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1. Introduction

Summary Objective: Develop and evaluate a natural language processing application
for classifying chief complaints into syndromic categories for syndromic surveillance.
Introduction: Much of the input data for artificial intelligence applications in the
medical field are free-text patient medical records, including dictated medical reports
and triage chief complaints. To be useful for automated systems, the free-text must be
translated into encoded form. Methods: We implemented a biosurveillance detection
system from Pennsylvania to monitor the 2002 Winter Olympic Games. Because input
data was in free-text format, we used a natural language processing text classifier to
automatically classify free-text triage chief complaints into syndromic categories used
by the biosurveillance system. The classifier was trained on 4700 chief complaints from
Pennsylvania. We evaluated the ability of the classifier to classify free-text chief
complaints into syndromic categories with a test set of 800 chief complaints from Utah.
Results: The classifier produced the following areas under the ROC curve: Constitu-
tional = 0.95; Gastrointestinal = 0.97; Hemorrhagic = 0.99; Neurological = 0.96;
Rash = 1.0; Respiratory = 0.99; Other = 0.96. Using information stored in the system’s
semantic model, we extracted from the Respiratory classifications lower respiratory
complaints and lower respiratory complaints with fever with a precision of 0.97 and
0.96, respectively. Conclusion: Results suggest that a trainable natural language
processing text classifier can accurately extract data from free-text chief complaints
for biosurveillance.

© 2004 Elsevier B.V. All rights reserved.

ical records, and a large portion of the medical
record comprises free-text reports dictated by
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applications in the medical field are patient med-  or radiology reports, that are unavailable for
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essentially unlocking the information for use by
computerized systems.

Over the past decade, research groups in the
United States and Europe have been developing
NLP systems to extract and encode information
from medical reports [1—5] and have succeeded
in restricted domains ranging from radiology reports
to more complex discharge summaries [6—10].

In this project, we applied an NLP system
designed for extraction of clinical information from
dictated medical reports to the problem of classify-
ing free-text triage chief complaints into syndromic
categories useful for public health and bioterroristic
outbreak detection. We adapted the NLP system to
model chief complaints and evaluated its perfor-
mance against classifications made by a physician
with the objective of quantifying its performance at
classifying chief complaints into syndromic cate-
gories.

2. Background

Early detection of bioterroristic or naturally-occur-
ring disease outbreaks is crucial for saving lives
[11,12]. Many diseases present themselves similarly
in the early stages with non-specific symptoms that
can be generalized into syndromic categories like
respiratory or gastrointestinal. Syndromic surveil-
lance is a type of early outbreak detection [13] that
can be performed manually by public health offi-
cials or automatically by a computer.

The Real-time Outbreak and Disease Surveillance
(RODS) System [14,15], initially deployed in South-
western Pennsylvania in 1999, is a syndromic
surveillance system that automatically monitors
how frequently patients exhibit symptoms consis-
tent with seven syndromes, including Botulinic, Con-
stitutional, Gastrointestinal (Gl), Hemorrhagic,
Neurological, Rash, and Respiratory. Detection algo-
rithms in RODS monitor complaints from patients
presenting to emergency departments for unusual
patterns of occurrence [16]. If the number of
patients presenting to emergency departments with
respiratory symptoms, for example, exceeds some
threshold of expectation, RODS will alarm relevant
medical and public health officials.

Input to RODS was initially ICD diagnostic codes
[17] manually entered by a triage nurse from a
patient’s verbalized complaint. However, in Febru-
ary 2002, RODS expanded its reach beyond South-
western Pennsylvania to monitor data from 30
urgent care facilities in Utah for the 2002 Winter
Olympic Games [15,18,19]. Because manual coding
of chief complaints into diagnostic codes is rare, we
decided to use free-text triage chief complaints

(TCCs), which are fairly ubiquitous across the
nation, as input to RODS. A previous study showed
that an NLP system can successfully encode free-
text TCCs into diagnostic codes [20], therefore, we
believed that the simpler problem of classifying
TCCs into syndromic categories was likely to be
successful.

Free-text triage chief complaints are the earliest
clinical data available on most hospital information
systems. A TCC is short phrase entered by a triage
nurse describing the reason for a patient’s visit to an
emergency department. Some examples of common
TCCs include ‘‘cough,’”’ ‘‘n/v/d,”” and ‘‘lug abd
pain.’’ The purpose of a TCC is to describe a patient’s
condition in as short a space as possible, therefore,
TCCs contain abbreviations and punctuation that
can often confuse even experienced emergency
room personnel. Researchers are investigating auto-
mated, knowledge-based methods for expanding
TCC strings from abbreviated form into a more com-
plete form [21,22].

