
Automated Mapping for Heterogeneous
Multiprocessor Embedded Systems

Abhijit Davare

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-115

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-115.html

September 7, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automated Mapping for Heterogeneous Multiprocessor Embedded
Systems

by

Abhijit Davare

B.S. (University of Pittsburgh) 2002
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto Sangiovanni-Vincentelli, Chair

Professor Jan Rabaey
Professor Alper Atamtürk

Fall 2007

The dissertation of Abhijit Davare is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

Automated Mapping for Heterogeneous Multiprocessor Embedded

Systems

Copyright 2007

by

Abhijit Davare

1

Abstract

Automated Mapping for Heterogeneous Multiprocessor Embedded Systems

by

Abhijit Davare

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Increasing design complexity and time-to-market concerns have led to the increased

prevalence of programmable processing elements for embedded systems. These platforms

feature multiple processing elements, some of which may be customized for specific domains.

Deploying applications typical of embedded system domains such as multimedia and trans-

portation onto these platforms is difficult, not only due to the heterogeneous parallelism in

the platforms, but also due to the performance constraints that typify embedded systems.

This dissertation advocates and validates a design flow that enables designers to

deploy applications onto this emerging class of embedded platforms. The design flow is

based on the platform-based design methodology which initially separates the modeling

of the application and architectural platform. The design flow advocates transforming

these models in a structured manner such that both have compatible execution models

and abstraction levels. The goal of this structured model transformation is to simplify the

2

deployment challenge into a covering problem where portions of the application are assigned

to processing elements in the architectural platform.

The focus of this work is to validate the design flow by applying it to embedded

systems from the multimedia and automotive domains. The case studies explore the trade-

offs inherent in modeling these systems as well as techniques for automatically solving the

mapping problems. The automated techniques use mathematical programming approaches

which have the flexibility to handle changes in the problem assumptions.

We observe that regardless of the domain, some aspects of the design flow such

as modeling and simulation are shared between systems. Based on the insights gained in

applying this design flow to the case studies, the requirements and initial implementation for

Metro II – a next-generation design framework for platform-based design – are described.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

i

To my family.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Trends . 2

1.1.1 Embedded Applications . 2
1.1.2 Programmable Platforms . 3
1.1.3 Heterogeneous Parallel Platforms . 5

1.2 Design Challenges . 6
1.3 Overview . 8

1.3.1 Approach . 9
1.3.2 Multimedia Domain . 10
1.3.3 Automotive Domain . 11
1.3.4 Design Framework . 11

2 Background 13
2.1 Platform-based Design . 13
2.2 The Metropolis Design Framework . 16

2.2.1 Goals of the Framework . 17
2.2.2 Design activities within the Metropolis framework 19

2.3 Related Design Frameworks . 22

3 Approach 26
3.1 Common Modeling Domains . 27

3.1.1 Parallel Systems Modeling . 28
3.1.2 Services . 30
3.1.3 Tradeoffs . 32

3.2 Mapping . 35
3.3 Development of the Design Flow . 37

iii

4 Multimedia Domain 39
4.1 Applications . 40

4.1.1 JPEG Encoder Application . 40
4.1.2 Motion JPEG Application . 43

4.2 Architectural Platforms . 43
4.2.1 The Intel MXP5800 Platform . 44
4.2.2 Xilinx Virtex II Pro Platform . 46

4.3 Choosing the Model of Computation . 47
4.3.1 Prior Work: Models of Computation 47
4.3.2 Chosen model of computation . 51

4.4 Manual Design Space Exploration: JPEG on MXP5800 53
4.4.1 JPEG Application Modeling . 54
4.4.2 Architecture Modeling . 55
4.4.3 Design Space Exploration and Results 58
4.4.4 Conclusions . 61

4.5 Automated Design Space Exploration: Motion-JPEG on Xilinx 62
4.5.1 Problem Statement . 63
4.5.2 Prior Work: Allocation and Scheduling 64
4.5.3 MILP Taxonomy . 65
4.5.4 MILP Approach . 67
4.5.5 Characterizing the Formulation . 70
4.5.6 Comparison: Sequencing vs. Overlap 71
4.5.7 Factors Influencing Solution Time 72
4.5.8 Case Study . 73
4.5.9 Conclusions and Future Work . 79

4.6 Conclusions . 79

5 Automotive Domain 81
5.1 Applications . 82

5.1.1 Distributed Supervisory Control Application 83
5.1.2 Experimental Vehicle . 83

5.2 Architectural Platforms . 85
5.3 Choosing the Model of Computation . 86
5.4 Manual Design Space Exploration: Distributed Supervisory Control System 89
5.5 Automated Design Space Exploration: Period Assignment 92

5.5.1 Design Flow . 93
5.5.2 Prior Work . 94
5.5.3 Representation . 96
5.5.4 Period Optimization Approach . 102
5.5.5 Case Studies . 111
5.5.6 Active Safety Vehicle . 111
5.5.7 Conclusions . 115

5.6 Conclusions . 116

iv

6 Design Framework 117
6.1 Limitations of Metropolis . 118
6.2 Metro II Features . 119

6.2.1 Heterogeneous IP Import . 120
6.2.2 Behavior-Performance Orthogonalization 121
6.2.3 Mapping Specification . 121

6.3 Metro II Execution Semantics . 122
6.3.1 Mapping . 124

6.4 Metro II Building Blocks . 125
6.4.1 Components . 125
6.4.2 Ports . 126
6.4.3 Connections . 129
6.4.4 Constraints and Assertions . 129
6.4.5 Mappers . 129
6.4.6 Annotators and Schedulers . 130

6.5 Implementation . 130
6.6 Example: h.264 Functional Model . 131
6.7 Conclusions . 133

7 Conclusions and Future Directions 134
7.1 Reflections . 134
7.2 Future Work . 136

Bibliography 138

v

List of Figures

1.1 Exponentially increasing application complexity 3
1.2 Design costs rapidly increasing for smaller process generations 4
1.3 Number of worldwide design starts declining 5

2.1 Metropolis Design Framework . 17
2.2 Annotating costs for operations with quantity managers 21
2.3 Synchronizing events to realize mapping . 22

3.1 An Example of Service-based Mapping . 31
3.2 Example: Hierarchy of services . 33
3.3 Automated Mapping Techniques . 35
3.4 Common Modeling Domain Design flow . 37

4.1 JPEG encoder block diagram . 40
4.2 Motion JPEG Encoder . 43
4.3 Block Diagram of MXP5800 . 45
4.4 Classification of MoCs . 51
4.5 An example process within the chosen MoC 53
4.6 Metropolis model of JPEG encoder . 54
4.7 2D-DCT block diagram . 55
4.8 Dataflow model for 1D-DCT . 56
4.9 MXP5800 ISP Modeling in Metropolis 57
4.10 Performance Comparisons . 61
4.11 Transforming an SDF graph into a data precedence DAG 63
4.12 Taxonomy of MILP Approaches . 65
4.13 Overlap between two tasks i and j . 69
4.14 Sequence vs. Overlap Runtime . 71
4.15 Topologies of Manual Designs . 74
4.16 Experimental Setup . 75
4.17 Manual vs. Automated Designs . 78

5.1 Functional Model for Distributed Supervisory Control System 84
5.2 Architectural Model for Distributed Supervisory Control System 90

vi

5.3 Details of ECU Modeling . 90
5.4 Period assignment within the overall design flow 93
5.5 An example system graph . 98
5.6 End-to-End Latency Calculation . 99
5.7 Period optimization meets all deadlines . 112
5.8 Iterative reduction in maximum estimation error 114

6.1 Three Phase Execution in Metro II . 123
6.2 Atomic Component . 126
6.3 Component with 4 ports . 128
6.4 Implementation of Metro II . 131
6.5 h.264 functional model . 132

vii

List of Tables

3.1 Modeling of Parallel Systems . 29
3.2 Mapping for example system . 32

4.1 JPEG encoder models . 55
4.2 Mapping assignments . 60
4.3 Manual Designs . 75
4.4 Profiling Information . 76

5.1 Latency over local harmonic path fragments 100

viii

Acknowledgments

First, I would like to thank my advisor Prof. Alberto Sangiovanni-Vincentelli for

his excellent mentorship during my years at Berkeley. His emphasis on formal underpinnings

for system-level design and on effective written and verbal communication of research results

have not only influenced my graduate work, but will also continue to guide me in the years

to come. His enthusiasm and tireless support are appreciated, and I look forward to future

collaboration with him.

Prof. Jan Rabaey was the chair of my qualifying exam committee and a member of

my dissertation committee. His broad knowledge of embedded systems and astute identifi-

cation of industry trends has helped focus this work in the larger context of semiconductor-

based systems.

Prof. Alper Atamtürk was the outside member in the dissertation committee

and the instructor of two fascinating courses which I took in the Department of Industrial

Engineering and Operations Research. His introduction to Mixed Integer Mathematical

Programming and feedback on initial versions of the automated approach for multimedia

systems were crucial to this work.

Prof. Edward Lee was the reader of my Masters report as well as a member of my

qualifying exam committee. His course on models of computation as well as his extensive set

of publications on dataflow models and their deployment were the most heavily leveraged

for the multimedia portion of this work.

Prof. Kurt Keutzer was my temporary advisor during my first year of graduate

school and the instructor who introduced me to computer-aided design and entrepreneur-

ix

ship. Prof. Keutzer has done a great deal to bring a sense of community to the D.O.P

Center.

Apart from professors, I had the distinct privilege of receiving mentorship from

and collaborating with a fantastic set of industrial researchers, postdoctoral researchers, and

senior graduate students. These include: Felice Balarin, Marco Di Natale, Paolo Giusto,

Sri Kanajan, Alex Kondratyev, Farinaz Koushanfar, Luciano Lavagno, John Moondanos,

Michael Orshansky, Roberto Passerone, Claudio Pinello, Stavros Tripakis, and Yosinori

Watanabe.

The friends and colleagues whom I interacted with while at Berkeley are the most

talented, hard-working, and downright most interesting group of people I’ve had the pleasure

of knowing. These include, but are not limited to: Alvise Bonivento, Bryan Brady, Mike

Case, Bryan Catanzaro, Donald Chai, Arindam Chakrabarti, Satrajit Chatterjee, Rong

Chen, Xi Chen, David Chinnery, Jike Chong, Douglas Densmore, Arkadeb Ghosal, Yujia Jin,

Shinjiro Kakita, Nathan Kitchen, Vinay Krishnan, Animesh Kumar, Yanmei Li, Cong Liu,

Kelvin Lwin, Slobodan Matic, Mark McKelvin, Trevor Meyerowitz, Matthew Moskewicz,

David Nguyen, Alessandro Pinto, William Plishker, Kaushik Ravindran, N.R. Satish, Kedar

Shah, Vishal Shah, Farhana Sheikh, Sampada Sonalkar, Xuening Sun, Martin Trautmann,

Gerald Wang, Guang Yang, Yang Yang, Haibo Zeng, Wei Zheng, and Qi Zhu. In particular,

Qi Zhu was heavily involved in the research that is presented within this dissertation and

has been a steadfast friend and collaborator during the past three years.

Jennifer Stone, Dan MacLeod, and Jontae Gray provided excellent administrative

support and flawlessly processed countless reimbursements. Special thanks to Ruth Gjerde

x

in the EE division Graduate Student Affairs office for her friendly and patient guidance in

navigating the treacherous bureaucratic channels at UC Berkeley.

Non-academic pursuits including science fiction, tennis, and racquetball provided

the necessary distractions. The Recreational Sports Facility and the Berkeley Public Library

played a key role in energizing my body and mind while at Berkeley.

The encouragement of my parents was crucial during the past five years. Their

continued advice to focus on longer-term goals and ignore the short-term trials and tribu-

lations provided me the perspective and support I needed.

This work was supported in part by the Center for Hybrid and Embedded Soft-

ware Systems (CHESS) at UC Berkeley, which receives support from the National Science

Foundation (NSF award #CCR-0225610), the State of California Micro Program, and the

following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon, Mi-

crosoft, National Instruments, and Toyota. This work was also supported in part by the

MARCO-sponsored Gigascale Systems Research Center (GSRC) and a grant from the Con-

sumer Electronics Group of Intel Corporation.

1

Chapter 1

Introduction

Embedded electronic systems are specialized to carry out specific tasks and are

“embedded” in their environment. This is in contrast to personal computers or supercom-

puters which are general purpose and interact with users. Embedded systems are much

more prevalent than their general-purpose counterparts; for instance, 98% of all micropro-

cessors manufactured in a given year are used within embedded systems [82]. Embedded

systems typically have strict performance requirements relating to issues such as latency,

throughput, jitter, memory usage, and energy consumption. Due to their widespread us-

age and performance-critical nature, the design of embedded systems is both relevant and

challenging.

Today, there is a shift toward using multiple heterogeneous programmable pro-

cessing elements (PEs) for a variety of embedded systems domains including multimedia

and automotive. Deploying complex embedded applications on such platforms is especially

challenging since these systems must meet strict performance constraints.

2

This section will summarize the main characteristics of embedded applications,

trends that give rise to heterogeneous parallel platforms, and the resultant design challenges.

The solutions proposed in the remainder of the dissertation to tackle these problems will

also be outlined.

1.1 Trends

Embedded applications are rapidly increasing in complexity at a time when design

times, power consumption, and non-recurring engineering (NRE) costs are becoming critical.

The confluence of these factors leads to a set of design challenges.

1.1.1 Embedded Applications

Computational requirements for embedded applications are increasing exponen-

tially [92] [53] [83] [84]. During the past 15 years, a variety of new protocols and standards

have been introduced which feature rapidly increasing computational requirements. Figure

1.1 shows some of these trends for three classes of multimedia applications: video, cellular,

and wireless LAN. Code size for these applications is also increasing, reflecting the trend

that application complexity is increasing along with computational requirements. This ex-

ponential trend is creating demand for the increasing number of transistors that can be

integrated with scaling [104].

In the automotive domain, the trend is similar. The value of software in a vehicle is

expected to increase from 4% of the overall cost in 2000 to 13% of the overall cost in 2010[50].

Currently, a high-end automobile may contain over 270 different types of functionality that

3

Figure 1.1: Exponentially increasing application complexity

use 65 MB of binary code. This is expected to increase to 1 GB of code by 2010.

1.1.2 Programmable Platforms

During this same time period, a variety of technical and economic reasons have

made application-specific utilization of transistors (e.g. ASICs) more difficult. First, time-

to-market concerns and the need for flexibility may preclude the use of application-specific

hardware. Second, the non-recurring engineering (NRE) costs associated with hardware

fabrication often necessitate high product volumes to recoup the initial investment. NRE

costs have continued to increase in recent years, with the mask costs alone for a single chip

surpassing $1 million[69]. Total design costs for designs implemented in 130 nm, 90 nm,

and 65 nm technology are shown in Figure 1.2 [68]. Coupled with data indicating that the

4

25

30

35

40

45

50
$46.2M

To
ta

l D
e

si
g

n
 C

o
st

,
M

ill
io

n
s

o
f

$

Increasing Design Costs

0

5

10

15

20

25

130nm 90nm 65nm

Architecture

Verification

Physical

Validation

$9.2M

$18M

[Source: IBS 2006]

Software

To
ta

l D
e

si
g

n
 C

o
st

,
M

ill
io

n
s

o
f

$

Process Generation

Figure 1.2: Design costs rapidly increasing for smaller process generations

average selling price for ASICs is under $10 [117] and not increasing, it becomes clear that

implementing such an application-specific hardware device requires very high volumes to

justify the initial expenditure.

The main strategy to overcome these trends is to manufacture programmable

devices, which can be used with multiple applications, thereby increasing volumes and

justifying the NRE costs. This trend is becoming clear when the number of total design

starts is tallied, as shown in Figure 1.3 [68]. During the past few years, the number of

unique designs implemented worldwide has slowly started to decrease.

Programmable hardware devices can be termed as architectural platforms, since

they can support a wide variety of applications, but usually within a specific domain [52].

5

3000

D
e

si
g

n
 S

ta
rt

s

ASIC Design Starts Declining

0

1500

'02 '03 '04 '05 '06 '07 '08 '09 '10

W
o

rl
d

w
id

e

D
e

si
g

n
 S

ta
rt

s

[Source: Gartner 2006]
Year

Figure 1.3: Number of worldwide design starts declining

Design cost and effort now shifts to creating the software that is deployed on these platforms

for a particular application [59]. Enabling increased design productivity for such platforms

is therefore important.

1.1.3 Heterogeneous Parallel Platforms

Heterogeneous multiprocessor architectural platforms are gaining prevalence for

embedded systems. Greater parallelism is needed primarily due to increased energy effi-

ciency requirements. Previously, greater performance for processing elements was achieved

by increasing the clock frequency, exploiting instruction-level parallelism, introducing deeper

pipelines, and carrying out speculative execution. For these techniques, the amount of per-

formance gain achieved for a given increase in energy consumption has become smaller in

recent years [93]. Since embedded devices are usually constrained by battery life and/or

packaging cost, increased power consumption cannot be tolerated.

6

The alternative is to increase throughput by adding more parallelism to the system

in the form of multiple cores. Each processor can run at a relatively low clock frequency and

perform a portion of the specified application. Greater parallelism with relatively simple

PEs running at lower frequencies provides increased computational capabilities with higher

energy efficiency.

For embedded platforms, applications in a particular domain usually have a set of

commonly used “kernels” or core computations that are carried out relatively frequently. In

order to obtain high performance, PEs in the platform must have support for these kernels.

Typically, parallel embedded platforms therefore contain a variety of PEs, customized for

the common types of kernels found in applications for a domain [81].

1.2 Design Challenges

The design challenges for heterogeneous parallel embedded systems become ap-

parent by examining current design practice. The current flow for heterogeneous parallel

platforms is typically an ad-hoc adaptation of the uniprocessor design flow. The uniproces-

sor flow typically involves manual implementation of code for the processor in a low-level

language such as assembly code or C followed by extensive simulation to debug and meet

performance constraints [122].

The ad-hoc adaptation of this strategy for heterogeneous parallel platforms usually

adds an initial partitioning step for the application that roughly divides functionality and

assigns it to individual PEs. The manual implementation of code is carried out as before

for each PE, and then simulation/testing is carried out on the entire system. However,

7

due to the many possible interleaving patterns that may occur between the different PEs,

simulation/testing is much less effective at finding problems in the implementation. If

performance requirements are not met, then the code may have to be repartitioned, leading

to another long design iteration. The main problems with this design practice are threefold:

strong binding between the application and the architectural platform, lack of application

verification, and inability to explore the design space efficiently.

The first problem occurs since design capture takes place only after rough par-

titioning has been carried out on the functionality. If portions of the application have to

be migrated to other PEs, the existing design cannot be used. Similarly, a different archi-

tectural platform will require complete re-implementation. Therefore, early binding of this

type between the application and the architectural platform limits the amount of design

reuse [107].

The lack of application verification is partly due to the linkage between application

and architecture but also because of the lack of a formal specification. Unless structured

techniques are utilized, interactions between concurrently executing pieces of code cannot

be analyzed [73]. In the implementation, communication between PEs can cause serious

problems in terms of synchronization issues, deadlock, and race conditions [48]. The lack of

application verification means that verification must be delayed until the implementation is

complete, at which point it may not be known whether the error originated in the application

specification or the implementation of this specification.

The inability to effectively explore the design space stems from the long design

iterations and the reliance on simulation/testing to verify correctness of the system. Under

8

these circumstances, each new point in the design space requires a significant amount of time

and effort to produce. With this design practice, designer intuition is very important for

producing a valid design. Since designer intuition cannot be relied upon, especially as new

architectural platforms emerge, the lack of automated design space exploration techniques

strongly limits design productivity [46].

Heterogeneity increases the programming burden as well. Code which is deployed

on a PE cannot easily be migrated to another PE, especially at runtime. For embedded

systems, this heterogeneous parallelism implies that parallel programming techniques from

other communities may not be applicable. For instance, the supercomputing community

generally deals with single-program-multiple-data types of programs on homogeneous par-

allel architectures [86]. For embedded systems, the platforms are more irregular, and the

focus is not on average-case performance.

1.3 Overview

The work described in this dissertation tackles these design challenges. The four

main contributions of this work are: a design flow that addresses modeling and mapping

challenges, exploration of this design flow in the multimedia domain, customization of the

flow for the automotive domain, and the distillation of requirements for a next-generation

design framework based on the flow.

9

1.3.1 Approach

The approach taken in this work is based on the platform-based design (PBD)

methodology [60]. PBD advocates a meet-in-the-middle design process, with the functional

portion of the design (what the design does) constituting the top-down part and the archi-

tectural portion of the design (how this is carried out and at what cost) constituting the

bottom-up part. An explicit mapping step binds these two parts together to realize the

system model.

To meet the challenges of deploying applications on heterogeneous multiprocessor

embedded platforms, a synthesis – or automated mapping – approach is needed. Not only

does such an approach decrease design time, but it also enables a correct-by-construction

approach which reduces verification effort.

Structured modeling techniques are necessary to facilitate tractable synthesis. Our

flow [127] within PBD is therefore focused on structured modeling between functionality and

architecture. The 4-stage flow involves both modeling and mapping. Modeling is based on

the concept of common modeling domains (CMDs). CMDs are defined in terms of services.

Mapping can be carried out using a variety of exact and heuristic techniques. Initially,

we believe that mathematical programming [89] approaches are useful to consider since

they are extensible, provide bounds on solution quality, and leverage advances in general-

purpose solvers. The design flow is validated by applying it to studies from the multimedia

and automotive domains. Functionality, architecture, and mapping for these systems are

modeled within the Metropolis [8] framework.

10

1.3.2 Multimedia Domain

Multimedia systems deal with computation carried out on streams of data. The

model of computation (MoC) [54] most often considered for multimedia systems is usually

a specialization of Kahn Process Networks, where actors consume data from input streams,

carry out computation, and produce data on output streams. The two case studies in this

domain explore both modeling and mapping stages of the flow.

The first case study consists of deploying a JPEG encoder application onto the Intel

MXP5800 architectural platform [27]. The JPEG encoder is a multimedia application whose

building blocks are used in many image and video processing algorithms. The MXP5800

is an imaging processor which is highly parallel and heterogeneous. The focus for this case

study is choosing the appropriate dataflow MoC and abstraction level for modeling and then

carrying out manual mapping. The case study demonstrates that the appropriate choice

for MoC and abstraction level can allow designers to fully exploit the capabilities of such

platforms while also enabling future automation.

The second case study [29] investigates the automated [24] mapping of a motion-

JPEG application onto a heterogeneous soft-core multiprocessor FPGA platform. Motion-

JPEG is an extension of JPEG for video and is used in consumer electronics and video

editing systems. The architectural platform consists of soft-core uBlaze PEs and custom

hardware connected with point-to-point FIFOs on the Xilinx Virtex II FPGA platform.

The automated mapping is carried out with a Mixed Integer Linear Programming approach

that is shown to be both efficient and extensible.

11

1.3.3 Automotive Domain

Automotive applications are typically control-related and have strict timing re-

quirements. Due to the intrinsic physical distribution of the sensors/actuators, these appli-

cations are deployed on multiple electronic control units (ECUs) connected with standard-

ized buses. Again, both modeling and mapping aspects of the design flow are addressed in

the two case studies.

