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ABSTRACT
Norms defined by institutions and enforced by organizations
have been put forward as a mechanism to increase the effi-
ciency and reliability of electronic transactions carried out
by agents in open systems. Despite several approaches have
been proposed to model protocols in terms of institutional
concepts (e.g., obligations and powers) and to monitor the
actual compliance of agents’ behavior at runtime, little work
has been done to formally guarantee that such systems of
norms ensure certain desirable properties. In this paper we
describe a framework to verify institutions, which is char-
acterized by a metamodel of institutional reality, languages
to describe institutions and to specify their properties, and
a tool to model check them. Finally, to evaluate our ap-
proach, we model and verify the Dutch Auction institution,
a widely used interaction protocol, showing that the verifi-
cation of institutional rules constitutes a necessary step to
define sound institutions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.11 [Distributed Artificial Intelligence]: Lan-
guages and structures; D.2.4 [Software/Program Verifi-
cation]: Model Checking

General Terms
Verification

Keywords
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1. INTRODUCTION
Electronic institutions have been proposed to design, an-

alyze, and regulate open multiagent systems where agents
are developed by different organizations and their internal
mental states are not accessible [25, 13, 12, 16]. Unfor-
tunately, the term “electronic institution” is often used to
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refer to either the rules that regulate open multiagent sys-
tems, the organization that enforces them [13], the software
implementation of institutional rules [12], or a specific for-
malism to describe them [14]. For this reason, in this paper
we will adopt the term “institution” to refer to a set of rules
and concepts regulating agent interactions and which may
be enforced by an organization (an electronic institution ac-
cording to [13]). This distinction closely reflects the use of
the term “institution” as it has been exploited in [30, 31],
where an institution is any collectively accepted system of
rules which creates institutional facts [30], and in [26], where
institutions are the rules of the game in a society which may
be enforced by a coercive third party.
According to [25, 13, 7, 15], in open systems institutions

essentially play two fundamental roles: (i) they define a set
of norms which make more predictable the behavior of other
agents and (ii) they describe the ontology of the interaction
context. For instance, the institution of the Dutch Auc-
tion not only introduces a norm which obliges an auctioneer
to decrease the price of a good under certain conditions,
but also defines the very concept of decreasing the price
[15]. In [30, 31] Searle claims that there exists a strict re-
lation among normative and ontological aspects of institu-
tions: “institutional facts are matters of deontic” relations
[31] (institutionalized powers [19], obligations, prohibitions,
etc.). Indeed, when a seller quotes a good it fixes its price
(an institutional fact) and at the same time it creates new
powers and obligations not only for itself, but also for other
agents. For example, the seller cannot ask clients to pay
a higher price, while it is empowered (but not obliged) to
apply a discount.
To investigate the interdependencies existing among de-

ontic relations and the ontology defined by an institution,
in [36] we proposed FIEVeL (Functions for Institutionalized
Environments Verification Language), a language to model
institutions in terms of the notion of status function, that
is “a status to which a function is assigned” [30, pag. 40].
Our main tenet is that all status functions, even those im-
posed on events and objects, can be reduced to statuses
imposed on agents, which are named agent status functions.
In particular, we describe agent status functions in terms
of deontic relations, which represent what actions are em-
powered, obliged, forbidden, or permitted for an agent. In
doing so, institutional events can be characterized in terms
of what status functions are imposed or revoked, which helps
to clarify how each institutional event changes agent deontic
relations.
In contrast with [24], where norms (also named social



laws) are assumed to be respected by agents because they
are designed and encoded by a single organization, in open
systems it is unrealistic to expect that autonomous agents
will always comply with norms. For this reason, the re-
search on institutions has been mainly focused on develop-
ing languages and tools to model [13, 7, 28, 15, 16] and to
monitor [12, 35, 8, 16] agent interactions in terms of institu-
tional concepts (roles, obligations, etc.) with the purpose of
avoiding or detecting violations of norms. In doing so, insti-
tutions play a crucial role to increase the efficiency of elec-
tronic transactions carried out by agents [25], but raise the
problem of ensuring that such rules are not characterized by
contradictory norms and provide agents with all the needed
powers to fulfill their objectives. This is especially impor-
tant when institutions are complex and it is prohibitive to
foresee all possible evolutions admitted by them.
Automated formal verification [5, 27] should be considered

as an important step for the development of institutions, be-
cause it can increase the reliability of institutions by ensur-
ing that they satisfy certain properties. The development
of formal frameworks to verify institutions is therefore es-
sential, but only few attempts have been proposed in the
literature to introduce automated formal methods to verify
them [6, 18, 36]. In [6, 18] the authors propose two frame-
works to model check institutions described according to the
language discussed in [13], but only certain aspects of insti-
tutions are verified. For instance, both approaches do not
consider normative rules [13]. In [36] we proposed to model
check FIEVeL institutions by translating its constructs into
Promela, the input language of the SPIN model checker [17].
The main disadvantages of the approach described in [36] re-
side in the time and memory required to verify institutions,
and in the lack of a high-level specification language to de-
fine desirable properties in terms of the very same concepts
used to model institutions.
To provide designers with a succinct notation to specify

properties of institutions and to decrease the time required
to verify them, in this paper we propose a new approach to
model check FIEVeL institutions. In particular, we define
the semantics of FIEVeL constructs in terms of what sorts,
symbols, and axioms of an ordered many-sorted first-order
temporal logic (OMSFOTL) are induced by them. More-
over, we introduce a specification language whose expres-
sions are equivalent to formulae written in a OMSFOTL
and which allows designers to refer to any symbol defined
by a FIEVeL institution. This is particularly important be-
cause it increases the reuse of both models and properties of
institutions, since typically institutions describe rules that
do not depend on the number of agents, objects, etc. in-
volved in the interaction. Finally, assuming that domains
of sorts referred by institutions are finite, it is possible to
translate them into propositional models and their proper-
ties into CTL formulae [5], which allows us to apply OBDD-
based model-checking techniques and efficient algorithms to
verify whether an institution satisfies a given property.
The remainder of this paper is structured as follows. Sec-

tion 2 presents a set of concepts that we perceive as essential
to describe institutions and which constitute the metamodel
of the modeling language discussed in Section 3. To exem-
plify its syntax and the semantics of its main constructs,
we report our model of the Dutch Auction inspired by the
formalization proposed in [16]. Section 4 introduces a con-
cise notation suitable for specifying properties of institutions
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Figure 1: The institutional metamodel.