2.1. The M+ system

The Medical Probabilistic Language Understanding
System (M+) [23] is a robust chart-based syntactic
parser with a Bayesian network (BN)-based seman-
tic model for extracting information from narrative
patient records. The semantic model can be trained
in specific domains to adapt to new tasks. M+ has
previously been applied to the domains of chest
radiography [8] and brain CT scans.
M+ consists of the following components:

(1) A lexicon containing information largely de-
rived from the UMLS Specialist Lexicon.

(2) A synonym component that maps common word
and phrase variants to character strings match-
ing states of word-level M+ BN nodes.

(3) Bayesian network-based semantic models for
encoding words from the text and inferring
concepts from combinations of words.

(4) A probabilistic spell checker combining an edit
distance technique and ranking of the possible
candidates based on probabilities generated by
instantiations in the BNs.

(5) A semantic analyzer that instantiates BNs from
phrases, passes information between BNs using
virtual evidence, and generates semantic inter-
pretations.

(6) A standard bottom-up chart parser with a
context free grammar that seeks to create a
deep parse. M+ BNs are instantiated during the
syntactic parse. For example, as a word such as
“‘right’’ is recognized by the parser, a word-
level phrase object is created and a BN
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instance containing the assignment side =
“‘right’’ is attached to that phrase in the form
of a predicate containing a token for that BN
instance.

Each phrase recognized by the M+ parser is
assigned a probability based on a weighted sum
of the joint probabilities of its associated BN
instances and adjusted for various syntactic and
semantic constraint violations. Phrases are pro-
cessed in order of probability, thus the parse
involves a semantically-guided best-first search.
Syntactic and semantic analyses in M+ are
mutually constraining. On one hand, if a gramma-
tically possible phrase is uninterpretable, i.e. if its
subphrase interpretations cannot be unified, it is
rejected. On the other hand, if the interpretation
has a low probability, the phrase is less likely to
appear in the final parse tree.

3. Methods

We adapted M+ to classify TCCs into syndromic
categories and evaluated its performance against

that of a human expert. This study was performed
with IRB approval from relevant institutions in Utah
and in Pennsylvania.

3.1. Definitions of syndromes

This paper describes a method for automatically
encoding free-text TCCs into a standardized set of
medical problems and then classifying them into the
syndromes monitored by RODS. RODS’s syndromic
definitions were developed in 1999 and have only
changed slightly since then, however, RODS syndro-
mic definitions were initially comprised of lists of
ICD-9 codes. Classifying free-text phrases into the
syndromic categories raised questions about which
chief complaints belong in which syndromes. As we
developed the classification method described
below, we generated heuristics for classification
of specific complaints into syndromes. These heur-
istics were sometimes easily justifiable and other
times quite arbitrary. Among other examples, deci-
sions about appropriate classifications arose when a
chief complaint represented a symptom thatisnot a
very specific indicator of a public health outbreak or
when a complaint could be due to more than one

1. Gastrointestinal includes pain or cramps anywhere in the abdomen, nausea
vomiting, diarrhea and abdominal distension or swelling.

2. Constitutional is made up of non-localized, systemic problems including fever,
chills, body aches, flu symptoms (viral syndrome), weakness, fatigue, anorexia,
malaise, lethargy, sweating (diaphoresis), light headedness, faintness and
fussiness. Shaking (not chills) is not constitutional but is other.

3. Respiratory includes the nose (coryza) and throat (pharyngitis), as well as the
lungs. Examples of respiratory include congestion, sore throat, tonsillitis,
sinusitis, cold symptoms, bronchitis, cough, shortness of breath, asthma, chronic
obstructive pulmonary disease (COPD) and pneumonia. If both cold symptoms
and flu symptoms are present, the syndrome is respiratory.

4. Rash includes any description of a rash, such as macular, papular, vesicular,
petechial, purpuric or hives. Ulcerations are not normally considered a rash
unless consistent with cutaneous anthrax (an ulcer with a black eschar).

