
Multiprogramming Performance of the Pentium 4 with

Hyper-Threading

James R. Bulpin∗and Ian A. Pratt

University of Cambridge Computer Laboratory
J J Thomson Avenue, Cambridge, UK, CB3 0FD.

Tel: +44 1223 331859.
james.bulpin@cl.cam.ac.uk

Abstract

Simultaneous multithreading (SMT) is a very fine
grained form of hardware multithreading that allows
simultaneous execution of more than one thread with-
out the notion of an internal context switch. The
fine grained sharing of processor resources means that
threads can impact each others’ performance.

Tuck and Tullsen first published measurements of the
performance of the SMT Pentium 4 processor with
Hyper-Threading [12]. Of particular interest is their
evaluation of the multiprogrammed performance of
the processor by concurrently running pairs of single-
threaded benchmarks. In this paper we present experi-
ments and results obtained independently that confirm
their observations. We extend the measurements to
consider the mutual fairness of simultaneously execut-
ing threads (an area hinted at but not covered in detail
by Tuck and Tullsen) and compare the multiprogram-
ming performance of pairs of benchmarks running on
the Hyper-Threaded SMT system and on a compara-
ble SMP system.

We show that there can be considerable bias in the
performance of simultaneously executing pairs and
investigate the reasons for this. We show that the
performance gap between SMP and Hyper-Threaded
SMT for multiprogrammed workloads is often lower
than might be expected, an interesting result given
the obvious economic and energy consumption advan-
tages of the latter.

∗James Bulpin is funded by a CASE award from Marconi
Corporation plc. and EPSRC

1 Introduction

Intel Corporation’s “Hyper-Threading” technol-
ogy [6] introduced into the Pentium 4 [3] line of pro-
cessors is the first commercial implementation of si-
multaneous multithreading (SMT). SMT is a form
of hardware multithreading building on dynamic is-
sue superscalar processor cores [15, 14, 1, 5]. The
main advantage of SMT is its ability to better utilise
processor resources and to hide memory hierarchy
latency by being able to provide more independent
work to keep the processor busy. Other architectures
for simultaneous multithreading and hardware mul-
tithreading in general are described elsewhere [16].

Hyper-Threading currently supports two heavy
weight threads (processes) per processor, presenting
the abstraction of two independent logical processors.
The physical processor contains a mixture of dupli-
cated (per-thread) resources such as the instruction
queue; shared resources tagged by thread number
such as the DTLB and trace cache; and dynamically
shared resources such as the execution units. The
resource partitioning is summarised in table 1. The
scheduling of instructions to execution units is pro-
cess independent although there are limits on how
many instructions each process can have queued to
try to maintain fairness.

Whilst the logical processors are functionally in-
dependent, contention for resources will affect the
progress of the processes. Compute-bound processes
will suffer contention for execution units while pro-
cesses making more use of memory will contend for
use of the cache with the possible result of increased
capacity and conflict misses. With cooperating pro-
cesses the sharing of the cache may be useful but for
two arbitrary processes the contention may have a



Duplicated Shared Tagged/Partitioned
Fetch ITLB Microcode ROM Trace cache

Streaming buffers
Branch Return stack buffer Global history array
prediction Branch history buffer
Decode State Logic uOp queue (partitioned)
Execute Register rename Instruction schedulers Retirement

Reorder buffer
(up to 50% use per thread)

Memory Caches DTLB

Table 1: Resource division on Hyper-Threaded P4 processors.

negative effect.

In general, multi-threaded processors are best ex-
ploited by running cooperating threads such as a true
multi-threaded program. In reality however many
workloads will be single threaded. With Intel now in-
corporating Hyper-Threading into the Pentium 4 line
of processors aimed at desktop PCs it is likely that
many common workloads will be single-threaded or
at least have a dominant main thread.

In this paper we present measurements of the perfor-
mance of a real SMT system. This is preferable to
simulation as using an actual system is the only way
to guarantee that all contributory factors are cap-
tured in the measurements. Of particular interest was
the effect of the operating system and the memory
hierarchy, features sometimes simplified or ignored
in simulation studies. Furthermore most simulation
studies are based on SMTSIM [13] which differs from
Intel’s Hyper-Threading in a number of major ways
including the number of threads available, the degree
of dynamic sharing and the instruction set architec-
ture.

