gaussian mixture) allowed for conditional inde-
pendence between individuals so that the posterior predictive density (Eq. (5)) of a
particular θn value could be evaluated as repeated integrals over individual θi’s. To in-
crease the precision of grid representations of prior and posterior distributions, which
are constantly changing with data accumulation, the grid was defined dynamically on a
four-dimensional ellipsoid in such a way that the support of each updated distribution
with at least 99.9% probability is contained in it. The grid on the ellipsoid was obtained
by linearly transforming a grid on a unit 4-ball that had 20,000 uniformly spaced points.

The ADO (qCSF) condition shared the same individual data model as specified in
the HADO condition, but the variability among individuals was not accounted for by an
upper-level model. Instead, each individual’s parameters were given a diffuse, Gaussian
prior comparable to the non-informative prior used previously in the field. The HBM
condition took the whole hierarchical model from HADO, but the measurement for each
individual was made with stimuli randomly drawn from a prespecified set. Finally, the
non-adaptive method was based on the non-hierarchical model in ADO (qCSF) and
used random stimuli for measurement.
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To increase the realism of the simulation, we used real data collected from adults
who underwent CSF measurement. There were 147 data sets, 67 of which were from
individuals whose tested eye was diagnosed as amblyopic (poor spatial acuity). The
remaining 80 data sets were from tests on non-diseased eyes. Thirty-six of these indi-
viduals took the qCSF test (300 trials with optimal stimuli) and 111 were administered
the non-adaptive test (700 to 900 trials with random stimuli). The number of measure-
ments obtained from each subject was more than adequate to provide highly accurate
estimates of their CSFs.

To compare the four methods, we first used a leave-one-out paradigm, treating 146
subjects as being previously tested and the remaining subject as a new individual to
be measured subsequently. We further assumed that, in each simulated measurement
session, artificial data are generated from an underlying CSF (taken from the left-out
subject’s estimated CSF) with one of the four methods providing stimuli. If HADO
is applied, this situation represents a particular state in the recursion of measurement
sessions shown in Figure 1; that is, the session counter is changing from n = 146 to
n = 147 to test a new, 147th subject. It does not matter whether the previously collected
data were obtained by using HADO or not, since their estimation precision was already
very high as a result of using the brute-force, large number of trials.

One may wonder how HADO would perform if it were applied when there is a small
accumulation of data (i.e., when n is small). As mentioned earlier, Bayesian inference
is robust against overfitting to idiosyncrasies in a small sample, especially when the
model is not very complex (here, the higher-level structure is relatively simple). To
demonstrate this, an additional simulation in the HADO condition was performed with
small n’s being assumed.

Finally, since the observations from each simulated measurement session were ran-
dom variates generated from a probabilistic model, to prevent the comparison of per-
formance measures from being masked by idiosyncrasies, ten replications of the 147
leave-one-out sessions were run independently and the results were averaged over all
individual sessions (i.e., 10 × 147 = 1,470 measurement sessions were conducted in
total).

4.2 Results
The whole simulation procedure was implemented on a machine with two, quad-core
Intel 2.13GHz XEON processors and one Nvidia Tesla C2050 GPU computing proces-
sor running Matlab. Grid-based computing for utility function evaluations and Bayesian
updating was parallelized through large GPUArray variables in Matlab. As a result,
each inter-trial computing process, including stimulus selection, Bayesian updating and
grid adaptation, took 90 milliseconds on average, and hierarchical model updating with
146 previous data sets took about 11 seconds, which was six to eight times faster than
the same tasks processed by fully vectorized Matlab codes running on CPUs.

Performance of the four methods of measurement and inference described in the
preceding section was assessed in three ways: information gain, accuracy of param-
eter estimation, and accuracy of amblyopia classification. These evaluation measures
were calculated across all trials in each simulated measurement session. For informa-
tion gain, the degree of uncertainty about the current, n-th subject’s parameter(s) upon
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observing trial t’s outcome was measured by the differential entropy (extension of the
Shannon entropy to the continuous case):

Ht(Θn) = −
∫
p(θn|y1:n−1, y(1:t)n ) log p(θn|y1:n−1, y(1:t)n ) dθn. (12)

Use of the differential entropy, which is not bounded in either direction on the real line,
is often justified by choosing a baseline state and defining the observed information
gain as the difference between two states’ entropies. In the present context, it is

IGt(Θ0,Θn) = H0(Θ0)−Ht(Θn), (13)

where H0(Θ0) denotes the entropy of a baseline belief about θ in a prior distribution
so that IGt(Θ0,Θn) may be interpreted as the information gain achieved upon trial t
during the test of subject n relative to the baseline state of knowledge. In the current
simulation, we took the entropy of the non-informative prior used in the conditions
with no hierarchical modeling (i.e., ADO and non-adaptive) as H0(Θ0). Note that the
information gain defined here is a cumulative measure over the trials in a session in the
sense that IGt(Θ0,Θn) = H0(Θ0)−H1(Θn) +

∑t
s=2 [Hs−1(Θn)−Hs(Θn)] where the

quantity being summed is information gain upon trial s relative to the state before that
trial.