The first study in this domain involves reconciling the MoC used for the functional

model with the MoC exhibited by the architectural platform [125]. We demonstrate that

current industry practice can lead to problems such as message loss and priority inversion

due to limited buffer sizes in the bus controllers. These problems are not evident in the

original functional model, making correct-by-construction deployment difficult. To remedy

these problems, we modify the functional MoC such that these problems can be diagnosed

prior to mapping.

The second study develops automated mapping techniques that meet worst-case

end-to-end latency requirements [28]. The three stages of the automated mapping problem

for this domain are allocation, priority assignment, and period assignment. For the period

assignment stage in mapping, and iterative approach to assign task and message periods

has been developed and applied to two case studies.

1.3.4 Design Framework

The uniqueness of the design flow presented in this dissertation is that it provides a

unified way to view mapping problems from multiple domains. This allows the non-domain-

12

specific aspects of the design flow to be combined into a common design framework. For

instance, many manual design activities such design import, simulation, and debugging [18]

can be handled in a common way. Based on this flow and the lessons learned from case

studies, we have re-evaluated the goals from Metropolis and started development on the

Metro II framework [25]. Metro II aims to support heterogeneous IP import and provide

a more structured means for specifying performance annotations and mapping.

13

Chapter 2

Background

The design flow in this work is based on Platform-based design and utilizes the

Metropolis design framework to carry out modeling for the case studies in Chapters 4

and 5. Metropolis is also the basis for the Metro II framework described in Chapter 6.

In this section, Platform-based design and Metropolis will be described in more detail,

along with an overview of other design frameworks and approaches that have similar goals.

2.1 Platform-based Design

To deal with constantly increasing complexity, safety and security requirements,

and time-to-market pressure, embedded system designers are turning to more rigorous de-

sign methods. These favor the adoption of higher levels of abstraction in system specifica-

tion, correct-by-construction deployment, and reusability. The Platform-based design [59]

paradigm has been proposed cope with these difficulties.

In this paradigm, a platform is designed with sufficient flexibility to support the

14

implementation of an entire set of products. The product design problem then involves

configuring the platform, and deciding which parts of the product’s functionality are to be

implemented by which platform resources. Typically, designers evaluate several configura-

tions before selecting one that meets design goals. This process is known as design space

exploration. It requires building a series of models, one for each combination of configura-

tions to be evaluated. Developing these models is traditionally time consuming and error

prone. Therefore, it is natural to re-use them as much as possible. However, it is often hard

to do so because modifying a configuration or a part of the description of a model usually

requires extensive changes to models in the rest of the design.

A solution to the re-use problem is to orthogonalize concerns and keep various

aspects of a design separate. There are several concerns in embedded system design that

can be orthogonalized. The three main concerns are the following:

• Functionality versus Architecture: Functionality represents the application that the

designers want the system to carry out, while the architecture represents a configura-

tion of resources that can implement this functionality. The functional portion of the

design exercises services, which can be provided by different architectural models –

or platforms – with different costs. A particular mapping of a functional model with

an architectural model corresponds to a system model. The architecture determines

the performance in terms of the quantities of interest (e.g. energy, time) while the

functionality determines which services are used and in what way. By allowing an

architectural model to be reconfigurable or instantiated in different ways, we can eas-

ily represent a family of parameterizable architectural platforms. Then, the mapping

15

must also choose an appropriate platform instance from the choices available.

Since the only interaction between the architectural and functional models takes place

due to the mapping of services together, once these are agreed upon, separate groups

of developers can code, debug, and maintain the functional and architectural models.

The separation between functionality and architecture is also captured in the Y-chart

approach [62].

• Behavior versus Cost: Behavior reflects the services offered by the component, while

cost represents the expense of providing these services. Cost can be defined in terms

of time, power, chip area, or any other quantity of interest. This orthogonalization al-

lows the framework to easily support the usage of “virtual” components and facilitates

back-annotation to accurately model cost-metrics. Virtual components are architec-

tural resources that do not reflect existing physical designs (hardware/software). A

designer can configure and utilize virtual components in a system, and dictate the

final parameters as constraints for implementation once she is assured that the com-

ponent can be successfully used. Even if an architectural component is available and

its behavior known, its performance can be obtained at various levels of accuracy. A

separation between behavior and cost allows this component to be used even if accu-

rate numbers are not available. For instance, a synchronous bus component can be

used without knowing the exact number of cycles taken for a transfer. An estimate

can be used and system evaluation can proceed. Once cycle-accurate numbers become

available, they can be substituted without requiring additional changes to the system.

• Computation vs. Coordination: The behavior of a design is often specified as a set of

16

concurrent processes, where each object executes a sequential program and communi-

cates with other processes. A process may share resources with other processes, this

often requires coordination among multiple processes. Coordination can be described

separately from the sequential programs for the individual processes. Computational

activities are usually highly design-specific while coordination schemes are usually

standardized.

Specification of computation and coordination may be carried out in different ways.

It is often convenient to model coordination using declarative constraints, rather than

imperative programs. For instance, it is simpler to declare that two actions should

be mutually exclusive, rather than write a program for a protocol that realizes the

exclusion. Such declarative statements are very useful during the initial stages of the

design flow, when conciseness of specification is more important than performance

estimation.

2.2 The Metropolis Design Framework

The Metropolis Design Framework is an embodiment of the Platform-based

design methodology. The methodology is flexible enough to be applied to many different

types of design problems, but the Metropolis framework is focused on electronic system-

level design (ESL) [3]. The Metropolis framework consists of a specification language –

the Metamodel [113] – as well as a compiler and a set of plugins that can interface with

external tools. Figure 2.1 shows the architecture of the Metropolis design framework.

Functional, architectural, and mapping specification for the system is first captured within

17

MetaModel
CompilerFront end

MetaModel spec.

Abstract syntax trees

Verification

tool

Synthesis

tool

Simulator

tool

...Back end1 Back end2 Back endNBack end3

Metropolis
Interactive

Shell

…

tool

Figure 2.1: Metropolis Design Framework

the Metamodel language. The front end allows this specification to be compiled into a set

of abstract syntax trees. Various backends, including simulation, synthesis, and verification

tools can then access this information. The backends are invoked by the user using the

interactive shell.

In this section, we will cover the goals of the Metropolis framework and how they

manifest themselves in the infrastructure and the Metropolis Metamodel Specification

language.

2.2.1 Goals of the Framework

The Metropolis framework is geared toward attacking common electronic design

problems that occur at the system level. With that aim in mind, the major goals of the

framework are three-fold: Facilitating design reuse to enable the design of large systems,

preserving analysis capabilities by capturing the design specification with formal semantics,

18

and enabling declarative statements in the specification to formally capture capture cons-

traints, assertions, and performance annotations. Design reuse follows from the platform-

based design methodology discussion in Section 2.1. In the following, we will examine the

other goals in further detail. An overview of the design methodology for Metropolis is

given in [99].

Preserving Analysis Capabilities

A major complication with large, heterogeneous systems lies in the task of verifi-

cation. Ensuring that the system performs according to the specification can easily take a

majority of the total design time. In an attempt to remedy these problems, the Metropolis

design framework stresses the usage of formally defined models of computation for modeling.

The specification language used in Metropolis, the Metropolis Metamodel [113] [7], has

formally defined semantics that allow the expression of many different models of compu-

tation. Each statement in this language has a formal representation in the form of action

automata. This formal underpinning can be used for different types of analysis, including

refinement verification [33].

Event interactions and annotations

One of the unique aspects of the Metropolis framework is the support for both

operational code and declarative statements in the specification. Most other system-level

design environments only allow operational code as the specification mechanism. Supporting

declarative statements allows the designer to succinctly specify behavior or assertions in the

design. This is especially important in the initial phases of the design process, when the

19

designer may be more interested in specifying what properties the components of the design

need to have, rather than how those properties will be manifested in an implementation.

Currently in the Metropolis framework, support is provided for declarative state-

ments in two different logics, Linear Temporal Logic (LTL) [110] and the Logic of Constr-

aints (LOC) [4]. Both of these logics allow for statements to be made about event instances

in the design. Event instances are generated whenever a thread of control in the design ex-

ecutes any action. Event instances may be annotated with quantities, which may represent

a diverse set of indices, from access to a shared resource to energy or time. LTL statements

can be used to specify mutual exclusion constraints and synchronization between events.

LOC may be used to make statements about quantity annotations on events.

2.2.2 Design activities within the Metropolis framework

After having described the goals of the Metropolis framework, we turn to the

design activities that are important for the task of implementing functional applications on

architectural platforms. Specifically, we look at three major issues: modeling the behavior –

including the computation and communication – in the functional and architectural models,

annotating costs to operations in the architectural model, and the mechanism by which the

functional and architectural models are associated together. An overview of these design

activities within the context of a simple case study is provided in [26].

Describing the Functional and Architectural Models with Processes and Media

Processes are objects that possess their own threads of control. Media are passive

objects that provide services to processes and other media. A process cannot connect

20

to other processes directly. Instead, an intermediate medium must be used to manage

the interaction between multiple processes. When an object wishes to utilize the services

provided in another medium, it must communicate with that medium by using ports which

have associated interfaces. The concept of ports and interfaces is widely used for design

specification in frameworks like SystemC [47]. Media implement certain interfaces which

then become services provided to processes or other media. For instance, a media may

implement read and write services which can be used by processes.

Processes in the architectural model may represent tasks which are executing on

architectural media such as processors. By themselves, these processes do not carry out

any useful work, they just execute a nondeterministic sequence of operations. In this sense,

the set of possible behaviors in the architectural model encompasses all legal traces of

operations.

Using Quantity Managers to annotate cost

Quantity managers in Metropolis are similar to aspects in aspect-oriented pro-

gramming [61] languages. Quantity managers can be used to assign costs to operations

in the architectural platform. The cost can be in terms of any useful quantity, such as

time, power, or access to a shared resources. The quantity manager collects all requests for

annotation and determines which requests are to be satisfied and which ones need to be

blocked.

An example of this type of annotation is shown in Figure 2.2. In this example,

the L Exec operation in a media is annotated with cost of EXEC CYCLE cycles. First, the

relevant events beginEvent and endEvent are identified which correspond to some thread

21

executing the beginning and end of the operation respectively. The first event is annotated

with the current time according to the quantity manager whereas the second event is an-

notated with the time of the first event plus the cycle time. gt refers to the global time

quantity manager.

L_Exec {@
event beginEvent = beg(getThread(), L_Exec);
event endEvent = end(getThread(), L_Exec);
{$
beg { gt.RelativeReq(beginEvent, 0); }
end {
currentTime = gt.getQuantity(beginEvent, LAST);
gt.AbsReq(endEvent, currentTime + EXEC_CYCLE);
}

$}
... // code for this operation

@}

Figure 2.2: Annotating costs for operations with quantity managers

Mapping with synchronization constraints

Synchronization statements are used to intersect the behaviors of the functional

and architectural models by constraining events of interest from each to occur simultane-

ously. Along with simultaneity, we can also control the values of specific variables that

are in the scope of these events. This type of synchronization can be used to restrict the

behavior of architectural processes to follow that of the functional processes to which they

are mapped.

An example of a function that would emit these synchronization constraints is

shown in Figure 2.3. In this example, the function takes as arguments the two processes

22

that are to be mapped together – a functional process and an architectural process. First,

the beginning of the read operation is identified for both processes and recorded as the

events e1 and e2. The two events are synchronized together and two variables in the scope

of these events are constrained to be equal. In this example, the number of items read by

the functional process is constrained to be the same as the number of items read by the

architectural task. By changing the arguments to this function, various mappings can be

realized and evaluated relatively easily.

void mapPair(process f, process a) {

event e1 = beg(f, f.read);
event e2 = beg(a, a.read);
ltl synch(e1, e2: numItems@e1 == numItems@e2);

event e3 = end(f, f.read);
event e4 = end(a, a.read);
ltl synch(e3, e4);

... // similar code for write() and exec() services
}

Figure 2.3: Synchronizing events to realize mapping

2.3 Related Design Frameworks

In this section, an overview of related system-level design frameworks is provided.

The focus is placed on the support provided for automated mapping [46] capabilities.

The Spade [78] and Sesame [118] approaches within the Artemis [97] project focus

on synthesizing Kahn Process Networks (KPN) [57] specifications in hardware/software.

The most relevant optimization approach from their work utilizes an evolutionary algo-

23

rithm to minimize a multi-objective non-convex cost function. This cost function takes into

account power and latency metrics from the architectural model. The optimization problem

is solved using a randomized approach based on evolutionary algorithms.

The Compaan/Laura [112] approach uses Matlab specifications to synthesize KPN

models, which are then implemented on a specific architectural platform as hardware and

software. The architecture platform consists of a general purpose processor along with

an FPGA, which communicate via a set of memory banks. Software runs on the general

purpose processor, while the hardware is synthesized into VHDL blocks which are realized

in the FPGA. The partition between hardware and software occurs relatively early in the

design flow and is based on workload analysis. The types of optimizations that are carried

out automatically relate to loop analysis. The software implementation makes use of the

YAPI [63] library, and does not consider deadlock.

CAKE [32] (Computer Architecture for a Killer Experience) is a project affiliated

with Philips research that attempts to realize multimedia applications by using the YAPI

libraries. Their focus is mainly on homogeneous “tiled” multiprocessor architectures. The

automated design space exploration approach they describe is divided into two steps, where

the first step partitions the processes and the second step schedules them on each processor.

ForSyDe [103] focuses on formal design transformations that enable design refine-

ment. This allows the designer to start with an abstract definition of the design and proceed

toward implementation. At each step, there are two types of transformations can be made.

Semantic preserving transformations do not change the behavior of the model, while de-

sign decision transformations are unrestricted. The focus of ForSyDe is on the verification

24

aspects of design, and they do not focus on automation.

MESH [96] is a design framework that separates the design into three parts:

the application layer, the physical layer and the scheduling layer. These three layers are

roughly equivalent to the functional model, the architectural model, and mapping within

the Platform-based design methodology.

Mescal [85] is an environment for developing software for customized processors.

The main domain of concentration is network processors, which can be considered a spe-

cialized type of multimedia applications. Past work has been carried out on customizing

instruction sets of processors according to the application. Recently, the investigation of

FPGAs as an implementation fabric and automated allocation techniques have also been

explored [56].

Polis [5] is a design environment which was one of the first to allow for function-

architecture separation. Designs in this framework are based on the communicating finite-

state machines model of computation [6]. Architectural components can only be chosen

from a set of predefined components, limiting the expressiveness. Metropolis is the direct

successor of the Polis effort.

Finally, Ptolemy II [79] is a meta-modeling framework which focuses on simulation

and the interaction between different models of computation. While the focus is not on

function-architecture separation and mapping, several hardware targets have been explored

in the context of the precursor Ptolemy framework [88].

Compared to these other design environments, the Metropolis framework is

unique in the respect that it provides meta-modeling capabilities and is geared toward

25

function-architecture mapping. Meta-modeling capabilities allow reasoning about designs

which are expressed using different models of computation. The function-architecture map-

ping is a natural method by which these diverse models come together. Thus, Metropolis

is a singular framework which will allow the implementation of mapping approaches for

systems from different embedded systems domains.

26

Chapter 3

Approach

The approach taken in this work is to customize the platform-based design method-

ology to support our objective: enabling automated mapping for parallel heterogeneous

embedded systems. Platform-based design advocates an initial separation between func-

tionality and architecture, and a distinct mapping step to realize the system. The main

problems tackled in this design flow are twofold: choosing how to model the functionality

and architecture and then mapping the two together.

The problem of mapping between arbitrary functional and architectural models

can be solved with two broad strategies. The first strategy attempts to bridge the gap

between dissimilar models. The algorithms and techniques applied by this strategy are

usually specific to the models of computation and abstraction levels employed by the models

being mapped. This strategy has the capability to produce very good results for specialized

problems, but there is little applicability to a broad class of systems. As a result, when

either the functional or the architectural model changes, a new approach may have to be

27

developed and reuse is difficult.

The second strategy initially transforms the models into a “common modeling

domain” (CMD) where both the semantics and abstraction levels are compatible. The

automated mapping approaches are then tailored to the common modeling domain. The

advantage of this two-step approach is flexibility. Many models can be transformed into a

common modeling domain and leverage the automating mapping flow.

The latter approach is adopted in this work. The first step of choosing a CMD

is described in Section 3.1, the second step of automated mapping is developed in Section

3.2. The development of the design flow in the remainder of the dissertation is outlined in

Section 3.3.

3.1 Common Modeling Domains

Common modeling domains ensure that the semantics and granularities of the

services being mapped match. First, concerns specific to parallel embedded systems mod-

eling will be enumerated in Section 3.1.1. Next, these concerns are integrated within the

functionality-architecture separation within PBD by using the concept of a common mod-

eling domain. Mapping is described in terms of used and provided services in Section

3.1.2 and illustrated with a small example. A discussion of the modeling tradeoffs for both

functionality and architecture is given in Section 3.1.3.

28

3.1.1 Parallel Systems Modeling

Parallel embedded systems modeling can be carried out at different levels, de-

pending on which aspects are explicitly captured. The modeling can be broken up into five

stages, loosely based on the breakdown suggested in [111]. The stages are categorized by

the modeling aspects which are made either explicit or implicit. Four aspects are considered

in this categorization.

1. The first aspect is whether or not parallelism is made explicit in the model. If paral-

lelism is implicit, then the model has no concept of parallel execution, and parallelism

must be extracted automatically to enable it to run on multiple resources. With

explicit parallelism, processes that run concurrently have already been identified.

2. Allocation determines if computational resources are bound to the tasks/processes in

the model. If allocation is explicit, the designer must specify which processing element

each process executes on.

3. Communication fixes the realization of messages that are sent between processes.

This involves determining the encoding of each message as well as the communication

resources in the platform to which they are mapped.

4. Performance denotes whether the relevant cost metrics can be directly calculated or

not. Models with explicit performance can evaluate cost metrics analytically, whereas

implicit performance metrics must be calculated via simulation. Different performance

metrics are used for different systems. Predictable performance analysis is key to

developing automation techniques.

29

Level Parallelism Allocation Communication Performance
1 Implicit Implicit Implicit Implicit
2 Explicit Implicit Implicit Implicit
3 Explicit Explicit Implicit Implicit
4 Explicit Explicit Explicit Implicit
5 Explicit Explicit Explicit Explicit

Table 3.1: Modeling of Parallel Systems

In embedded systems programming, industry practice is to describe the system

at level 1, in the form of untimed sequential C/C++ code. The latter stages of modeling

are carried out manually. Typically, performance constraints for the system can be verified

only at level 5. Since the transition from level 1 to level 5 is time-consuming and hard to

verify, the design process becomes more complex.

Note that the current industrial practice is well suited for general purpose unipro-

cessor systems. Levels 2–4 are absent in the general purpose uniprocessor flow, and there

are less stringent (perhaps only average case) performance constraints on the system as a

whole. For general purpose parallel systems, levels 2–4 are present, but the constraints to

verify at level 5 are still lax. This laxity is more tolerant of manual design flows. However,

for parallel embedded systems, all the problems need to be addressed.

In order to remedy the problems, we need to automate the transformation of

models between levels. Ideally, specification would be at level 1, and automation would

enable transformation to level 5. However, this is difficult for a number of reasons. First,

the transformation between levels 1 and 2 involves the automated extraction of parallelism,

which is notoriously difficult. Secondly, in general, determining allocation, communication

details, and analyzing performance in an automated fashion is infeasible. To tackle these

30

concerns, the methodology has two main restrictions. First, the transformation from level

1 to level 2 is not automated, and still left to the designer. Second, system specification at

level 2 can only be carried out in a specific manner. Namely, a correspondence must exist

between the services that are used by the functionality and the services provided by the

architecture.

3.1.2 Services

Operationally, the functional model consists of a set of processes P that execute a

sequence of services SF provided by different components C. The architectural model con-

sists of a set of resources R which provide services SA, each of which may be parameterized.

Mapping assigns processes from the functionality to resources in the architecture.

This is a many-to-one mapping. Whenever a process p ∈ P executes a service sf ∈ SF , it is

bound to a single resource r ∈ R invoking a service sa ∈ SA. sa and sf must be identical.

Verifying this requirement is beyond the scope of this work, it is assumed that the functional

and architectural designers agree on the definition of services. Any parameter(s) π required

for sa are determined by the mapping based on the component c ∈ C in which the service sf

is executed. Note that service parameterization is not permitted for functional services, only

for architectural ones. Also, parameters are determined statically based on the mapping,

the architectural parameters cannot be determined during the execution of the functional

model.

The semantics, or model of computation, depends on the set of services used by

the functionality as well the sequence in which these services are used by the processes.

The architecture determines the performance of the system by calculating a cost for each

31

t1 t2 t3
f1 f2p1 p2 p3

Functionality

Architecture

compute compute compute
readwrite readwrite

PE1 PE2

Bus

compute,

read(address),

write(address)

compute,

read(address),

write(address)

PE1 PE2

Figure 3.1: An Example of Service-based Mapping

service. Functional performance constraints or performance metrics can only be verified

after mapping has been carried out, not before.

Example

A simple example, shown in Figure 3.1, illustrates this approach to mapping. The

functional model consists of three processes: p1, p2, and p3, as well as three tasks: t1, t2,

and t3, and two FIFOs: f1 and f2. The processes can execute up to three services each:

read, write, and compute. read and write services are executed by the processes within the

FIFO components, while the compute services are executed within the task components.

The architecture consists of two resources (PE1 and PE2) connected with a bus.

Both resources provide all three services required by the processes in the functionality. The

read and write services are parameterized in the architecture with an address argument.

Note that the amount of data written or read is missing from these services. This is because

that amount is implicit in the definition of the service. For example, if the cost of reading

two items is different than twice the cost of reading a single item, a new service should be

introduced to differentiate these two situations.

32

< p1, compute, t1 > −→ < PE1, compute, ∅ >

< p1, write, f1 > −→ < PE1, write, 0x0FFA >

< p2, compute, t2 > −→ < PE1, compute, ∅ >

< p2, read, f1 > −→ < PE1, read, 0x0FFA >

< p2, write, f2 > −→ < PE1, write, 0x0CC0 >

< p3, compute, t3 > −→ < PE2, compute, ∅ >

< p3, read, f2 > −→ < PE2, read, 0x0FFD >

Table 3.2: Mapping for example system

The mapping for this system is described in Table 3.2. It indicates the mapping

for each used service to the associated provided service. The mapping has allocated p1

and p2 to PE1, and p3 to PE2. The mapping has also determined the parameters for the

read and write services. These parameters refer to the location in memory where the FIFO

communication is mapped. Note that f1 is realized in the local memory of PE1, while f2

is realized in the local memory of PE2. Presumably, 0x0CC0 corresponds to the memory-

mapped address of the remote memory for PE1 while 0x0FFD is the same location in the

local memory space of PE2.