and a few properties of the Dutch Auction, while Section 5
presents a tool to simulate and verify institutions. Finally
in Section 6 we provide a comparison of our approach with
related works and in Section 7 we draw some directions for
future works.

2. THE INSTITUTIONAL METAMODEL
We express the semantics of status functions and related

institutional concepts in terms of a many-sorted first-order
logic [21] enriched with temporal operators and hierarchies
of sorts. Despite formulae of an ordered many-sorted first-
order temporal logic (OMSFOTL) can be translated into
first-order temporal logic [1] or, assuming finite domains,
into a temporal propositional logic like CTL∗ [10], we adopt
OMSFOTL for two main reasons: (i), it represents an ab-
breviated form for long and complex formulae and (ii), in-
stitutions describe rules that typically are independent of
the cardinality of domains used to describe them, which can
be naturally expressed by allowing quantification over sorts.
The signature of OMSFOTL is similar to the one of a first-
order logic with the addition of a finite nonempty set of sort
symbols Σ, a hierarchy of sorts ≤Σ (where σ1 ≤Σ σ2 means
that sort σ1 is a subsort of sort σ2), and function ξ, which
guarantees syntactic type checking of formulae by assigning
a sort to every variable and every constant, and a signature
(i.e. a sequence of sorts) to every function symbol and ev-
ery predicate symbol. In the remainder of this section we
explain what sorts, functions, and predicates are introduced
to represent institutional concepts, providing also their sig-
nature ξ.
Figure 1 depicts some of the main sorts used in our ap-

proach (e.g., status function, obligation, event) and their re-
lations, which are typically represented by introducing pred-
icates or functions. For instance, relation subject is reflected
in our logic by function subject, which refers to the agent a
status function has been imposed to (see below). Finally, we
report a set of axioms which characterize institutional real-
ity by imposing restrictions on the admissible valuations of
institutional models [2]. As we will see in Section 3, FIEVeL
provides a concrete syntax to formalize institutions in terms
of the very same concepts represented in Figure 1. For this
reason we say that such set of concepts and their relations
define a metamodel, since they constitute a model of our
modelling language [20]. On the other hand, the institu-



tional metamodel represents the upper ontology of institu-
tional reality, since it introduces concepts that are extended
to describe the ontology of institutions. For instance, any
domain-dependent status function extends the notion of sta-
tus function, which is abstractly defined as an aggregate of
deontic position, by detailing what powers and obligations
are associated to it.
Our metamodel of institutions is based on the notion of

agent status function, that is, a status imposed on an agent
and recognized as existing by a set of agents. A typical ex-
ample of status function is the concept of “owner”, since an
agent owns an object not thanks to its own physical features,
but only because a community of agents recognize so. Other
examples of status functions are the notion of “president” or
“employee”, which have been usually regarded as roles [3].
Indeed the concept of status function shares several features
with the concept of role (refer to [22, 3] for an overview),
but we perceive it to be broader, since its definition does not
presuppose a structured preexisting organization [3]. More-
over, the term status function better represents the fact that
we are concerned with statuses whose existence depends on
those agents that recognize them as existing and which are
assigned to agents to create new institutionalized powers or
to regulate their use.
The notion of agent status function induces sort σsf and

the function subject (ξ(subject) = 〈σaid, σsf 〉), which de-
notes the agent (σaid) the status function has been assigned
to. A status function may be currently assigned or revoked
(ξ(assigned) = 〈σsf 〉), reflecting the fact that an agent ac-
quires or looses certain deontic relations. Status functions
of an institution are modified (ξ(modified) = 〈σsf 〉) when
certain institutional events happen (see below), otherwise
they continue to be assigned (unassigned) to the same agent:

AG∀f(¬Xmodified(f)→ (assigned(f)↔ Xassigned(f)))
(A.1)

AG∀f(¬Xmodified(f)→ ∃a(subject(f) = a∧

Xsubject(f) = a)) (A.2)

Status functions are possibly empty aggregates of deontic
relations that can be expressed in terms of two main con-
cepts, institutionalized power [19] and obligation. As we will
see, we represent powers as predicates related to the per-
formance of institutional actions, while obligations induce a
sort (σo) whose individuals reify norms of institutions. Obli-
gations can be also used to express prohibitions by specifying
suitable violation expressions, while we do not define a spe-
cific construct to explicitly represent the fact that an agent
is permitted to perform an action as in [7, 16, 28, 35]. In-
stead, we consider that an agent is permitted to execute an
action if the action can be performed without violating any
norm.
Sort σo is characterized by the function state (ξ(state) =

〈σstate, σo〉) and by a set of predicates (start, fulfillment,
and violation of signature ξ(violation) = 〈σo, σsf 〉) which
are used to specify conditional norms and under what con-
ditions an agent fulfills or violates them. When a status
function is imposed, the state of a norm is set to unfired if
predicate start is not satisfied:

AG∀o∀f((ofstatus(o) = f ∧X(assigned(f) ∧modified(f))

∧¬start(o, f))→ Xstate(o) = unfired)
(A.3)

otherwise, it is set to activated:

AG∀o∀f((ofstatus(o) = f ∧X(assigned(f) ∧modified(f))

∧start(o, f))→ Xstate(o) = activated)
(A.4)

When a norm is activated, it may reach state inactive either
because it is fulfilled, it is violated, or because it is associated
to a revoked status function. For instance, the following
axiom states that if an obligation has been activated and
becomes inactive, then it means that either violation or
fulfillment are evaluated to true, or the status associated
to the obligation (referred by function ofstatus) has been
revoked:

AG∀o∀f((ofstatus(o) = f ∧Xstate(o) = inactive

∧state(o) = active)→ (Xmodified(f)

∨violation(o, f) ∨ fulfillment(o, f))) (A.5)

To automatically classify states and transitions with re-
spect to norms of an institution, we introduce predicate
violated of signature ξ(violated) = 〈σo〉. A norm is vio-
lated if and only if it was activated, the associated status
function is not modified, violation holds while fulfillment
is false:

AG∀o∀f(ofstatus(o) = f → (Xviolated(o)↔

(state(o) = active ∧ (violation(o, f)∧

¬fulfillment(o, f) ∧ ¬Xmodified(f))))) (A.6)

An institution and its physical environment evolve be-
cause events (σev) occur or agents perform actions (σact ≤Σ
σev). Each event type e induces a sort σe, a constant e of sort
σe, and three predicates, happense, prece, and effe, which
express if an event of type e happens, and what conditions
must be satisfied before and after its occurrence. We classify
events into two different sorts: base-level events (σbe), like
time events and exchange-message events, and institutional
events (σie), like the 18th birthday and the act of transfer-
ring the ownership. While base-level events affect only the
environment of an institution, institutional events modify
institutional reality by imposing or revoking status func-
tions. Therefore, institutional events occur only because a
community of agents recognizes their effects and cannot be
directly produced by the environment or by an agent [30].
On the contrary, the occurrence of a base-level event is in-
fluenced only by its preconditions (e.g., a door can be open
only if it was closed):

AG∀x(Xhappense(x)→ prece(x)) (A.7)

where x represents a set of variables xi determined by the
signature of predicate happense.
Following [30] the occurrence of an institutional event is

subordinated to the occurrence of another event convention-
ally associated to it. More precisely, an institutional event
ie that is not an action occurs if and only if an event con-
ventionally related to it happens:

AG∀x((precie(x) ∧
∨

e∈σev

X(conve−ie(x) ∧ happense(x
′)))

↔ Xhappensie(x))
(A.8)



where predicate conve−ie represents the existence of a con-
vention among event e and institutional event ie and x′ re-
flects how arguments of event ie are mapped over arguments
of event e. Instead, in the case of institutional actions a fur-
ther condition must be satisfied, namely, the actor must be
empowered to perform the institutional action ia:

AG∀x((precia(x) ∧ ∃f(subject(f) = x1 ∧ empoweredia(f, x)

∧assigned(f) ∧
∨

a∈σact

X(conva−ia(x)∧

happensa(x
′)))↔ Xhappensia(x))

(A.9)

where the first variable of x refers to the actor of action
ia and predicate empoweredia reflects the fact that status
functions may be conditionally empowered to perform insti-
tutional action ia. Finally, all types of events are character-
ized by the following axiom:

AG∀x(Xhappense(x)→ Xeffe(x)) (A.10)

which states that if an event occurs, its effects take place.
Axioms (A.6), (A.9), and (A.10) highlight the main differ-
ence between the absence of permission, due to the existence
of a prohibition, and the absence of institutionalized power:
if an agent is prohibited to perform institutional action ia
but performs it anyway, the effects of the action take place
and the obligation to not perform the action is violated;
on the contrary, if an institutional action ia is not empow-
ered, it cannot happen and its effects will not take place.
As observed in [37], within a single institution it is always
possible to regulate the performance of an institutional ac-
tion either by revoking powers or by creating prohibitions.
Instead, a base-level action can only be regulated by defin-
ing prohibitions to not execute it, unless we can modify the
environment in such a way that it becomes impossible to
perform it.
In the following section we will exemplify the syntax and

semantics of FIEVeL, a modelling language for institutions
which has been introduced in [36] and which allows designers
to describe institutions in terms of the institutional concepts
described by our metamodel. In particular, in this paper we
present an improved version of the language, characterized
by a simpler syntax and new constructs to describe norms.

3. FIEVEL, A MODELLING LANGUAGE
FOR INSTITUTIONS

Figure 2 reports a few fragments of the Dutch Auction
institution inspired by the formalization discussed in [16],
where an auctioneer offers to sell a good at a certain price.
In contrast with the English Auction, in the Dutch Auction
the price is fixed by the auctioneer and not by participants,
which may accept it or wait for a new quotation. For the
sake of model checking we discretize the range of possible
prices that can be declared by an auctioneer, assuming that
the current price may be toohigh (no agent can afford it),
initial (the first offer of the auctioneer), medium, and reser-
vation (the lowest price offered by an auctioneer).
Once an auctioneer has quoted the good, the current price

is considered valid for a certain time interval, after which
the round is considered closed and, according to [16], three
situations may arise:

basic-sorts
oid;
priceD={reservation,medium,initial,toohigh};
sOff={accept,noaccept};
...
base-events
message soldGood(agent:aid,good:oid);
message makeWithdrawGood(good:oid);