Shown in Figure 2 is the cumulative information gain observed in each simulation
condition designed to evaluate the performance of the four different methods. Each
of the four curves corresponds to information gain (y-axis) in each condition over 200
trials (x-axis) relative to the non-informative, baseline state (0 on the y-axis). The infor-
mation gain measures were averaged over all 1,470 individual measurement sessions in
each condition. Then, we further normalized the measures by dividing them by the av-
erage information gain at the 200th trial achieved by the crude, non-adaptive method in
order to take the value of 1 as a baseline level of performance against which to compare
performance of the other methods.

First, the results demonstrate that the hierarchical adaptive methodology (HADO)
achieves higher information gain than the conventional adaptive method (ADO). The
contribution of hierarchical modeling is manifested at the start of each session as a
considerable amount of information (0.4) in the HADO condition (solid curve) than no
information (zero) in the ADO condition (dashed curve). As expected, this is because
HADO benefits from the mutual informativeness between individual subjects, which is
captured by the upper-level structure of the hierarchical model and makes it possible for
the session to begin with significantly greater information. As the session continues,
HADO needs 43 trials on average to reach the baseline gain level (dotted, horizontal
line) whereas ADO (qCSF) requires 62 trials. The clear advantage diminishes as infor-
mation accumulates further over the trials since the measure would eventually converge
to a maximum as data accumulate.

The HBM condition (dash-dot curve), which employs the hierarchical modeling
alone and no stimulus selection technique, enjoys the prior information provided by
the hierarchical structure at the start of a session and exhibits greater information gain
than the ADO method until it reaches trial 34. However, due to the lack of stimulus
optimization, the speed of information gain is considerably slower, taking 152 trials to
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Figure 2: Information gain over measurement trials achieved by each of the four mea-
surement methods.

attain baseline performance. The non-adaptive approach (dotted curve), with neither
prior information nor design optimization, shows the lowest level of performance.

Information gain analyzed above may be viewed as a summary statistic, useful for
evaluating the measurement methods under comparison. Not surprisingly, we were able
to observe the same profile of performance differences in estimating the CSF parame-
ters. The accuracy of a parameter estimate was assessed by the root mean squared error
(RMSE) defined by

RMSE
(
ψ̂(t)
)

= 20 ·

√
E
[(
ψ̂(t) − ψtrue

)2]
, (14)

where ψ̂(t) is the estimate of one of the four CSF parameters (e.g., γmax) for a simulated
subject, which was obtained as the posterior mean after observing trial t’s outcome,
ψtrue is the true, data-generating parameter value for that subject, and the factor of 20
is multiplied to read the measure on the decibel (dB) scale as the parameter values are
base-10 logarithms. The expectation is assumed to be over all subjects and replications,
and hence was replaced by the sample mean over 1,470 simulated sessions.

Results from the second analysis, comparing parameter estimation error for each of
the four models, are shown in Figure 3. Error was quantified in terms of RMSE (y-axis;
described above) over 200 trials (x-axis) for each of the four parameters. As with the
case of information gain, HADO benefits from the informative prior through the hierar-
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Figure 3: Accuracy of parameter estimation over measurement trials achieved by each
of the four measurement methods.

chical model as well as the optimal stimuli through design optimization, exhibiting the
lowest RMSE of all methods’ from the start to the end of a session, and this holds for
all four parameters. The benefit of the prior information is also apparent in the HBM
condition, making the estimates more accurate than with the uninformed, ADO method
for the initial 40 to 80 trials, but the advantage is eclipsed in further trials by the effect
of design optimization in ADO.

Since accurate CSF measurements are often useful for screening eyes for disease,
we performed yet another test of each method’s performance, in which the estimated
CSFs were put into a classifier for amblyopia. Despite various choices of a possible
classifier (e.g., support vector machine, nearest neighbor, etc.), the logistic regression
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model built on selected CSF traits (Hou et al., 2010), which had been shown to be effec-
tive in screening amblyopia, sufficed for our demonstration. Performance of each mea-
surement method in classifying amblyopia was assessed in the leave-one-out fashion
as well, by first fitting the logistic regression model using the remaining 146 subjects’
CSF estimates (assumed to be the same regardless of the method being tested) and then
entering the left-out, simulated subject’s CSF estimate (obtained with the method eval-
uated in the simulation) into the classifier to generate a prediction. The given, actual
label (i.e., amblyopic or normal eye) of the left-out subject, which had been provided by
an actual clinical diagnosis, was taken as the true value against which the classification
result in each simulation condition was scored.