A study of this nature is useful as an aide to un-
derstanding the benefits and limitations of Hyper-
Threading. This work is part of a larger study
of practical operating system support for Hyper-
Threading. The observations from the experiments
described here are helping to drive the design of a
Hyper-Threading-aware process scheduler.

It is of interest to compare the performance of pairs of
processes executing with different degrees of resource
sharing. The scenarios are:

• Shared-memory symmetric multiprocessing
(SMP) where the memory and its bus are the
main shared resources.

• SMT with its fine grain sharing of all resources.

• Round-robin context switching with the non-
simultaneous sharing of the caches.

The obvious result is that in general the per-thread
and aggregate performance will be the highest on the
SMP system. However at a practical level, particu-
larly for the mass desktop market, one must consider
the economic advantages of a single physical proces-
sor SMT system. It is therefore useful to know how
much better the SMP performance is.

2 Related Work

Much of the early simultaneous multithreading
(SMT) work studied the performance of various
benchmarks in order to demonstrate the effectiveness
of the architecture [15, 14, 5]. Necessarily these stud-
ies were simulation based and considered the applica-
tion code rather than the entire system including the
operating system effects. Whilst useful, the results
from these studies do not directly apply to current
hardware as the microarchitecture and implementa-
tion can drastically change the behaviour.

Snavely et al. use the term “symbiosis” to describe
how concurrently running threads can improve the
throughput of each other [8]. They demonstrated the
effect on the Tera MTA and a simulated SMT pro-
cessor.

Redstone et al. investigated the performance of work-
loads running on a simulated SMT system with a full
operating system [7]. They concluded that the time
spent executing in the kernel can have a large im-
pact on the speedup measurements compared to a
user-mode only study. They report that the inclu-
sion of OS effects on a SPECInt95 study has less im-
pact on SMT performance measurements that it does
on non-SMT superscalar results due to the better la-
tency hiding of SMT being able to mask the poorer



IPC of the kernel parts of the execution. This result
is important as it means that a comparison of SMT
to superscalar without taking the OS into account
would not do the SMT architecture justice.

In a study of database performance on SMT proces-
sors, Lo et al. noted that the large working set of
this type of workload can reduce the benefit of using
SMT unless page placement policy is used to keep the
important “critical” working set in the cache [4].

Grunwald and Ghiasi used synthetic workloads run-
ning on a Hyper-Threaded Pentium 4 to show that a
malicious thread can cause a huge performance im-
pact to a concurrently running thread through care-
ful targeting of shared resources [2]. Our work has a
few features in common with that of Grunwald and
Ghiasi but we are more interested in the mutual ef-
fects of non-malicious applications that may not have
been designed or compiled with Hyper-Threading in
mind. Some interesting results from this study were
the large impact of a trace-cache flush caused by self-
modifying code, and of a pipeline flush caused by
floating-point underflow.

Vianney assessed the performance of Linux under
Hyper-Threading using a number of microbench-
marks and compared the performance of some mul-
tithreaded workloads running on a single processor
with and without Hyper-Threading enabled [17]. The
result was that most microbenchmarks had the same
performance with Hyper-Threading both enabled and
disabled and that the multithreaded workloads ex-
hibited speedups of 20 to 50% with Hyper-Threading
enabled depending on the workload and kernel ver-
sion.

More recently Tuck and Tullsen [12] have made mea-
surements of thread interactions on the Intel Pen-
tium 4 with Hyper-Threading; these measurements
parallel our own upon which this work is based. All
of the studies show that the range of behaviour is
wide.

3 Experimental Method

The experiments were conducted on an Intel Pen-
tium 4 Xeon based system running the Linux 2.4.19
kernel. This version of the kernel contains support
for Hyper-Threading at a low level, including the de-
tection of the logical processors and the avoidance of
timing-loops. The kernel was modified with a vari-

ation of the cpus allowed patch1. This patch pro-
vides an interface to the Linux cpus allowed task
attribute and allows the specification of which pro-
cessor(s) a process can be executed on. This is par-
ticularly important as the scheduler in Linux 2.4.19
is not aware of Hyper-Threading. Use of this patch
prevented threads being migrated to another proces-
sor (logical or physical). A /proc file was added to
allow lightweight access to the processor performance
counters.