...
institution dutchAuction{
status-function auctioneer (goodA:oid,priceA:priceD,off:sOff){
key goodA;
powers
offer <- ((good=goodA and off=noaccept) and ((priceA=medium
and price=reservation) or ((price=medium and priceA=initial)
or (price=initial and priceA=toohigh))));
sold <- ((good=goodA and off=noaccept) and
exists b1:bidder,forall b2:bidder (((assigned(b1) and
assigned(b2)) -> subject(b1)=subject(b2) )));
withdrawGood <- ((off=noaccept and good=goodA) and
(priceA=reservation and not exists b1:bidder(assigned(b1)));

...
deontic
n1
start<->X((not priceA=reservation and off=noaccept) and
(not exists b:bidder (assigned(b)));
fulfillment<->Xhappens(offer, , , )
violation<->Xhappens(time);
n2
start<->(priceA=reservation and happens(time)) and
X(not exists b:bidder (assigned(b)));
fulfillment<->Xhappens(withdrawGood, , )
violation<->Xhappens(time);
n3
start<->X(happens(time) and exists b1:bidder((
assigned(b1) and forall b2:bidder (( assigned(b2) ->
subject(b1)=subject(b2) )));
fulfillment<->Xhappens(sold, , , )
violation<->Xhappens(time);
n4
start<->X(happens(time) and exists b1:bidder,
exists b2:bidder (((assigned(b1) and assigned(b2)) and
not subject(b1)=subject(b2) )));
fulfillment<->Xhappens(collisionOffer, , , )
violation<->Xhappens(time);

}
status-function customer(account : priceD){...}
status-function bidder(goodB:oid){...}

...
institutional-events:
institutional-event endRound()
pre exists a:auctioneer((off(a)=accept and assigned(a));
eff a:auctioneer(off(a)=accept)-X->

o:auctioneer assign(off(o)=noaccept,goodA(o)=goodA(a)
subject(o)=subject(a),priceA(o)=priceA(a));

institutional-action sold(agent:aid,good:oid)
pre exists b:bidder((goodB(b)=good and (assigned(b) and
subject(b)=agent)));

eff x:auctioneer revoke(goodA(x)=good);
institutional-action withdrawGood(good:oid)
pre TRUE
eff x:auctioneer revoke(goodA(x)=good);
institutional-action collisionOffer(good:oid,price:priceD)
pre TRUE
eff x:bidder revoke(goodB(x)=good),

a:auctioneer assign(goodA(x)=good,priceA(a)=price,
off(a)=accept);
...

conventions:
exch-Msg(makeWithdrawGood)[...]=c=>withdrawGood[good=c=>good];
exch-Msg(soldGood)[TRUE]=c=>sold[good=c=>good agent=c=>agent];
time[TRUE] =c=> endRound [ ]

...
}

Figure 2: Fragments of the Dutch Auction institu-
tion coded in FIEVeL.



1. several customers have submitted their bids: a col-
lision is detected and norm n4 is fired, obliging the
auctioneer to offer the good at a higher price before a
certain time period elapses;

2. only a customer has bid: the auctioneer is obliged by
norm n2 to sell the good, which also determines that
the auction is closed;

3. no buyer has submitted a bid: if the current price is
equal to the reservation price, norm n3 obliges the auc-
tioneer to withdraw the good, otherwise the auctioneer
offers a lower price to fulfill norm n1.

To activate norms we introduce event endRound (see Fig-
ure 2), which occurs when a time event happens and modi-
fies the auctioneer status function: in doing so, according to
Axiom (A.4), it activates one of the aforementioned norms.
Moreover, if certain conditions are met, the auctioneer is
empowered to declare sold the good, to withdraw it, or fi-
nally to declare that a collision has been detected, which
also increases the current price.
In our formalization of the Dutch Auction we empower

customers to perform bids only when their credit is higher
than the current price. This means that, according to Ax-
iom (A.9), customers have the physical possibility to send
messages offering to buy the good, but such messages do not
necessarily count as bids [15]. Therefore, if two agents send
a message accepting a certain price but only one of them has
the necessary credit, the system registers a single bid and
the good is sold to the bidder. Instead, in [16] customers
are prohibited from making bids they cannot afford, but
bids not supported by a sufficient credit are considered by
the auctioneer as any other bid: as a consequence, the auc-
tioneer is obliged to restart the auction by offering a higher
price even when there exists only an agent which can afford
its bid. For this reason, although our formalism is able to
model both scenarios, we prefer to limit the power of cus-
tomers, in order to increase the efficiency of the interactions
ruled by the Dutch Auction institution.
The semantics of the language exemplified in Figure 2

is given by providing a translation of its constructs into a
set of symbols and formulae of OMSFOTL. For instance,
the first lines of the model reported in Figure 2 induces sort
σoid, σpriceD (which also declares constants toohigh, initial,
medium, and reservation of sort σpriceD), and σsOff , which
is used to represent whether a round has been terminated.
Analogously, status function auctioneer is mapped onto sort
σauctioneer ≤Σ σsf and its attributes are mapped onto func-
tion symbols. For instance, attribute priceA corresponds to
a function symbol of signature ξ(priceA) = 〈σpriceD, σauctioneer〉.
According to Figure 2, only status function auctioneer is
empowered to perform institutional action sold and an auc-
tioneer can successfully declare a good sold when a round
has terminated (off = noaccept) and only an agent has bid
during the last round:

∀x∀g∀fAG(empoweredsold(f, x, g)↔ ∃s(f = s∧

(g = goodA(s) ∧ off(s) = noaccept ∧ ∃b1∀b2(

(assigned(b1) ∧ assigned(b2))→

subject(b1) = subject(b2))))); (A.11)

where ξ(g) = σoid, ξ(x) = σpriceD, ξ(f) = σsf , and ξ(s) =
σauctioneer. Similarly, norm n2 induces sort σn2 ≤Σ σo and

states that a norm of sort σn2 may be violated when a time
event occurs:

AG∀o∀f(violation(o, f)↔ Xhappenstime()) (A.12)

where ξ(o) = σn2 and ξ(f) = σauctioneer. Analogously, a
norm of sort σn2 is considered fulfilled when the auctioneer
withdraws the good:

AG∀o∀f(fulfillment(o, f)↔ X∃a∃g

(happenswithdrawGood(a, g))) (A.13)

where ξ(g) = σoid and ξ(a) = σaid. Finally, norm n2 is
activated when a time event has occurred, the current price
is equal to the reservation price, and in the next state no
agent has bid for the current price:

AG∀o∀f(start(o, f)↔ (ofstatus(o) = f ∧ happenstime()∧

priceA(f) = reservation ∧X¬∃b(assigned(b))))
(A.14)

where ξ(b) = σbidder.
The declaration of institutional action sold is reflected by

the definition of sort σsold ≤ σia and predicates happenssold,
presold, and effsold, whose signatures are determined by a
set of attributes defined by the designer. In particular, we
assume that all actions have an attribute actor. Notice that
while attributes of status functions are mapped onto func-
tions, attributes of event types are represented only by the
signature of predicates happens, pre, and eff . For instance,
institutional action sold induces predicate happenssold of
signature ξ(happenssold) = 〈σaid, σaid, σoid〉.

4. A SPECIFICATION LANGUAGE FOR
INSTITUTIONS

In our framework, properties are specified with a language
whose syntax strongly resembles an ordered many-sorted
first-order logic with temporal operators. The only differ-
ence resides in the fact that we write “x : σ” to say that vari-
able x is of sort σ. For instance, given that our metamodel
ensures that sorts σauctioneer and σcustomer are disjoint, the
following property requires that no agent has contemporary
the status function of auctioneer and customer:

AG¬∃ag : σaid((∃a : σauctioneer((subject(a) = ag)∧

assigned(a)) ∧ ∃c : σcustomer((assigned(c)

∧subject(c) = ag)))) (P.1)

To increase the flexibility of our specification language,
occurrences of events can be referenced with a generic pred-
icate happens, whose signature is determined by the sort
of its first argument. For instance, with the following for-
mula we require that there exists a path where eventually
the institutional action sold happens:

EFhappens(sold, , , ) (P.2)

where character “underscore” is used to express existential
quantification. In this case, predicate happens is mapped
onto predicate happenssold of signature ξ(happenssold) =
〈σaid, σaid, σoid〉 (see Figure 2). Exploiting the flexibility
provided by predicate happens and by quantifying over sort
of institutional events (σie), we can require that all institu-



tional events defined by an institution may eventually hap-
pen:

∀e : σie(EFhappens(e)) (P.3)

If Property (P.3) holds, it implies that, according to axioms
(A.8) and (A.9), we have defined a proper set of conventions
and powers. It is worth observing that while properties (P.1)
and (P.2) regard specific aspects of the Dutch Auction in-
stitution, Property (P.3) states a general desirable feature
that any institution ought to satisfy. Indeed, it would be
irrational to define an event that cannot happen. This dif-
ference is reflected by properties themselves, since Property
(P.3) is characterized only by symbols introduced by our
metamodel, whereas symbols defined in Figure 2 appear in
both properties (P.1) and (P.2). Moreover, while the former
two properties are concerned with the functionality of our
institution, stating that it is possible (impossible) to reach
certain states of affairs, Property (P.3) captures an impor-
tant aspect of the notion of event: it may occur. Thanks
to quantification over sorts defined by our conceptual model
(e.g., events, status functions, etc.) we envisage that it is
possible to define a library of properties that should be sat-
isfied by any institution, enhancing their reuse and ensur-
ing that systems of rules governing open systems are sound
with respect to the intended semantics of institutional con-
cepts. For instance, conventions are introduced to link the
occurrence of institutional events to the occurrence of other
events. Therefore, given a convention which relates events
of type x and y, it should be the case that there exists a
path where eventually both of them contemporary happen:

∀evx : σev∀evy : σie(convention(evx, evy)→

EF(happens(evx) ∧ happens(evy))) (P.4)

Once we have checked that an auctioneer can sell or with-
draw a good, we may require that the auctioneer sells or
withdraws the good in all possible interactions regulated by
the Dutch Auction:

AF(happens(sold, , , ) ∨ happens(withdrawGood, , ))
(P.5)

If we assume that an auctioneer is autonomous and it is al-
lowed to not comply with norms stated by the Dutch Auc-
tion, we should expect that Property (P.5) does not hold.
Indeed, it may be the case that a good is never declared
sold because an auctioneer obliged to do so ignores its obli-
gations. In general, agents that autonomously act in open
systems cannot be assumed to be compliant with norms [13,
15, 35]: as a consequence certain properties may not hold in
an institution even if its rules are correctly stated.
To analyze whether an institution may lead a system into

certain states when its norms are respected, we can exploit
predicate violated and the fact that in our framework norms
are reified as norm individuals. Therefore, it is possible
to quantify over sort σo (and its subsorts induced by each
norm), investigating how norms condition the evolution of
an institution. For instance we can require that while an
auctioneer is subject to all norms defined by the Dutch Auc-
tion institution, it is always the case that interactions ter-
minate either with the good sold or withdrawn:

AF(∃o : σo(violated(o)) ∨ happens(sold, , , )∨

happens(withdrawGood, , )) (P.6)

Actually, Property (P.6) is insufficient to guarantee that
norms lead an auctioneer to declare close an auction. In-
deed, if norms were inconsistent, Property (P.6) would be
trivially satisfied. Therefore, we should also verify that there
exists a path compliant with norms where an auctioneer sells
or withdraws a good:

E(∀o : σo(¬violated(o))U(happens(sold, , , )∨

happens(withdrawGood, , ))) (P.7)

Together, properties (P.6) and (P.7) ensure that auctioneers
have been provided with powers to successfully carry out
their activities and with norms that detect paths where they
violate their obligations.
To conclude this section it is worth noticing that whereas

formulae described in sections 2 and 3 introduce a set of
restrictions A on valuations which characterize respectively
any institutional model and any model of the Dutch Auc-
tion, OMSFOTL formulae defined with our specification lan-
guage constitute properties we want to test over models sat-
isfying restrictions A. Moreover, we observe that while in
[16] auctioneers are assumed to be always compliant with
their norms, our model of the Dutch Auction introduces
only norms that constrain the behavior of the auctioneer
and it does not define prohibitions to regulate activities of
customers, which are permitted to bid whenever they are
empowered (see Section 3). As a consequence, since the
main differences among our model and the one presented in
[16] regard how an institution reacts to violations, if we as-
sume that agents comply with their norms, Property (P.6)
holds in our model if and only if it holds according to the
rules defined in [16].

5. A TOOL FOR MODEL CHECKING
INSTITUTIONS

In this section we will present a new approach to verify in-
stitutions modelled with FIEVeL and whose properties are
specified with the language described in Section 4. While
in our previous attempt to model check institutions [36]
FIEVeL constructs were translated into the input language
of an existing model checker, namely SPIN [17], in this paper
we present a symbolic model checker that has been specifi-
cally developed to verify FIEVeL institutions and which is
based on the CUDD library [33].
Given an institution described with our modelling lan-

guage, which corresponds to a set of symbols and axioms
of an ordered many-sorted first order temporal logic, to
apply symbolic model-checking techniques [5] we define a
mapping µ of symbols and a translation τ of axioms to ob-
tain an equivalent propositional model. Models satisfying
such formulae correspond to Kripke structures that can be
conveniently represented as Ordered Binary Decision Dia-
grams (OBDDs) [4], a canonical representation of Boolean
functions. For this reason, following [5] we will represent a
Kripke structure as a tuple M(v) = (S(v), S0(v), R(v, v′)),
where S(v) is a set of states (assuming that each state cor-
responds to a valuation of atomic propositions v), S0(v) is
a set of initial states, and R(v, v′) is a total relation on S(v)
where v′ is a second set of propositions used to represent
states reachable from states encoded by variables v.
Atomic propositions v are determined by defining a func-

tion µ which maps institutional symbols into a set of atomic
propositions as follows:



• let Nσ be the cardinality of domain Dσ: each func-
tion f of sort σ induces a set of propositions vfx1,..,xn

of cardinality log2(Nσ) such that µ[f(x1, ..., xn)] =
vf(x1,...,xn) for each valuation of variables x;

• each predicate P induces a proposition vx1,...,xn such
that µ[P (x1, ..., xn)] = vx1,...,xn for each valuation of
x;

• constant symbols do not introduce any additional propo-
sition: instead, each constant c is mapped as a se-
quence of truth values which correspond to the bi-
nary representation of the individual referenced by it
(µ[c] = binary(I(c))).

It can be shown that if domains and symbols defined by
an institution are finite, the size of v is finite. Several opti-
mizations can be introduced to reduce the number of atomic
propositions, but we omit the details for the sake of brevity.
Given mapping µ and propositions v, transition relation

R(v, v′) is obtained by translating the conjunction of axioms
ϕi into propositional formulae (R(v, v′) = τ [

∧
ϕi]). Assum-

ing that there exists a constant symbol for each individual
of every domain and, for simplicity, that only variables and
constants can appear as arguments of functions and predi-
cates, translation τ is defined as follows:

• τ [t1 = t2] =
∧i<Nξ(t1)

i=0 ¬(µ[t1]i ⊕ µ[t2]i) where µ[t]i
refers to the i-th proposition (or equivalently the i-th
truth value) corresponding to the encoding of term t;

• τ [P (x1, ..., xn)] = µ[P (x1, ..., xn)];

• τ [∀xϕ] =
∧
c∈Cξ(x)

τ [ϕ[c/x]] where c ranges over con-

stants of sort ξ(x) and ϕ[c/x] is the result of replacing
every free occurrence of x in ϕ with an occurrence of
c;

• τ [¬ϕ] = ¬τ [ϕ];

• τ [ϕ ∧ ϕ] = τ [ϕ] ∧ τ [ϕ];

• τ [Xϕ] = τ [ϕ]′, that is, we apply translation τ and then
variables v are substituted with variables v′;

• τ [AGϕ] = τ [ϕ]∧ τ [Xϕ] if ϕ does not contain the next
temporal operator (X), otherwise τ [AGϕ] = τ [ϕ].