5. Hemorrhagic is bleeding from any site, e.g., vomiting blood (hematemesis),
nose bleed (epistaxis), hematuria, gastrointestinal bleeding (site unspecified),
rectal bleeding and vaginal bleeding. Bleeding from a site for which we have a
syndrome should be classified as hemorrhagic and as the relevant syndrome
(e.g., Hematochesia is gastrointestinal and hemorrhagic; hemoptysis is

respiratory and hemorrhagic).

6. Botulinic includes ocular abnormalities (diplopia, blurred vision, photophobia),
difficulty speaking (dysphonia, dysarthria, slurred speech) and difficulty

swallowing (dysphagia).

7. Neurological covers non-psychiatric complaints which relate to brain function.
Included are headache, head pain, migraine, facial pain or numbness, seizure,
tremor, convulsion, loss of consciousness, syncope, fainting, ataxia, confusion,
disorientation, altered mental status, vertigo, concussion, meningitis, stiff neck,
tingling and numbness. (Dizziness is constitutional and neurological.)

8. Other is a pain or process in a system or area RODS is not monitoring. For
example, flank pain most likely arises from the genitourinary system, which
RODS does not model, and would be considered other. Chest pain with no
mention of the source of the pain is considered other (e.g., chest pain (other)
versus pleuritic chest pain (respiratory)). Earache or ear pain is other. Trauma is

other.

Figure 1
syndromes.

Syndromic definitions used by RODS and examples of chief complaints that should be classified into the
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syndrome. Fig. 1 contains the final definitions of
syndromes we developed for this task.

Since this project, we have begun to evaluate the
quality of the syndromic definitions by measuring
how well TCCs classified into the syndromes can
detect patients who actually have the syndromes.
Using physician review of emergency department
reports as a reference standard, we can detect
patients with acute lower respiratory syndrome
by manually classifying their TCCs into our respira-
tory syndrome with a sensitivity of 0.80 and a
specificity of 0.94 (unpublished results) and can
detect patients with an acute, infectious gastroin-
testinal illness with a sensitivity of 0.63 and a
specificity of 0.94 [24]. We are currently evaluating
the quality of our syndromic definitions at classify-
ing patients into all seven syndromes monitored by
RODS. Moreover, we have shown that the syndromic
categories are sensitive and specific indicators of
outbreaks of respiratory and gastrointestinal illness
in children [25].

3.2. Adapting M+ to the current project

Because TCC strings often contain abbreviations,
common abbreviations were included in a manually
created synonym list. For instance, the abbreviation
*t.i.a.”’ is expanded to ‘‘transient ischemic
attack’’ which maps to one or more BN states. Spell
checking was disabled in this project for the reason
that the most common misspellings in TCCs are due
to truncations of the final word or to abbreviations
which do not lend themselves well to a meaningful
edit distance measure of word similarity. There-
fore, common misspellings, truncations, and abbre-

(a)

Disease

Finding, .o
& Finding, Finding,
Findingq

Finding, Finding;

viations were also handled through the synonym
list.

We used a single BN to model the semantic
information described in TCCs, illustrated in Fig. 2
and described in Section 3.3.

M+ was originally designed to analyze narrative
and descriptive medical reports, such as radiology
dictations. Since the texts in the current study are
grammatically and lexically abbreviated, a simpli-
fied grammar containing rules for conjunctions and
simple noun, adjective, and prepositional phrases
was used. We also added a probabilistic algorithm
for identifying noun and adjectival phrases within
contiguous sets of words, without the use of rules.

3.3. Training M+

M+’s semantic component is based on the premise
that the number of ideas or concepts expressed by
language is fewer than the actual words used to
express the concepts. Bayesian network-based
semantics [23] is analogous to Bayesian network-
based diagnosis in which the top parent node is a
joint probability distribution over all possible dis-
eases and the child nodes are a patient’s symptoms
or findings. In the diagnostic domain, the same
disease can manifest itself with various combina-
tions of different findings. Similar to medical diag-
nosis, the concepts being expressed in medical texts
are manifested using various combinations of dif-
ferent words. In a Bayesian network-based semantic
model, the parent nodes represent the underlying
concept expressed by the author of the text and the
child nodes represent the words used to express
those concepts. For example, a Bayesian network

(b)

Anatomic
Location

Location \'

term

Topic
term

Topic
modifier

Location
modifiers

Figure 2 Similar to a diagnostic Bayesian network (a), the semantic component for M+ (b) uses a Bayesian network
that stores words from the input text (leaf nodes) and concepts that can be inferred from the words. The top node is a
joint probability distribution over all possible syndromes. The structure of the network was created by the authors, but

the parameters were learned from training examples.
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for chest radiology reports would classify an ‘‘ill-
defined density,’’ a *‘hazy opacity,’’ and a ‘‘patchy
opacification’’ as the same underlying concept of
“‘pneumonic infiltrate.”’