Details of the experimental machine are given in ta-
ble 2. The machine contained two physical proces-
sors each having two logical (Hyper-Threaded) pro-
cessors. Also included are details given by Tuck and
Tullsen for their experimental machine [12] to which
Intel gave them early access which would explain the
non-standard clock speed and L2 cache combination.

For each pair of processes studied the following proce-
dure was used. Both processes were given a staggered
start and each run continuously in a loop. The tim-
ings of runs were ignored until both processes had
completed at least one run. The experiment contin-
ued until both processes had accumulated 3 timed
runs. Note that the process with the shorter run-
time will have completed more than 3 runs. This
method guaranteed that there were always two ac-
tive processes and allowed the caches, including the
operating system buffer cache, to be warmed. Note
that successive runs of the one process would start at
different points within the other process’ execution
due to the differing run times for both.

The complete cross-product of benchmarks was run
on Hyper-Threading, SMP and single-processor con-
text switching configurations. The Hyper-Threading
experiments were conducted using the two logical
processors on the second physical processor and the
SMP experiments used the first logical processor on
each physical processor with the other processor idle
(equivalent to disabling Hyper-Threading). The con-
text switching experiments were run on the second
physical processor and used the round-robin feature
of the Linux scheduler with a modification to allow
the quantum to be specified. In all cases the ma-
chine was configured to minimise background system
activity.

A set of base run times and performance counter val-
ues were measured by running benchmarks alone on
a single physical processor. A dummy run of each
benchmark was completed before the timed runs to

1The cpus allowed/launch policy patch was posted to the
linux-kernel mailing list by Matthew Dobson in December 2001



Our machine Tuck and Tullsen
Model Intel SE7501 based
CPU 2 x P4 Xeon 2.4GHz HT 1 x P4 2.5GHz HT
L1 cache 8kB 4 way D, 12k-uops trace I
L2 cache 8 way 512kB 8 way 256kB
Memory 1GB DDR DRAM 512MB DRDRAM
OS RedHat 7.3 RedHat 7.3
Kernel Linux 2.4.19 Linux 2.4.18smp

Table 2: Experimental machine details.

warm the caches. A total of 9 timed runs were made
and the median run time was recorded. This proce-
dure was performed twice; once using a single logical
processor with the second logical processor idle (but
still with Hyper-Threading enabled), and once with
Hyper-Threading disabled. The run times for both
configurations were almost identical. This behaviour
is expected because the processor recombines parti-
tioned resources when one of the logical processors is
idle through using the HALT instruction [6].

The pairs of processes came from the SPEC CPU2000
benchmark suite [11]. The runs were complete and
used the reference data sets. The executables were
compiled with GCC 2.96 using a fairly benign set
of optimisation flags. The Fortran-90 benchmarks,
178.galgel, 187.facerec, 189.lucas and 191.fma3d were
not used due to GCC not supporting this language.

In order to ascertain the effect of the compiler on the
process’ interaction a subset of experiments was run
using GCC 3.3 with a more aggressive set of opti-
misation flags. While the newer compiler produced
executables with reduced run times, we observed no
significant difference in speedup. We hope to further
explore this area in the future using the Intel C Com-
piler.

4 Results

For the purposes of the analysis, one process was
considered to be the subject process and the other
the background. The experiments were symmetric
therefore only one experiment was required for each
pair but the data from each experiment was anal-
ysed twice with the two processes taking the roles
of subject and background in turn (except where a
benchmark competed against a copy of itself).

The performance of an individual benchmark run-
ning in a simultaneously executing pair is described

by its execution time when running alone divided by
its execution time when running in the pair. If a
non-SMT processor is being timeshared in a theo-
retic perfect (no context switch penalty) round-robin
fashion with no cache pollution then a performance
of 0.5 would be expected as the benchmark is get-
ting half of the CPU time. A perfect SMP system
with each processor running one of the pair of bench-
marks with no performance interactions would give
a performance of 1 for each benchmark. It would be
expected that benchmarks running under SMT would
fall somewhere between 0.5 and 1, anything less than
0.5 being a unfortunate loss.

