
An Adaptable Framework for Remote Tool Monitoring and Control

Chris Loeser, Robbie Schaefer, Wolfgang Mueller, Marc Borowski
Paderborn University/C-LAB

Fuerstenallee 11, 33008 Paderborn, Germany

Abstract

Engineering collaborations received a new global dimen-
sion with the omnipotent access to Internet. Several ap-
proaches have been introduced to support communication
between collaborating engineers but little attention has
been paid to enhance remote access to distributed services
from mobile devices. In this paper, we propose a frame-
work for remote tool monitoring and control (RTMC),
which can be extended by the user through the definition
of application specific plug-ins. The main properties of
our RTMC framework are extensibility, interconnection
with mobile devices, and independence from any opera-
ting systems and devices. To achieve mobile monitoring
and control, we applied JXTA, which supports direct com-
munication between stationary PCs and Java enabled mo-
bile phones. We also introduce a so-called user-tracking
layer for user location dependent message relay.

1 Introduction

Collaborative engineering constitutes a paradigm of en-
gineering work that is central to the vision of the engi-
neering working environment in the Information Society.
From the technical point, most collaborative engineering
frameworks do presently not adequately support the inte-
gration of very complex engineering environments when
interconnecting multiple design groups and do not con-
sider distance-spanning related issues like firewalls, se-
curity, remote tool administration, and distributed design
flow automation. Distributed engineering development
needs however new infrastructures, net-aware tools, and
new design methodologies based on re-use in combina-
tion with advanced security and network and tool man-
agement as they are introduced by the Advanced Collab-
orative Infrastructure (ACI) in [5, 9], which focus on tool
access and design data exchange in engineering environ-
ments distributed over several Intranets.
However, existing approaches like ACI mainly consider

communication and tool integration aspects in distributed
engineering environments. Our current focus is on the
monitoring and control of remote engineering tools and
services, which can be accessed even from mobile de-
vices. The key idea comes from daily application, where
an engineer usually cannot continuously monitor remote
tools and services such as complex time and resource con-
suming engineering simulations. Those services are typ-
ically executed remotely and an engineer performs other
tasks while the service is running. When such a service
has finished or failed, the engineer needs an immediate
notification in order to check and to eventually set up a
new simulation, if necessary. Especially the case of a sim-
ulation run failure needs to be detected as soon as it occurs
in order not to waste too much time to set up new runs
with new parameters. Reasons for such an abortion can
be much different, for example, wrong parameters, disk or
system memory overflow, or invalid programs may led to
runtime exceptions or segmentation faults. In many cases,
the problems can be easily fixed, e.g., by a restart with
new parameters or by the use of a different machine in
the network. However, the engineer who takes measures
typically needs to sit in front of a computer to use, con-
trol, and monitor the services. Since some engineering
services like complex simulations may run several days,
the person could more efficiently spent the time between
when notifications are immediately forwarded to home or
to business trip locations so that problems can be rapidly
fixed.

To support this, we introduce our RTMC (Remote Tool
Monitoring and Control) framework. RTMC is an exten-
sible framework that allows to control and monitor tools
and services remotely. As we identified the need for con-
trolling these tools in nomadic settings (e.g., on business
trips), it is important to provide mobile and secure access,
which is addressed by RTMC through a user-tracking
layer managing different devices that are used on differ-
ent locations or occasions. Secure control and access is
managed by integration of a TLS layer for encryption and
authentication.



The RTMC architecture mainly follows a traditional
client/server approach with the tools and services to be
controlled at a server side and a monitoring via mobile
and stationary clients. We chose the peer-to-peer frame-
work JXTA to implement our RTMC architecture since it
is available as source code and greatly supports heteroge-
neous computing environments with mixed stationary and
mobile devices.
The remainder of this article is structured as follows. Af-
ter elaborating the related work, we introduce basic princi-
ples of JXTA. Then we explain the basic RTMC architec-
ture and give an overview of the user-tracking layer before
closing the paper with a conclusion.