3.1.3 Tradeoffs

Functional and architectural modeling must balance the conflicting aims of accu-

rate/efficient system performance vs. automated design space exploration. This is directly

related to the granularity of services that are mapped. Service relationships can be cap-

tured in the form of a directed acyclic graph (DAG) where nodes represent services and the

directed edges capture service containment. A service s1 contains s2 and s3 iff s1 can be

decomposed into some sequence of invocations of s2 and s3. Note that since we do not deal

with the definitions of the services, the construction of this graph is beyond the scope of

33

comm compute

read write DCT colorspace_conv

execute

read write

read1read_bulk write1write_bulk

DCT

shift

add

submult

colorspace_conv

Figure 3.2: Example: Hierarchy of services

this work.

An example of a service relationship graph is given in Figure 3.2. In this example,

a set of services is hierarchically arranged from most to least abstract. The more abstract

services, such as comm and compute, are invoked in a much simpler pattern than the leaf

services. However, the leaf services can be more accurately characterized than the higher

level services.

Functional Tradeoffs

The aim of functional modeling is to capture the behavior of the application and

enable both behavioral and performance verification. These aims are often contradictory.

Under the definition of services given in Section 3.1.2, the behavior of the application can

either be captured with a large set of focused services that are used in a complex manner

or a small set of generic services that are used in a straightforward manner.

34

Behavioral verification relates to the way in which the atomic services are used

by the processes to carry realize the behavior. Therefore, coarse granularity services are

preferable; as long as the services themselves have been pre-verified. With coarse-granularity

services, the usage patterns are simpler, and more likely to fall into a verifiable pattern.

Architectural Tradeoffs

The choice of the CMD also has an important impact on the architectural mod-

eling. Architectural modeling has to be carried out in such a way that the services which

define the CMD are provided by the architectural model. For instance, for a dataflow CMD,

blocking read operations must be provided by the architectural model. These services are

typically provided with some measure of cost, which may not be captured in the CMD. For

instance, the blocking read operation may have latency and energy costs associated with it

in the architectural platform. The tradeoff to be considered is that the services associated

with the CMD may be fairly expensive for a given architectural platform. So, the CMD

may a priori restrict the maximum achievable performance of any system that can be imple-

mented on that architectural platform. Ideally, the architectural services should be defined

at a fine granularity to enable accurate and low overhead characterization.

The other choice in architectural modeling is to expose or hide the flexibility

that may be present. For instance, a blocking read operation may either be carried out

using limited local memory or a larger amount of global memory with different energy and

latency costs. Exposing this choice from the architectural model may require more detailed

modeling and unnecessarily complicate the mapping stage.

35

Type Effort Runtime Bounds Portability

Deterministic Heuristics X X

Approximation Algorithms X X

Randomized Algorithms X X

Mathematical Programming X

Figure 3.3: Automated Mapping Techniques

3.2 Mapping

Mapping is the process of associating the functional and architectural models to-

gether such that the services used by the functionality are bound to those provided by the

architecture. As mentioned, mapping involves allocating functional processes to architec-

tural resources and configuring the parameters for architectural services. The allocation of

process to resources can be seen as a covering problem, where each process may be “covered”

by at most one architectural resource.

Mapping must ensure that the functional performance constraints are satisfied

and that the relevant metrics are optimized. For embedded systems, satisfying performance

constraints typically requires worst-case analysis. Optimization requires the ability to ana-

lyze a number of points in the design space, either explicitly with simulation or implicitly

with analysis. Due to the complexity of modern multiprocessor embedded systems, our

approach emphasizes automated approaches to mapping.

Figure 3.3 summarizes four techniques that can be used for automated mapping:

heuristics, approximation algorithms, randomized algorithms, and mathematical program-

ming. Even though heuristics are relatively easy to create and can often provide solutions

36

quickly, they do not provide bounds on solution quality. More importantly, they are brittle

with respect to changes in the problem assumptions. For instance, partial solutions and side

constraints are typically difficult to add to most heuristics without sacrifices in effectiveness.

Approximation algorithms do provide bounds, but the analysis applied to produce

these bounds is even less resilient to problem changes. Consequently, even though heuristics

and approximation algorithms excel at clearly defined problems, their applicability is limited

within a design flow where platform-specific constraints are needed.

Randomized algorithms, such as genetic programming and simulated annealing

are flexible to changes in problem assumptions. However, they do not provide bounds on

solution quality and are typically computationally expensive.

An alternative is to use mathematical programming (MP) techniques. In MP,

the system is represented with parameters, decision variables, and constraints over the

parameters and decision variables. An objective function is defined over the same set of

variables. Generic solvers can be utilized to find the optimal solution. The complexity of

finding the optimal solution depends upon the variable types as well as the form of the

objective function and constraints.

These techniques are much easier to customize, since application or platform-

specific constraints can be added as required. Branch-and-bound solution techniques for

MPs provide lower and upper bounds on the desired cost functions at each step of the

solution process. This allows us to trade off solution time and quality. The main difficulty

with using MP approaches lies in finding a formulation that is sufficiently accurate to capture

the behavior of the system and yet remains amenable to efficient solving.

37

Functional Model Architectural Model

Choose Common

Modeling Domain

Functional Model

in CMD

Architectural Model

in CMD

Solve Covering

Problem

Further Synthesis

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.4: Common Modeling Domain Design flow

3.3 Development of the Design Flow

The flow is summarized in Figure 3.4. Stage 1 first finds the common modeling

domain (CMD) between the functional and architectural models. Next, Stage 2 is concerned

with transforming both models into the appropriate CMD. Mapping can then be formulated

as a covering problem and solved in Stage 3. Further configuration of the system, i.e.

assigning the architectural parameters, is carried out in Stage 4.

The focus of this research is to apply this flow to a number of heterogeneous

programmable platforms from the multimedia and automotive domains. For the multimedia

domain, the focus will be on stages 1, 2, and 3. For the automotive domain, the focus is on

stages 1 and 4.

The reason that these tradeoffs are interesting to explore is that there is a lack of

agreement on how heterogeneous parallel platforms should be programmed, evidenced by

the large amount of experimentation for new MoCs for these systems. For lower abstraction

levels such as hardware design, a single MoC – synchronous circuits – was sufficient for a

large majority of designs, and considering such tradeoffs would have been less useful.

38

Also, these tradeoffs are feasible to consider due to the existence of several design

frameworks that support many different MoCs. In particular, case studies from the multime-

dia and automotive domains using different MoCs have been modeled in the Metropolis [8]

framework. These case studies will serve as the primary vehicles for further development of

this flow.

39

Chapter 4

Multimedia Domain

The multimedia domain can be broadly characterized by the presence of large

amounts of data streamed between different stages in the system. Data streaming ap-

plications such as audio, video, and image codecs as well as wireless communication, all

characterized as multimedia systems, are predominant in many consumer electronics.

In this section, the applicability of the design flow to systems in the multimedia

domain will be illustrated. The outline of this chapter is as follows: In Section 4.1, the

two applications that are evaluated within this domain are described. In Section 4.2, the

two architectural platforms are introduced. Based on the characteristics of the applications

and the architectural platforms, relevant models of computation are explored in Section 4.3,

and a suitable MoC is identified. Based on this, two case studies are described. The first

case in Section 4.4 considers manual design space exploration and demonstrates that the

modeling is capable of capturing the design space accurately. The second case study applies

Mixed Integer Linear Programming techniques for allocation and scheduling to carry out

40

Color Space
Conversion

Level Shift Forward
DCT

Quantization
Huffman
Encoding

Figure 4.1: JPEG encoder block diagram

automated design space exploration.

4.1 Applications

In this work, we consider two related multimedia applications. The two applica-

tions - the JPEG image encoder and the Motion JPEG video encoder will be described in

more detail within this section.

These applications are chosen since they are representative of a wide class of mul-

timedia applications. In particular, the DCT, quantization, and Huffman blocks in both

applications are utilized in several other image/video compression applications, including

h.264 [121].

4.1.1 JPEG Encoder Application

The JPEG encoder [119] application is required in many types of embedded mul-

timedia systems, from digital cameras to high-end scanners. The application compresses

raw image data and emits a compressed bitstream.

A block diagram for the JPEG encoder is shown in Figure 4.1. The input for the

application is an image described with raw RGB data. Each pixel is characterized with

41

three bytes of information: one each for the red, green, and blue components.

The first step is color space conversion, where the raw data is first converted into

YCbCr format. YCbCr format consists of luminance (Y), blue chrominance (Cb), and red

chrominance (Cr) information, with each of the three components being represented by a

single unsigned byte. Since the human eye is more sensitive to the luminance components of

an image, the chrominance components can be compressed further. This makes the YCbCr

colorspace better suited for image compression than RGB.

Different variants of the JPEG algorithm can be used depending on the ratio of the

chrominance to luminance information used in the compression. If all three components

of the colorspace appear in the same ratio, then the mode is known as 4:4:4. If every

other chrominance component is used in the horizontal dimension, the mode is known as

4:2:2. Sampling every other chrominance component in both the vertical and horizontal

dimensions is referred to as 4:2:0 mode. In this work, we only utilize the baseline 4:4:4

mode.

The next step in the algorithm involves level shifting each of the component values

such that they can be stored as signed bytes. The pixels are then bundled together into

8x8 blocks from top left to bottom right in scan order (row-major order). The blocks are

processed independently for the following steps in the algorithm.

The subsequent step of the algorithm is a forward integer DCT transform. In

this step, the 8x8 YCbCr spatial data is transformed into frequency data. Besides errors

introduced through rounding, this step of the algorithm is non-lossy. Different algorithms

can be used to carry out the forward DCT transform. In this work, we utilize the Chen

42

Wang [120] fast DCT algorithm.

The next step in the algorithm is quantization. Each component in each 8x8 block

is divided by a user-supplied coefficient from a quantization table. Two separate tables are

used, each with 64 coefficients: one for the luminance components and the other for the

chrominance components. Quantization is the main information-losing step in the JPEG

algorithm. Larger coefficients lead to lower image quality and higher compression. Standard

quantization tables are provided with the JPEG standard, and they are used here.

After the division has taken place, the next step is to rearrange the component

values within each 8x8 block from scan order into zig-zag order. This ordering tends to

group the higher frequency components together, preferably leading to long sequences of

zeros.

The first part of the Huffman encoding step is run-length compression which takes

long strings of zeros and represents them in a concise intermediate form. The second stage

is the actual Huffman table lookup, which translates the intermediate form into compact

bit sequences. Like the quantization tables, the Huffman tables are statically specified by

the user. Huffman encoding transforms the bytestream into a bitstream.

The final JPEG image file consists of header data along with the compressed

bitstream. The header data includes the quantization and Huffman tables for both the

chrominance and luminance components. The JPEG file interchange format (JFIF) is the

standard for representing JPEG-encoded images.

43

Forward
DCT

Quantization
Huffman
Encoding

Source Sink

Table
Modification

Figure 4.2: Motion JPEG Encoder

4.1.2 Motion JPEG Application

The Motion JPEG encoder application carries out video encoding without inter-

frame compression. Motion JPEG encoding is commonly implemented in consumer and

security cameras as well as high-resolution video editing.

The Motion JPEG encoder application is quite similar to the JPEG encoder,

except that quantization and/or Huffman tables are changed adaptively between frames.

The table modifications are carried out based on discrepancies between the actual and

desired compression rates for the encoded video stream. Unlike the JPEG encoder, there

is no standard file format for a Motion JPEG encoded stream. A block diagram of this

application is shown in Figure 4.2.

In this work, only the quantization tables are modified between frames, based

on a linear scaling of the quantization coefficients provided in the standard tables. The

modification is based on the size of the previously compressed frame as compared to the

desired size.

4.2 Architectural Platforms

Multimedia applications are deployed on a variety of platforms, and the design

flow used depends strongly on the characteristics of these platforms. In this work, the focus

44

is on heterogeneous multicore architectures, and both of the platforms presented here fall

into this category.

4.2.1 The Intel MXP5800 Platform

The Intel MXP5800 digital media processor [2] is a heterogeneous, programmable

processor optimized for document and image processing applications. It implements a data-

driven, shared register architecture with a 16-bit data path and a core frequency of 266

MHz. The MXP5800 provides specialized hardware to accelerate frequently repeated image

processing functions along with a large number of customized programmable processing

elements.

The basic MXP5800 architecture, shown in Figure 4.3, consists of eight Image

Signal Processors at the top level (ISP1 to ISP8) connected with programmable Quad

Ports (8 per ISP). Quad Ports are used for data I/O and are each essentially FIFOs of size

two. They provide blocking read and write semantics which ensure that all communication

is data driven. Quad Ports are statically configured by the system developer during mapping

according to the data flow topology of the application. In addition to Quad Port connections,

all of the ISPs are connected to DMA units and some are connected to other expansion

ports. Each ISP consists of five programmable Processing Elements (PEs), instruction/data

memory, 16 16-bit General Purpose Registers (GPRs) for passing data between PEs, and up

to two hardware accelerators for key image processing functions. Two of the PEs are used

for Data I/O: The Input PE (IPE) which is used to read data from the Quad Ports, and

the Output PE (OPE) for writing data to a Quad Port. Of the remaining 3 PEs per ISP,

one is for general purpose use (GPE) while two PEs have Multiply/Accumulate (MACPE)

45

DMA Units

ISP1

DMA Units

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP2

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP3

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP4

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP

ISP5

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP6

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP7

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP8

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP

DMA Units

ISP1

DMA Units

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP2

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP3

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP4

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP

ISP5

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP6

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP7

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP ISP8

MAC MAC

GPE MCH

IPE OPE

Q
P

Q

P

Q
P

Q

P

QP QP

QP QP

Figure 4.3: Block Diagram of MXP5800

capabilities in addition to the general purpose functionality.

Each general purpose register in an ISP has a set of 8 data valid (DV) flags - one

per PE. If all the DV flags for a register are cleared, a PE may atomically write data to

the register and set the DV flags for all of the destination PEs. Each of the destination

PEs can clear its own flag when it reads the data. In this way, the global registers serve as

single-place blocking-read, blocking-write buffers for possibly multiple writers and readers.

A Memory Control Handler (MCH) provides the interface to the SRAM data

memory block within each ISP. The MCH has support for a number of different read/write

modes which support variable offsets and stride lengths. Access to the MCH is provided

using global registers, just as for the other PEs.

Each ISP is optimized for a particular function and the hardware accelerators in

46

the ISP reflect that optimization. ISP2, ISP5 and ISP6 each have variable-tap and single-

tap triangular filters. ISP4 and ISP8 contain Huffman encode/decode engines that are

useful for many compression/decompression applications. ISP3 contains G4 encode/decode

blocks. ISP7 contains 8x8 DCT/iDCT hardware. Finally, ISP1 has an additional 16 KB

of data SRAM instead of a hardware accelerator.

The major characteristic of this architecture platform is the extremely high degree

of parallelism and heterogeneity. Harnessing the diverse capabilities of the PEs to realize

high application performance is the main design challenge.

4.2.2 Xilinx Virtex II Pro Platform

The second architectural platform used in this work is the Xilinx [20] Virtex II

FPGA. It is a platform FPGA that may be customized at the lookup table (LUT) level to

implement a variety of functionality. For the purposes of this work, we will only utilize a

limited subset of the flexibility offered by the platform. Specifically, hard and soft processor

cores, bus and FIFO interfaces between cores, and one type of customized IP block is utilized

in this work. This case study uses a 2VP30 part on Xilinx XUP board with a maximum

frequency of 100 MHz.

The uBlaze [21] is 32-bit RISC Harvard processor which can be instantiated on the

FPGA fabric. Caches and hardware support for operations such as shifting, multiplication,

and division can be enabled or disabled based on designer choice. The uBlaze can interface

with three types of interconnect. The Local Memory Bus (LMB) is used for fast access to

data and instruction memory. The Fast Simplex Link (FSL) is used to interface with other

uBlaze processors or hardware accelerators instantiated on the fabric. Finally, the On-chip

47

Peripheral Bus (OPB) is used to interface with other peripherals, such as timers, network

controllers, and UARTs.

FSL [22] FIFO links are used in this work to carry out data transfers between

multiple uBlaze cores, and between uBlazes and synthesized hardware accelerators. FSL

depth can range from 1 to 8,192 entries, each of which may be 4 bytes in width. Reads

and writes to the FSL FIFOs from the uBlaze take only a single cycle. Both blocking and

non-blocking read/write access to FSLs is provided.

Hardware accelerators can be directly synthesized onto the fabric. In this work,

we make use of a DCT-specific processing element with FSL interfaces created using the

XPilot [17] synthesis system.

4.3 Choosing the Model of Computation

In order to apply the design flow, the first step is to choose a common modeling

domain. In this section, one component of that decision is described: choosing a model

of computation. The granularity of the computation services that comprise the CMD is

decided later, in Sections 4.4 and 4.5.

4.3.1 Prior Work: Models of Computation

In this section, some of the models of computation that have been suggested for

data-streaming systems will be described in further detail. The expressiveness and suit-

ability for analysis of these MoCs will be evaluated. All of the MoCs are specializations

of Process Networks, where concurrently executing processes communicate with each other

48

using explicit messages.

Kahn Process Networks

Kahn Process Networks [57] is a well-studied MoC where concurrent processes

communicate with each other through one-way point-to-point FIFOs. Read actions from

these FIFOs block until at least one data item (or token) becomes available. The FIFOs have

unbounded size, so write actions are non-blocking. Reads from the FIFOs are destructive,

which means that a token can only be read once.

More formally [71], each channel in a KPN is a signal which carries a finite (possibly

empty) or infinite sequence of tokens. The set of all possible signals is denoted S while the

n-tuple of signals is denoted as Sn. The relation v is defined as the binary prefix relation

on signals. For instance, s1 v s2 means that the sequence of tokens contained in the signal

s1 is a prefix of the sequence of tokens contained in s2. This definition generalizes to an

element-wise prefix order, which can be defined on Sn. This element-wise prefix order is a

CPO [30].

Any process P in the KPN with m inputs and n outputs is a mapping from its

input signals to its output signals, P : Sm → Sn. The semantics of KPN places a restriction

on the type of mapping that a process can represent. A process must be monotonic in its

mapping from input signals to output signals under the element-wise prefix order, s1 v

s2 ⇒ P (s1) v P (s2). This means that supplying additional inputs to a process results in

additional outputs being produced, tokens which have already been produced cannot be

retracted.

Under this restriction, and given that the processes are monotonic functions on a

49

CPO, the least fixpoint theorem tells us that a least fixpoint exists for a network of these

processes. According to the denotational semantics of KPNs, this least fixpoint represents

the behavior of the KPN [57]. This is the behavior that we want to find with simula-

tion. However, the procedure for finding this least fixpoint is not given under monotonicity

conditions alone. To find this procedure, we must apply a stronger condition on processes.

The stronger condition that is required is that of continuity, which requires that

the result of this function to an infinite input is the limit of its results to the finite ap-

proximations of this input. Under this stronger condition, a procedure for finding the least

fixpoint behavior exists. This procedure involves an initial condition of empty channels.

Then, the processes are allowed to act on the empty channels until no further change takes

place. This is the procedure that we need for finding the behavior of the KPN since it

corresponds directly to simulation. To guarantee continuity, the sufficient (but not neces-

sary) condition imposed on Kahn processes involves blocking read semantics [58]. Since

continuous functions are compositional, is suffices to ensure that each process in a KPN is

continuous to guarantee that the entire network has a deterministic behavior.

This is the appealing characteristic of the KPN model of computation – that exe-

cution is deterministic and independent of process interleaving. Also, this model of compu-

tation allows natural description of applications since it places relatively few requirements

on the designer other than blocking reads.

Implementing KPN specifications on resource-constrained architectures has a key

challenge: that of realizing a theoretically infinite-sized communication channel with a finite

amount of architectural memory. Indeed, a KPN implemented in this manner no longer

50

satisfies the original definition of non-blocking writes, since a lack of storage space in the

communication channel may force further write actions to be blocked. This additional con-

straint of blocking writes may possibly introduce deadlock into the execution of the system.

This undesirable occurrence is referred to as artificial deadlock [41]. It is undecidable in

general to determine if a KPN can execute in bounded memory, therefore deadlocks cannot

be avoided statically.

The resolution of artificial deadlock requires dynamically supplying extra storage

to some communication channel which is involved in the deadlock. This is the basis of Parks’

algorithm [95]. However, choosing the channel and the amount of memory to allocate such

that the deadlock is resolved with a minimum of extra memory is undecidable in general.

A “bad” strategy will allocate memory to channels in such a way that the deadlock is not

truly resolved, just postponed. In this case, the system will eventually run out of memory

and the system will need to be reset.

Dataflow Process Networks

Dataflow process networks are a special case of Kahn Process Networks where

the execution of processes can be divided into a series of atomic firings [72]. This MoC

in general suffers from the same undecidability as Kahn Process Networks [15]. However,

certain variants are more suitable for analysis.

Homogeneous and static dataflow [74] are two such examples. In homogeneous

dataflow, each process consumes and produces the same number of data tokens on each

firing, for all channels. In static dataflow, the number of tokens produced and consumed

must be constant for each firing on all channels, but can vary between channels. Cyclo-

51

Expressive Analyzable

Process Networks

Kahn Process Networks

Boolean Dataflow

Static Dataflow

Cyclo-static

Dataflow

Homogeneous

DataflowInteger Dataflow

Heterochronous Dataflow

Chosen MoC

Figure 4.4: Classification of MoCs

static dataflow [11] is a slight generalization that permits the firing characteristics of each

process to vary in a cycle. The main advantage of a cyclo-static dataflow model is reduced

buffer size requirements. Heterochronous dataflow [43] permits firing characteristics to vary

according to the current state in a finite state machine. Boolean dataflow [15] and integer

dataflow [16] allow special actors where the number of tokens produced and consumed are

based on Boolean and integer-valued control tokens respectively.

4.3.2 Chosen model of computation

A rough classification of these MoCs along an axis of expressiveness vs. analyz-

ability is shown in Figure 4.4. The approximate location of the MoC that we have chosen

is also shown in the diagram. Like other dataflow models, processes in the chosen MoC

consume and produce tokens according to firing rules. Multiple firing rules can be specified

for each process. Each process cycles between its firing rules in a fixed pattern. Therefore,

this MoC is most similar to cyclo-static dataflow, but contains two extensions that allow

for more concise specification.

First, only one writer is permitted per channel, but multiple reader processes are

allowed. For all channels, each reader process can read each data token exactly once. Tokens

52

are removed from the FIFO only after all reader processes have read them once. Note that

this extension allows for more succint specification, but does not change the expressiveness

of the model.

Second, we allow limited forms of data-dependent communication. If a data-

dependent number of tokens is to be exchanged on a channel, the sender is required to first

indicate how many such tokens will be sent in a “header” token. In this way, the property

of effectiveness [41] is guaranteed.

To enable support for executing multiple processes on a single processing element,

this MoC has support for cooperative multitasking. Specifically, a process may only be

suspended between firings. Scheduling, buffer sizing, and mapping are decidable problems

for this MoC. Processes may be scheduled statically, allowing for lower overhead implemen-

tation.

An example of a process within this MoC is shown in Figure 4.5. The process reads

from an input channel “input1” and writes to an output channel “output1”. A variable

number of tokens are first read from the input channel. Computation is then carried out on

the input data. Finally, all of the processed tokens are then written to the output channel.