The total system speedup for the pair of benchmarks is
the sum of the two performance values. This speedup
is compared to zero-cost context switching with a sin-
gle processor so a perfect SMP system should have
a system speedup of 2 while a single Intel Hyper-
Threaded processor should come in somewhere be-
tween 1 and 2. Intel suggest that Hyper-Threading
provides a 30% speedup which would correspond to
a system speedup of 1.3 in our analysis.

In the following sections we present a summary of
results from the Hyper-Threading and SMP experi-
ments. The single-processor context switching exper-
iments using a quantum of 10ms generally resulted in
a performance of no worse than 0.48 for each thread, a
4% drop from the theoretic zero-cost case. As well as
the explicit cost of performing the context switch the
cache pollution contributes to the slowdown. The rel-
atively long quantum means that the processes have
time to build up and benefit from cached informa-
tion. We do not present detailed results from these
experiments.

4.1 Hyper-Threading

In figure 1 we show our results for benchmark pairs
on the Hyper-Threaded Pentium 4 using the same
format as Tuck and Tullsen [12] to allow a direct



comparison2. For each subject benchmark a box and
whisker plot shows the range of system speedups ob-
tained when running the benchmark simultaneously
with each other benchmark. The box shows the in-
terquartile range (IQR) of these speedups with the
median speedup shown by a line within the box. The
whiskers extend to the most extreme speedup within
1.5 IQR of the 25th and 75th percentile (i.e. the edges
of the box) respectively. Individual speedups outside
of this range are shown as crosses. The gaps on the
horizontal axis are where the Fortan-90 benchmarks
would fit.

Our experimental conditions differ from Tuck and
Tullsen’s in a few ways, mainly the size of the L2
cache (our 512kB vs. 256kB), the speed of the mem-
ory (our 266MHz DDR vs. 800MHz RAMBUS) and
the compiler (our GCC 2.96 vs. the Intel Reference
Compiler). The similarities in the results given these
differences show that the effect of the processor mi-
croarchitecture is important and that the lessons that
can be learned can be applied to more than just the
particular configuration under test.

For the integer benchmarks our results match those
of Tuck and Tullsen almost exactly. However we do
see a slightly larger IQR with many of the integer
benchmarks which is one reason we see fewer outliers
than Tuck and Tullsen. Of the floating point results
we match closely on wupwise, mgrid, applu, art and
equake, and fairly closely on swim and apsi. We show
notable differences on mesa, our experiments having
greater speedups, and sixtrack, our experiments hav-
ing smaller speedups. The sixtrack difference is be-
lieved to be due to the different L2 cache sizes; this
is further described in the discussion below. We did
not use the Fortran-90 benchmarks.

We measure an average system speedup across all the
benchmarks of 1.20, the same figure as reported by
Tuck and Tullsen. We measure slightly less desirable
best and worst case speedups of 1.50 (mcf vs. mesa)
and 0.86 (swim vs. mgrid) compared to Tuck and
Tullsen’s 1.58 (swim vs. sixtrack) and 0.90 (swim vs.
art).

Figure 2 shows the individual performance of each
benchmark in a multiprogrammed pair. The figure
is organised such that a square describes the per-
formance of the row benchmark when sharing the
processor with the column benchmark. The perfor-
mance is considered bad when it is less than 0.5, i.e.
worse than perfect context switching, and good when
above 0.5. The colour of the square ranges from white

2the figure is physically sized to match Tuck and Tullsen’s

for bad to black for good with a range of shades in-
between. The first point to note is the lack of re-
flective symmetry about the top-left to bottom-right
diagonal. In other words, when two benchmarks are
simultaneously executing, the performance of each in-
dividual benchmark (compared to it running alone)
is different. This shows that the performance of pairs
of simultaneously executing SPEC2000 benchmarks
is not fairly shared. Inspection of the rows shows that
benchmarks such as mesa and apsi always seem to do
well regardless of what they simultaneously execute
with. Benchmarks such as mgrid and vortex suffer
when running against almost anything else. Looking
at the columns suggests that benchmarks such as six-
track and mesa rarely harm the benchmark they share
the processor with while swim, art and mcf usually
hurt the performance of the other benchmark.