2 Related Work

RTMC may be considered as a high level and secure alter-
native to the simple network management protocol SNMP
(Simple Network Management Protocol) [10]. SNMP is
typically runs a client server application based on the UDP
service of the TCP/IP protocol suite. SNMP version 3
(SNMPv3) was defined and implemented specifically to
add security to network management. Since version 3
SNMP also supports authentication and encryption. There
are a multiple tools available for developers to easily inte-
grate SNMP management information bases (MIBs) and
agents into mobile client application software. Multiple
tools are available from different vendors such as NuDe-
sign Team [7], MG-SOFT [6], FutureSoft [2], and DMH
[1] with different application development environments.
Most tools allow defining the MIB elements using a spe-
cific syntax that fully defines object attributes.
For remote monitoring on mobile devices, ELC technolo-
gies has just released PiranhaWAP [8], an open source
WAP/WML-enabled server status reporting product. Pi-
ranhaWAP allows displaying real-time system informa-
tion such as uptime, load average, and memory infor-
mation on WAP/WML enabled devices such as mobile
phones. However, their concept is not extensible and the
user still has to deal with the predefined application con-
trol capabilities.

3 JXTA

Our approach for remote tool monitoring and control is
based on the client/server paradigm, which means that
hardware and software resources and services like sim-
ulators are on a dedicated tool server and remote clients
are used to control those tools. Therefore, at a first glance,
it seems to be inappropriate to apply a peer-to-peer frame-
work in order to build such architecture. However, we

think that JXTA [4] is a good alternative for implement-
ing a remote tool monitoring and control framework.
Project JXTA is an open-source project initiated by Sun
Microsystems as a thin alternative to their Jini frame-
work [3]. It has been designed with the participation of
a growing number of experts from academia and indus-
try. Project JXTA was initiated to standardize a common
set of protocols for building peer-to-peer applications and
to overcome different variations of peer-to-peer APIs and
protocols, which have been designed to be implementable
on any device. JXTA protocols create a virtual network on
top of the existing physical network infrastructure based
on which services and applications are set up. This virtual
network layer is designed to be as simple as possible with
powerful primitives in order to maintain interoperability
between different devices and operating systems.
The main purpose of the JXTA virtual network is to hide
the complexity of the underlying physical network to-
pology, and provide a uniform addressable network for
all peers in the network. The virtual network allows a
peer to exchange messages with any other peer indepen-
dently from its network location. Messages are trans-
parently routed potentially traversing firewalls or NATs
(network address translation) with the ability to use dif-
ferent transport/transfer protocols (TCP/IP, HTTP). JXTA
standardizes the way in which peers discover each other,
self-organize into peer groups, advertise and discover net-
work resources, communicate with peers, and monitors
their reachability. The network transport layer is built of
a uniform peer addressing scheme based on a peer ID, re-
lay peers that relay messages between peers, and a binary
message format to transport binary and XML data.
A peer is uniquely identified by its peer ID (128 bit
UUID), even if it uses different network addresses even
when the device may have different IPs at different times
(e.g., a notebook). Similarly, a device supporting multi-
ple network interfaces (e.g., Ethernet, WLAN, Bluetooth,
IrDA) can be addressed as a single peer. The peer ID ab-
straction allows a peer to encapsulate not just physical
transports, but also logical transfer protocols like HTTP
and/or secure protocols like TLS and SSL.
JXTA runs on workstations, PCs, PDAs, mobile phones
(with MIDP), and web pads and is therefore a good can-
didate for establishing mobile monitor and control appli-
cations. Since JXTA defines a set of XML protocols, the
data transfer between the controlling client and the server
side tools is managed in a transparent way, allowing easy
integration of new tools and services. The independence
of programming languages, system platforms, service def-
initions and low level network protocols - such as TCP/IP
or Bluetooth - clearly support our remote monitoring ap-
plications. JXTA is able to deal with firewalls or with ’hid-
den’ nodes from network address translation. Therefore,
mobile applications are enabled to remotely control tool



servers, which are in a secured Intranet. This of course
requires secure transmissions of data.