This sequence of actions occurs within an infinite loop.

Like many specialized dataflow models, our dataflow model induces stronger cons-

traints on the application as opposed to the architecture. In fact, many dataflow models can

be supported by multiprocessor architectures that allow efficient blocking read and blocking

write operations.

53

void main()
{

int n;
int data[5];

while(1)
{

read(input1, n);
assert(n >= 0 && n < 5);

for(int i = 0; i < n; i++)
read(input1, data[i]);

// computation

write(output1, n);

for(int i = 0; i < n; i++)
write(output1, data[i]);

}
}

Figure 4.5: An example process within the chosen MoC

4.4 Manual Design Space Exploration: JPEG on MXP5800

Having chosen the appropriate MoC for the applications and architectures, they

can be modeled at different abstraction levels and then mapped. In this case study, we

deploy the JPEG encoder application onto the Intel MXP5800 architecture and demonstrate

that the chosen MoC is able to accurately represent the system at a specific abstraction

level. After the MoC is shown to be suitable for these types of systems we can consider

automating the mapping in Section 4.5.

54

Pre-

processing
DCT Quantization Huffman

Scan
Color

Conv.

Trans- Trans-

ZigZag Mult

RLE Lookup

1D-DCT
Trans-

pose
1D-DCT

Trans-

pose

Shift

Add4

Sub4

Mult1

Mult2

Merge

Add2

Sub2

Figure 4.6: Metropolis model of JPEG encoder

4.4.1 JPEG Application Modeling

Starting from both a sequential C++ implementation [1] and the concurrent assem-

bly language implementation provided in the Intel MXP5800 development kit, we assembled

an architecture-independent model of the JPEG encoder in Metropolis expressed in our

dataflow model. The model carries out a full implementation of the 4:4:4 JPEG encoder

baseline algorithm and is described hierarchically at multiple abstraction levels. A total of

20 FIFO channels and 18 separate processes are used in the finest granularity representa-

tion of the application model. An overview of the Metropolis model is given in Figure

4.6. Characteristics of the original C++, assembly, and Metamodel designs are provided in

Table 4.1. Note that the IJG model implements a superset of the functionality implemented

by the Metropolis and ASM models.

To describe the application model in further detail, we will concentrate on the

55

Implementation Language Concurrency Lines of Code
IJG C++ Sequential 18,000
MXP5800 Library ASM Concurrent 915
Metropolis MMM Concurrent 2,695

Table 4.1: JPEG encoder models

1D
DCT

Trans-
pose

1D
DCT

Trans-
pose

Figure 4.7: 2D-DCT block diagram

breakdown of the discrete cosine transform step in the algorithm. At the top level, the re-

quired two-dimensional DCT can be broken down into four basic steps: two one-dimensional

DCT operations, each followed by a transpose operation. This is shown in Figure 4.7. Each

of the 1D-DCT block reads in 8 spatial data values (corresponding to either a row or a

column) and outputs 8 frequency values. The algorithm used to carry out the 1D-DCT is

based on the implementation given by Chen-Wang [120].

Each one dimensional DCT operation is broken down into concurrent steps, as

shown in Figure 4.8. The diagram shows that all the channels require multiple readers.

This observation, along with the fact that the MXP5800 architecture supports multiple

readers through data valid bits, is the reason why our MoC explicitly supports this type of

communication, as described in Section 4.3.2.

4.4.2 Architecture Modeling

The MXP5800 architecture platform can be modeled in Metropolis by using

processes, media, and quantity managers from the Metropolis Metamodel. A single ISP

56

Level
Shift

Sub4

Add4

Add2

Sub2

Mult1

Mult2

Figure 4.8: Dataflow model for 1D-DCT

is modeled as shown in Figure 4.9. The rectangles in the diagram represent tasks, the

ovals represent media, while the diamonds are the quantity managers. The ISP contains

the Huffman hardware accelerator, and is sufficient for implementing the JPEG encoder

application. If we want to use the DCT hardware accelerator, another ISP is needed. In

this case, the two ISPs will be connected through Quad Ports. Modeling various ISPs

with different hardware accelerators is very similar, we use the diagram in Figure 4.9 as an

example.

Each PE is modeled as a medium, which supports multiple tasks running on it.

Each task is modeled as a process. These processes represent the possible functionality

executed on the PE. After mapping, the behavior of each task will be restricted by the

corresponding process from the application; there is a one-to-one correspondence between

architecture processes and application processes.

The scheduling of multiple tasks on a single PE is carried out by the quantity

manager connected to this PE. The quantity managers support static scheduling, which is

57

Task

IPE

MACPE1 MACPE2

GPE OPE Huffman

Global Register File Netlist

GTime

…

GR Interface

Arbiter

Memory

MCH

:State Medium:State Medium
GPEQMIPEQM OPEQM

MACPE1QM

Task… Task Task… Task Task…

Task Task… Task Task…

Task

MACPE2QM

…

Figure 4.9: MXP5800 ISP Modeling in Metropolis

58

required by the MoC.

The communication between programming elements occurs through either global

registers or local SRAM. The global register file is modeled as a netlist that contains 16

global registers. Each global register is modeled as a medium which implements blocking

write and allows multiple simultaneous reads. These global registers can be accessed by

all PEs, hardware accelerators, and the MCH. To reduce the modeling complexity, a single

interface medium in the netlist represents the entire global register file and is used to

communicate with the PEs, accelerators, and MCH.

The SRAM is controlled by a memory command handler(MCH). The MCH con-

tains a global register interface (GR interface), arbiter and memory. The GR interface is

used to communicate with the global register file and is modeled as a process that waits

for the appropriate data valid bits to be set in the global register file. The arbiter obtains

memory access requests from the GR interface through multiple FIFO channels, then uses

a round-robin access scheme to select one of them to access the local memory, which is

modeled as a medium.

To model running time, a global time quantity manager is used. All PEs and global

registers and the local memory are connected to it. Both computation and communication

costs can be modeled by sending requests to this global time quantity manager and obtaining

time annotations.

4.4.3 Design Space Exploration and Results

Given the application and architectural models in Metropolis as described in

Sections 4.4.1 and 4.4.2 respectively, the design space can be explored by attempting differ-

59

ent mappings between the application model and the architectural model. Each mapping

scenario is specified in Metropolis with two types of information. The first is a specific

set of synchronization constraints between the events in both models corresponding to the

services that constitute the MoC. Along with these events – which represent the read, write,

and execution services defined in our MoC – the parameters such as register location or lo-

cal memory address can also be configured. The second is the set of schedules for the PEs

that determine the execution order between the tasks. Both of these are relatively compact,

meaning that new mapping scenarios can be created quickly and without modifying either

the application or the architectural models.

The application is a total of 2,695 lines as shown previously in Table 4.1. The

architectural model is 2,804 lines, while the mapping code is 633 lines. Each additional

mapping scenario can be described with approximately 100 lines of additional code, and

without modifying any of the other code.

To show the fidelity of our modeling methodology and mapping framework, we

initially abstracted two mapping scenarios from the implementations provided in Intel

MXP5800 algorithm library and carried out simulation in the Metropolis environment.

We also tried an additional two scenarios which did not have corresponding assembly lan-

guage implementations. For all of the scenarios, only the mapping of the fine granularity

1D-DCT processes was varied.

The first scenario makes use of the DCT hardware accelerator and clearly has the

highest performance. The other three scenarios use various software implementations of

the row-wise and column-wise 1D-DCT operations. For these three scenarios, the transpose

60

Process Hardware Balanced OPE Emph. OPE Heavy
Level Shift IPE IPE IPE IPE

Add4-R OPE OPE OPE
Sub4-R OPE OPE OPE
Add2-R IPE OPE OPE
Sub2-R IPE OPE OPE

Mult1-R MACPE1 MACPE1 MACPE1
Mult2-R DCT HW MACPE2 MACPE2 MACPE2
Add4-C Accelerator IPE IPE OPE
Sub4-C OPE OPE OPE
Add2-C IPE IPE OPE
Sub2-C OPE OPE OPE

Mult1-C MACPE1 MACPE1 MACPE1
Mult2-C MACPE2 MACPE2 MACPE2

Table 4.2: Mapping assignments

process is mapped to the MCH, which natively supports this type of operation. Register

mappings are taken from the Intel library implementations and consist of 1, 2, or 4 global

registers per FIFO channel. The second scenario uses a balanced partitioning of the pro-

cesses among the available PEs, while the third and fourth scenarios put progressively more

load on the OPE. The details for all four scenarios are provided in Table 4.2. The rows

indicate the 13 processes in the refined two-dimensional DCT model. The columns indicate

the mappings for the four different scenarios.

For each scenario, the number of clock cycles required to encode an 8x8 sub-

block of a test image was recorded through simulation in Metropolis. For the first two

scenarios, implementations from the MXP5800 library are available and were compared by

running the code on a development board. The results are shown in Figure 4.10. The cycle

counts reported with the Metropolis simulation are approximately 1% higher than the

actual implementation since we did not support the entire instruction set for the processing

61

Cycles for different scenarios

0

500

1000

1500

2000

2500

Hardware Balanced OPE emphasis OPE Heavy

Scenario

C
y
c
le

s

Metropolis Scenarios
Intel Software Library

Figure 4.10: Performance Comparisons

elements. The latter two scenarios provide reasonable relative performance, but assembly

implementations were not available for comparison.

As long as the granularity of the each dataflow process is small (such as for most

DSP-like systems), we expect that this model will provide very accurate estimates of per-

formance. Regardless of the computational granularity, the schedules and deadlock analysis

capabilities of this MoC will still remain valid.

4.4.4 Conclusions

The main steps of the design flow exercised in this case study are choosing the

model of computation, modeling the application and architecture in a common framework

using this MoC, and evaluating different mappings.

62

If the MoC chosen captures the important characteristics of the system, as shown,

then accurate performance estimates can be obtained at a fraction of the cost and much

faster than with other verification methods and tools. The main tradeoff when choosing

a MoC, as described in Section 4.3.2, is between expressiveness and analysis capabilities.

After determining that a particular MoC captures the main characteristics of a particular

class of systems, automated design space exploration techniques can be developed.

4.5 Automated Design Space Exploration: Motion-JPEG on

Xilinx

The MoC chosen for this class of systems in Section 4.3.2 is amenable to analysis.

In this section, the analysis capabilities are leveraged to develop an automated approach for

allocation and scheduling. The Motion JPEG application and the Xilinx Virtex II FPGA

platform are used in this work.

Mathematical programming techniques such as Mixed Integer Linear Program-

ming (MILP) provide the ability to easily customize the allocation and scheduling problem

to application or platform-specific peculiarities. The representation of the core problem in

a MILP form has a large impact on the solution time required. In this work, we investigate

a variety of such representations and propose a taxonomy for them. A promising represen-

tation is chosen with extensive computational characterization. We demonstrate that our

approach can produce solutions that are competitive with manual designs.

63

BA
2 3

A
1

A
2

A
3

B
1

B
2

2 21 1

Figure 4.11: Transforming an SDF graph into a data precedence DAG

4.5.1 Problem Statement

Statically schedulable dataflow descriptions can be automatically transformed into

acyclic data precedence graphs. These graphs are then used in the automated mapping

procedure for multiprocessors [98]. An example of such a transformation for SDF systems

is given in Figure 4.11. The graph on the top is a SDF graph where process A writes 2

tokens to the channel each time it is fired while process B reads 3 tokens from the channel

each time it is fired. The associated data precedence DAG is shown in the lower part of the

figure and captures the relationships between the process firings that are required to return

the system to its initial state of having no tokens within the channel. The simplest such

DAG requires process A to fire three times while B fires twice.

The core problem to be solved is to map the weighted directed acyclic graph

(DAG) representing the application onto a set of architectural nodes. In the application

DAG, nodes represent process firings while edges represent data precedence relationships.

The architecture is represented with a weighted directed graph where nodes are processing

elements (PEs). Edges that represent communication channels may be added explicitly to

64

the architecture graph if connectivity between PEs is restricted, otherwise, a fully-connected

graph is assumed. The execution time for each task on each processor is fixed and given.

The amount of communication between each application task is given by weights on the

application graph edges. Communication cost only depends on the edge weight, not on the

allocation of the source and sink processes. The objective is to allocate and schedule the

tasks onto the PEs such that the completion time – or makespan – is minimized.

This work has four main contributions. First, a classification of existing MILP

representations for this problem into a taxonomy. Second, based on the taxonomy, a core

MILP formulation and useful customizations. Third, computational characterization and

a comparison of our approach with a competing approach. Finally, a representative case

study that illustrates the ability or our approach to produce competitive designs in terms

of throughput and area.

4.5.2 Prior Work: Allocation and Scheduling

The scheduling problem we consider is a generalization of R|prec|Cmax [44] and

is strongly NP-hard. R refers to the usage of multiple heterogeneous PEs with unrelated

processing times, prec indicates that the application description includes precedence cons-

traints, and Cmax indicates the objective is to minimize the makespan or the maximum

completion time. Unrelated processing times means that different processors may execute

different tasks with arbitrary worst-case execution times.

For the special case of R||Cmax (no precedence constraints), there exist polynomial-

time approximation algorithms that can guarantee a solution within a factor of 2 of the

optimal [109]. No poly-time approximation algorithm exists that can provide a solution

65

Formulations

Discrete Time Continuous Time

Sequencing OverlapSlots

Figure 4.12: Taxonomy of MILP Approaches

for R||Cmax within 1.5 times the optimal, unless P = NP [76]. If precedence constraints

are added, there are no known good approximation results; an overview of related work

for R|prec|Cmax is provided in [66]. A comprehensive listing of known lower and upper

approximation bounds for a variety of scheduling and allocation problems can be found in

[23], while an overview of heuristics is given in [67].

In [55], a MILP-based approach for mapping onto a multiprocessor FPGA platform

is described. However, their approach is more specialized since it does not handle task

precedence constraints nor determine scheduling.

4.5.3 MILP Taxonomy

Solution time for MILP instances is strongly affected by the representation used

for the core allocation and scheduling problem. We observe that the effective encoding of

task precedence relationships is key not only for approximation algorithms as mentioned in

Section 4.5.2, but also for MILP representations. Along these lines, we propose a taxonomy

of known MILP representations in Figure 4.12.

Discrete time approaches introduce a variable for each instant of time on each

66

PE. The resultant scheduling constraint requires that each such time instant be allocated

to at most one task. The advantage of this method is that the formulation can easily be

constrained to use only integer or binary variables. A rich variety of SAT solvers [37] can

be utilized to solve these problems. However, this formulation has a significant drawback:

the number of time variables introduced can quickly become very large, especially if diverse

task execution times are present.

Continuous time approaches represent time with real-valued variables in the

formulation. Vastly different execution times can easily be handled by these approaches,

but the choice of variables and constraints used to specify a correct scheduling on each PE

becomes critical in determining performance [45].

Sequencing: Variables are used to indicate sequencing to schedule tasks on PEs.

These sequencing variables indicate whether a task is executed after another task on the

same PE [9, 19]. This choice of variables can be viewed as a straightforward extension of

the well-known formulations used in uniprocessor scheduling [91]. Typically, a large number

of constraints or variables is required to enforce the scheduling requirements on each PE.

Many of these constraints can be attributed to the linearization of bilinear terms [77].

Slots: This method uses explicit slots on each PE [80, 31] to which at most one

task can be allocated. The start and finish time for each slot is not fixed a priori. With

slots, the scheduling constraints between tasks on each PE become simpler to represent.

However, since the exact number of slots on each PE is unknown, a conservative amount

need to be used. As a result, this approach may suffer from variable blow-up if the typical

number of tasks allocated to each PE is large.

67

Overlap: Variables are used to indicate temporal overlap (independent of PE

assignment) in the execution of tasks [101, 108, 116]. Constraints that prevent overlap

on the tasks allocated to each PE are used to enforce scheduling. Since the scheduling

constraints can be expressed succinctly, this type of formulation scales well with respect to

variables and constraints than the formulations in the other categories.

In this paper, we focus on continuous-time MILP formulations that use overlap

variables, since this category seems the most promising for generating problems with fewer

constraints and variables.

4.5.4 MILP Approach

In this section, our core formulation and customizations will be described in detail.

The core formulation is based closely on the formulation presented in [116].

Core Formulation

Let F represent the set of tasks in the application DAG while E ⊂ F×F represents

the set of communication edges. The set A indicates the set of architectural PEs. The

parameter t ∈ RF×A specifies the execution time of each task on each PE.

The variable d ∈ BF×A indicates if a task is mapped to a PE. Variables s ∈ RF

and f ∈ RF indicates the start and finish times respectively for each task. o ∈ BF×F is a

variable which is used to determine overlap in execution times between a pair of tasks.

68

min maxi∈F fi (4.1)

s.t.
∑

x∈A dix = 1 ∀i ∈ F (4.2)

fi ≤ sj ∀(i, j) ∈ E (4.3)

fi = si +
∑

x∈A(tixdix) ∀i ∈ F (4.4)

fj − si ≤ Moij ∀i, j ∈ F, i 6= j (4.5)

oij + oji + dix + djx ≤ 3 ∀i, j ∈ F, x ∈ A, i 6= j (4.6)

The objective function in 4.1 minimizes the maximum finish time over all tasks.

This has the effect of minimizing the makespan. Constraint 4.2 ensures that each task

is mapped onto exactly one PE. Constraint 4.3 requires that the precedence relationships

between edges in the application DAG hold. Constraint 4.4 relates the start times and

finish times of each task based on the execution time of the task on the appropriate PE.

Constraint 4.5 ensures that if a task j finishes after task i begins, the corresponding variable

oij is set to 1. In this constraint, M represents a large constant, which can be no less than

the maximum finish time. Finally, Constraint 4.6 is a particularly elegant means of ensuring

that no two tasks mapped onto the same PE may overlap in time.

In this constraint, the sum oij + oji has a value of 2 iff the executions of the two

tasks i and j overlap. An example is shown in Figure 4.13 where oij is set to 1 since task j

finishes after task i begins. oji is set to 1 since task i finishes after task j begins. Both of

these ensure that tasks i and j overlap. Therefore, they may not be allocated to the same

PE.

Note that Constraint 4.6 only needs to be defined over i, j ∈ F such that neither

69

T
im

e

task i task j

oji = 1

oij = 1

oji = 1

Figure 4.13: Overlap between two tasks i and j

i nor j are in each other’s transitive fan-out (TFO). For all other cases, the sum oij + oji

must be 1.

Customizing the Formulation

The core formulation does not support communication cost, restricted architec-

tural topologies, partially specified task allocation on the platform, and real-time require-

ments on portions of the application. Of these, the first three are crucial for the case study

we target in Section 4.5.8.

The additional set C ⊆ A ×A represents the directed edges between PEs. The

parameter c ∈ RE denotes the communication cost for each edge in the application DAG.

The parameter n ∈ BF×F indicates whether two tasks are required to be mapped onto

the same PE. Parameter e ∈ BF×A indicates if a particular task must be mapped onto a

particular PE. The variables r ∈ RF and w ∈ RF represent the reading and writing time

required for each task.

70

fi = si +
∑

x∈A(tixdix) + ri + wi ∀i ∈ F (4.7)

ri ≥
∑

(j,i)∈E cji(dix − djx) ∀i ∈ F, x ∈ A (4.8)

wi ≥
∑

(i,j)∈E cij(dix − djx) ∀i ∈ F, x ∈ A (4.9)

diy + djz ≤ 1 ∀(i, j) ∈ E, (y, z) 6∈ C (4.10)

dix ≥ eix ∀i ∈ F, x ∈ A (4.11)

nij − 1 ≤ dix − djx ≤ 1− nij ∀i, j ∈ F, x ∈ A (4.12)

Constraint 4.7 replaces Constraint 4.4 from the core formulation and considers

the reading and writing time for each task. Constraint 4.8 charges time for reading iff the

predecessor task is assigned to a different PE. Likewise, Constraint 4.9 charges the corre-

sponding write time. Constraint 4.10 ensures that the mapping conforms to the restricted

architectural topology. Constraint 4.11 is a forcing constraint that allows some allocations

to be fixed. Finally, Constraint 4.12 restricts certain pairs of tasks to be allocated to the

same PE. This is useful when considering applications derived from dataflow specifications,

where multiple invokations or firings of the same actor may be constrained to occur on a

single PE.

4.5.5 Characterizing the Formulation

In this section, we compare our formulation against the sequence-based formula-

tion and identify characteristics of problem instances that affect the runtime of the MILP

formulation.

The experimental setup involves coding the sequence-based formulation from [19]

71

Figure 4.14: Sequence vs. Overlap Runtime

and our core formulation in AMPL [40] and evaluating them with a set of 45 test cases. The

test cases were generated with the TGFF [36] tool with three random seeds. Five problem

sizes, ranging from 10 to 50 tasks, were generated from each seed. Each task graph was

allocated to different numbers of PEs to keep the average task/PE ratio the same. The

test cases were solved using CPLEX 9.1.2 on 2.8GHz Linux machines with 2GB of memory

under a time limit of 1000 seconds.

4.5.6 Comparison: Sequencing vs. Overlap

For the 45 test cases, on average, our overlap-based formulation has 30% more

variables than the sequence-based formulation. However, our formulation also has 63%

fewer constraints, which substantially reduces overall problem size.

For solving problems to optimality in a balanced branch-and-bound exploration of

the solution space, our approach is an order of magnitude faster than the sequence-based

72

approach, as shown in Figure 4.14. LP relaxations of the problems are usually quite tight,

often within 10-15% of the optimal value. This means that good lower bounds can be

obtained in polynomial time for these problem instances. For instances that could not be

solved to optimality within the time limit, feasible solutions within 14% of optimal were

obtained on average.

If a solution within 10% of the optimal is sufficient, we can bias the branch-and-

bound exploration to find feasible solutions. These results are also plotted in Figure 4.14

and show that solution time can be decreased by 1-2 orders of magnitude with biasing and

a 10% optimality gap. For very few cases, feasibility biasing may increase solution time.

4.5.7 Factors Influencing Solution Time

Solution time is typically analyzed with respect to the number of tasks, the number

of constraints or the number of PEs for a given problem instance. None of these factors is

a good indicator of solution time for this formulation. For a problem with same number of

tasks, as the number of PEs available decreases, we discover a counterintuitive trend: the

number of constraints (and variables) drops, but the runtime increases.

The rising solution time for test cases with fewer PEs and constraints can be ex-

plained with three observations. First, when there are relatively fewer PEs, more unrelated

tasks (tasks not in each other’s TFOs) have to be sequentialized onto each PE. A formu-

lation that relies on binary variables and big M constants to enforce non-overlapping of

tasks (Constraint 4.5) has a weaker LP lower bound with more tasks/PE. Secondly, when

many unrelated tasks have similar processing times, many feasible solutions have similar

makespans, this prevents effective pruning of the branch and bound tree based on known

73

feasible solution upper bounds. Thirdly, the number of feasible permutations of task or-

dering explodes with more tasks/PE. If we have k unrelated tasks allocated on the same

processor, many of the k! permutations must be considered in the branch and bound tree.