The results show that a benchmark executing with
another copy of itself (using a staggered start) usu-
ally has a lower than average performance demon-
strating the processor’s preference for heterogeneous
workloads which is not overcome by benefits in shared
text segments.

The performance counter values recorded from the
base runs of each benchmarks allow an insight into
the observed behaviour:

mcf has a notably low IPC which can be attributed,
at least in part, to its high L2 and L1-D miss rates.
An explanation for why this benchmark rarely suf-
fers when simultaneously executing with other bench-
marks is that it is already performing so poorly that
it is difficult to do much further damage (except with
art and swim which have very high L2 miss rates).
It might be expected that a benchmark simultane-
ously executing with mcf would itself perform well
so long as it made relatively few cache accesses. eon
and mesa fall into this category and the latter does
perform well (28% speedup compared to sequential
execution) but the former has only a moderate per-
formance (12% speedup) probably due its very high
trace cache miss rate causing many accesses to the
(already busy) L2 cache.

gzip is one of the benchmarks that generally does not
detriment the performance of other benchmarks. It
makes a large number of cache accesses and has a
moderately high L1 D-cache miss rate of approxi-
mately 10%. It does however have a small L2 cache
and D-TLB miss rate due to its small memory foot-
print.

vortex suffers a reduced performance when running
with most other benchmarks. There is nothing of par-



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

M
ul

tip
ro

gr
am

m
ed

 s
pe

ed
up

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
w

up
w

is
e

sw
im

m
gr

id
ap

pl
u

m
es

a

ar
t

eq
ua

ke

am
m

p

si
xt

ra
ck

ap
si

Figure 1: Multiprogrammed speedup of pairs of SPEC CPU2000 benchmarks running on a Hyper-Threaded
processor.

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex
25

6.
bz

ip
2

30
0.

tw
ol

f
16

8.
w

up
w

is
e

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
20

0.
si

xt
ra

ck
30

1.
ap

si

164.gzip
175.vpr
176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex
256.bzip2
300.twolf

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa

179.art
183.equake
188.ammp

200.sixtrack
301.apsi

Speedup > 30%
Speedup 25 to 30%
Speedup 20 to 25%
Speedup 15 to 20%
Speedup 10 to 15%
Speedup 5 to 10%
Approx same
Slowdown 5 to 10%
Slowdown 10 to 15%
Slowdown 15 to 20%
Slowdown > 20%

Figure 2: Effect on each SPEC CPU2000 benchmark in a multiprogrammed pair running on a Hyper-
Threaded processor. A black square represents a good performance for the subject benchmark and a white
square denotes a bad performance.



ticular note in it performance counter metrics other
than a moderately high number of I-TLB misses and
a reasonable number of trace cache misses (although
both figures are well below the highest of each met-
ric).

mcf, swim and art have high L1-D and L2 miss rates
when running alone and have a low average IPC.
They tend to cause a detriment to the performance
of other benchmarks when simultaneously executing.
art and mcf generally only suffer a performance loss
themselves when the other benchmark also has a high
L2 miss rate, swim suffers most when sharing with
these benchmarks but is also more vulnerable to those
with moderate miss rates.

mgrid is the benchmark that suffers the most when
running under SMT whilst the simultaneously exe-
cuting benchmark generally takes only a small perfor-
mance hit. mgrid is notable in that it executes more
loads per unit time than any other SPEC CPU2000
benchmark and has the highest L1 D-cache miss rate
(per unit time). It has only a moderately high L2
miss rate and a low D-TLB miss rate. The only
benchmarks that do not cause a performance loss
to mgrid are those with low L2 miss rates (per unit
time). mgrid’s baseline performance is good (an IPC
of 1.44) given its high L1-D miss rate. The bench-
mark relies on a good L2 hit rate which makes it vul-
nerable to any simultaneously executing thread that
pollutes the L2 cache.

sixtrack has a high baseline IPC (with a large part of
that being floating point operations) and a low L1-D
miss rate but a fairly high rate of issue of loads. The
only benchmark it causes any significant performance
degradation to is another copy of itself; this is most
likely due to competition for floating point execution
units. It suffers a moderate performance degrada-
tion when simultaneously running with benchmarks
with moderate to high cache miss rates such as art
and swim. The competitor benchmark will increase
contention in the caches and harm sixtrack’s good
cache hit rate. Tuck and Tullsen report that sixtrack
suffers only minimal interference from swim and art.
We believe the reason for this difference is that our
larger L2 cache gives sixtrack a better baseline per-
formance which makes it more vulnerable to perfor-
mance degradation from benchmarks with high cache
miss rates giving it lower relative speedups.

