
Data Compression Using Encrypted Text

Robert Franceschini

Department of Computer Science
University of Central Florida

Orlando, FL 32816
francesc@cs.ucf.edu

Abstract

In this paper, we present a new algorithm for text com-
pression. The basic idea of our algorithm is to define a
unique encryption or signature of each word in the dict.io-
nary by replacing certain characters in the words by a spe-
cial character ‘*’ and retaining a few characters so that the
word is still retrievable. For any encrypted text the most
frequently used character is ‘*’ and the standard compres-
sion algorithms can exploit this redundancy in an effective
way. We advocate the following compression paradigm in
this paper: Given a compression algorithm il and a text T.
we apply the same algorithm A on an encrypted text *T
and retrieve the original text via a dictionary which maps
the decompressed text *T to the original text T. We report
better results for most widely used compression algorithms
such as Huffman, LZW, arithmetic, unix compress, gnu-zip
with respect to a text corpus. The compression rates us-
ing these algorithms are much better than t.he dictionary
based methods reported in the literature.

One basic assumption of our algorithm is that the sys-
tem has access to a dictionary of words used in all the texts
along with a corresponding “cryptic” dictionary. The cost
of this dictionary is amortized over the compression sav-
ings for all the text files handled by the organization. If
two organizations wish to exchange information using our
compression algorithm, they must share a common dic-
tionary. We compare our methods with other dictionary
based methods and present future research problems.

Keywords: compression, decompression, en-
cryption, dictionary methods.

1 Introduction

The primary objective of data compression algo-
rithms is to reduce the redundancy in data represen-
tation in order to decrease data storage requirement.
Data compression also offers an attractive approach
to reduce the communication cost by effectively uti-
lizing the available bandwidth in the data links. In

Amar Mukherjee

Department of Computer Science
University of Central Florida

Orlando, FL 32816
amar@cs.ucf.edu

the nineties, we have seen an unprecedented explosion
of digital data on the nation’s information superhigh-
ways. This data represents a variety of objects from
t,he multimedia spectrum such as text, images, video,
sound, computer programs, graphs, charts, maps, ta-
bles, mathematical equations etc. NSF, ARPA and
NASA, under the grand challenge Digital Libraries
Initiative(DLI), have funded several research projects
whose goal is to “advance the means to collect, store,
and organize information in digital forms, and make
it available for searching, retrieval and processing via
communication networks” [NC95].

This paper presents a new algorithm for lossless
compression of textual objects which c.onstitute a sig-
nificant portion of this information. We propose a new
approach towards compression of text data based on
a cryptic representation of text.

One basic assumption of our algorithm is that the
system has access to a dictionary of words used in all
the texts along with a corresponding “cryptic” dic-
tionary to be defined soon. The cost of this dictio-
nary has to be amortized over the compression sav-
ings for all the text files handled by the organization.
For example, if a library or a newspaper organization
or a publishing house were to use our algorithm, the
availability of a in-house dictionary like the Webster’s
English dictionary will be a one-time investment in
storage overhead. If two organizations wish to ex-
change information using our compression algorithm,
they must share a common dictionary. This gives rise
to an interesting question of developing standard word
dictionaries for different application domains, which
we do not address in this paper. The size of typi-
cal English dictionary is about 64,000 words requir-
ing about 1.1 Mbytes of storage for both the real and
the cryptic dictionaries combined. This a small in-
vestment considering the fact that most workstations
and PC’s of today have of the order of 2 to 4 giga-
bytes of disk space. The amortization cost will indeed

o-8186-7402-4196 $5.00 0 1996 IEEE
Proceedings of ADL ‘96

130

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

be a negligible fraction if the dictionaries are placed
in a centralized server for a given organization. Fur-
thermore, the encryption scheme could be kept secret
enhancing document security.

1.1 Technical Approach

Neuroscientists have identified at least two activ-
ities involved in recognizing an object by a, human
brain [R062]:

1. Encoding the salient features of the object ln
memory. This may use a new representation of
the object, possibly a signuture of the object in
some compressed form in the memory.