Although in principle the OBDD corresponding toR(v, v′)
can be directly obtained by applying τ , in practice its gen-
eration tends to be extremely slow. To overcome such prob-
lem, we apply the algorithm described in [32] to convert
propositional formula τ [

∧
ϕi] into conjunctive normal form

(CNF), whose satisfying assignments are searched by in-
voking Minisat [9], an efficient SAT solver. In this case,
R(v, v′) is defined as the OBDD corresponding to the dis-
junction of all solutions found by the solver (R(v, v′) =∨
0≤i≤N ri(v, v

′)). Finally, the set of initial states is obtained
by applying translation τ to a formula which describes the
initial settings of an institution and its environment.
Kripke structure M(v) can be exploited to interactively

simulate the evolution of an institution and its environment.
In particular, by taking advantage of mapping µ, given a
state s ∈ S(v) and transitions departing from it, we can
provide a high-level description of state s in terms of insti-
tutional concepts, allowing the user to choose the following

|σaid| |v| clauses time (sec.) solutions
3 30 678 0.028 80
4 34 788 0.040 165
5 39 1009 0.078 346
6 42 1157 0.137 731

Table 1: Time spent by the SAT solver to find all
assignments admitted by a propositional model of
the Dutch Auction.

state by selecting one of the base-level events that may oc-
cur.
Table 1 reports how the cardinality of sort σaid affects

the number of propositional variables v necessary to encode
the Dutch Auction institution, the number of clauses gen-
erated by the translation of axioms induced by our meta-
model into propositional formulae, the number of solutions,
and the time spent by the SAT solver to find them. Ob-
serving Table 1, we can notice that the number of solutions
N found by the SAT solver is considerably smaller than the
number of states that can be encoded by variables v. We
can also observe that if a state s(v) is reachable, then there
exists a solution r(v, v′) such that the valuation of variables
v′ is equal to the valuation of variables v corresponding to
state s(v). As a consequence, N represents an upper bound
of the number of reachable states. This fact suggests that
once we know the total number of assignments satisfying
the CNF formula obtained as the conjunction of axioms in-
duced by the metamodel or FIEVeL constructs, we can build
a Kripke structure M(w), equivalent to M(v), but defined
over a smaller set of variables. In doing so the time required
to build the symbolic representation of the institution and
the time required to verify its properties can be considerably
reduced.
Given a set Φ of properties specified with the language

described in Section 4 and a set of assignments of cardinal-
ity N , to construct the symbolic representation M(w) we
proceed as follows:

1. the number of variables w is determined by the loga-
rithm in base 2 of N increased by 1, since it may be
the case that some transitions depart from the initial
state but none of them reach it;

2. we define a function ε which maps natural numbers
comprised between 0 and N (which are also used to
identify states of M(w)) into valuations of variables v′

encountered by the SAT solver. Notice that function
ε creates a correspondence among states of the Kripke
structures M(v) and M(w);

3. for each property ϕ ∈ Φ we first remove all quanti-
fiers as done for translation τ and subsequently replace
each subformula not containing temporal operators by
introducing an atomic proposition pi. For instance,
Property (P.2) induces the definition of a new propo-
sition p and is transformed into propositional temporal
formula EFp;

4. for each proposition pi we define a set of states Spi(w)
such that s(w) ∈ Spi(w) iff ε(s(w)) → τ [ϕpi ], that is,
a state s(w) belongs to Spi(w) if and only if it cor-
responds to a state s(v) which satisfies propositional
formula τ [ϕpi ];



Figure 3: The report generated by our model
checker.

5. analogously, a state s(w) is an initial state if and only
if it corresponds to an initial state of the Kripke struc-
ture M(v). Formally: s(w) ∈ S0(w) iff ε(s(w)) ∈
S0(v);

6. the transition relation R(w,w′) is obtained as the dis-
junction of the encoding of solutions found by the SAT
solver: R(w,w′) =

∨
r(v,v′) ε

−1(v)∧ε−1(v′). It is worth

observing that with the exception of the initial state,
to build R(w,w′) we can omit solutions which start
from unreachable states.

At the end of this process, we obtain a Kripke structure
M(w) which is equivalent to M(v) and properties Φ can be
verified by applying standard symbolic algorithms (see [5]).
Notice that to built M(w) it is not necessary to construct
M(v), but it is sufficient to analyze assignments found by
the SAT solver.
As we can observe in Figure 3, when we asked our tool to

verify properties described in the previous section, we ob-
tained that properties (P.5) and (P.6) were violated by our
formalization of the Dutch Auction. The violation of Prop-
erty (P.5) was expected, since it stems from our assump-
tion that even an auctioneer may be an autonomous agent
and, as such, it may violate norms. Instead, the violation
of Property (P.6) was unexpected, since it means that the
system of norms of the Dutch Auction defined in [16] does
not ensure that an auction ends even when norms are re-
spected. For instance the following evolution is compatible
with norms of the Dutch Auction described in Section 3: (i)
two or more participants bid when the price is initial and
norm n4 obliges the auctioneer to offer the good at price
toohigh; (ii) none of the agents accepts price toohigh and
the auctioneer is obliged by norm n1 to decrease the price to
the initial value; at this point, as in (i) two or more agents
bid for price initial and, if they will continue doing so and
the auctioneer will respect norms n4 and n1, the system
continues iterating among states (i) and (ii). The following
property captures this fact, stating that there exists a state
where once an auctioneer quotes a good, there exists a path
where either the price if higher or is kept equals to the initial
price:

EG(∃a : σauctioneer(assigned(a) ∧ priceA(a) = initial)

→ EG∃a : σauctioneer(assigned(a)∧

(priceA(a) = initial ∨ priceA(a) = toohigh)));
(P.8)

|σaid| |w| |R(w)| |S(w)| time (sec.)
3 7 120 64 0.005
4 8 253 126 0.011
5 9 572 260 0.028
6 10 1347 550 0.040

Table 2: Cumulative time required to verify all prop-
erties discussed in Section 4.