Not surprisingly, classification accuracy increases with accumulation of measure-
ment data in all methods. This is seen in Figure 4, which shows the percentage of
correct amblyopia classifications out of all cases of amblyopic eyes over the first 100
measurement trials (i.e., hit rates).5 As was found with the preceding tests, HADO
demonstrates superior performance, requiring only a small number of trials to produce
highly accurate classification results. Most notably, it takes on average 30 trials for
HADO to correctly classifies an amplyopic eye 90% of the time, whereas the non-
hierarchical adaptive method (ADO) requires 53 trials to achieve the same level of ac-
curacy, otherwise reaching 82% accuracy with the same 30 trials.

Note that in the early trials of ADO and HADO, there can be considerable fluctua-
tion in classification accuracy. This is not due to a small sample size (proportions out of
670 amblyopic eyes have sufficiently small standard errors), but rather to the adaptive
method itself. Seeking the largest possible information gain, the algorithm is highly
exploratory in choosing a stimulus that would yield a large change in the predicted state
of the tested individual. This characteristic especially stands out in early trials of the
classification task by causing some of the amblyopic eyes near the classifier’s decision
bound to alternate between the two sides of the bound across one trial to another. This
effect remains even after taking proportions out of the large sample (670) because, with
little accumulation of observations, selecting optimal stimuli in early trials is system-
atic without many possible paths of the selection. Although this can lead to short-term
drops in accuracy, the benefits of early exploration pay dividends immediately and over
the long term.

Finally, to see how this application of HADO performs when there is a small accu-
mulation of data, an additional simulation was conducted with small n’s (n = 4, 10, 40)
assumed in the HADO condition. For each of the same, 147 simulated subjects (times
10 independent replications) as used before, HADO was used to estimate its CSF by
assuming that only n, rather than all 146, subjects had been previously tested to be in-
cluded in the hierarchical model estimation. Among the n (4, 10 or 40) data sets, half
were randomly drawn from the normal-eye group and the other half from the amblyopic
group.

5Classification results for normal eyes are not shown since the prior of CSF parame-
ters was specified in a way that the classifier with any of the methods would categorize
a subject as being normal when there is little or no accumulation of data (i.e., a bias was
built in to avoid false alarms). In addition, the results are shown only up to 100 trials to
provide a better view of performance differences across methods.
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Figure 4: Accuracy of amblyopia classification over measurement trials achieved by
each of the four measurement methods.

The results are in Figure 5, which displays the RMSE measures for estimating the
peak sensitivity parameter (other evaluation measures exhibit a similar pattern, leading
to the same interpretation). For comparison, the data from the ADO and full HADO
conditions are also plotted. CSF estimation by HADO with n as small as 4 is no worse,
and in fact slightly more efficient, than that of ADO with a diffuse prior, as shown by
the RMSE’s when n = 4 (dash-dot curve) being consistently lower than those of ADO
(dotted curve) over trials. Though not shown here, visual inspection of the distribution
of individual estimates over all subjects and replications showed no larger dispersion
than the case of estimates by ADO at all trials. As n increases or more data from
additional subjects are available, the efficiency of HADO estimation becomes higher
(dashed and thin solid curves for n = 10 and n = 40), approaching the performance
level of HADO with full data sets (thick solid curve). These results indicate that the
Bayesian estimation of this hierarchical model is robust enough to take advantage of
even a small sample of previously collected data. However, as noted in Implementation
Considerations, the effect of small n may depend on the model employed, suggesting
that the above observation would not generalize to all potential HADO applications.
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Figure 5: Effect of the size of previously collected data sets on HADO estimation accu-
racy of the peak sensitivity parameter.

5 Discussion
The present study demonstrates how hierarchical Bayes modeling can be integrated into
adaptive design optimization to improve the efficiency and accuracy of measurement.
When applied to the problem of estimating a contrast sensitivity function (CSF) in vi-
sual psychophysics, HADO achieved an average decrease of 38% (from 4.9 dB to 3.1
dB) in error of CSF parameter estimation and an increase of 10% (from 82% to 90%)
in accuracy of eye disease screening over conventional ADO, under the scenario that a
new session could afford to make only 30 measurement trials. In addition, efficiency of
testing improved by an average of 43% in the sense that the required number of trials to
reach a criterion of 90% screening accuracy decreased from 53 to 30 trials.