The inverse application graph has edges between unrelated nodes (those without precedence

constraints). The total number of permutations increases as a function of the maximum

clique (fully connected component) of the inverse application graph. Making more PEs

available disperses unrelated tasks - fragmenting the cliques and improving the LP lower

bound.

4.5.8 Case Study

We now turn our attention to demonstrating the applicability of our customized

MILP formulation on a case study. The chosen application is the Motion JPEG encoder

described in Section 4.1.2. The architectural platform we consider contains soft-core pro-

cessors and processing elements on a Xilinx Virtex II Pro FPGA fabric as described in

Section 4.2.2. For various manual and automated mappings, we compare the performance

in terms of system throughput and area utilization. For applications derived from dataflow

specifications, the makespan of the data precedence DAG of an unrolled dataflow graph is

equivalent to throughput [98].

Manual Design Space Exploration

The goals in manual design space exploration are to utilize various numbers of

uBlaze processors and DCT-specific PEs to maximize the throughput of the Motion-JPEG

application. A nominal frame size of 96x72 is assumed for all implementations. We start

74

So

D/Q

H
T

D/Q D/Q

So HD Q

T

So

D D D

Q Q Q

H H H

T

C

So H

D Q

D

D

Q

Q
T

(M1)

(M2)

(M4)

(M3)

Figure 4.15: Topologies of Manual Designs

from a baseline topology where the entire application is mapped onto a single uBlaze pro-

cessor. As additional PEs are utilized, portions of the application are migrated to these

PEs to improve throughput.

The PEs in the various designs are connected with FSL queues that are accessed

in blocking-read, blocking-write mode. Data is fed to and retrieved from the device with

a 100 Mbps Ethernet connection to a host PC. An Ethernet MAC device is instantiated

on the fabric to handle this communication. One of the uBlaze PEs in each design is

designated as the I/O processor and connects to the Ethernet device. In addition, this

uBlaze is connected to peripherals to allow for debugging and performance measurement.

In all designs except the baseline topology, a single uBlaze is reserved for quantization table

updates. The experimental setup is shown in Figure 4.16.

The different manual designs obtained are shown in Figure 4.15. The blocks used

75

Xilinx Virtex II Pro

Ethernet

MAC

uBlaze

Soft

Proc.

Network of

Processors

and IP

OPB Bus

FSL

Raw Data

M-JPEG

Xilinx Virtex II Pro

FSL

Figure 4.16: Experimental Setup

Design uBlaze DCT fps Area
Base 1 0 26.5 21%
M1 5 0 51.1 39%
M1D 4 1 72.0 53%
M2 6 0 85.1 47%
M3 9 0 85.3 62%
M3D 6 3 85.6 94%
M4 12 0 148.8 83%

Table 4.3: Manual Designs

include the data source (So), DCT (D), quantization (Q), Huffman encoder (H), and table

update (T). A combiner (C) is necessary when the Huffman block is split into 3 parts.

Salient characteristics of each implementation – the number of uBlaze and DCT PEs used,

the frames processed per second, and the area (% slices occupied on the FPGA) – are sum-

marized in Table 4.3. Designs M1D and M3D are obtained from M1 and M3 respectively

by substituting uBlazes with DCT PEs where possible.

The manual designs exploit the task-level and data-level parallelism in the appli-

cation. The designs first attempt to use task-level parallelism between the different stages

76

Task Cycles
Source 200
DCT 4,760
Quant 2,572
Huffman 3,442
Combiner 2,542
DCT Acc. 328

Table 4.4: Profiling Information

and the exploit the natural data-level parallelism between the three components in the color

space.

Automated Design Space Exploration

Automated Design Space Exploration uses the MILP formulation developed in

Section 4.5.4 to determine the scheduling and allocation for tasks in the case study. The

aim is to show that the cost model in the formulation accurately captures the design space

and can be used to implement competitive designs.

The first step is to create a representation for the application which identifies the

maximal amount of available concurrency. Since we would like to compare against the man-

ual implementations, we create a task representation which extracts no more concurrency

than is utilized in the manual designs. This corresponds to design (M4) from Figure 4.15.

We also reserve a separate uBlaze for the table update portion of the application, just as

in the manual designs. Note that both of these restriction can be relaxed to obtain higher

quality automated designs.

The next step is to characterize the application so that the task execution times

(the t parameters in the formulation) can be obtained. For both the uBlaze processor and

77

the DCT accelerator, the cycle times are obtained from the timer peripheral. The cycle

times for the tasks are shown in Table 4.4.

If these parameters are used in our MILP formulation, any legal solution produces

a static estimate for throughput. The accuracy of this estimate is important in determin-

ing the effectiveness of an automated approach. We compare the estimates for the base

design and the 6 manual designs from Section 4.4 against the actual implementation results

obtained from the development board.

The makespan estimated from the formulation is, on average, within 5% of the

execution time measured on the development board. Most of the predictions overestimate

the makespan, since the formulation does not consider simultaneity between reads and

writes on each FIFO.

With this accurate model of the design space, we can automatically evaluate a

number of different solutions from the MILP formulation. Based on the characteristics of

the manual designs, we picked three promising MILP solutions and implemented them on

the development board. These three automated solutions (A1, A2, and A3) use 3, 5, and

8 uBlazes and were obtained with a 100s time limit on the solver. The MILP solution also

confirms that design M4 is optimal given the chosen granularity of the task graph.

Both the manual and automated solutions can be plotted in terms of frame rate

vs. FPGA slices consumed - which is roughly proportional to the number of uBlazes and

DCT PEs used. Figure 4.17 shows this tradeoff and indicates that the automated designs

do indeed result in competitive implementations that lie on the Pareto curve.

78

Area Performance Tradeoffs

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

Area, % Slices

F
ra

m
es

 p
er

 s
ec

o
n

d

Base

M1

M2

M1D

M3 M3D

M4

A1

A2

A3

Figure 4.17: Manual vs. Automated Designs

79

4.5.9 Conclusions and Future Work

In this work, we considered a number of MILP approaches for solving the task

allocation and scheduling problem. Based on their treatment of precedence constraints,

a taxonomy of known MILP representations was proposed, and the most promising core

formulation was selected. Extensions were then added to customize the formulation for our

needs. With extensive computational testing, we showed that our overlap-based formulation

has better solution time than a competing sequence-based formulation, and demonstrated

that tight lower bounds could be obtained in polynomial time. We also identified key

metrics for determining the difficulty of problem instances - demonstrating that for a given

application, larger platforms actually decrease solution time. Our formulation was applied

to a case study that considers the deployment of an MJPEG application on a Xilinx FPGA

platform. We showed that our formulation can accurately predict the performance of the

system and quickly produce solutions that are competitive with manual designs.

In the future, we plan to further extend the customizations used here to enable the

targeting of more complex platforms. For instance, by handling the allocation of distributed

memory. Also, we would like to consider more specialized solution techniques. In particular,

the addition of constraints corresponding to critical paths during the branch-and-bound

process seems promising.

4.6 Conclusions

The multimedia domain features increasingly complex applications deployed on

highly heterogeneous parallel platforms. In this work, we have considered two related ap-

80

plications and their deployment on two separate heterogeneous multiprocessor platforms.

The first step is choosing an appropriate model of computation. For the systems considered

here, a statically-schedulable dataflow variant based on cyclo-static dataflow was chosen.

First, in Section 4.4, it was verified that the MoC was expressive enough to succinctly

capture the system and accurately characterize its performance. In Section 4.5, a Mixed

Integer Linear Programming approach was developed to automate the allocation and sch-

eduling problem for these types of systems. It applicability was demonstrated by applying

it to a case study consisting of deploying a Motion-JPEG encoder onto a multiprocessor

Xilinx FPGA platform.

81

Chapter 5

Automotive Domain

The automotive domain is characterized by distributed controls applications de-

ployed onto heterogeneous distributed architectures. These architectures consist of elec-

tronic control units (ECUs) connected with standardized buses. The mapping problem for

these systems involves allocating the processing tasks onto ECUs, the messages to buses,

and configuring the execution of both. A variety of technical and business factors have

contributed to making this problem especially challenging.

First, automobiles are increasingly becoming differentiated based on their elec-

tronic content, especially the type of active safety functionality they feature. It is estimated

that a majority of the innovation and cost of a new vehicle now resides in the electronics [75].

Due to the large volumes, automotive electronics are price-conscious, meaning that up-front

optimization effort is valuable if system costs can ultimately be reduced.

However, system-level optimization has not always been feasible in the automotive

domain. Typically, hardware and software is bundled together in modules that are sold

82

to the system integrators - the carmakers. Recently, there has been an effort from the

carmakers to de-link and standardize the hardware and software portions of the system.

This is being carried out under the auspices of the AUTOSAR [51] initiative. Not only does

AUTOSAR enable the carmakers to carry out system-level optimization, it also enables

the suppliers to compete more effectively [106]. The de-linking of software from hardware

facilitates the modeling and optimization that will be described in this section.

5.1 Applications

The embedded automotive applications considered here are active safety applica-

tions. These applications collect data from 360o sensors around the vehicle to understand

the positioning of surrounding objects and detect hazardous conditions. On hazard detec-

tion, the active safety functions attempt to inform the driver or provide control overlays

to reduce the risk to the occupants of the vehicle. Most of these functions are high-level

controls which drive low-level actuation loops.

Application descriptions can be viewed as directed graphs, with nodes representing

function blocks and edges representing data dependencies. Data dependencies are messages

that are sent between blocks. The application description is further characterized by end-to-

end latency constraints along certain paths from sources to sinks. These constraints bound

the execution time of certain chains of tasks to occur within the predefined time.

Two active-safety applications are considered in this work, both of which have

been obtained through the collaboration with General Motors.

83

5.1.1 Distributed Supervisory Control Application

The application is a limited-by-wire system that implements a supervisory control

layer over the steering, braking and suspension systems. The objective is to integrate active

vehicle control subsystems to provide stability and comfort to the occupants. The high-

level view of the functionality is shown in Figure 5.1. The supervisor plays a command

augmentation role for braking, suspension and steering by using sensors to collect data

from the environment. This supervisory two-tier control architecture enables a flexible and

scalable design where new chassis control features can be easily added into the system by

only changing the supervisory logic.

5.1.2 Experimental Vehicle

This application supports advanced distributed functions with end-to-end compu-

tations collecting data from 360◦ sensors. The actuators consist of the throttle, brake and

steering subsystems and of advanced HMI (Human-Machine Interface) devices. A total of

92 tasks exchange 196 messages in the block diagram for the application.

End-to-end deadlines are placed over paths between 12 pairs of source-sink tasks

in the application. A change of data at the input of the path must lead to a corresponding

change at the path output within the specified end-to-end latency. Most of the paths follow

a six-stage structure: sensor preprocessing & sensory fusion, object detection, selection of

target objects in the environment, core functions, vehicle longitudinal & lateral controls with

actuator arbitration & planning, and, finally, low-level loops of the actuators themselves.

Most of the intermediate stages are shared among the tasks. Therefore, the blocks in the

84

Figure 5.1: Functional Model for Distributed Supervisory Control System

85

application graph are quite densely connected. Despite the small number of source-sink

pairs, there are 222 unique paths among them.

5.2 Architectural Platforms

Architectural platforms for the systems we consider are highly distributed. Dis-

tributed architectures supporting the execution of hard real-time applications are common

not only for automotive, but also for avionics and industrial control systems. To provide

design-time guarantees on timing constraints, different design and scheduling methodologies

are used. For instance, avionics systems are often built based on static, time-driven sched-

ules. Due to resource efficiency and ultimately price concerns, many automotive systems are

designed based on run-time priority-based scheduling of tasks and messages. In this work,

we consider architectures which feature two standards supporting this model: the OSEK

operating system standard [94] and the CAN bus arbitration model [12]. OSEK OSs provide

preemptive priority-based run-time task execution while CAN buses allow non-preemptive

priority-based run-time message transmission.

ECUs feature CAN controllers which provide send and receive functionality. The

number of buffers available in the CAN controller is strongly correlated with price, and

typical CAN controllers have a limited number of send/receive buffers. This necessitates

different tasks on the ECU to share CAN controller buffer space. Due to this limited buffer

space and because ECUs are not synchronized with each other, message loss and duplication

may occur.

Different interaction models may be implemented at the interface between any two

86

resource domains (such as an ECU and a bus). The simplest interaction model consists of

the periodic activation with asynchronous communication, where all interacting tasks are

activated periodically and communicate by means of asynchronous buffers based on non-

blocking read/write semantics. Similarly, message transmission is triggered periodically and

each message contains the latest values of the signals that are mapped into it.

5.3 Choosing the Model of Computation

To choose an appropriate MoC for systems in this domain, we will first consider

the current design methodology. In current industrial practice, the application is typically

described in Matlab/Simulink. Simulation is typically carried out to validate the appli-

cation model. The architectural model is not captured explicitly during the design flow.

Code generation from the application model to the architectural model is carried out using

RealTime Workshop (RTW). However, RTW assumes that the generated code is deployed

on uniprocessor architectures. In practice, since the architectural platform can lose and

duplicate messages, the semantics of the architecture and the functionality are not compat-

ible. Therefore, a correct-by-construction deployment is not guaranteed. The system needs

to be re-validated, even if the functionality has already been tested.

In current industrial practice, system validation is aided by two techniques: overde-

sign and in-vehicle testing. Overdesign involves sending additional messages between tasks

to compensate for expected message loss. Regardless of overdesign, in-vehicle testing is re-

quired to assure the designer that the system works as expected. Unfortunately, in-vehicle

testing is expensive and occurs late in the design cycle.

87

Finding a suitable MoC to capture automotive systems involves a tradeoff between

expressiveness and analyzability, just as in the multimedia domain. One choice is to keep

the more analyzable synchronous reactive model of computation for the application, and

add wrappers to the architecture to ensure compatibility. The second choice is to expose

architectural non-idealities in the application model.

The first choice involves making the architecture compatible with the synchronous

reactive model. This may involve adding synchronization capabilities between different

ECUs in the architecture, expanding buffer sizes for the transmission, or adding retrans-

mission capabilities to the architectural platform. These options directly increase either

architectural cost or utilization, but allow better analysis.

The second choice involves making the lack of synchronization, message loss, and

message duplication visible in the functional model. This “lossy” MoC does not require any

wrappers to be defined for the architectural model. However, since the functional model

becomes more expressive under this MoC, the analysis that can be carried out is much

weaker. We explore the second MoC further in this work, since it more easily captures the

current industrial situation, and leads to interesting automated mapping problems.

More specifically, the execution model considered in this work is the following.

Input data (generated by a sensor, for instance) is available at one of the system’s ECUs.

A periodic activation signal from a local clock triggers the computation of an application

task on this ECU. Local clocks on different ECUs are not synchronized. The task reads the

input data, computes intermediate results, and writes them to the output buffer from where

they can be read by another task or used for assembling the data content of a message.

88

Messages - also periodically activated - transfer the data from the output buffer on the

current ECU over the bus to an input buffer on another ECU. Tasks may have multiple

fan-ins and messages can be multicast. Eventually, task outputs are sent to a system output

(an actuator, for instance).

In the lossy MoC, concurrent processes communicate through FIFOs. FIFOs are

fixed length and may nondeterministically delete or duplicate messages. FIFO access is non-

blocking. The MoC is timed, so processes are triggered periodically, each with a specific

rate and a relative phase. If all FIFOs are one-place buffers and processes are triggered

at the same rate and with the same phase, then the MoC is equivalent to the synchronous

reactive model. Otherwise, depending on the configuration used for the rates, phase offsets,

FIFO sizes, and message duplication and deletion policies, the functional model can behave

as it would when mapped to an actual architectural platform.

When implementing feedback control applications in this fashion, the (quasi) pe-

riodic stream of actuator commands may be based on sensor data taken a variable number

of samples in the past, depending on how the various clocks align. For this reason, the

control algorithms are typically designed favoring robustness over performance. Techniques

like time-stamping and sequence counters are sometimes used at the application level to

compensate for variations and to improve robustness. Nonetheless, hard bounds on latency

and periodicity are provided as implementation requirements.

89

5.4 Manual Design Space Exploration: Distributed Supervi-

sory Control System

The lossy MoC has been used to model a distributed supervisory control system

from General Motors. Implementation of the MoC and detailed architectural modeling is

carried out in Metropolis. A more complete description of this case study is given in [125].

The architecture consists of 6 ECUs and includes 2 smart sensors connected over

a high-speed CAN communication bus. The two sensors are the hand wheel sensor which

obtains steering position and the inertial sensor for yaw rate lateral acceleration measure-

ments. The interfaces to the body and powertrain vehicle subsystems are not modeled. The

architectural model is shown in Figure 5.2.

Details of the ECU modeling are shown in Figure 5.3. Multiple software tasks

can execute on the ECU. Initially, they interact with the middleware, which provides both

location and access transparency. Location transparency means that the data sources and

sinks remain hidden from the software tasks. For instance, communication may be mapped

to the CAN bus for remote tasks or a local buffer in the case of communication between

multiple tasks on the same ECU. Access transparency means that the internal representa-

tion as well as access policies for shared communication resources are also hidden from the

software tasks. The RTOS model implements an OSEK-compliant priority-based preemp-

tive scheduler. The CAN driver transfers messages between the middleware buffers and the

CAN controller. The CAN controller has bus sender and receiver processes that execute

concurrently with the software tasks.

A variety of options can be explored during design space exploration including:

90

High Speed CAN

Steering

Hand Wheel

Sensor

Inertial

Sensor
Supervisory Control Module

Brake

Control

Steering

Control
Susp

Control

Figure 5.2: Architectural Model for Distributed Supervisory Control System

SwTask

1

SwTask

i

Middle-

ware

OSEK

RTOS/

…...

CPU

CAN

Driver

CAN

Controller

(To CAN Bus)

Figure 5.3: Details of ECU Modeling

91

• Allocation of tasks to ECUs

• Priority assignments for tasks and messages

• Packing of signals to messages

• Configuration for CAN controllers and drivers

For this system, when carrying out mapping between the functionality and the ar-

chitecture, there is a one-to-one mapping between the tasks in the application and the ECUs

in the architecture. For this case study, only the CAN controller and driver configuration

are varied.

The objective of design space exploration is to mitigate the effects of priority

inversion within the system. Priority inversion is a well known but often overlooked problem

in embedded real-time systems. The basic scenario involves three or more tasks and a shared

resource.

When the shared resource needs mutually exclusive access to a shared resource,

it is generally accepted that a higher priority task cannot execute until the resource is

“released”, even if the task “occupying” the resource has lower priority: no preemption can

take place. This phenomenon is not referred to as priority inversion, even though the higher

priority task may need to wait for the completion of the lower priority task. The actual

priority inversion comes from the presence of one or more intermediate priority tasks that

do not need the shared resource and that may preempt or delay the completion of the lower

priority task, which in turn delays the completion of the higher priority task. This latter

phenomenon occurs between lower priority tasks and the higher priority task(s) without

92

any mutual exclusion constraints that would otherwise justify it.

In the models used for this case study, this inversion may occur between messages

of different priority originating from the same ECU, when transmit buffers in the CAN

controller are shared between them. It is fairly common to have a single transmit buffer

shared by all transmitted messages from a single ECU, making this problem especially

acute.

If a high priority message is queued in the middleware while a low priority message

resides in the transmit buffer of the CAN controller, the high priority message will be blocked

until the low priority message is successfully transmitted. Again, this is not the inversion

per se, but when intermediate priority messages are transmitted on the CAN bus by other

nodes, they effectively delay the transmission of the low priority message and, consequently,

of the high priority message.

In the case study, described further in [125], different amounts of buffer space is

used for the CAN controller transmit buffers. The system model accurately captures the

effect on varying the transmit buffer sizes on the transfer times for messages of low, medium,

and high priorities.

5.5 Automated Design Space Exploration: Period Assign-

ment

The correct deployment of active-safety applications on distributed automotive

architectures requires end-to-end latency deadlines to be met. This is challenging since

deadlines must be enforced across a set of ECUs and buses, each of which supports multiple

93

Allocation

Priority Assignment

Period Assignment

Deployment

Mapping

Application Architecture

x ms

Figure 5.4: Period assignment within the overall design flow

functionality. The need for accommodating legacy tasks and messages further complicates

the scenario.

In this work, we automatically assign task and message periods for distributed

automotive systems. This is accomplished by leveraging schedulability analysis within a

convex optimization framework to simultaneously assign periods and satisfy end-to-end

latency constraints. Our approach is applied to an industrial case study as well as an

example taken from the literature and is shown to be both effective and efficient.

5.5.1 Design Flow

The period assignment problem addressed in this work tackles a part of the larger

design flow shown in Figure 3.4. Mapping deploys functional blocks to tasks and tasks to

ECUs. Correspondingly, signals are mapped into local communication or messages that are

exchanged over the buses. We further divide the mapping step into three stages: allocation,

94

priority assignment, and period assignment. Allocation is the first stage and assigns tasks

to ECUs and messages to buses. Each task is allocated to a single ECU while each message

is allocated to a single bus. The second stage assigns priorities to both tasks and messages.

The last stage assigns periods to task and messages.

In this work, we restrict the focus to the period assignment stage. Given an al-

location and priority assignment for both tasks and messages, our approach automatically

assigns periods for all tasks and messages in order to satisfy the end-to-end latency require-

ments. The results of period assignment may trigger design iterations over the allocation

and/or priority assignment stages when a feasible solution cannot be found or when the

design can be further improved by changing the allocation or reassigning the priorities (for

example, following the rate monotonic rule).

5.5.2 Prior Work

Both static and dynamic priority, distributed as well as centralized scheduling

methods have been proposed in the past for distributed systems. Static and centralized

scheduling is typical of time triggered design methodologies, like the Time-Triggered Archi-

tecture (TTA) [65] and its network protocol TTP and of implementations of synchronous

reactive models, including Esterel and Lustre [10]. Also, the recent FlexRay standard [39]

for high speed communication in automotive systems provides two transmission windows,

one dedicated to time-driven periodic streams with static design-time assignment of trans-

mission slots, and the other for asynchronous event-driven communication.

Priority-based scheduling is also very popular in control applications and is sup-

ported by the native CAN network arbitration protocol. The worst case transmission laten-

95

cies of CAN messages (with timing constraints) have been analyzed and discussed in past

research work [114]. Also, the OSEK operating system standard for automotive applications

supports not only priority scheduling, but also resource sharing with predictable blocking

times. Priority-based scheduling of single processor systems has been thoroughly analyzed

with respect to worst case response time and feasibility conditions [49].

End-to-end deadlines have been discussed in research work in the context of both

single-processor as well as distributed architectures. The synthesis of task parameters (ac-

tivation rates and offsets) and (partly) of task configuration itself in order to guarantee

end-to-end deadlines in single processor applications is discussed in [42]. Later, the work

has been tentatively extended to distributed systems [105] where a set of design patterns

are applied to meet the deadlines using offset-based scheduling.

The periodic activation model with asynchronous communication can be analyzed

quite easily in the worst case, because it allows the decomposition of the end-to-end schedu-

lability problem into local problem instances, one for each resource (ECU or bus). This is

not true in the case of data-driven activation models, where local schedulers have cross

dependencies due to the propagation of activation signals. In this case, the problem of dis-

tributed hard real-time analysis has been first addressed by the holistic model [100] based

on the propagation of the release jitter along the computation path.