The best pairing observed in terms of system
throughput was mcf vs. mesa (50% system speedup).
Although mcf gets the better share of the perfor-
mance gains, mesa does fairly well too. The perfor-

mance counter metrics shown qualitatively in table 3
for this pair show that heterogeneity is good.

Tuck and Tullsen note that swim appears in both the
best and worse pairs. The reason for this is mainly
down to the competitor. mgrid with its high L1-D
miss rate is bad; sixtrack and mesa are good as they
only have low L1-D miss rates so do little harm to
the other thread.

4.2 Hyper-Threading vs. SMP

Figure 3 shows the speedups for the benchmark pairs
running in a traditional SMP configuration. Also
shown for comparison is the Hyper-Threading data
as shown above. An interesting observation is that
benchmarks that have a large variation in perfor-
mance under Hyper-Threading also have a large vari-
ation under SMP. It might be imagined that the per-
formance of a given benchmark would be more stable
under SMP than under Hyper-Threading since there
is much less interaction between the two processes.
The correspondence in variation suggest that compe-
tition for off-chip resources such as the memory bus
are as important as on-chip interaction.

Unlike Hyper-Threading, SMP does not show any no-
table unfairness between the concurrently executing
threads. This is clearly due to the vast reduction in
resource sharing with the main remaining resource
being the memory and its bus and controller. This
means that the benchmarks that reduce the perfor-
mance of the other running benchmarks are also the
ones that suffer themselves. The benchmarks in this
category include mcf, swim, mgrid, art and equake, all
ones that exhibit a high L2 miss rate which further
identifies the memory bus as the point of contention.

The mean speedup for all pairs was 1.20 under Hyper-
Threading and 1.77 under SMP. This means that the
performance of an SMP system is 48% better than
a corresponding Hyper-Threading system for SPEC
CPU2000.

A full table of results is not shown here but some
interesting cases are described:

An example of expected behaviour is equake vs. mesa.
This pair exhibits a system performance of just under
1 for context switching on a single processor, just un-
der 2 for traditional SMP and a figure in the middle,
1.42, for Hyper-Threading. As mesa has a low cache
miss rate it does not make much use of the memory
bus so it not slowed by equake’s high L2 miss rate
when running under SMP. Similarly for round robin



Best HT system throughput (1.50) 181.mcf 177.mesa
Int/FP Int FP
L1-D/L2 miss rates high low
D-TLB miss rate high low
Trace cache miss rate low high
IPC very low moderate
Worst HT system throughput (0.86) 171.swim 172.mgrid
Int/FP FP FP
L1-D miss rate moderate moderate
L2 miss rate high low
D-TLB miss rate high low
Trace cache miss rate low low
IPC fairly low fairly high
Stereotypical SMP vs HT performance 183.equake 177.mesa
Int/FP FP FP (less FP than equake)
L1-D/L2 miss rate moderate high
Trace cache miss rate low high
IPC moderate moderate

Table 3: Performance counter metrics for some interesting benchmark pairs. Metrics are for the benchmark
running alone.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

M
ul

tip
ro

gr
am

m
ed

 s
pe

ed
up

gz
ip

vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex
bz

ip
2

tw
ol

f
w

up
w

is
e

sw
im

m
gr

id
ap

pl
u

m
es

a

ar
t

eq
ua

ke

am
m

p

si
xt

ra
ck

ap
si

Figure 3: Multiprogrammed speedup of pairs of SPEC2000 benchmarks running on a Hyper-Threaded
processor and non-Hyper-Threaded SMP. The right of each pair of box and whiskers is Hyper-Threading
and the left is SMP.



context switching the small data footprint of mesa
does not cause any significant eviction of data be-
longing to equake. Under Hyper-Threading there is
little contention for the caches and the smaller frac-
tion of floating-point instructions in mesa means that
the workloads are heterogeneous and therefore can
better utilise the processor’s execution units.

art and mcf perform similarly under SMP, Hyper-
Threading and round robin context switching. This
is almost certainly due to the very high L1 and L2
cache miss rates and the corresponding low IPC they
both achieve.