2. Retrieving the encoded data when presented with
the same object or when a contextual reference is
made to the object.

Any search and retrieval system must embody the
above two components. We may attempt to emu-
late these activities in an automated text search and
retrieval system by compressing the text using any
one of the lossless compression algorithms (viz. Huff-
man [Hu52], LZ [LZ77], arithmetic [RiLa79] and oth-
ers [BCWSO, WMB94, St88]) and by doing the search
using content-based pattern search. The question is
whether we can develop a better signature of the text
before compression so that the compressed signature
uses less storage than the original compressed text.
This indeed is possible as our experimental results con-
firm. The English language has 52 characters (count-
ing capital letters) and about a dozen special char-
acters for punctuation marks etc. The word length
range from 1 to 22 letters. Thus, potentially there are
trillions and trillions of word combinations of which
human civilization has used only a tiny fraction ‘of
about 100,000 words. Our compression paradigm at-
tempts to exploit this redundancy by advocating the
following approach: Given a compression algorithm
A and a text T, we will apply the same algorithm
A on an encrypted text *T and retrieve the original
text via a dictionary which maps the decompressed
text *T to the original text T. The intermediate text
*T compresses better because its encryption expioits
the redundancy of the language. We call this algo-
rithm *A. The main result of this paper is to show
that there exists *A algorithm(s) that gives better
compression rate compared to all well-known compres-
sion algorithms such as Huffman, adaptive arithmetic,
LZW, unix compress, gnu-zip-l, gnu-zip-9 and dictio-

nary methods reported earlier in the literature ‘. We
show this experimentally with respect to a text cor-
pus. A detailed discussion of the performa~nce of our
algorithm is presented in Section 2.3.

1.2 Encoding Based on Cryptic Signa-
tures

When text is presented to an experienced hu-
man reader, she or he reads it not by sequentially
spelling each word but by recognizing each word as
an unique symbol representing a collection of juxta-
posed phonemes. This recognition process is robust in
the sense that a human reader can allow for a lot of
spelling errors or approximations. Thus, given some
prior knowledge, the meaning of the following badly
spelled sentence is clear: We cell no oine before ids
tyme. Making a computer model of this kind of fuzzy
association is difficult. A deterministic situation holds
if it is possible to replace certain characters in a word
by a special place holder character and retain a few key
characters so that the word is still retrievable. Con-
sider the set of 6-letter words starting with the letter p
and ending with the letter tin English: packet, palest,
pallet, papist, parent, parrot, patent, peanut, pellet,
pen&, picket, pignut, piquet, pocket, precut. Denot-
ing an arbitrary character by a special symbol ‘*I, the
above set of words can be unambiguously spelled as
pa*k*t, p*:**st, palwt, p*pc*t, p*re*t, p**1:ot, p*twt,
p*a*ut, pek*t, p**u*t, pic**t, p*g**t, p*q*:*t, poc**t,
plsr * *t. An unambiguous representation of a word by
a partial sequence of letters from the original sequence
of letters in the word interposed by special characters
‘*’ as place holders will be called a signature of the
word. We use the place holders to retain the length
information in the words. The collection of English
words in a dictionary in the form of a lexicographic
listing of signatures will be called a cryptic dictionary
and an English text completely transformed using sig-
natures from the cryptic dictionary will be called a
cryptic text. It is important to note that for any cryp-
tic text, the most frequently used character will likely
be ‘*’ and any kind of tree-based encoding scheme
such as Huffman code will assign a short code for ‘*‘.
Other encoding schemes are also able to use such re-
dundancy.

Some of the research issues that arise are theoretical
while others relate to algorithm development. These
include: How can one obtain an optimal cryptic dic-
tionary for English? By optimal we mean a dictionary

lAt the t ime of writing this paper, we have not been able
to obtain scnwce code for ppm and dmc algorithms to make
comparative measurements

131

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

that maximizes the use of the special character I+’ for
a given set of application texts. The optimal solution
will of course depend on the frequency of usage of let-
ters and words in the text. Assuming static uniform
probabilities of all words (as a first approximation to
the optimal solution), the problem can be identified
as the Distinct Shortest Subsequence (DSS) problem
defined as follows.