We created a Bayesian network to represent the
relationship of words and concepts expressed in
TCCs, shown in Fig. 2. We constructed the network
by hand, but the network’s parameters were
learned with training data. Two of the authors
(WWC and Ol) trained M+ with 4700 randomly
selected TCCs from emergency department admis-
sions in one hospital in Pittsburgh, PA.

A Bayesian network-based semantic model can
be a powerful model for NLP, but providing training
examples for the domain of TCCs involves more than
assigning the correct syndromic classification to an
individual string of text. Instantiating the training
example shown in Fig. 3 requires not only specifying
the syndromic classification of the string but also
slotting relevant words from the TCC in the correct
nodes and creating appropriate concepts that
represent combinations of words. A web-based
training tool created by one of the authors (LMC)
was used to train M+ for chief complaint instantia-
tion. The training tool used the current training set
to guess the correct instantiation for a new training
case. Users of the tool could accept or change
the tool’s instantiation and could select from
concepts already used in other training cases. Sug-
gestions from the web training tool sped up the
training process, facilitated application of consis-
tent concepts to the training cases, and helped the

Syndrome:
Constitutional

Topic:
Body Pain

e

Anatomic :
. Topic
Location: . |
Bod Topic Term.
=0y Modifier: ~ “pain”

“null”

\ Location

Location Term: pfodifiers:
“all over”

“null”

Figure 3 An instantiation of a training example for the
string ‘‘feeling pain all over.’’ The authors training the
system specified the Location Term ‘‘all over’ to
represent the Anatomic Location Concept of Body. An
Anatomic Location Concept of Body combined with the
Topic Term *‘pain’’ was specified as the Topic Body Pain.
Body Pain was specified to belong to the Constitutional
category.

trainers be consistent with each other and with
themselves.

3.4. Output of M+

Once the Bayesian network was trained on the
training cases, M+ was able to classify unseen TCCs
into syndromic categories. For this task, M+’s out-
put is a joint probability distribution over all pos-
sible values for the Syndrome node. Possible values
for the Syndrome node include the seven syndromes
monitored by RODS and the value Other. TCCs
classified as Other are those complaints which are
not of concern in outbreak detection, including
trauma and complaints involving the musculoskele-
tal system and genitourinary tract.

Sometimes a single TCC describes more than one
medical problem, as in ‘‘cough and vomiting.’’
Because M+ performs syntactic and semantic ana-
lyses, M+ is potentially able to detect multiple
problems from one phrase. In the example above,
M+’s output would include multiple probability
distributions, one for each problem detected
(e.g. a probability distribution for ‘‘cough’’ and a
separate distribution for ‘‘vomiting’’). Therefore,
M+ may classify one TCC into more than one syn-
drome.

In production, a probabilistic threshold can be
applied to M+’s output to determine the most
probable syndrome(s) for the TCC. The threshold
can be chosen to reflect the user’s preference of
high sensitivity or high specificity. In this study, we
evaluated M+’s classification performance with the
area under the ROC curve (AUC), which measures
performance at all probabilistic thresholds [26].

3.5. Evaluation

We evaluated M+’s ability to accurately classify
free-text TCCs into eight syndromic categories by
comparing M+’s classifications against those of a
gold standard physician. The gold standard physi-
cian, who is board-certified in internal medicine and
infectious diseases, also acted as a medical con-
sultant in defining the syndromic definitions. We
evaluated the validity of the gold standard
responses by comparing his classifications of the
800 TCCs against one of the author-trainers (Ol)
for agreement to ensure that the gold standard
physician and the system were performing the same
task, an assumption necessary when using a human
expert as the gold standard [27].

The test set contained the first 1000 TCCs
received from urgent care facilities in Utah (begin-
ning January 29, 2002). The first 200 TCCs were
used to train the gold standard physician on the
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task. We trained the physician by describing the
final case definitions shown in Fig. 1 and giving him
feedback on his classifications of the 200 training
cases.