Although the simulation study served the purpose of demonstrating the benefit of
the hierarchical adaptive methodology, the full potential of HADO should be greater
than that shown in our particular example. The level of improvement possible with
HADO depends on the sophistication of the hierarchical model itself. In our case,
the model was based on a simple hypothesis that a newly tested individual belongs
to the population from which all other individuals have been drawn. Although the
model has flexibility in defining the population as a mixture distribution, it conveys no
further specific information about the likely state of a new individual (e.g., his or her
membership to a mixture component is unknown).
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There are various situations in which hierarchical modeling can take better advan-
tage of the data-generating structure. For example, although modeled behavioral traits
vary across individuals, they may covary with other variables that can be easily ob-
served, such as demographic information (e.g., age, gender, occupation, etc.) or other
measurement data (e.g., contrast sensitivity correlates with measures of visual acuity -
eye chart test). In this case, a general, multivariate regression or ANOVA model may
be employed as the upper-level structure to utilize such auxiliary information to define
a more detailed relationship between individuals. This greater detail in the hierarchical
model should promote efficient measurement by providing more precise information
about the state of future individuals.

In many areas of behavioral science, there is more than one test that measures the
same condition or phenomenon (e.g., memory, depression, attitudes). Often times, these
tests are related to each other and modeled within a similar theoretical framework. In
such situations, a hierarchical model provides a well-justified way to integrate those
models in such a way that behavioral traits inferred under one model are informative
about those estimated by another. Yet another situation in which hierarchical modeling
would be beneficial is when a measurement is made after some treatment and it is sen-
sible or even well known that the follow-up test has a particular direction of change in
its outcome (i.e., increase or decrease). Taking this scenario one step further, a battery
of tests may be assumed to exhibit profiles that are characteristic of certain groups of
individuals. The upper-level structure can also be modeled (e.g., by an autoregressive
model) to account for such transitional variability in terms of the parameters of the mea-
surement model. With these kinds of structure built in the hierarchical model, HADO
can be used to infer quickly the state of new individuals.

An assumption of the approaches to higher-level modeling discussed so far is that
the most suitable data-generating structure is already known. In fact, a sufficient amount
of data is needed to determine which structure is best suited. To be more precise, the
optimally complex structure for the best possible inference depends on the amount of
information available; an arbitrarily complex model that is not validated by data will
lead to sub-optimal inference. For this reason, HADO will perform best when the hi-
erarchical model evolves along with the accumulation of data. Larger data sets make it
possible to evaluate better alternative modeling hypotheses, and analysis methods such
as Bayesian model choice (Kass & Raftery, 1995) or cross validation can be performed
to guide model revision. In effect, the upper-level model will evolve by incorporating
increasingly richer structure (e.g., finer subgroup distinctions or better selected predic-
tor variables in a regression model).

The notion of model evolution fits with recent advances in nonparametric Bayes
methods that essentially seek to enable a statistical model to adapt itself to the amount
of information in the data by adding more and more components with no preset limit
(MacEachern, 2000; Rasmussen & Williams, 2006; Teh & Jordan, 2010). This method-
ology can further stretch the extent of model evolution and will be especially suited to
HADO because most modern measurement processes are computer-based, so data col-
lection and organization are effortless, allowing the method to quickly exploit a massive
amount of data.

The technique of optimal experimental design or active learning has been applied to
a number of modeling problems in neuroscience and machine learning (Wu, David, &
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Gallant, 2006; Lewi et al., 2009; DiMattina & Zhang, 2011; Cohn et al., 1996; Tong &
Koller, 2002; Settles, 2010). These models usually deal with a large number of features
in order to predict or describe response variables, resulting in a large number of param-
eters to infer (e.g., neural receptive field modeling; Wu et al., 2006). A consequence
of this is the use of various methods for improving generalizability by imposing certain
constraints (e.g., Ramirez et al., 2011; Park & Pillow, 2012), which may be directly or
indirectly interpreted as a prior from the Bayesian perspective. In other words, a prior is
used to reduce the variance of a model. However, as this type of a prior is theoretically
derived, it is by nature conservative in order not to introduce bias. In this case, HADO
may be employed to enhance inference by learning further prior knowledge from spe-
cific empirical conditions. This information may be encapsulated into the existing, con-
strained structure of a model. To this end, different forms of HADO described in the
formulation section will be useful. Computational complexity, particularly numerical
integration over many parameters, will be challenging. Nonetheless, this should not be
considered a hindrance—as discussed in Implementation Considerations, recent tech-
nical advances in both algorithms and hardware as well as inherent regularity in each
problem can be taken advantage of to achieve adequate approximations with practical
running time.

To conclude, science and society benefit when data collection is efficient with no
loss of accuracy. The proposed HADO framework, which judiciously integrates the
best features of design optimization and hierarchical modeling, is an exciting new tool
that can significantly improve upon the current state of the art in experimental design,
enhancing both measurement and inference. This theoretically well-justified and widely
applicable experimental tool should help accelerate the pace of scientific advancement
in behavioral and neural sciences.
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