Let A denote a finite string (or sequence) of charac-
ters (or symbols) ala2 a, over an alphabet C where
ai = A[i] is the ith charact#er of A, and n is the length
of the sequence A. S is a subsequence of A if there
exists integers 1 5 ~1 < r2. < T$ < R such that
S[i] = A[ri], 1 5 i 5 n. Let D denot,e a dictionary
of a set of distinct words. A cryptzc word correspond-
ing to A, denoted as *A, is a sequence of n charac-
ters in which *A[i] = * if i # ri and for all other i,
*A[i] = A[ra] as in S. Given the dictionary D, the
Distinct Shortest Subsequence problem is the problem
of determining a cryptic dictionary, *D such that each
word in *D has maximal number of ‘+’ symbols, has
a distinct spelling, and is a cryptic word in one-to-one
correspondence to a word in the original dictionary
D. Several variations of the DSS problem can be de-
fined such as maximize the number of I’S in D but
the words themselves may not have maximal number
of *‘s; maximize the weighted number of *‘s, that is,
the more frequently occurring words in the language
should be given more weights to have more *‘s. Aa-
other variation is to decompose the dictionary D into
a set of disjoint dictionaries D; each containing words
of length i, i = 1,2,. , n and solve the DSS problem
for each Di.

1.3 Compression of Encrypted Text

The compression process consists of two steps:

1. Encrypt the text file T using the dictionary D and
the cryptic dictionary *D, producing the crypt,ic
text *T.

2. Compress the cryptic text file using the encoder of
an algorithm A. Different models for the text can
be used. Call the output compressed file C(*I;T).

The decompression process consists of

1. Decompress C(*T) using the decoder part of al-
gorithm A to retrieve the encrypted text *T.

2. Decrypt the cryptic text file using the dictionar-
ies, producing the original text.

We will now describe details of each of the steps out-
lined above.

1.3.1 Construction of the Cryptic Dictionary

There are many ways to construct a cryptic dictionary.
We investigated two variations: a cryptic dictionary
based on the DSS approach, and a cryptic dictionary
based on the frequency of words in the dictionary.

For the first variation, we partitioned the dictionary
D into n dictionaries Di, (1 < i 5 n), where n is the
length of the longest word in the dictionary such that
Di contains the words of length i. Within each Da, we
computed a signature for each word as follows. For
each word w in Di, we determine whether w has a sin-
gle letter (say a) that is unique in its position (say j)
throughout t,he words of Di. If so, then the signature
of 21: is computed as *w = * * .,. + a * *...* where there
are j - 1 *‘s before a and /WI -j + 1 *‘s after a. Once
the signature of w is computed, w is removed from
continued processing for *Di. Processing continues by
considering pairs of letters, triples of letters, etc., of
words from Di to find unique signatures for the words
until signatures have been found for all words. Note
that this process terminates, since the word itself is
a valid signature (however, this signature will not im-
prove the compression of files with such words). Our
implementation used a modification of a recurrence re-
lation for generating combinations of n things taken T
atatime,viz.,C(n,r)=C(n-l,r-l)+C(n-1,r);
the modification terminated the algorithm when all
signatures had been found.

The second variation was motivated by observa-
tions of the cryptic dictionary and information about
our experimental text domain. As described below,
one characteristic of our experimental text domain is
that t,he most frequently occurring words in texts have
lengths less than five. The first variation of the cryp-
tic dictionary has few if any *‘s in the signatures of
such words; for example, there were 12 *‘s among the
35 words of length two, and many words of lengths
two, three, and four used no *‘s. The second variation
was an attempt to optimize the cryptic dictionary by
ensuring that many more e’s were used in the small
length words. We exploited information about the
number of words of a given length and the frequency
of words in text as follows. As with the first variation,
we partit,ioned D into D;, (1 5 i < n). Within each
Di we sorted the words in descending order based on
available frequency information. We then assigned a
signature to each word based on its location in the
ordering. The first, word received a signature consist-
ing of i *‘s. The next 52i words received a signature
consisting of a single letter (either lower case or upper
case) in a unique position, surrounded by i - 1 e’s,
For example, the second word of length five received

132

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

the signature a * * * *. The next 52 x 52 x C(i, ~2)
words received a signature consisting of two letters
in unique positions as a pair surrounded by i - 2 *‘s
(where C(i, 2) represents the number of ways of choos-
ing two positions from i positions). For example, one
five-letter word received a signature of b * D * *. It
was never necessary to use more than two letters for
any signature in the dictionary using this scheme, atl-
though it should be clear how to continue the pattern
for three, four, etc., letters. In this cryptic dictionary,
there were 36 *‘s among the 35 words of length two, a
significant improvement over the first variation.