Figure 1: RTMC Architecture based on JXTA

4 RTMC

With our RTMC (remote tool monitoring and control)
framework we introduce a system, which seamlessly com-
bines real-time communication and remote service moni-
toring and control. It includes a notification service when
remote services/tools like simulations have completed
their execution by successfully finishing or failure. Users
may have full control to configure and (re)start service ap-
plications remotely. For supporting a distributed architec-
ture of interrelated tools and their respective servers, we
consider tool servers as nodes in the network. Each peer
is able to gain resource and status information of other
peers, which identify themselves as tool servers. Simulta-
neously each tool server offers this information to all other
nodes.
By using and extending the JXTA peer-to-peer frame-
work, we are able to control and monitor those servers
as peers, even with mobile devices. JXTA ensures that
they are aware of each other by utilizing so-called ren-
dezvous servers, which act as a directory server storing
references of peers content and services. To handle lim-
ited devices like J2ME enabled mobile phones, JXTA uti-
lizes relay servers, which act as an intermediate translation
instance. Because many limited devices are not able to
process XML messages, the relay-server transforms stan-
dard XML messages into binary XML messages, which
are relayed to the limited devices and vice versa.
Since JXTA has no built-in support for reliable connec-
tions, we extended the protocol in order to keep a connec-
tion between two peers, which means that we are able to
establish a reliable two-way communication between the

tool server and the controlling application. To this end, we
implemented a socket-like bi-directional connection that
support three different policies for packet exchange: (i)
event based (using a listener), (ii) synchronous (wait un-
til it receives a packet), and (iii) asynchronous (received
packets are stored in a buffer). Sockets can be connec-
tionless, connection-oriented, reliable, or unreliable.
We built the RTMC communication layer upon the ex-
tended JXTA communication, as given in Figure 1. The
layer is separated into the plug-in layer and the user-
tracking layer. The plug-in layer is for controlling and
monitoring capabilities and flows for remote applications
and thus provides the core RTMC functionality. It pro-
vides a basic set of RTMC functions and defines which
and how information is passed to the user or to the con-
trolled application.
An RTMC default plug-in mainly provides means to re-
trieve system information from a peer and to deliver com-
mands to remote peers. For example, functions can be
defined to check for the available disk space, uptime, OS
swap activity, available/running applications, alerts, pro-
cess IDs, and for individual CPU utilization with process
re-nicing. Most powerful is the integrated shell plug-in
to support user-defined commands and parameters to start
tools and to control the remote peer provided the user has
access permission to that peer. Additionally, for remote
monitoring, we have defined an SMS plug-in to notify a
user when an alert occurs. For this, rules have to be de-
fined when a notification alert is sent, e.g., only high prio-
rity errors/completions are filtered and sent via SMS while
others are just collected in a local logfile.
JXTA as a core system for RTMC has the great advan-
tage, that is comes an integrated instant messaging func-
tionality (in fact one of the most common peer-to-peer ap-
plications), which can be used even on mobile devices.
Though some manufacturers have already extended SMS
to a proprietary SMS chat protocol, those protocols nei-
ther work with mobile phones from other manufacturers
nor is it possible to interact with other devices like PDAs
or PCs. Thus, currently only JXTA provides instant mes-
saging over stationary and mobile devices.
For an enhanced nomadic application consider the follow-
ing scenario. An engineer starts a time-consuming sim-
ulation just before leaving to home in order to have re-
sults available on the next morning. Via RTMC services
the engineer can receive a message when the simulation
stopped for some reason. Via RTMC he/she can retrieve
basic resource utilization information in order to get first
information about potential problems like disk overflow.
When he/she cannot fix the problem from remote, he/she
may wish to contact the emergency system administration
via instant messaging, email, or telephone to outline the
problem. After fixing the problem, the service can be ea-
sily relaunched via RTMC.



Figure 2: RTMC Graphical Front-End for Stationary Machines

Figure 2 shows a screenshot of graphical RTMC front-
end, as it is presented to the RTMC user. The upper left
has a list of users, which can be contacted for online com-
munication. Messages are entered in the text input field at
the bottom. On the left side there is also list of available
RTMC commands, where the right hand side displays all
events and messages received by RTMC and JXTA, re-
spectively. Through this interface, every RTMC user of
the same group has access to exactly the same informa-
tion, which is a great aid to collaborately solve problems.

Figure 3: RTMC on a MIDP enabled Siemens SL45i

While this front-end can be used for workstations and

PCs, mobile implementations are more limited. Entering
lengthy command strings, for example, is feasible but not
always very efficient. Therefore, RTMC on mobile phones
comes with buttons rather than text input fields whenever
possible in order to send RTMC commands. Figure 3
shows an example of the RTMC user interface on a J2ME-
enabled mobile phone.