M+ and the gold standard physician indepen-
dently classified the remaining 800 TCCs. Predictive
performance of M+ was evaluated by calculating
the AUC using trapezoidal integration. We also
report sensitivity, specificity, and positive predic-
tive value (PPV) for all classification thresholds.
Because a single TCC could be classified into multi-
ple syndromes, we calculated the AUC for every
syndrome individually. In this way if M+ classified
“*cough and vomiting’’ as Respiratory, but the gold
standard physician classified the string as Respira-
tory and Gl, the TCC would contribute a true posi-
tive count to the AUC calculation for Respiratory
and a false negative count to the AUC for Gl.

When applying probabilistic thresholds to M+’s
output in order to plot points on the ROC curve, we
incorporated four guidelines created by two physi-
cian authors (Ol and JND) for assigning multiple
syndromic classifications to a single TCC. The first
three guidelines are based on medical knowledge
about co-occurring conditions and the fourth is
based on the fact that RODS does not monitor
medical problems classified as Other.

(1) If part of the TCC describes a motor vehicle
accident (mva), the entire TCC is explained
away by the mva and should be classified as
Other (e.g. ‘*headache from mva’’ would only
be classified as Other even though ‘*headache’’
is classified as Neurological).

(2) A problem classified as Botulinic is explained
away by any other co-occurring syndromic
classification (e.g. ‘‘sore throat/difficulty
swallowing’’ would only be classified as Re-
spiratory even though ‘‘difficulty swallowing’’
is classified as Botulinic).

(3) A fever is explained away by any other co-
occurring syndromic classification (e.g.
“‘cough, fever’” would only be classified as
Respiratory even though ‘fever’’ is classified
as Constitutional).

(4) A classification of Other cannot be combined
with another syndromic classification (e.g.
“*diarrhea and broken arm’’ would only be
classified as Gl).

Because M+ stores semantic information about
the TCCs in the Bayesian network structure, we can
extract more specific information from the string
than the syndromic classification. From the words in
the string M+ infers the topic of the complaint, so
we can divide patients classified by a syndrome into
subsets of topics (i.e. complaints) that may be

helpful as a first step to investige a possible out-
break. For example, the first question one may ask
when investigating a possible respiratory outbreak
is whether the cases classified by M+ as Respiratory
presented with upper or lower respiratory symp-
toms, because lower respiratory symptoms are
more likely to be caused by an agent of concern
to a public health investigation. Patients with a
lower respiratory complaint and a fever would be
even more concerning.

We broke down the test set TCCs classified by M+
as Respiratory into Lower Respiratory and Lower
Respiratory with Fever subcategories based on the
Topic concepts output by M+. Looking only at M+’s
output and not at the original string, all Respiratory
cases with a Topic concept involving the lower
respiratory tract (e.g., Cough, Pneumonia, Dyspnea,
etc.) were labeled as Lower Respiratory. From the
Lower Respiratory subcategory, we reviewed all
cases for which M+ generated multiple complaints.
If one of the complaints had a Topic concept of
Fever, we labeled the case as Lower Respiratory
with Fever. The gold standard physician then read
all the TCC strings from the cases classified by M+ as
Respiratory. Based on the string itself, he labeled the
cases as either Lower Respiratory or Lower Respira-
tory with Fever. We compared classifications made
from M+’s output to classifications made by the gold
standard physician from the TCC string to calculate
the precision (positive predictive value) of classifying
the two subcategories from M+’s Topic concept.

4, Results

Fig. 4 shows the distribution of test set classifica-
tions made by the gold standard physician. None of
the test TCCs were classified as Botulinic. More than
50% of the test set was classified as Other. We
measured the Cronbach « reliability coefficients

500
450
400
350
300
250
200
150
100

50

Number of TCC Classifications

Botul Const GI Hem Neurol Rash Resp Other

Syndrome

Figure 4 Distribution of TCC classifications by the gold
standard physician.
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Figure 5 Receiver Operator Characteristic (ROC) curves generated from comparing M+’s classifications to those of
the gold standard physician for the seven syndromic categories occurring in the test set. The area under the curve

(AUC) is reported for every syndrome.

[28] for agreement between the gold standard phy-
sician and an author trainer. Most of the syndromic
categories received high coefficients: Gl = 0.96;
Respiratory = 0.94; Other = 0.94; Constitutional =
0.93; Neurological = 0.86. Agreement was fair
between the gold standard physician and the train-
ing physician on Rash (0.71) and Hemorrhagic
(0.77).