While the prior work provides analysis procedures with reduced pessimism, the

synthesis problem is today largely open, except for [102], where the authors discuss the use

of genetic algorithms for optimizing allocation and priority assignments with respect to a

number of constraints, including end-to-end deadlines and jitter.

96

5.5.3 Representation

The systems we consider can be represented with a weighted directed graph (O,L)

and a set R. O is the set of vertices denoting the schedulable objects (tasks and messages),

L is the set of edges representing the flow of information (data dependencies), and R is a

set of shared resources supporting the execution of the tasks (ECUs) and the transmission

of messages (buses).

• O = {o1, . . . , on} is the set of schedulable objects implementing the computation and

communication functions of the system. An object oi represents either a task or a

message and is characterized by two parameters: a maximum time requirement ci and

a resource Rj to which it is allocated (oi → Rj). All objects are scheduled according

to their priority and a total order exists between the priorities of all objects on each

resource. The object is periodically activated with a period ti. ri is the worst case

response time of oi, representing the largest time interval from the activation of the

object to its completion in case it is a task, or its arrival at the destination in case

it is a message. The response time of an object includes its own time requirement as

well as the time spent waiting to gain access to the resource.

• L = {l1, . . . , lm} is the set of links. A link li = (oh, ok) connects an object oh (the

source) to object ok (the sink). One object can be the source or sink of many links.

At the end of its execution or transmission, an object delivers results (task) or its data

content (message) on all outgoing links. For any link, the sink object is activated by a

periodic timer and, when it executes, reads the latest signal value that was transmitted

over the link.

97

• R = {R1, . . . , Rz} is the set of logical resources that can be used by the objects to

carry out their computations. Resources are either ECUs or buses and are scheduled

with a priority-based scheduler.

A path p is a finite sequence of objects (p ∈ O∗) that, starting from oi = src(p),

reaches oj = snk(p) with a link between every pair of adjacent objects. oi is the path’s

source and oj is the sink. Sources are activated by external events, while sinks activate

actuators. Multiple paths may exist between each source-sink pair. The worst case end-to-

end latency incurred when traversing a path p is denoted as `p. The path deadline for p,

denoted by dp, is an application requirement that may be imposed on selected paths.

The graph in Figure 5.5 can be used to explain the representation. It consists of 8

tasks and 5 messages allocated to 3 ECUs and 1 bus respectively. For each object, the time

requirement is given by the value inside the object, while the priority is given by the value

beside it. Three paths are present in the example; two of which have deadlines associated

with them. Shaded nodes denote external events or actuators.

Object Schedulability

Object schedulability requirements in the system ensure that each task and mes-

sage is processed every activation. This requirement enforces the assumption that objects

are not queued for later processing. This assumption is compatible with all modes of the

OSEK standard. The constraint that must be met is:

ri ≤ ti ∀i ∈ O

98

280 ms

100 ms

CAN

ECU3ECU1

9648

12

13109 1211

78 6
6

54
48

321
4

4

4

44

ECU2

Figure 5.5: An example system graph

Resource Utilization

Resource utilization constraints place an upper bound on the fraction of time

a resource may spend processing its objects. The utilization must always be less than

100%, and may be constrained further due to the designer-imposed restrictions. Resource

utilization is calculated as:

∑
i:oi→Rj

ci

ti
≤ uj ∀Rj ∈ R

To calculate the utilization on a resource Rj , we take the sum of the processing

time divided by the period for all objects which are allocated to that resource (i : oi → Rj).

uj is the utilization bound for the resource and may be set to less than 1 for reasons such

as future extensibility, where the ability to add additional tasks or messages to the resource

late in the design cycle is important.

99

R R R1 2 3

1 2 3
t t t1 2 3

t

r

t

t

r

r

1 1

2 2

33

End−to−End latency

o o o

Figure 5.6: End-to-End Latency Calculation

End-to-End Latency

The worst case end-to-end latency can be computed for each path by adding the

worst case response times and the periods of all the objects in the path:

`p =
∑

k:ok∈p

tk + rk

In the worst case, as shown in Figure 5.6, an external event arrives immediately

after the completion of the first instance of task o1. The event data will be read by the task

on its next instance and the result will be produced after its worst case response time, that

is, t1 + r1 time units after the arrival of the external event. Since there is no coordination

between tasks on separate resources, the situation repeats in the worst case for each link

in the path. To get more precise results, the best case response time vi of any predecessor

object oi should be subtracted from the period ti in the previous formula. However, in most

cases, including the case studies in Section 5.5.5, vi � ti and vi can be ignored.

For multiple communicating tasks with harmonic periods on the same ECU, the

analysis can be less pessimistic if we assume that the designer can select the relative activa-

100

tion phase of all tasks. In case the sink task is activated with a relative phase with respect

to the source equal to its worst case response time, then the contribution of the pair to the

end-to-end latency can possibly be reduced. Let o1 and o2 be two tasks on the same ECU

that appear (in that order) in a path with an end-to-end deadline. If t1 = kt2 is satisfied,

where k ∈ N+, then t2 is oversampled-harmonic with respect to t1. Similarly, if kt1 = t2,

where k ≥ 2, then t2 is undersampled-harmonic with respect to t1. Latency analysis for

these situations is developed in [90] and summarized in Table 5.1.

Condition Path Fragment Latency
Non-local or non-harmonic r1 + t1 + r2 + t2
Local oversampled-harmonic r1 + t1 + r2

Local undersampled-harmonic r1 + r2 + t2

Table 5.1: Latency over local harmonic path fragments

Response Time Analysis

The key in adjusting object periods to meet end-to-end latency constraints is

determining the relationship between object periods and response times. Response time

analysis is also important in the calculation of object schedulability. The response time

relationships are similar, but not identical, for tasks and messages. The analysis in this

section summarizes work from [49] and [114].

Task Response Times In a system with preemption and priority-based scheduling, the

worst case response time ri for a task oi ∈ T depends on the computation time requirement

ci for the task itself as well as the interference from higher priority tasks on the same

101

resource. ri can be calculated using the following recurrence:

wi(q) = (q + 1)ci +
∑

j∈hp(i)

⌈
wi(q)

tj

⌉
cj

ri = maxq{wi(q)− qti}

∀q = 0 . . . q∗ until ri(q∗) ≤ ti

(5.1)

Where j ∈ hp(i) refers to the set of higher priority tasks on the same resource. The

need of evaluating the first q instances inside the busy period is caused by the uncertainty

about the instance which causes the worst case response time. A lower bound on the worst

case response time can be obtained by restricting the calculation to the first instance (q = 0).

This bound is tight in case tasks complete their work within a single period, i.e. ri ≤ ti for

all oi. In this case, the formula can be simplified as:

ri = ci +
∑

j∈hp(i)

⌈
ri

tj

⌉
cj ∀oi ∈ T (5.2)

Note that the term d ri
tj
e indicates the maximum number of preemptions from

a higher priority task j. The numerator indicates the amount of time that the task is

vulnerable to preemption, whereas the denominator indicates how often the higher priority

task j is activated. The ceiling function is used since this is a worst-case analysis.

Message Response Times Worst case message response times are calculated similarly

to worst case task response times. The main difference is that message transmission on the

CAN bus is not preemptable. Therefore, a message oi may have to wait for blocking time

bi, which is maxj∈lp(i) cj where lp(i) is the set of lower priority messages that are allocated

to the same bus as oi. Likewise, the message itself is not subject to preemption from higher

102

priority messages during its own transmission time ci. The response time relationship is:

wi(q) = bi + qci +
∑

j∈hp(i)

⌈
wi(q)

tj

⌉
cj (wi > 0)

ri = maxq{ci + wi(q)− qti}

∀q = 0 . . . q∗ until ri(q∗) ≤ ti

(5.3)

Again, a lower bound on ri can be computed by only considering the first instance

(q = 0) and the formula is simplified as:

ri = ci + bi +
∑

j∈hp(i)

⌈
ri − ci

tj

⌉
cj ∀oi ∈M (5.4)

In calculating the number of preemptions from a higher priority message j, the

difference from Equation 5.2 is that a message is not vulnerable to preemption while it is

being transmitted.

5.5.4 Period Optimization Approach

From the relationships given in Equations 5.2 and 5.4, it is apparent that the

response time of each object is related to the periods of higher priority objects on the

same resource. Intuitively, reducing the period of an object will increase the response times

of other objects with lower priorities on the same resource. The end-to-end latencies of

multiple paths may be affected as a result. Also, modifying object periods also affects the

utilization of the resource. Lowering the period for an object increases the utilization of the

resource. Finally, lower periods also makes object schedulability more difficult.

If object periods are modified individually, then achieving convergence is difficult,

since any change to one period affects many others. Instead, we concentrate on mathe-

103

matical programming (MP) techniques, which simultaneously consider modifications to the

periods of all objects.

The benefits of a MP optimization approach are particularly relevant to the period

synthesis problem. First, in assigning periods, there are a large number of interdependencies

between the objects on different paths. Considering one path at a time is not guaranteed

to find a feasible, let alone optimal, solution. MP approaches consider all constraints simul-

taneously. Next, and more importantly, MP approaches can be customized with system-

specific issues by simply adding additional constraints. Whereas other solution mechanisms

are brittle to changes in the problem assumptions, MP approaches can adapt to different

problem assumptions or partial solutions. For example, the existence of legacy tasks and

messages whose periods are fixed or otherwise restricted can be handled quite easily with

additional constraints.

This section is organized as follows. First, the problem is captured with a generic

mathematical programming formulation. Next, two specialized forms of mathematical

programming - geometric programming (GP) and mixed-integer geometric programming

(MIGP) are described. The period optimization problem is defined as an MIGP and a GP

approximation is developed. Approximation error is reduced by an iterative procedure.

Mathematical Programming Formulation

The period assignment problem is defined over the following sets: the objects

O, which are partitioned into messages M and tasks T , the set of resources R, and the

paths with end-to-end constraints P. All objects oi ∈ O have associated computation time

parameters ci, lower bounds on periods ni, and upper bounds on periods xi. Additionally,

104

messages oi ∈ M have associated blocking times bi. Path deadlines dp are specified for all

p ∈ P. uj are the maximum permitted utilization values for all resources Rj ∈ R. The

main decision variables for all oi ∈ O are the periods ti while the response times ri are used

as helper variables.

The problem to be solved can be formulated as follows:

min.
∑

oi∈O ri (5.5)

s.t.
∑

k:ok∈p tk + rk ≤ dp ∀p ∈ P (5.6)

ri = ci +
∑

j∈hp(i)

⌈
ri

tj

⌉
cj ∀oi ∈ T (5.7)

ri = ci + bi +
∑

j∈hp(i)

⌈
ri − ci

tj

⌉
cj ∀oi ∈M (5.8)

ri ≤ ti ∀oi ∈ O (5.9)

∑
i:oi→Rj

ci
ti
≤ uj ∀Rj ∈ R (5.10)

ni ≤ ti ∀oi ∈ O (5.11)

ti ≤ xi ∀oi ∈ O (5.12)

The objective function can be selected according to the optimization goals. 5.5

corresponds to the minimization of average response time over all objects in the system.

However, a different choice related to the extensibility of the solution can also be used. For

instance, minimizing the maximum resource utilization.

Constraint 5.6 ensures that the path deadlines are met. Note that the less pes-

simistic path latencies from Section 5.5.3 can be substituted here when possible. Constraints

5.7 and 5.8 relate the node response times to the computation times and periods, according

105

to Equations 5.2 and 5.4. Constraint 5.9 adheres to the assumption that response times

are lower than object periods and enforces object schedulability. Resource utilization is

bounded by Constraint 5.10.

Finally, even when there are no explicit end-to-end deadlines imposing a constraint

on the maximum execution periods of tasks and messages, such bounds may be specified

separately – especially for feedback control applications – as in Constraints 5.11 and 5.12.

Depending on system-specific situations, additional constraints may be added that

relate the periods of different objects. For instance, periods for two objects oi and oj

may be constrained to be equal, i.e. ti = tj , or with a given oversampling (ti = ntj) or

undersampling (mti = tj) ratio (where n and m are positive integer constants). A more

generic requirement might be to ensure that the objects are undersampling or oversampling

with some unknown integer proportionality k between the periods. For example, ti = ktj

where k ∈ Z+. If such constraints are defined over adjacent tasks on the same resource, the

less conservative analysis from Section 5.5.3 can be used.

Geometric Programming

Geometric programming (GP) is a special form of convex programming [14]. GPs

have polynomial time computational complexity and can be solved very efficiently by a

variety of off-the-shelf solvers. After [13], a GP in standard form is:

106

minimize f0(x)

subject to fi(x) ≤ 1 i = 1, . . . ,m

gi(x) = 1 i = 1, . . . , p

where x = (x1, ..., xn) is a vector of positive real-valued decision variables. f is a

set of posynomial functions, while g is a set of monomial functions. A posynomial is the

sum of monomials, where a monomial function m has the following form:

m(x) = cxa1
1 xa2

2 . . . xan
n c > 0, ai ∈ R

If x contains both integral and real-valued decision variables, the resulting problem

is a mixed-integer geometric program (MIGP). Unlike GPs, MIGPs are not convex and

cannot be efficiently solved.

In this work, we make use of the gpposy [64] solver to solve GPs. Solver interfacing

is handled by the Yalmip [70] framework, which can overlay a branch-and-bound approach

to solve MIGP problems as well.

Mixed Integer Geometric Programming Formulation

Based on the original mathematical programming formulation, we can transform

it into a mixed integer geometric program with some slight changes.

107

min.
∑

oi∈O ri (5.13)

s.t.
`p

dp
≤ 1 ∀p ∈ P (5.14)

ci+
P

j∈hp(i) zijcj

ri
≤ 1 ∀oi ∈ T (5.15)

ci+bi+
P

j∈hp(i) zijcj

ri
≤ 1 ∀oi ∈M (5.16)

ri
ti
≤ 1 ∀oi ∈ O (5.17)

∑
i:oi→Rj

ci
ti×uj

≤ 1 ∀Rj ∈ R (5.18)

ni
ti
≤ 1 ti

xi
≤ 1 ∀oi ∈ O (5.19)

ri
tj×zij

≤ 1 ∀oi ∈ T (5.20)

ri
tj×zij+ci

≤ 1 ∀oi ∈M (5.21)

Constraints 5.14, 5.17, 5.18, and 5.19 are simple reformulations of their counter-

parts from the original formulation. zij is a new set of integer variables which captures the

number of preemptions from a higher priority object j on a lower priority object i on the

same resource. Note that the integrality of these variables forces the formulation to be a

MIGP. Constraints 5.20 and 5.21 determine the values of these variables.

To enable this formulation to be compatible with the standard form of MIGP, we

need to carry out a simple change of variables. This change of variables replaces the term

ri − ci with a new variable r′i for all messages (∀oi ∈M).

108

Approximation

Since MIGP problems are very difficult to solve, we approximate the MIGP period

optimization problem with a GP formulation. In order to cast the problem into a GP form,

the interference variables zij are relaxed to real-valued variables and parameters 0 ≤ αij ≤ 1

are added to them. For clarity, let the approximated response time variables be si; then,

Constraints 5.20 and 5.21 from the MIGP become:

si
tj(zij+αij)

≤ 1 ∀oi ∈ T (5.22)

si
tj(zij+αij)+ci

≤ 1 ∀oi ∈M (5.23)

Thus, the GP approximation consists of the objective function 5.13 with si in place

of ri, Constraints 5.14) – 5.19 (also with si in place of ri) and Constraints 5.22 and 5.23.

If the values of all αij are 1, then the approximation is always conservative, i.e.

si ≥ ri. If some αij < 1, no such guarantees can be made. Clearly, the accuracy of the

approximation depends upon the α parameters that are used.

Fixed integer harmonicity constraints can be handled directly within the GP for-

mulation, whereas variable integer harmonicity constraints require a branch-and-bound ap-

proach with much higher complexity. However, if the number of such constraints is small,

the impact on overall runtime is not prohibitive. The Yalmip framework used to solve the

MPs can handle such Mixed Integer Geometric Programs without additional modifications.

109

Reducing Approximation Error

The α parameters in the GP formulation represent the degree of conservatism used

for the approximation of the response times. Setting all αij = 1 is a safe, but pessimistic

approximation that may produce an infeasible problem instance. In this section, an iter-

ative procedure is presented to find α parameters that preserve feasibility with reduced

conservatism.

Given some set of α parameters, if the GP is feasible, optimal ti values from the

GP solution can be obtained. We can obtain the ri values by substituting these ti values

into Constraints 5.2 and 5.4. For all oi ∈ O, let ei represent the relative error between the

estimated and actual response times, i.e. ei = si−ri
ri

. If all ei ≥ 0, then the optimal GP

solution results in a feasible solution to the exact problem, while if all ei = 0, then the GP

solution is not only feasible, but optimal. If some ei < 0, then the GP has underestimated

some response times and Constraints 5.14 or 5.17 in the exact problem may have been

violated.

An iterative procedure can be used to assign the α parameters. A new GP problem

is solved during each iteration, and the ei values are used to recalculate the α parameters

for the subsequent iteration. The procedure is summarized in Algorithm 1.

The input parameter to the procedure is f , which represents the maximum permis-

sible estimation error. At initialization, all αij are conservatively assigned to 1. Inside the

loop, the GP problem is solved and the estimated response times and assigned periods are

obtained. If the problem is infeasible, then all α values are scaled, and a new GP problem

is solved during the next iteration. If the GP problem in the current iteration is feasible,

110

Input Parameter = f ; /* acceptable error bound */

forall oi ∈ O do
αij = 1 ;

; /* conservative initialization */

while true do

(s, t) = GP(α) ; /* solve the GP */

if GP is infeasible then

forall oi ∈ O do

αij = 1
2αij ; /* reduce α values */

else
vior = 0 ;

viol = 0 ;

forall oi ∈ O do
calculate ri using fixpoint ;

ei = si−ri
ri

; /* relative approximation error */

if ri > ti then

vior = vior + 1 ; /* schedulability constraint

violation */

αij = αi − ei tcc*α values for next iteration ensure 0 ≤ αij ≤ 1 ;

forall p ∈ P do

if `p > dp then

viol = viol + 1 ; /* path constraint violation */

if viol = 0 ∧ vior = 0 ∧ (∀oi ∈ O,max(|ei|) < f) then
exit ;

Algorithm 1: Iterative Period Assignment Procedure

111

then the exact response times are calculated with Constraints 5.2 and 5.4. The relative

error ei and possible violations to Constraint 5.17 can then be calculated. Next, αij values

are adjusted based on ei, and are saturated either at 0 or 1 if necessary. After all exact

response times have been calculated, violations to path constraints 5.14 can be checked. If

none of the constraints have been violated, and if the maximum absolute estimation error is

lower than the limit for all objects, the procedure terminates, otherwise the next iteration

is executed with the modified α values. An iteration limit may also be specified.

5.5.5 Case Studies

The period optimization approach is validated in this section with two case studies.

The first is an experimental vehicle system that incorporates advanced active safety features,

as described in Section 5.1.2. The second case study is a fault tolerant distributed system

taken from [115].

5.5.6 Active Safety Vehicle

The architecture consists of 29 ECUs connected with 4 CAN buses, with speeds

ranging from 25kb/s to 500kb/s. Worst case execution time estimates have been obtained

for all tasks. Message length and bus speed is used to calculate the maximum transmission

time for all CAN messages. Each ECU is allocated from 1 to 22 tasks and each CAN bus

is allocated from 14 to 105 messages. The system graph contains a total of 604 links.

The deadlines are set at 300 ms for 9 of the 12 source-sink pairs, at 200 ms for two

pairs, and at 100 ms for one pair. For 9 pairs of local tasks over 2 ECUs, harmonicity cons-

traints with fixed integer constants are present. Some task and message rates are bounded

112

400

500

600

700

L
a
te

n
c
y,

 m
s

Latency Before and After Period Optimization

Manual

Period Optimization

Deadlines

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12

L
a
te

n
c
y,

 m
s

Source-Sink Pair

Figure 5.7: Period optimization meets all deadlines

explicitly, due to controller requirements and maximum sampling rates from sensors. To

provide for future extensibility and a safety margin, maximum utilization parameters ui

from (5.18) are set at 70% for all ECUs and buses.

The system configuration used is a snapshot from an early study of the possible

architecture configurations, in which the periods of task and messages had not been finalized.

The preliminary manual estimates are based on designer intuition. These initial period

assignments, in the worst case, do not meet any of the deadlines as shown in Figure 5.7.

Starting with all the α parameters equal to 1, we perform a GP optimization. The

results of this optimization are also shown in Figure 5.7. All 222 paths between the 12

source-sink pairs meet their deadlines. The GP problem takes 24 seconds to solve on a 1.6

GHz Pentium M processor with 768 MB of RAM. The GP period assignments are quite

different from the manual ones; the average period increases by 90%.

113

To determine the effectiveness of the iterative procedure, we can track the reduc-

tion in max(|ei|), ∀oi ∈ O across several iterations. The results are shown in Figure 5.8.

15 iterations of Algorithm 1 are shown on the x-axis. The y-axis (with a logarithmic scale)

shows the maximum absolute estimation error for the response time estimate used within

the GP formulation. The average estimation error, not shown, drops from 6.98% to 0.009%

during these same 15 iterations. Overall, the maximum estimation error is reduced by a

factor of 102, while the average estimation error decreases by a factor of 780. The discrep-

ancy between the approximated (
∑

oi∈O si) and actual (
∑

oi∈O ri) objective values drops

from 27.1% during the first iteration to 0.0045% during the final iteration.

Since the runtime per iteration is independent of the α values, the total solver

time for 15 iterations is 6 minutes. Even though the α values are reduced below 1, (5.14)

and (5.17) from the eaxct problem are not violated during any of the 15 iterations.

Finally, we can relax the 9 harmonicity constraints from fixed integer constants to

integer variables. This changes the problem from a GP to a Mixed Integer GP. The bnb

solver within Yalmip applies a branch-and-bound procedure to find the solution, and the

solution time increases to 227 seconds per iteration.

Fault-tolerant Distributed System

This system is based on the example given in [115] and contains task replicas

allocated to different ECUs for fault tolerance. The system consists of 43 tasks and 36

messages deployed onto an architecture with 8 ECUs and a single bus. The bus is assumed

to run at 250kb/s. Initial period assignments for tasks are taken from the example, while

initial message periods are assumed to be equal to the source task periods. Task and message

114

10

100

m
a

x
 |
e

i|
,

%

Iterative Reduction of Maximum
Response Time Estimation Error

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
a

x
 |
e

i|
,

%

Iteration #Iteration #

Figure 5.8: Iterative reduction in maximum estimation error

115

priorities are assigned using the rate monotonic rule. The initial end-to-end latencies for

six paths in the system are noted.

The experiments for this system are concerned not just with meeting end-to-end

delay constraints, but with reducing the path latencies as much as possible while meeting

resource utilization bounds. Utilization bounds are set at 70% for each of the 9 resources,

and deadlines for the six paths are set to their initial latencies.