The Table 1 illustrates the encryption of several
words from the dictionary.

1.4 Encryption/Decryption Process

To encrypt a text file, we read a word from the
file, find it in the dictionary, obtain its signature in
the cryptic dictionary, and then output the signa-
ture. Other characters from the text file (for example,
spaces) are not changed.

There are a few cases that need special attention
when using the above algorithm. Punctuation marlks
and spaces are handled by copying them from the in-
put to the output directly; these non-letter characters
are used as word-delimiters. Further improvements in
this algorithm might address encryption of the spaces
in the input file, especially when more than one space
separates words in the file.

Capital letters within words are trickier. Since the
dictionary contains only lowercase letters, we will not
automatically recognize words with capitals that are
in the dictionary. A naive algorithm simply copies the
unrecognized word to the encrypted file. A better ap-
proach is to append the capitalization information to
the end of the encrypted word in the encrypted file.
We do this by appending a special character (‘) to the
end of the word and then appending a bit mask in
which bit i is set if and only if position i is a capital
in the original word. Since we are dealing with En-
glish text, we can make an optimization to improve
performance, as follows. The most likely capitaliza-
tion patterns are initial capitalization of the word (for
example, at the beginning of a sentence) and all capi-
tals. Instead of appending the bit-pattern, we append
- or ^ to the end of the word to handle these cases.
This saves us the storage of the bit patterns in the
most common cases, which reduces the requirements
by one to three bytes for a word with capital letters.

Finally, we used several special characters in our
encryption: *, ‘, -, and ^. If these characters appear
in the input file, we prepend an escape c,haracter (‘\)

to them in the encrypted file. Note that this adds one
final special character to our encryption (namely \),
which we handle in the same way as the other special
characters.

To decrypt a text file, we read a signature from
the encrypted file, look it up in the crypt,ic dictionary,
obtain the corresponding word in the dictionary, and
output the word. Again, other characters from the
text file are not changed.

Our implementation of this process use:3 the same
program for encryption and decryption; thle only dif-
ference between the two processes is the order in which
the dictionaries are specified on the command line.
To encrypt a file, the dictionary is given, followed by
the cryptic dictionary. To decrypt a file, the cryptic
dictionary is given, followed by the dictionary. The
processing is the same in both cases.

2 Experiments

This section summarizes the experiments that we
have performed so far using the encryption approach.
These are preliminary experiments, but we believe
that they demonstrate the significant potential of this
approach. We used ten text files as listed in Table
2 along with a brief description of their contents and
their sizes to test our algorithm. These ten text files
were based on publicly available electrorric English
novels, obtained from the World Wide Web. We would
like to acknowledge the individuals and organizations
who collected these electronic versions online, includ-
ing Professor Eugene F. Irey (University of Colorado
at Boulder) and Project Gutenberg and individuals
responsible for the Calgary corpus.

2.1 Dictionary

We used an electronic version of an English dictio-
nary for our work. This dictionary contained nearly
60,000 words of up to 21 letters long. For frequencies
of words in English text, we referred to [HoCo92] and
used information about the most frequent 100 words.
In English, the most frequent words are less than five
letters long.

2.2 Implementation Results

In this section, we present the results of implemen-
tation of compression algorithms on several bench-
mark text databases. Since the encrypte’d text has
‘*’ as the most frequently occurring character and oc-
cupies approximately 60 to 70% of the information,

133

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

Dictionary Word have 1 join / ounce modify interdenominational
Signature e* * * 1 qC*+ / Tb;l;** 1 q+j*** / e******************

Table 1: Examples of encrypted words

[Name Size (bytes) ,

1 news I 37711

W ” ’
53161 I Calaarv Corpus paper1 I /

Calgary Co&s paper2
97 / A Tale of Two Cities

\ paper1 /

dracula) 8~- / 63326 / Dracula
-08 Ivanhoe

Mo by Dick

I
ivanhoe
mobydick
franken

11353
987597
427990 Frankenstein

Table 2: Test corpus

we expect the standard compression algorithms should
produce much better compression. It is of interest to
note that none of the words of length greater than 4
in the dictionary required more than two letters of the
alphabet for encryption.