As reported in Figure 3, Property (P.8) holds, which ex-
plains why norms do not ensure that a Dutch Auction will
terminate. As discussed in Section 4, if we assume that
agents comply with norms, our model represents an abstrac-
tion of the institution discussed in [16] and our results can
be applied to that formalization. For instance, if two agents
bid only when a good is offered at a price lower than a
fixed threshold, they may lead an auctioneer to never de-
clare closed an auction.
To conclude this section, we report results obtained by

checking properties described in Section 4 on a laptop with
installed Linux and equipped with a pentium 1.66 GHz and
1 GB of RAM. Table 5 shows how the number of proposi-
tional variables w and the size of reachable states vary by
augmenting the number of agents. Column |R(w)| shows
the actual number of transitions of the Kripke structure
M(w), which is typically greater than the number of solu-
tions found by the SAT solver (see column solutions of Table
1). This is achieved by universally abstracting certain vari-
ables (e.g., variables corresponding to predicate violated)
and contributes to reducing the search space of the SAT
solver. Finally, we can observe that the number of states
that can be encoded with variables w is still considerably
larger with respect to the actual size of reachable states
S(w). Unfortunately, the exact number of reachable states
cannot be determined only by considering the set of assign-
ments encountered by the SAT solver and requires the con-
struction of the Kripke M(v), which, due to the number of
variables v used to encode it, tends to be computationally
expensive when the number of solutions is big.

6. RELATED WORKS
In the literature there are several attempts tomodel, simu-

late, and verify institutions. Our approach provides a single
language and a tool to carry out all these tasks, while other
proposals typically support only one of them. For instance,
in [15, 37] we proposed a notation based on an intuitive se-
mantics of institutional concepts, which does not allow the
development of a framework to verify agents’ behavior. On
the contrary, in [7] Cliffe et al. present a framework for the
verification of institutions, but they do not provide a lan-
guage to model institutional concepts. As a consequence,
designers must manually encode and classify such concepts,
which increases the size and complexity of institution de-
scriptions and may lead to inconsistencies.
In [28] systems regulated by norms (named normative sys-

tems) are described by using a formalism inspired by the
Event Calculus. The absence of an institutional metamodel,
which for instance provides an axiom to state that every
institutional action must be empowered in order to be suc-
cessfully executed, obliges the authors of [28] to specify this
fact for every single action and for every role. Therefore, the
definition of a modelling language characterized by a meta-



model of institutional reality provides a significant advan-
tage, especially when many status functions (or roles, using
the terminology of [28]) are empowered to perform the same
institutional action. Furthermore, the definition of an au-
tomatic encoding of institutions described in FIEVeL into
propositional models allows us to verify our systems, while
in [28] the authors must rely on “systematic runs”.
In [13] Esteva et al. present a graphical notation to model

institutions as labeled transition systems. One of the main
advantages of such language resides in the fact that designers
have at their disposal a tool for editing institutions [11] and
another tool to enact institutions and automatically moni-
tor agents’ interactions [12]. To verify such systems, in [18]
and [6] the authors describe two syntactic translations of in-
stitutions into languages amenable to model checking. For
instance, in [18] an institution is translated into a MABLE
agent [38], but, since “the meaning of labels is not clear
from the notation only” [34], both approaches allow design-
ers to define and verify only properties regarding the syn-
tactic structure of an institution. Moreover, the translation
presented in [18] treats norms regarding the performance of
communicative acts as if they were always fulfilled by agents,
which seems counterintuitive given that institutions are in-
troduced to regulate systems where such assumption is not
satisfied [13]. As a consequence, the model checker may an-
swer that a certain property holds when it is not the case
and vice versa.
Indeed, reasoning about what properties are satisfied by

an institution when agents follow their norms is important
to evaluate the functionality of institutions (e.g., they al-
low agents to fulfill their objectives without violating their
obligations and prohibitions), but properties holding when
agents are not compliant should also be investigated. To
do so, in [29] Raimondi and Lomuscio proposed a specifi-
cation language characterized by a modal operator which
discriminates computations compliant with an interaction
protocol. The tool described in [29] is very efficient, but its
input language requires designers to explicitly list the set of
states that each agent may reach, and to classify them as
red (an agent violates the protocol) or green. Although red
states are such only because they violate a protocol [29], such
classification is not inferred from the protocol but must be
manually provided independently from it: therefore design-
ers may introduce discrepancies among the protocol and the
classification of states. In this respect, our modelling lan-
guage offers a high-level description of norms, which are used
to automatically determine and classify states and transi-
tions. Moreover, in [29] systems and their properties are
described in terms of a fixed set of agents, which reduce the
reuse of properties and system descriptions to other possible
situations admitted by an institution.

7. CONCLUSIONS
In this paper we have presented a framework which pro-

vides a high-level language amenable to model checking to
describe institutions in terms of institutional concepts (e.g.,
status functions, institutional events, etc.) We have also
introduced a concise notation to specify properties of insti-
tutions and a tool which, starting from a FIEVeL model and
a description of basic domains, allows designers to simulate
and verify institutions. To exemplify our approach we have
modelled the Dutch Auction institution as it has been de-
scribed in [16] and formalized a set of properties, showing

that under certain conditions an interaction ruled by such
institution may not terminate.
We are currently exploring how to improve performances

of our tool by adopting a more efficient SAT procedure (like
the one described in [23]) to find all solutions admitted by a
CNF. In the future we will extend our framework to model
interdependent institutions, analyzing what kinds of rela-
tions may be defined among two institutions and their effects
over agent deontic relations.
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[9] N. Eén and N. Sörensson. An Extensible SAT-solver.
In Proceedings of the 6th International Conference on
Theory and Applications of Satisfiability Testing.,
volume 2919 of LNCS, pages 502–518. Springer, 2004.

[10] E. A. Emerson and J. Y. Halpern. “Sometimes” and
“not never” revisited: on branching versus linear time
temporal logic. Journal of the ACM, 33(1):151–178,
1986.

[11] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER:
an electronic institutions editor. In Proceedings of the



1st Conference on Autonomous Agents and Multiagent
Systems, pages 1045–1052, 2002.
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