When executing under Hyper-Threading, art does
better to the detriment of mgrid however under SMP
the roles are reversed. Both have a high L1 miss
rate but art’s is the highest of the pair. art has a
high, and mgrid a fairly low L2 miss rate. Under
Hyper-Threading art benefits most from the latency
hiding offered by Hyper-Threading and causes harm
to mgrid by polluting the L1-D cache. Under SMP
there is no L1 interference so the mgrid outperforms
art due to the lower L2 miss rate of the former.

When running against another copy of itself vor-
tex has virtually no speedup running under Hyper-
Threading compared to context switching. Under
SMP there is almost no penalty which is due to the
fairly low memory bus utilisation. As mentioned
above, there is nothing particularly special about this
benchmark’s performance counter metrics to explain
the low performance under Hyper-Threading.

vortex and mcf running under SMP take a notable
(20% and 15% respectively) performance hit com-
pared to running alone. This is due to a moderate
L2 miss rates causing increased bus utilisation. Per-
formance under Hyper-Threading shows vortex suf-
fering a large performance loss (20% lower than if it
only had half the CPU time) while mcf does partic-
ularly well. The latter has a low IPC due to its high
cache miss rates so benefits from latency hiding. vor-
tex has a fairly low L1-D miss rate which is harmed
by the competing thread.

gzip with its very low L2 and trace cache miss rates,
moderate L1-D miss rate and large number of mem-
ory accesses always does well under SMP due to the
lack of bus contention but has a moderate and mixed
performance under Hyper-Threading. gzip is vulner-
able under Hyper-Threading due to its high IPC and
low L2 miss rate meaning it is already making very
good use of the processor’s resources. Any other
thread will take away resource and slow gzip down.

5 Conclusions

We have measured the mutual effect of processes si-
multaneously executing on the Intel Pentium 4 pro-
cessor with Hyper-Threading. We have indepen-
dently confirmed similar measurements made by Tuck
and Tullsen [12] showing speedups for individual
benchmarks of up to 30 to 40% (with a high vari-
ance) compared to sequential execution. We have ex-
panded on these results to consider the bias between
the simultaneously executing processes and shown
that some pairings can exhibit a performance bias
of up to 70:30. Using performance counters we have
shown that many results can be explained by consid-
ering cache miss rates and resource requirement het-
erogeneity in general. Whilst the interactions are too
complex to be able to give a simple formula for pre-
dicting performance, a general rule of thumb is that
threads with high cache miss rates can have a detri-
mental effect on simultaneously executing threads.
Those with high L1 miss rates tend to benefit from
the latency hiding provided by Hyper-Threading.

We have compared the multiprogrammed perfor-
mance of Hyper-Threading with traditional symmet-
ric multiprocessing (SMP) and shown that although
the throughput is always higher with SMP as would
be expected, the performance gap between Hyper-
Threading and SMP is not as large as may be ex-
pected. This is important given the economic and
power consumption benefits of having a single physi-
cal processor package.

These measurements are part of a larger study of op-
erating system support for SMT processors. Of rel-
evance to this paper is the development of a process
scheduler that is able to best exploit the processor
while avoiding coscheduling poorly performing pairs
of processes. We are using data from processor per-
formance counters to influence the scheduling deci-
sions and avoiding the need to have a priori knowl-
edge of the process’ characteristics. We believe that
dynamic, feedback-directed scheduling is important
as it can deal with complex thread interactions which
may differ between microarchitecture versions. We
have goals similar to Snavely et al. [9, 10] but our
scheduler is designed to constantly adapt to chang-
ing workloads and phases of execution without having
to go through a sampling phase.