Fig. 5 shows the ROC curves calculated from
comparing M+’s classifications against those of
the gold standard physician for every syndrome

Table 1

M+’s predictive performance for probabil-

istic thresholds yielding highest sensitivity

Syndrome Sensitivity Specificity PPV
Constitutional 0.97 0.93 0.97 (83/86)
Gl 0.96 0.99 0.96 (111/116)
Hemorrhagic 1.0 0.98 0.91 (10/11)
Neurological  0.95 0.95 0.95 (54/57)
Rash 1.0 0.99 0.8 (4/5)
Respiratory 1.0 0.96 0.87 (131/151)
Other 0.97 0.88 0.92 (396/430)

except Botulism, which did not occur in the test
set. AUC’s ranged between 0.95 (Constitutional)
and 1.0 (Rash). Because sensitivity is probably the
most important measure in an outbreak detection
system that is meant to screen for syndromic pre-
sentations, we show in Table 1, the specificity and
PPV for probabilistic thresholds that yield M+’s
highest classification sensitivity.

Fig. 6 illustrates the breakdown of the 150 TCCs
classified by M+ as Respiratory into Lower Respira-
tory (98/150) and Lower Respiratory with Fever (26/
98). M+ extracted Lower Respiratory complaints
with a precision of 0.97 (95/98) and Lower Respira-
tory with Fever with a precision of 0.96 (25/26).

5. Discussion

As shown in Fig. 5, M+ performed well at classifying
TCCs into the seven syndromes represented in the
test set with AUC’s ranging from 0.95 to 1.0. Prob-
abilistic thresholds yielding the highest sensitivity
generated sensitivity rates between 0.95 and 1.0
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1

Figure 6 Breakdown of test cases classified by M+ as
Respiratory. Of the 150 respiratory classifications, 98
were labeled as Lower Respiratory with a precision of
0.97 (95/98). Of the 98 Lower Respiratory classifications,
26 were labeled as Lower Respiratory with Fever with a
precision of 0.96 (25/26).

with corresponding specificity rates of at least 0.88.
These results suggest that M+ can accurately clas-
sify free-text chief complaint strings into syndromic
categories.

An error analysis on M+’s performance revealed a
few common sources of mistakes. First, because M+
is trained on a finite set of training examples, some
instances in the test set, like ‘‘croup’’ and *‘RSV,”’
were previously unseen by M+. Fortunately, M+ is a
trainable system whose performance will poten-
tially improve with more training. We were sur-
prised that a classifier trained completely on
TCCs from one adult hospital in Pittsburgh per-
formed as well as it did on TCCs from 30 urgent
care facilities, both adults’ and children’s, in Utah.

Second, several of M+’s mistakes occurred
because we are classifying TCCs into a non-exhaus-
tive set of syndromes that classifies medical pro-
blems irrelevant to biosurveillance in the category
Other. Irrelevant and relevant TCCs have substan-
tial overlap in their lexical content. For example,
M+ was not trained on the term ‘‘respiratory pro-
blem’’ but was trained on ‘‘eye problem,’’ which
was classified as Other. In classifying the TCC
*‘respiratory problem,’’ M+ assigned Other a higher
probability than Respiratory. We are currently eval-
uating an active learning technique that uses the
semantic knowledge contained in the training set to
select new training cases with the highest expected
value to the classifier.

Very few mistakes in the test set were due to
misspellings, however, there is no way to know in
advance all misspellings that may occur [29,30].
Future work includes incorporating the existing
spell checker using words and phrases in M+’s
training set as the dictionary and adding to the

synonym list abbreviations and spelling variants
from the UMLS Metathesaurus [31]. Neither of these
approaches eliminates the need for a synonym list
for translating uncommon abbreviations frequently
seen in TCCs. For example, ‘‘appy’’ for ‘‘appendi-
citis’’ and ‘‘tib fib’’ for ‘‘tibia with fibula’’ fre-
quently occur in TCCs but could not be translated
correctly with a spell checker or from the Metathe-
saurus.