First, we attempt to minimize average path latency on the six paths by modifying

the objective function. After 15 iterations, each of which takes 1.25 seconds, the average

path latency is reduced by 45%. The average utilization for the 8 ECUs is increased from

56% to 61% while the bus utilization is reduced from 74% to 52%. Next, we carry out six

more experiments where we minimize each of the individual path latencies separately. The

latencies for each of the six paths can be decreased an additional 17% to 63%, for a total

reduction ranging between 55% and 70% from the initial latencies.

These experiments demonstrate that it is possible to customize the approach for

a modified flow where the designer is interested in minimizing specific path latencies. Even

without modifying allocations or priority assignments, period assignment alone is capable

of significantly affecting end-to-end latencies in the system.

5.5.7 Conclusions

The continuing proliferation of distributed automotive functionality and architec-

tures complicates the mapping process for these systems. This work provides an opti-

mization procedure that automates the period assignment stage within mapping. First, by

leveraging schedulability analysis, we develop an MIGP formulation that is applicable for

116

systems with run-time priority-based scheduling. Next, the MIGP formulation is approxi-

mated by a GP formulation and the approximation error between the two formulations is

reduced with an iterative procedure. The approach has been applied to two case studies and

shown to be efficient, accurate, and extensible. In the future, this work will be integrated

with the earlier mapping stages of the design flow shown in Figure 5.4 in order to carry

out joint allocation, priority assignment and period assignment. We are also considering

synthesizing hybrid data-driven and periodic activation models [126] for such systems.

5.6 Conclusions

The automotive domain features active safety applications deployed on distributed

architectures. In this work, a model of computation has been chosen for this class of sys-

tems and verified with respect to its accuracy at capturing the design space. The model of

computation exposes the architectural non-idealities, allowing for more efficient implemen-

tations, at the cost of reduced functional verification capabilities. The automated mapping

problem for such systems involves carrying out allocation, priority assignment, and period

assignment. An approach based on geometric programming has been developed to automate

the period assignment portion of the mapping.

117

Chapter 6

Design Framework

In this chapter, lessons learned from the Metropolis framework will be applied

to drive future requirements for the Metro II framework. The case studies that have been

carried out are from the multimedia [27] and automotive [125] domains, as described in

Chapters 4 and 5, have used Metropolis for modeling. Additional case studies including

[35] and [34] have also utilized this framework.

While validating the core ideas of our approach, these case studies also revealed

some limitations. In this section, these limitations will be addressed by describing the

proposal for the next-generation Metro II framework. One of these goals is supporting

automated design space exploration with a service-based approach, more compatible with

the design flow presented in Chapter 3.

118

6.1 Limitations of Metropolis

The case studies have uncovered three main limitations of the Metropolis frame-

work: design import, handling of quantity managers, and the description of mapping.

The generality of the MetaModel language [113] leads to difficulties both for users

and framework developers. For users, learning a new language is usually difficult, especially

if the execution semantics are complex. From the framework developer’s point-of-view,

a new language requires vast amounts of support. Designing compilers, debuggers, and

simulators for a new language is quite time-consuming.

The two-phase execution semantics of the MetaModel language requires that in-

teractions with quantities must be explicitly represented. So, the simplifying assumptions

made in domain-specific languages cannot be made for the MetaModel. Moreover, since

quantity annotation requests are interwoven with the behavioral code, the request-making

statements cannot be encapsulated into separate libraries, and the specification task is

therefore complicated.

The MetaModel allows both denotational and imperative specification. Mapping is

specified as synchronization constraints between events from the functional and architectural

models. The two main limitations relate to the granularity at which mapping is specified

as well as the restrictions on variables associated with the mapped events. First, mapping

can only be specified with event-level synchronization constraints. Since there is no built-in

mechanism to agglomerate events, this must be implemented by the system designer within

the mapping code. The ability to export events in a structured manner would address this

limitation. Second, arbitrary local variables in the scope of events can be used within the

119

constraints. This is an encapsulation failure and results in designs that are difficult to debug

or reuse.

By focusing on the key value-added features of Metropolis, and addressing these

limitations, we plan to make Metro II an IP-integration framework with enhanced support

for PBD activities.

6.2 Metro II Features

The three main features that form the basis of the second-generation Metro II

framework are based on the limitations of Metropolis described in Section 6.1. The three

features are:

1. Heterogeneous IP Import. IP providers create models using domain specific languages

and tools. Requiring a singular form of design entry in a system-level environment

requires complex translation of the original specification into the new language while

making sure that semantics are preserved. If different designs or different components

within the same design can have different semantics, heterogeneity has to be supported

by the new environment.

2. Behavior-Performance Orthogonalization. For design frameworks that support multi-

ple abstraction levels, different implementations of the same basic functionality may

have the same behavioral representation but different costs. For instance, different

processors will be abstracted into the same programmable component. What distin-

guishes them is the performance vs. cost trade-off. Moreover, not all metrics are

considered or optimized simultaneously. It should be possible to introduce perfor-

120

mance metrics during the design process, as the design proceeds from specification to

implementation.

3. Mapping Specification. Mapping relates the functional and architectural models to

realize the system model. Specification of this mapping must be carried out such that

there is minimal modification to the functional and architectural models themselves.

In addition, the mapping specification must be compatible with design flow presented

in Chapter 3 to facilitate automated design space exploration.

The remainder of this section describes these three requirements in more detail.

6.2.1 Heterogeneous IP Import

Heterogeneous IP import shapes the nature of Metro II to be primarily an inte-

gration environment. There are two main challenges that have to be addressed: wrapping

and interconnecting IP.

First, IPs can be described in different languages and can have different semantics

that can be tightly related to a particular simulator. Importing the IP entails providing a

way of exposing the IP interface. The user must have the necessary aids to define wrappers

that mediate between the IP and the framework such that the behavior can be exposed in

an unambiguous way.

Secondly, wrapped components have to be interconnected. Even if the interfaces

are exposed in a unified way, interconnecting them is not usually a straightforward process.

Data and the flow of control between IP blocks must be exposed in such a way that the

framework has sufficient visibility.

121

6.2.2 Behavior-Performance Orthogonalization

The specification of what a component does should be independent of how long

it takes or how much power it consumes to carry out a task. This is the reason why we

introduce dedicated components, called annotators to annotate quantities to events.

A distinction has to be made between quantities used just to track the value

of a specific metric of interest and quantities whose value is used for synchronization. For

instance, time is used to synchronize actions and it is not merely a number that is computed

based on the state evolution of the system. For quantities that influence the evolution of the

system, special components, called schedulers are provided by the glue language. Schedulers

are used to arbitrate shared resources.

The separation of schedulers from annotators allows for simpler specification and

provides a cleaner separation between behavior and performance. As a result, instead of

two-phase execution as in Metropolis, the execution semantics become three-phase.

6.2.3 Mapping Specification

Following the PBD approach, we want to keep functionality and architecture sepa-

rate. The implementation of the functionality on the architecture is achieved in the mapping

step. In order to explore several different implementations with minimal effort, the design

environment needs to provide a fast and efficient way of mapping without modifying either

the functional or the architectural models. The main problems to tackle are related to the

specification of mapping itself and the execution semantics of the two models.

Mapping specification needs to be specified in such a way that it can easily be mod-

122

ified in order to facilitate design space exploration without touching either the functional

or architectural models. To accomplish these goals while remaining compatible with the

design flow advocated in this dissertation, mapping needs to be able to easily manipulate

references to services.

The execution semantics of mapping in Metropolis relied on special “mapping”

processes that were instantiated in the architecture. These mapping processes were com-

pletely nondeterministic in their usage of architectural services. The mapping specification

was a one-to-one association between these processes and the functional processes. The

functionality and the architecture were then executed concurrently with synchronization

constraints present between them. Arbitrary variables in the scope of the synchronized

events are allowed to be referenced by the mapping.

In the Metro II framework, we would like to reduce the complexity by not re-

quiring special processes in the architecture only for mapping purposes and sequentially

executing functionality and architecture if possible. Also, acess to variables in mapping

needs to be strictly regulated in order to maintain IP encapsulation.

6.3 Metro II Execution Semantics

Like Metropolis, the semantics of the Metro II framework will be centered

around the connection and coordination of components.

The key concept underlying Metro II is an event. An event is a tuple < p, T, V >

where p is a process, T is a tag set, and V is a set of associated values. An event denotes

an action taken by a process (p). Events may be associated with annotations (T) and

123

1. Base
Model

2. Quantity
Annotation

3.
Scheduling

Proposed

Events

Proposed Events

with Annotations
Enabled

Events

Figure 6.1: Three Phase Execution in Metro II

state (V). Annotations correspond to quantities in the design, such as time or power. State

includes variables that are in the scope of an event.

Based on the treatment of events, the design is partitioned into three phases of

execution. In the first phase, processes propose possible events, the second phase associates

tags with the proposed events, and the third phase allows a subset of the proposed events

to execute. Figure 6.1 summarizes these execution semantics.

1. Base Model Execution. The base model consists of concurrently executing pro-

cesses that may block only after proposing events or by waiting for other processes.

A process may atomically propose multiple events – this represents non-determinism

in the system. After all processes in the base model are blocked, the design shifts to

the second phase. The execution of processes between blocking points is beyond the

control of the framework.

2. Quantity Annotation. In the second phase, each of the proposed events is an-

notated with various quantities of interest. For instance, a proposed event may be

124

annotated with local and global time tags. New events may not be proposed during

this phase of execution.

3. Scheduling. In the scheduling phase, a subset of the proposed events are enabled

and permitted to execute, while the remainder are blocked. At most one event per

process is permitted to execute. Once again, new events may not be proposed during

this stage. Scheduling may be based on the resolution of declarative constraints or on

imperative code.

6.3.1 Mapping

The execution semantics of mapping involves executing mapped architectural ser-

vices before their functional counterparts. When a mapped method is invoked by a func-

tional process, the begin event of that method is initially proposed, and a phase change is

permitted to occur. If this event is enabled, then the architectural service executes first,

immediately followed by the invoked functional method. After this, the end event of that

method is proposed, with a subsequent phase change. Both the functional method and the

architectural service are executed by the functional process; there are no special mapping

processes. Additionally, both the functional method and the architectural service may block

internally while waiting for other processes.

The functional method is parameterized with arguments and has a return type.

The architectural service is also parameterized, but the return value is not used. The

correspondence between the architectural service parameters and the functional service pa-

rameters is specified at compile-time. Note that this represents a superset of the capabilities

125

required for the automated mapping flow described in Section 3.1.2.

6.4 Metro II Building Blocks

To simplify the designer’s task of specifying models that conform to the three-

phase semantics described in Section 6.3, different types of objects are defined in Metro

II. First, components - the primary object for imperative specification - are described.

Then, the different types of ports and connections in Metro II are described. After this,

the specialized Metro II objects - constraints, mappers, annotators, and schedulers - are

covered.

6.4.1 Components

A component is an object which encapsulates imperative code in a design, either

functional or architectural. Components interface with other components via zero or more

ports. There are two types of components: atomic components and composite components.

An atomic component is a block specified in some language and is viewed by the framework

as a black box with only its interface information exposed. A composite component is a

group of one or more objects as well as any connections between them.

An atomic component with zero ports is shown in Figure 6.2. The IP encapsulated

by the component is interfaced by means of a wrapper, which translates and exposes the

appropriate events and interfaces from the IP.

126

Component

IP Wrapper

Figure 6.2: Atomic Component

6.4.2 Ports

There are two types of ports that components may have: coordination and view

ports. Coordination ports are used for two-way interaction with other components by using

events. View ports, on the other hand, may only expose internal events to the outside.

A coordination port is used to interact with other components. Each coordination

port is associated with a set of methods. A method is a sequence of events, with a unique

begin/end event pair. Variables in the scope of the begin event are method arguments.

Variables in the scope of the end event are return values.

By setting constraints between events associated with coordination ports of differ-

ent components, the execution of these components can be coordinated. Coordination ports

are divided into three types based on the type of interaction: rendezvous ports, required

ports, and provided ports.

Rendezvous Ports

Rendezvous ports can only be connected to other rendezvous ports. They are used

to synchronize methods from different components. A connection between rendezvous ports

implies that the begin events of all methods occur simultaneously (same valuations for all

127

tags) and the end events of all methods occur simultaneously as well.

The execution semantics of rendezvous ports is as follows. All components with

connected rendezvous ports independently propose their respective begin events. These

proposed events are allowed to occur if and only if all other begin events have also been

proposed, otherwise they are blocked. Similarly, after executing the methods, all compo-

nents independently propose end events and wait for all other end events to be proposed.

Depending on the specifics of the connection, values in the scope of the begin/end events

may be checked for equality or transferred between the components. Semantically, a ren-

dezvous port may be viewed as two barriers.

Required Ports

Required ports are used by components to request methods that are implemented

in other components. Connections are made only between a required port and a provided

port.

For required ports, a component proposes a begin event and associates values with

the proposed event that represent the arguments of the method being requested. When the

proposed event is executed, control transfers to the component at the other end of the

connection, which owns the provided port. The component waits for the end event to be

executed and obtains the return values from the method. The method is executed in the

same process as the caller.

128

Provided Required

Rendezvous View

Figure 6.3: Component with 4 ports

Provided Ports

Provided ports are used by components to provide methods to other components.

As stated before, connections are permitted only between a required port and a provided

port. For provided ports, no separate process exists in the component to carry out the

provided method. Instead, the component inherits the process from the caller component

and executes the events in the provided method using that process. After the method has

been executed, the process proposes the end event.

View Ports

A view port exposes some of a component’s internal events to the outside world.

These events are read-only, i.e., they cannot be blocked by outside world. View ports cannot

be connected to other ports.

A component with required, provided, rendezvous, and view ports is shown in

Figure 6.3.

129

6.4.3 Connections

Connections between coordination ports are the primary means of component

interaction. One-to-one port connections are allowed between a required port and a provided

port, and between a pair of rendezvous ports. Rendezvous and provided ports do not need

to be connected, but each required port must be connected to a corresponding provided

port.

6.4.4 Constraints and Assertions

Constraints are used to specify the design via declarative means (as opposed to

imperative specification which is used in components). Assertions are used to check whether

the rest of the design conforms to given requirements. Both constraints and assertions are

described in terms of events: their execution, the values associated with them, and their

tags. The events referenced by constraints or assertions must be exposed by means of

coordination or view ports. Depending on the logic used to describe them, constraints

can be enforced either by the base model or the scheduling phases of execution. Similarly,

assertions may also be checked by monitors either in the base model or in the scheduling

phase.

6.4.5 Mappers

Mappers relate functional methods to architectural services. The most common

usage of mappers is to transform or add values to the parameters of architectural methods.

For instance, a functional method may have two arguments, while the architectural service

has a third argument which the functionality is unaware of. The mapper object bridges the

130

two together and provides the third argument.

6.4.6 Annotators and Schedulers

In Metropolis, the scheduling of events along with performance annotation was

carried out with a special component called a quantity manager. It is difficult to have a

general mechanism to handle both scenarios since different design styles are used specify

both. In Metro II, these two aspects will be separated by using annotators and schedulers.

Annotators are objects that write tags to events. Each tag is determined in terms

of the event, the event’s values, and any parameters supplied to the annotator. Only static

parameters are permitted for annotators, which may not have their own state.

Schedulers are objects that can disable proposed events based on their scheduling

policy. After the annotation phase has completed, the scheduling phase begins. Based on

the scheduler’s local state, the proposed events, and their values and tags, scheduling occurs

which can lead to the disabling of some proposed events.

6.5 Implementation

An initial implementation of the Metro II framework has been carried out in

SystemC 2.2. The framework has been tested under Linux, Solaris, and cygwin.

The infrastructure is summarized in Figure 6.4. The sc event and sc module

classes from SystemC are leveraged directly to derive the corresponding m2 event and

m2 component classes. A method is characterized by begin and end events. Multiple meth-

ods are wrapped together into an interface, which is associated with ports. Components

131

m2_port

m2_mapper

m2_annotator

m2_scheduler

m2_manager

sc_eventsc_module

m2_method

m2_event

m2_interfacem2_component

m2_constraints

m2_annotator

Implementation Platform:

SystemC 2.2

Metro II Core

Figure 6.4: Implementation of Metro II

contain possibly multiple ports. Mappers are a special type of component which translate

arguments between functional methods and architectural services. Annotators directly an-

notate events, while constraints are defined over them. Schedulers enable certain events

after carrying out constraint resolution. The manager coordinates the execution of objects

in all three execution phases.

6.6 Example: h.264 Functional Model

The h.264 [121] decoder application is the current video codec used in both HD-

DVD and BluRay. It features more complex inter-frame prediction and entropy coding

capabilities than previous codecs such as MPEG-4 and MPEG-2, allowing for higher com-

pression with fewer visual artifacts. However, these techniques greatly increase the compu-

tational requirements, as shown previously in Figure 1.1.

The functional model in Metro II is based on a concurrent SystemC implementa-

132

main input_bitsintra_dispatch

get_next_nal

main input_bitsintra_dispatch

trans_lumamult

Figure 6.5: h.264 functional model

tion [124] [123]. The initial C source was obtained from [38]. The block diagram for both

the SystemC and Metro II models are shown in Figure 6.5. The model consists of six

concurrently executing processes, each in their own module. The processes transfer data

by means of rendezvous channels (zero-place buffers). The main module reads the encoded

h.264 stream from a file via the input bits module and then utilizes the other processes to

carry out different aspects of the decoding. The decoded stream is either displayed in a

separate window or written to a raw file.

The aim of this example is to gauge the difficulty of importing a SystemC model

into the current implementation of Metro II. To import the model, sc module declara-

tions need to be changed to m2 component declarations, port type declarations need to be

modified, interface declarations for the ports must be changed, and SystemC blocking wait

constructs need to be changed to their Metro II counterparts. This results in the begin

and end events of each rendezvous action to be exposed to the framework and used for

phase-changes. Less than 40 lines of code need to be modified from the 3,750 lines that

133

constitute the SystemC model.

6.7 Conclusions

The Platform-based design methodology imposes a number of requirements on

system-level design frameworks. Metropolis represents the first attempt at such a frame-

work. To address the limitations of Metropolis, in this paper we identified three main

features that must be enhanced and described how the next generation Metro II frame-

work will support them. The aim is to develop a framework that supports the import

of heterogeneous IP, facilitates behavior-performance orthogonalization, and eases design

space exploration. This is achieved by building an integration framework based on events

with three separate phases of execution.

We are currently implementing the mapping semantics of the Metro II imple-

mentation, and developing further case studies to exercise its capabilities.

134

Chapter 7

Conclusions and Future Directions

The design flow espoused in this dissertation enables automated mapping for het-

erogeneous multiprocessor embedded systems. In this chapter, the main learnings as well

as directions for future work will be presented.

7.1 Reflections

The design flow proposed in this dissertation has been applied to representative

systems from the multimedia and automotive domains. Both of these areas have experienced

a recent proliferation of heterogeneous multiprocessor platforms without a corresponding

changes to the design flow.

The proposed approach is based on modeling, where the functionality and architec-

ture are captured separately and mapped together in a later step. Models are transformed

such that they either provide or use a common set of services. The usage of the services by

the functionality dictates the MoC, whereas the cost of providing the services is captured

135

by the architectural model. Both the usage pattern of the services as well as the cost esti-

mation offered by the architectural platform are crucial to developing automated mapping

approaches.

In this work, automated mapping is carried out using mathematical programming

techniques, which, above all, provide the flexibility of adding platform or application-specific

constraints. The main challenge is ensuring that the computational complexity of math-

ematical programming techniques does not become prohibitive. A particularly promising

technique is to approximate the exact optimization problem with another mathematical

program which can be more easily solved. This technique, illustrated for the automotive

domain, provides most of the benefits of exact mathematical programming techniques ex-

cept bounds on solution quality.

In the multimedia domain, the architectural platforms typically natively provide

the data-driven execution services required by functionality. Therefore, the concern is de-

termining how services will be used by the functional models. In this work, a suitably

expressive MoC is chosen for these systems. The key is allowing task scheduling to remain

static, resulting in a simpler automation problem and lower-overhead implementations.

In the automotive domain, the use of services by functionality is relatively simpler.

The challenge lies in estimating the performance impact of the services. In this work, we

leverage the robustness of the applications and expose architectural non-idealities at the

functional level. On the architectural side, we develop worst-case performance analysis

techniques that allow us to efficiently automate the mapping problem when end-to-end

latencies are the primary metric.

136

Finally, these case studies (and others) illustrate that many aspects of embedded

multiprocessor systems modeling can be shared across different domains. Several short-

comings of the Metropolis design framework have been identified and solutions proposed.

The proposed Metro II framework builds on SystemC and supports IP import, behavior-

performance separation, and cleaner mapping specification.

7.2 Future Work

Besides future work already outlined for the multimedia and automotive domains

in Chapters 4 and 5, an additional direction for developing the approach is detailed in this

section. It involves leveraging the changing nature of architectural platforms to modify the

simulation and automated mapping tools themselves.

Not only are embedded architectural platforms becoming more parallel, but the

general-purpose platforms used to carry out the automated mapping are becoming more

parallel as well. This means that the algorithms used to carry out the automated map-

ping need to scale with the increasing number of processors as well. Inherently sequential

algorithms that enjoy favorable runtimes today will see their relative advantage diminish

in the future. Simulation and optimization algorithms that can be partitioned into fairly

independent units of work will fare better.

For simulation, the key is to simulate concurrent portions of the system using

separate processes. This is, for instance, supported by the execution model of SystemC.

However, the execution semantics of SystemC requires that the kernel execute in an in-

terleaving manner with the processes in the model [87], reducing the possible speedup on

137

multiple processors. Unfortunately, the multi-phase nature of Metro II only exacerbates

these issues.

For optimization, the challenge is to concurrently explore different part of the

design space. Any approach can be modified to take advantage of concurrent execution

resources, but randomized algorithms such as simulated annealing and mathematical pro-

gramming approaches such as integer programming are particularly well-suited to handle

this challenge. Even though these may not necessarily provide the best uniprocessor per-

formance, they may exhibit better scaling.

It is indeed fortunate that parallel embedded platforms are becoming prevalent

after general-purpose parallel platforms become commonplace. This affords designers the

capability of exploiting parallelism on host platforms to design parallel target systems.

138

Bibliography

[1] Independent JPEG group, http://www.ijg.org.

[2] Intel MXP5800 Digital Media Processor Product Brief, Intel Corporation, 2004.

[3] Brian Bailey, Grant Martin, and Andrew Piziali. ESL Design and Verification.

Morgan-Kaufmann, 2007.

[4] Felice Balarin, Jerry Burch, Luciano Lavagno, Yosinori Watanabe, Roberto Passerone,

and Alberto Sangiovanni-Vincentelli. Constraints specification at higher levels of

abstraction. In Proceedings of HLDVT’01, page 129. IEEE Computer Society, 2001.

[5] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Lu-

ciano Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Ellen Sentovich,

Kei Suzuki, and Bassam Tabbara. Hardware-software Co-design of Embedded Systems:

The POLIS Approach. Kluwer Academic Publishers, 1997.