5 UTL - User Tracking Layer

In distributed and mobile environments we face the situa-
tion that nomadic users very likely operate with different
devices on different occasions and locations. It is not very
efficient to broadcast messages to all devices of each user.
The critical point, beyond costs and bandwidth, is the fil-
tering of self-created ’spams’ since the replication may
send multiple copies of the same message. Thus, when
a user returns to the PC, he/she does not want to process
the same messages again, which were already received by
mobile phone or PDA. To tackle that problem, we have de-
fined the user-tracking layer (UTL) for RTMC. The UTL
overcomes the issues of device cluttering by managing all
the devices of one user.
The core component of UTL is the instance manager,
which is added to a JXTA relay server (see Figure 4).
When the relay server receives a message, it determines
the currently registered device of the receiver. The cur-
rently active devices are determined by timeouts. When,
for example, the user logs in at the home or at the of-



Figure 4: User Tracking Layer - Message Relay to the Active Device

fice PC, the RTMC instance registers the user at the relay
server. When the user either logs off or after a predefined
timeout, the system tries to relay all messages to the user’s
default device.

Figure 5 shows a sequence diagram with details of the
above sketched behavior of the instance manager, i.e.,
when a user connects with instance A and a second client B
is already connected. At the beginning, the active instance
controller looks for other active instances and decides on
the priority of the active client. The priority depends on
the status (online, offline) and on the time expired since
the last user interaction. After having set the status from
client A to online, the active instance controller compares
its own priority with that of other devices (in that case
B) and detects that its priority is the highest one and thus
marks its own instance as active. After that, the ping ser-
vice starts sending ping messages to other clients. The
ping messages have information about the active client,
time of the next ping, status, and priority. Since all clients
receive ping messages, the still active instance B is noti-
fied as well and recognizes that it does not keep the highest
priority. Finally, B sets itself to inactive. If the new active
instance A stops sending the ping messages for some rea-
son, instance B detects this after the timeout interval and
takes the role of the active instance again.

6 Conclusion

In this paper we introduced the RTMC framework, which
supports monitoring and control of services in the con-
text of engineering applications. Users can easily define
their own application specific control modules, which are
loaded into the RTMC framework as plug-ins. Due to
JXTA, RTMC supports even small computing devices like
mobile phones with instant messaging support. With a
user-tracking layer, data can be sent to the currently active
or to the default device of a user.

Though we have developed RTMC in the context of en-
gineering applications like remote control and monitoring
of simulators, we see a great potential for application in
remote maintenance since, for instance, maintenance per-
sonal could easily download error codes via RTMC to mo-
bile phones once the remote device is connected to a net-
work.

Acknowledgement

The work described herein was funded by the IST project
E-Colleg (IST-1999-11746).



Figure 5: Sequence Diagram of the Instance Manager

References

[1] DMH: www.dmhsoftware.com

[2] FutureSoft: www.futuresoft.com

[3] Oaks, S. ; Wong, H.: JINI in a Nutshell. O’Reilly Ver-
lag, Köln, 2001.

[4] Project JXTA, Sun Microsystems: www.jxta.org

[5] Kostienko, T.; Mueller, W.; Pawlak, A.; Schat-
tkowsky, T.: An Advanced Infrastructure for Collab-
orative Engineering in Electronic design Automation.
CE 2003, Madeira, Portugal, July 2003.

[6] MG-SOFT: www.mg-soft.si

[7] NuDesign Team: www.nudesignteam.com

[8] PiranhaWAP, ELC Technologies Inc.:
www.elctech.com/ products_piranha.shtml

[9] Schattkowsky, T.; Mueller, W.: Distributed Engineer-
ing Environment for the Design of Electronic Systems.
CCE’03, April 15-16, 2003, Poznan Poland.

[10] Stallings, W. B.: SNMP, SNMPv2, SNMPv3 and
RMON 1 and 2. Addison Wesley Longman Inc., Read-
ing, Massachusetts, 1999.

[11] Thronicke, W.; Fox, W.; et al.: From Tool Inte-
gration to Workflow Management - A Lean Integra-
tion Solution. In Proc. 2nd World Conference on In-
tegrated Design and Process Technology, Austin, TX,
Dez. 1996.