We measured M+’s performance by comparing
its classifications against classifications made by a
gold standard physician. Using expert physician
judgment as a reference standard is a common
method in evaluating the performance of medical
classification system [27], because Al systems in
medicine are often designed to imitate physician
performance. Comparing an Al system against an
expert-generated reference standard assumes that
the expert is performing the same task as the system
[27]. Some medical classification problems, such as
clinical diagnosis, are well defined and understood
outside of any research project, but to our knowl-
edge the task of classifying TCCs into syndromes for
the purpose of measuring performance of an auto-
mated classification system has not been done
before. Moreover, even within the syndromic sur-
veillance community, syndromic definitions of the
same syndrome (e.g. Respiratory syndrome) still
vary substantially [32].

Because syndromic definitions are so dependant
on the surveillance system, creating reliable gold
standard classifications for a syndromic classifier is
difficult. Evaluations of NLP systems using physician
judgment as a reference standard typically employ
multiple physician judgments [27]. It can be argued,
however, that acting as a gold standard for this task
requires project-specific expertise about syndromic
definitions. To ensure that the gold standard phy-
sician was performing the same task as M+, we
compared his classifications against classifications
made by the training physician, and their agreement
was quite high on five of the seven syndromes
(Cronbach o reliability coefficients from 0.86 to
0.96).

We believe that our gold standard of one physi-
cian is reasonable for this task. We are currently
examining the possibility of training people outside
our research group either to supplement the one-
person gold standard or to help decrease the noise
that undoubtedly occurs when only one person
classifies TCCs into syndromic categories.

5.1. Using M+ for classification of TCCs

We adapted M+ to the domain of biosurveillance
from TCCs in order to both classify the TCCs into the
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syndromic categories monitored by RODS and encode
TCCs into a standardized subset of medical problems.
The goal of text classification is to automatically
classify a set of documents into one of a discrete
set of possible categories [33]. A variety of text
classification algorithms [34—36] have successfully
classified documents such as Medline abstracts [37]
and web pages using algorithms like support vector
machines, k-nearest-neighbor, and Naive Bayes’.
Most approaches to text classification involve mini-
mal, if any, syntactic processing of the text.

Other syndromic surveillance systems are also
beginning to use free-text TCCs and are typically
using keyword-matching methods for classifying the
complaints into syndromes. RODS has also imple-
mented a simpler, naive Bayesian TCC classifier
called CoCo [38]. CoCo was trained on 10,000 TCCs
from Utah. In an evaluation using 10-fold cross
validation, CoCo classified the TCCs into the same
syndromes described above and received AUC
scores between 0.78 and 0.97. The question still
remains whether the overhead of syntactic parsing
and Bayesian semantic analysis is necessary for
classifying TCCs into syndromes—the loss in perfor-
mance of a naive Bayesian classifier may be worth
the simpler and more portable architecture. More-
over, more advanced classifiers may outperform
naive Bayesian classification and approach M+’s
accuracy without syntactic parsing. A shortcoming
of this paper is a lack of a direct comparison to a
standard text classification system. The explanation
for this shortcoming is our lack of foresight. We had
6 weeks to develop and implement a classification
system for the Olympics, and we did not consis-
tently maintain a link between the training cases
and the text of the TCCs represented by the training
cases. For this reason, we were not able to train
another text classification system on the same
training data for direct comparison.

M+’s more complex structure has several advan-
tages over simple text classification techniques.
First, the syntactic and semantic analyses help
analyze coordinations in the TCCs (e.g. ‘'rt
shoulder/arm pain’’ or ‘‘neck pain numb rt
arm’’), so that multiple complaints can result in
multiple syndromic classifications, if appropriate.
Second, in addition to generating a syndromic clas-
sification, M+ can also encode the specific medical
problem described in the chief complaint so that
investigators of an outbreak could query the TCCs
for further information. We illustrated this feature
by using M+’s Topic concepts to break down
Respiratory complaints into subcategories of Lower
Respiratory and Lower Respiratory with Fever. As
shown in Fig. 6, M+ was able to classify cases into
these subcategories with high precision.

6. Conclusion

Using free-text chief complaints to classify patients
into syndromic categories is a new approach to
syndromic surveillance that can potentially provide
real-time, early clinical data from the entire nation.
To be useful, however, the textual phrases must
first be classified into syndromic categories. Results
of this study suggest that a trainable natural lan-
guage processing system can successfully classify
triage chief complaints into syndromes. Moreover,
the semantic model of our system can provide
detailed information that can be easily queried to
aid investigators in an initial attempt to understand
the nature of the syndromic cases, making natural
language processing a potentially valuable tool in
national outbreak detection.
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