We ran experiments on our test corpus. Each of
our experiments considered a different compression
algorithm augmented with our encryption approach.
The compression algorithms used were Unix compress
(compress), GNU zip with minimal compression (gzip
-l), GNU zip with maximal compression (gzip -9), and
arithmetic (arithmetic) using a character based model.
The results of these experiments are summarized in
the following tables. It is well known that these algo-
rithms beat the Huffman code in compression perfor-
mance, so we do not report results for Huffman code
in this paper. The compression is expressed as BPC
(bits per character) and also as a percentage remaining
with respect to the original size of the file. To begin.
we compared the compression obtained on the cryptic
dictionaries to the compression obtained on the origi-
nal dictionary. These results are shown in Table 3.

tice that all of the compression methods cluster around
the same percentage of the file size, as compared to the
original file size. However, when we examine the data
for the compressed files more closely we see some in-
teresting trends. First, notice that all of the encrypted
compressions yield uniformly better results than the
unaided compressions. Second, notice that the encryp-
tion based on the second variation cryptic dictionary
dramatically, and consistently, outperforms all other
methods.

2.3 Performance Comparison

Our method uses a full dictionary and amortizes its
cost over all files handled. A question naturally arises
whether our approach is better than a straight word
substitution (i.e. replace each word wit.11 a unique
number or Huffman code). Does our algorithm com-
pare with other static dictionary based algorithms?
Will the compression rate of LZ-algorithms be better
if these algorithms had the facility of using a static
dictionary?

Note that this implies that there is at least one En- Let us consider the idea of replacing each word in
glish sentence that will compress to 23% of its original the dictionary by a unique number. If our dictionary
size requiring only 1.87 BPC; namely, the sentence size is 64,000 words (which is typical of most com-
that begins The English words are ,.. and proceeds to monly available dictionaries), it will take a 16-bit ad-
list the contents of the dictionary. dress for each word. This will require 16, 8, 5.1, 4, 3.2,

Tables given below show the comparative compres- 2.7 and 2.3 BPCfor 1,2,3,4,5,6 and 7 character words,
sion results for the different experiments we ran. No- respectively. Since most commonly used words use 3

134

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

File Size (bytes) Compressed file size (as % of original) BPC
Original file 557537
compress 250941 45% 3.60
gzip- 1 249128 45% 3.57
gzip-9 223893 40% 3.21
arithmetic 299289 54% 4.29
*compress 175061 31% 2.51
*gzip- 1 149857 27% 2.15
tgzip-9 130402 23% 1.87
*arithmetic 167550 30% 2.40

Table 3: Compression of the Dictionary

Table 4: Comparison of compress and *-compress

Table 5: Compa.rison of gzip -1 and *-gzip -1

135

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

Table 6: Comparison of gzip -9 and *-gzip -9

Table 7: Comparison of arithmetic and *-arithmetic

136

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

to 6 characters, the average for English text is going to
be much higher than 2.5 BPC. Of course, it is always
possible find an exceptional piece of text with long and
bombastic words to give some advantage. The results
reported in [[St88]] on static dict,ionary based algo-
rithm confirm this observation by showing that t,he
compression rates for the text corpus are not as good
as reported in this paper. If we use unique Huffman
code for each word, there will be large gaps in the ad-
dress space if we are using the code itself as an ind!ex
to the dictionary. The alternative is to use another in-
termediate dictionary that will translate the varialble
length Huffman codes to fixed size addresses for t$he
words in the dictionary which doubles the storage re-
quirements. The other problem is the construction of
the Huffman codes which needs statistics of frequency
of use of all the words, not necessarily the most fre-
quently used word, for the entire corpus.

An interesting dictionary based method has been
proposed by Hirschberg and Lelewer [HL90] based on
the numerical sequence property of canonic Huffman
codes [SK64]. Th eir method, however, assumes the
transmission of the entire dictionary as a stream of
characters which is not a practical idea. Even if we
assume a copy of the dictionary is available to the de-
coder there is still a problem. Addressing is done at
the byte level requiring more than 16 bits per address
making the situation worse for the transmission of the
dictionary. Their method, however, does not produce
compression better than that achievable by the Huff-
man method. Their emphasis was to produce a fast
decoder using as few resources as possible; it does not,
atternpt to reduce the compression rate below what is
possible using the Huffman method.