[6] Felice Balarin, Harry Hsieh, Attila Jurecska, Luciano Lavagno, and Alberto

Sangiovanni-Vincentelli. Formal verification of embedded systems based on CFSM

networks. In Proceedings of the Design Automation Conference, 1996.

139

[7] Felice Balarin, Luciano Lavagno, and et al. Concurrent Execution Semantics and

Sequential Simulation Algorithms for the Metropolis Metamodel. Proc. 10th Int’l

Symp. Hardware/Software Codesign, pages 13–18, 2002.

[8] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone,

and Alberto Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System

Design Environment. IEEE Computer, 36(4):45– 52, April 2003.

[9] Armin Bender. MILP based task mapping for heterogeneous multiprocessor system.

In Proceedings of EURO-DAC, september 1996.

[10] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le

Guernic, and Robert de Simone. The synchronous languages 12 years later. Proceed-

ings of the IEEE, 91, January 2003.

[11] Greet Bilsen, Marc Engels, Rudy Lauwereins, and J.A. Peperstraete. Cyclo-Static

Data Flow. In Proc. ICASSP’95, volume 5, page 3255, Detroit, USA, 1995.

[12] Robert Bosch. CAN specification, version 2.0. Stuttgart, 1991.

[13] Stephen P. Boyd, Seung Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A

tutorial on geometric programming. Optimization and Engineering, 2006.

[14] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Uni-

versity Press, 2004.

[15] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using

140

the Token Flow Model. PhD thesis, EECS Department, University of California,

Berkeley, 1993.

[16] Joseph T. Buck. Static scheduling and code generation from dynamic dataflow graphs

with integer- valued control streams. In Proceedings of the 28th Asilomar Conference

on Signals, Systems, and Computers, november 1994.

[17] Deming Chen, Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru Zhang.

xPilot: A platform-based behavioral synthesis system. In SRC TechCon’05, November

2005.

[18] Xi Chen, Abhijit Davare, Harry Hsieh, Alberto Sangiovanni-Vincentelli, and Yosinori

Watanabe. Simulation based deadlock analysis for system level designs. In Design

Automation Conference, June 2005.

[19] Pablo E. Coll, Celso E. Ribeiro, and Cid C. De Souza. Multiprocessor scheduling

under precedence constraints: Polyhedral results. Technical Report 752, Opt. Online,

October 12, 2003.

[20] Xilinx Corporation. http://www.xilinx.com.

[21] Xilinx Corporation. Microblaze processor reference guide.

[22] Xilinx Corporation. Fast simplex link (fsl) bus (v2.00a), December 2005.

[23] Pierluigi Crescenzi, Viggo Kann, Magnús Halldórsson, Marek Karpinski, and Gerhard

Woeginger. A compendium of NP optimization problems, 20 March 2000.

141

[24] Abhijit Davare, Jike Chong, Qi Zhu, Douglas Densmore, and Alberto Sangiovanni-

Vincentelli. Classification, customization, and characterization: Using milp for task

allocation and scheduling. Technical Report UCB/EECS-2006-166, EECS Depart-

ment, UC Berkeley, Dec. 11 2006.

[25] Abhijit Davare, Douglas Densmore, Trevor Meyerowitz, Alessandro Pinto, Alberto

Sangiovanni-Vincentelli, Guang Yang, Haibo Zeng, and Qi Zhu. A next-generation

design framework for platform-based design. In Design and Verification Conference

(DVCON07), February 2007.

[26] Abhijit Davare, Douglas Densmore, Vishal Shah, and Haibo Zeng. Simple case study

in metropolis. Technical Report UCB.ERL 04/37, University of California, Berkeley,

September 2004.

[27] Abhijit Davare, Qi Zhu, John Moondanos, and Alberto Sangiovanni-Vincentelli. Jpeg

encoding on the intel mxp5800: A platform-based design case study. In 3rd Workshop

on Embedded Systems for Real-time Multimedia, Sep. 2005.

[28] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and Al-

berto L. Sangiovanni-Vincentelli. Period optimization for hard real-time distributed

automotive systems. In DAC, pages 278–283. IEEE, 2007.

[29] Abhijit Davare, Qi Zhu, and Alberto L. Sangiovanni-Vincentelli. A platform-based

design flow for kahn process networks. Technical Report UCB/EECS-2006-30, EECS

Department, University of California, Berkeley, Mar 2006.

142

[30] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, 2002.

[31] Tatjana Davidovic, Leo Liberti, Nelson Maculan, and Nena Mladenovic. Mathematical

programming-based approach to scheduling of communicating tasks. Technical report,

GERAD, December 15, 2004.

[32] E. A. de Kock. Multiprocessor Mapping of Process Networks: a JPEG Decoding

Case Study. In Proceedings of the 15th international symposium on System Synthesis,

pages 68–73. ACM Press, 2002.

[33] Douglas Densmore. Metropolis Architecture Refinement Styles and Methodology.

Technical Report UCB/ERL M04/36, University of California, Berkeley, CA 94720,

September 14, 2004.

[34] Douglas Densmore, Adam Donlin, and Alberto Sangiovanni-Vincentelli. Fpga archi-

tecture characterization for system level performance analysis. In Design Automation

and Test Europe 2006. DATE, March 2006.

[35] Douglas Densmore, Sanjay Rekhi, and Alberto Sangiovanni-Vincentelli. Microarchi-

tecture development via metropolis successive platform refinement. In Design Au-

tomation and Test in Europe (DATE), February 2004.

[36] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: task graphs for free. In

CODES, pages 97–101, 1998.

[37] Niklas Een and Niklas Sorensson. An extensible SAT-solver. In International Con-

143

ference on Theory and Applications of Satisfiability Testing (SAT), LNCS, volume 6,

2003.

[38] Martin Fiedler and Robert Baumgartl. Implementation of a basic H.264/AVC de-

coder. Technical report, Chemnitz University of Technology, June 2004.

[39] Flexray. Protocol specification v2.1 rev. a. available at http://www.flexray.com, 2006.

[40] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL – A Modeling Language for

Mathematical Programming. The Scientific Press, South San Francisco, 1993.

[41] M. Geilen and T. Basten. Requirements on the Execution of Kahn Process Networks.

In P. Degano, editor, Proc. of the 12th European Symposium on Programming, 2003.

[42] Richard Gerber, Seongsoo Hong, and Manas Saksena. Guaranteeing real-time require-

ments with resource-based calibration of periodic processes. IEEE Trans. on Software

Engineering, 21(7):579–592, July 1995.

[43] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with multiple

concurrency models. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, 18(6):742–760, June 1999. Research report UCB/ERL M97/57.

[44] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimiza-

tion and approximation in deterministic sequencing and scheduling: A survey. Ann.

Discrete Mathematics, 5:287–326, 1979.

[45] Martin Grajcar and Werner Grass. Improved constraints for multiprocessor system

scheduling. In DATE, page 1096. IEEE Computer Society, 2002.

144

[46] Matthias Gries. Methods for Evaluating and Covering the Design Space during Early

Design Development. Integration, the VLSI Journal, Elsevier, 38(2):131–183, Decem-

ber 2004.

[47] Thorsten Grotker. System Design with SystemC. Kluwer Academic Publishers, 2002.

[48] Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. A single-chip multiproces-

sor. IEEE Computer, 30(9):79–85, 1997.

[49] M. Gonzalez Harbour, M. Klein, and J. Lehoczky. Timing analysis for fixed-priority

scheduling of hard real-time systems. IEEE Transactions on Software Engineering,

20(1), January 1994.

[50] Bernd Hardung, Thorsten Kölzow, and Andreas Krüger. Reuse of software in dis-

tributed embedded automotive systems. In Giorgio C. Buttazzo, editor, EMSOFT,

pages 203–210. ACM, 2004.

[51] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L.

Mat/e, K. Nishikawa, and T. Scharnhorst. Automotive open system architecture

an industry-wide initiative to manage the complexity of emerging automotive e/e-

architectures. In Proceedings of Convergence 2004, October 2004.

[52] Jörg Henkel. Closing the soC design gap. IEEE Computer, 36(9):119–121, 2003.

[53] Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti Hallapuro.

H.264/AVC baseline profile decoder complexity analysis. IEEE Trans. Circuits Syst.

Video Techn, 13(7):704–716, 2003.

145

[54] A. Jantsch and I. Sander. Models of computation and languages for embedded system

design. IEE Proceedings - Computers and Digital Techniques, 152(2):114–129, 2005.

[55] Yujia Jin, Nadathur Satish, Kaushik Ravindran, and Kurt Keutzer. An Automated

Exploration Framework for FPGA-based Soft Multiprocessor Systems. In Proceedings

of CODES+ISSS ’05, pages 273–278, Jersey City, NJ, USA, 2005. ACM Press.

[56] Yujia Jin, Nadathur Rajagopalan Satish, Kaushik Ravindran, and Kurt Keutzer.

An automated exploration framework for fpga-based soft multiprocessor systems. In

Proceedings of the 2005 International Conference on Hardware/Software Codesign and

System Synthesis (CODES-05), pages 273–278, September 2005.

[57] G. Kahn. The Semantics of a Simple language for Parallel Programming. In Proceed-

ings of IFIP Congress, pages 471–475. North Holland Publishing Company, 1974.

[58] G. Kahn and D.B. MacQueen. Coroutines and networks of parallel processes. In

Proceedings of IFIP Congress, pages 993–998. North Holland Publishing Company,

1977.

[59] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.

System Level Design: Orthogonolization of Concerns and Platform-Based Design.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

19(12), December 2000.

[60] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.

System level design: Orthogonolization of concerns and platform-based design. IEEE

146

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12),

December 2000.

[61] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda andCristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet

Akşit and Satoshi Matsuoka, editors, Proceedings European Conference on Object-

Oriented Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidel-

berg, and New York, 1997.

[62] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers. A method-

ology to design programmable embedded systems - the Y-chart approach. volume 2268

of Lecture Notes in Computer Science, pages 18–37. Springer, 2002.

[63] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.Y. Brunel, W.M. Kruijtzer,

P. Lieverse, and K.A. Vissers. YAPI: Application Modeling for Signal Processing

Systems. Proceedings of the 37th Design Automation Conference, 2000.

[64] Kwangmoo Koh, Seungjean Kim, Almir Mutapcic, and Stephen Boyd. gpposy: A

matlab solver for geometric programs in posynomial form. Technical report, Stanford

University, May 2006.

[65] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolfgang Schw-

abl, Christoph Senft, and Ralph Zainlinger. Distributed fault-tolerant real-time sys-

tems: The MARS approach. IEEE Micro, 9(1):25–40, February 1989.

[66] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srini-

vasan. Scheduling on unrelated machines under tree-like precedence constraints. In

147

Proceedings of APPROX-RANDOM 2005, volume 3624 of Lecture Notes in Computer

Science, pages 146–157. Springer, 2005.

[67] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating

Directed Task Graphs to Multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

[68] Oh-Hyun Kwon. Perspective of the future semiconductor industry: Challenges and

solutions. In Keynote Address at the 44th Design Automation Conference, June 2007.

[69] David Lammers. Shift to 65 nm has its costs. EE Times, July 11, 2005.

[70] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proc.

of the CACSD Conference, Taipei, 2004.

[71] E. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of com-

putation. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,

pages 1217–29, December 1998.

[72] E.A. Lee and T.M. Parks. Dataflow Process Networks. In Proceedings of the IEEE,

vol.83, no.5, pages 773 – 801, May 1995.

[73] Edward A. Lee. The problem with threads. Computer: IEEE Computer, 39, 2006.

[74] Edward A. Lee and David G. Messerschmitt. Static Scheduling of Synchronous Data

Flow Programs for Digital Signal Processing. IEEE Trans. Comput., 36(1):24–35,

1987.

[75] Gabriel Leen and Donal Heffernan. Expanding automotive electronic systems. IEEE

Computer, 35(1):88–93, 2002.

148

[76] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for

scheduling unrelated parallel machines. In 28th Annual Symposium on Foundations

of CS, pages 217–224, Los Angeles, California, 12–14 October 1987. IEEE.

[77] Leo Liberti. Compact linearization for bilinear mixed-integer problems. Technical

Report 1124, Opt. Online, May 6, 2005.

[78] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, and Ed Deprettere. System Level

Design With Spade: An m-jpeg Case Study. In Proceedings of the 2001 IEEE/ACM

international conference on Computer-aided design, pages 31–38. IEEE Press, 2001.

[79] Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The Ptolemy II Framework for

Visual Languages. In Proceedings of the IEEE 2001 Symposia on Human Centric

Computing Languages and Environments (HCC’01), page 50. IEEE Computer Society,

2001.

[80] Nelson Maculan, Stella C. S. Porto, Celso Carneiro, Ribeiro Cid, and Carvalho Souza.

A new formulation for scheduling unrelated processors under precedence constraints,

April 28 1997.

[81] Philippe Magarshack and Pierre G. Paulin. System-on-chip beyond the nanometer

wall. In Proceedings of the Design Automation Conference, pages 419–424, June 2003.

[82] Anthony Massa and Michael Barr. Programming Embedded Systems, chapter 1.

O’Reilly Publishers, October 2006.

[83] K. Masselos, S. Blionas, and T. Rautio. Reconfigurability requirements of wireless

149

communication systems. In IEEE Workshop on Heterogeneous Reconfigurable Systems

on Chip, 2002.

[84] Paul Master. Worldphone challenges designers. EE Times, September 25, 2001.

[85] A. Mihal and K. Keutzer. Mapping Concurrent Applications onto Architectural Plat-

forms, chapter 3, pages 39–59. Kluwer Academic Publishers, 2003.

[86] MPI Forum. MPI: A message passing interface. In Proceedings of Supercomputing

’93, pages 878–883, Portland, OR, November 1993. IEEE CS Press.

[87] W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf, and W. Rosenstiehl. The

simulation semantics of systemc, 2001.

[88] Praveen K. Murthy. Multiprocessor DSP code synthesis in Ptolemy. Technical Report

ERL-93-66, University of California, Berkeley.

[89] Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming. McGraw-Hill,

January 1996.

[90] Marco Di Natale, Paolo Giusto, Sri Kanajan, Claudio Pinello, and Patrick Popp.

Architecture exploration for time-critical and cost-sensitive distributed systems. In

Proceedings of the SAE Conference, 2007.

[91] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley and Sons, New York, 1988.

[92] Anders Nilsson, Eric Tell, and Dake Liu. An accelerator architecture for programmable

150

multi-standard baseband processors. In Proceedings of Wireless Networks and Emerg-

ing Technologies (WNET), 2004.

[93] Kunle Olukotun and Lance Hammond. The future of microprocessors. ACM Queue,

September 2005.

[94] OSEK. OS version 2.2.3 specification. Available at http://www.osek-vdx.org, 2006.

[95] T. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of Cali-

fornia, Berkeley, 1995.

[96] J. Paul and D. Thomas. A Layered, Codesign Virtual Machine Approach to Modeling

Computer Systems. In Proceedings of the conference on Design, automation and test

in Europe, page 522. IEEE Computer Society, 2002.

[97] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van der Wolf, and

Ed F. Deprettere. Exploring Embedded-Systems Architectures With Artemis. Com-

puter, 34(11):57–63, 2001.

[98] José Luis Pino, Shuvra S. Bhattacharyya, and Edward A. Lee. A hierarchical multi-

processor scheduling framework for synchronous dataflow graphs, May 30 1995.

[99] Alessandro Pinto. Metropolis Design Guidelines. Technical Report UCB/ERL

M04/40, University of California, Berkeley, CA 94720, September 14, 2004.

[100] Traian Pop, Petru Eles, and Zebo Peng. Holistic scheduling and analysis of mixed

time/event-triggered distributed embedded systems. In 10th International Sympo-

151

sium on Hardware/Software Codesign (CODES 2002), pages 187–192, Estes Park,

Colorado, USA, May 6-8 2002.

[101] Shiv Prakash and Alice C. Parker. SOS: Synthesis of application-specific hetero-

geneous multiprocessor systems. J. Parallel Distrib. Comput., 16(4):338–351, 1992,

December.

[102] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying sensitivity analysis in real-time

distributed systems. In Proceedings of the 11th Real Time and Embedded Technology

and Applications Symposium, pages 160–169, San Francisco (CA), U.S.A., March

2005.

[103] Tarvo Raudvere, Ingo Sander, Ashish Kumar Singh, and Axel Jantsch. Verification

of Design Decisions in ForSyDe. In Proceedings of the 1st IEEE/ACM/IFIP interna-

tional conference on Hardware/software codesign and system synthesis, pages 176–181.

ACM Press, 2003.

[104] Ronald A. Rohrer. DAC, moore’s law still drive EDA. IEEE Design & Test of

Computers, 20(3):99–100, 2003.

[105] M. Saksena and S. Hong. Resource conscious design of distributed real-time systems

– an end-to-end approach. In Proc. IEEE Int’l Conf on Engineering of Complex

Computer Systems, 1996.

[106] Alberto L. Sangiovanni-Vincentelli. Quo vadis sld: Reasoning about trends and chal-

lenges of system-level design. In Proceedings of the IEEE, volume 95, pages 467–506,

march 2007.

152

[107] Jack Shandle and Grant Martin. Making embedded software reusable for SoCs. EE

Times, March 1, 2002.

[108] Nagaraj Shenoy, Prithviraj Banerjee, and Alok N. Choudhary. A system-level synthe-

sis algorithm with guaranteed solution quality. In DATE, page 417. IEEE Computer

Society, 2000.

[109] David B. Shmoys and Éva Tardos. Scheduling unrelated machines with costs. In

SODA, pages 448–454, 1993.

[110] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.

In Proceedings of the fourteenth annual ACM symposium on Theory of computing,

pages 159–168. ACM Press, 1982.

[111] D. Skillicorn and D. Talia. Models and languages for parallel computation. ACM

Computing Surveys, 30(2):123–169, 1998.

[112] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart, and Ed Deprettere.

System Design Using Kahn Process Networks: The Compaan/Laura Approach. In

Proceedings of the conference on Design, automation and test in Europe, page 10340.

IEEE Computer Society, 2004.

[113] The Metropolis Project Team. The Metropolis Meta Model Version 0.4. Technical

Report UCB/ERL M04/38, University of California, Berkeley, CA 94720, September

14, 2004.

[114] Ken Tindell, Alan Burns, and A. J. Wellings. Calculating controller area network

(can) message response times. Control Eng. Practice, 3(8):1163–1169, 1995.

153

[115] Ken Tindell, Alan Burns, and Andy J. Wellings. Allocating hard real-time tasks: An

NP-hard problem made easy. Real-Time Systems, 4(2):145–165, 1992.

[116] Mark F. Tompkins. Optimization techniques for task allocation and scheduling in

distributed multi-agent operations. Master’s thesis, MIT, June 2003.

[117] Jim Turley. The Essential Guide to Semiconductors, chapter 5. Prentice Hall Pub-

lishers, December 2002.

[118] A. van Halderen, S. Polstra, A. Pimentel, and L. Hertzberger. Sesame: Simulation of

embedded system architectures for multi-level exploration. In In Proc. of the confer-

ence of the Advanced School for Computing and Imaging (ASCI), pages 99–106, may

2001.

[119] Gregory K. Wallace. The JPEG Still Picture Compression Standard. j-CACM,

34(4):30–44, April 1991.

[120] Z. Wang. Fast algorithms for the discrete w transform and for the discrete fourier

transform. In IEEE Transactions on Acoustics, Speech, & Signal Processing, volume

ASSP-32, pages 803 – 816, August 1984.

[121] T. Wiegand, G.J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the H.264/AVC

Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 13(7):560–576, 2003.

[122] Wayne Wolf. Computers as Components: Principles of Embedded Computing System

Design. Morgan Kaufmann, 2005.

154

[123] Lochi Yu, Samar Abdi, and Daniel D. Gajski. H.264 tlm in systemc for point-to-point

bus platform, January 2007.

[124] Lochi Yu, Samar Abdi, and Daniel D. Gajski. Transaction level platform modeling in

systemc for multi-processor designs. Technical report, UC Irvine, January 2007. This

report is to help GSRC core members understand the semantics of the H.264 TLMs

in SystemC that are available in the SW section.

[125] Haibo Zeng, Abhijit Davare, Alberto Sangiovanni-Vincentelli, Sampada Sonalkar, Sri

Kanajan, and Claudio Pinello. Design space exploration of automotive platforms in

metropolis. In Proceedings of the Society of Automotive Engineers Congress, April

2006.

[126] Wei Zheng, Marco Di Natale, Claudio Pinello, Paolo Giusto, and Alberto Sangiovanni-

Vincentelli. Synthesis of task and message activation models in real-time distributed

automotive systems. In Proc. of Design Automation and Test, Europe, 2007.

[127] Qi Zhu, Abhijit Davare, and Alberto Sangiovanni-Vincentelli. A semantic-driven syn-

thesis flow for platform-based design. In Fourth ACM-IEEE International Conference

on Formal Methods and Models for Codesign (MEMOCODE’06), July 2006.

	List of Figures
	List of Tables
	Introduction
	Trends
	Embedded Applications
	Programmable Platforms
	Heterogeneous Parallel Platforms

	Design Challenges
	Overview
	Approach
	Multimedia Domain
	Automotive Domain
	Design Framework

	Background
	Platform-based Design
	The Metropolis Design Framework
	Goals of the Framework
	Design activities within the Metropolis framework

	Related Design Frameworks

	Approach
	Common Modeling Domains
	Parallel Systems Modeling
	Services
	Tradeoffs

	Mapping
	Development of the Design Flow

	Multimedia Domain
	Applications
	JPEG Encoder Application
	Motion JPEG Application

	Architectural Platforms
	The Intel MXP5800 Platform
	Xilinx Virtex II Pro Platform

	Choosing the Model of Computation
	Prior Work: Models of Computation
	Chosen model of computation

	Manual Design Space Exploration: JPEG on MXP5800
	JPEG Application Modeling
	Architecture Modeling
	Design Space Exploration and Results
	Conclusions

	Automated Design Space Exploration: Motion-JPEG on Xilinx
	Problem Statement
	Prior Work: Allocation and Scheduling
	MILP Taxonomy
	MILP Approach
	Characterizing the Formulation
	Comparison: Sequencing vs. Overlap
	Factors Influencing Solution Time
	Case Study
	Conclusions and Future Work

	Conclusions

	Automotive Domain
	Applications
	Distributed Supervisory Control Application
	Experimental Vehicle

	Architectural Platforms
	Choosing the Model of Computation
	Manual Design Space Exploration: Distributed Supervisory Control System
	Automated Design Space Exploration: Period Assignment
	Design Flow
	Prior Work
	Representation
	Period Optimization Approach
	Case Studies
	Active Safety Vehicle
	Conclusions

	Conclusions

	Design Framework
	Limitations of Metropolis
	Metro II Features
	Heterogeneous IP Import
	Behavior-Performance Orthogonalization
	Mapping Specification

	Metro II Execution Semantics
	Mapping

	Metro II Building Blocks
	Components
	Ports
	Connections
	Constraints and Assertions
	Mappers
	Annotators and Schedulers

	Implementation
	Example: h.264 Functional Model
	Conclusions

	Conclusions and Future Directions
	Reflections
	Future Work

	Bibliography