6 Acknowledgements

The authors would like to thank Tim Harris, Keir
Fraser, Steve Hand and Andrew Warfield of the Uni-
versity of Cambridge Computer Laboratory for help-
ful discussions and feedback on earlier drafts of this
paper. The authors would also like to thank the re-
viewers for their constructive and helpful comments.

References

[1] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo R. L.
Stamm, and D. M. Tullsen. Simultaneous multi-
threading: A platform for next-generation proces-
sors. IEEE Micro, 17(5):12–19, Oct. 1997.

[2] D. Grunwald and S. Ghiasi. Microarchitectural
denial of service: Insuring microarchitectural fair-
ness. In Proceedings of the 35th Annual Interna-
tional Symposium on Microarchitecture (MICRO-
35), pages 409–418. IEEE Computer Society, Nov.
2002.

[3] G. Hinton, D. Sager, M. Upton, D. Boggs
D. Carmean, A. Kyker, and P. Roussel. The microar-
chitecture of the Pentium 4 processor. Intel Technol-
ogy Journal, 5(1):1–13, Feb. 2001.

[4] J. L. Lo, L. A. Barroso, S. J. Eggers K. Ghara-
chorloo, H. M. Levy, and S. S. Parekh. An analysis
of database workload performance on simultaneous
multithreaded processors. In Proceedings of the 25th
International Symposium on Computer Architecture
(ISCA ’98), pages 39–50. ACM Press, June 1998.

[5] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm D. M.
Tullsen, and S. J. Eggers. Converting thread-level
parallelism to instruction-level parallelism via simul-
taneous multithreading. ACM Transactions on Com-
puter Systems, 15(3):322–354, Aug. 1997.

[6] D. T. Marr, F. Binns, D. L. Hill, G. Hinton D. A. Ko-
ufaty, J. A. Miller, and M. Upton. Hyper-Threading
technology architecture and microarchitecture. Intel
Technology Journal, 6(2):1–12, Feb. 2002.

[7] J. A. Redstone, S. J. Eggers, and H. M. Levy. An
analysis of operating system behaviour on a simul-
taneous multithreaded architecture. In Proceedings
of the 9th International Conference on Architectural
Support for Programming Langauages and Operating
Systems (ASPLOS ’00), pages 245–256. ACM Press,
Nov. 2000.

[8] A. Snavely, N. Mitchell, L. Carter, J. Ferrante and
D. M. Tullsen. Explorations in symbiosis on two
multithreaded architectures. In Workshop on Multi-
Threaded Execution, Architectures and Compilers,
Jan. 1999.

[9] A. Snavely and D. M. Tullsen. Symbiotic jobschedul-
ing for a simultaneous multithreading processor. In
Proceedings of the 9th International Conference on
Architectural Support for Programming Langauages
and Operating Systems (ASPLOS ’00), pages 234–
244. ACM Press, Nov. 2000.

[10] A. Snavely, D. M. Tullsen, and G. Voelker. Sym-
biotic jobscheduling with priorities for a simultane-
ous multithreading processor. In Proceedings of the
2002 International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’02),
pages 66–76. ACM Press, June 2002.

[11] The Standard Performance Evaluation Corporation,
http://www.spec.org/.

[12] N. Tuck and D. M. Tullsen. Initial observations of the
simultaneous multithreading Pentium 4 processor. In
Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques
(PACT ’2003), pages 26–34. IEEE Computer Soci-
ety, Sept. 2003.

[13] D. M. Tullsen. Simulation and modeling of a simul-
taneous multithreading processor. In 22nd Annual
Computer Measurement Group Conference, pages
819–828. Computer Measurement Group, Dec. 1996.

[14] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M.
Levy. Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading
processor. In Proceedings of the 23th International
Symposium on Computer Architecture (ISCA ’96),
pages 191–202. ACM Press, May 1996.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simul-
taneous multithreading: Maximizing on-chip paral-
lelism. In Proceedings of the 22th International Sym-
posium on Computer Architecture (ISCA ’95), pages
392–403. ACM Press, June 1995.

[16] T. Ungerer, B. Robič, and J. Šilc. A survey of proces-
sors with explicit multithreading. ACM Computing
Surveys, 35(1):29–63, Mar. 2003.

[17] D. Vianney. Hyper-Threading speeds Linux. IBM
developerWorks, Jan. 2003.