The LZ algorithms are also dictionary based but
the difference with our algorithm is that it implic-
itly transmits the information about the dynami-
cally growing dictionary specific with respect to the
given text by sending the ‘next’ character along with
the pointer address. The question naturally arilses
whether if LZ algorithms had access to the entire static
dictionary, will it compress better? By the very na-
ture of the class of LZ algorithms, the dictionary may
have to be dynamically updated since LZ may cre-
ate references to not only words but groups of words
representing previously encountered strings. This will
necessitate more address bits. On the other hand, the
*LZ algorithms are very efficient in the size of the dy-
namic dictionary that it will build since its text stream
consists mainly of multiples of ‘*‘, single letters and bi-
grams resulting in smaller size of the address pointers
(as we noted earlier, most words in the cryptic d.ic-

tionary need not use more than two letters). Further
experimentation is needed to resolve this i.ssue.

3 Conclusion

We have experimentally established that an en-
crypted representation of text leads to substantial sav-
ings of storage space. The encryption is designed to
exploit properties of compression algorithms and has
produced compression ratios much better than those
produced on the original un-encrypted text by sev-

eral well known compression algorithms. As soon as
we have access to source codes to ppm and dmc algo-
rithms, we will report comparative results in a future
paper.

4 Acknowledgment

The authors would like to thank R. Nigel Horspool
and Timothy C. Bell for helpful comments and criti-
cism on this work.

References

[BCWSO]

[CDR71]

[FiGr89]

[HLSO]

[HoCo92]

[Hu52]

T.C. Bell, J.G. Cleary, and I.H. Witten.
Text Compression. Prentice-Bad, 1990.

J.B. Carroll, P. Davies, B. Richman. The
American Heritage Word Frequency Book.

E.R. Fiala and D.H. Greene. Data Com-
pression with Finite Windows, Comm.
ACM, 32(4), pp. 490-505, April, 1989.

U.S. Hirschberg and D.A. Lelewer. Ejg;-
cient Decoding of Prejix Codes, Commu-
nications of the ACM, Vo1.23,No.4,pp.449-
458, April,lSSO.

R.N. Horspool and G.V. Cormack. Con-
structing Word-based Text Compression
Algorithms, Proc. Data Compression Con-
ference 1992, (Eds. J.A. Storer and M.
Cohn), IEEE Computer Society Press,
1992, pp. 62-71.

D.A.Huffman. A Method for the Con-
struction of Min imum Redund#uncy Codes.
Proc.IRE, 40(9),pp.1098-1101,1952.

137

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

[LZ77] J. Ziv and A.Lempel. A Universal Algo-
rithm for Sequential Data Compression.
IEEE Trans on Information TheoryIT-
23,pp.337-243,1977,Also, by the same au-
thors Compression of Individual Seq,uences
via Variable Rate Coding, IT-24,pp.530-
536,1978.

[NC951 National Science and Technology Council.
High Performance Computing and Com-
munications: Foundation for Ameraca’s
Information Future, A report by the Com-
mittee on Information and Communica-
tions, (Supplement to the President’s FY
1996 Budget, submitted to Congress),
Washington DC, 1995.

[RiLa79] J. R’ lssanen and G.G. Langdon, Arithmetzc
Coding. IBM Journal of Research and De-
velopment.Vo1.23, pp.149-162, 1979.

[Ro62] F. Rosenblatt. Principles of Neurodynam-
its. Spartan, New York, 1962.

[SK641 E.S. Schwartz and B. Kallick. Generating
a Canonacal Prefix Encodzng, Communi-
cations of the ACM, Vo1.7, No.3, pp.166-
169,March,1964.

[St881 J.A. Storer. Data Compresszon: Methods
and Theory. Computer Science Press,1988.

[WMB94] I.H. Witten, A. Moffat, and T.C. Bell.
Managing Gigabytes. Van Nostrand Rein-
hold, New York,l994.

138

Proceedings of Advanced Digital Libraries 1996 (ADL '96)
0-8186-7402-4/96 $10.00 © 1996 IEEE

