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The term statistical learning in infancy research originally referred to sensitivity to transitional proba-
bilities. Subsequent research has demonstrated that statistical learning contributes to infant development
in a wide array of domains. The range of statistical learning phenomena necessitates a broader view of
the processes underlying statistical learning. Learners are sensitive to a much wider range of statistical
information than the conditional relations indexed by transitional probabilities, including distributional
and cue-based statistics. We propose a novel framework that unifies learning about all of these kinds of
statistical structure. From our perspective, learning about conditional relations outputs discrete repre-
sentations (such as words). Integration across these discrete representations yields sensitivity to cues and
distributional information. To achieve sensitivity to all of these kinds of statistical structure, our
framework combines processes that extract segments of the input with processes that compare across
these extracted items. In this framework, the items extracted from the input serve as exemplars in
long-term memory. The similarity structure of those exemplars in long-term memory leads to the
discovery of cues and categorical structure, which guides subsequent extraction. The extraction and
integration framework provides a way to explain sensitivity to both conditional statistical structure (such
as transitional probabilities) and distributional statistical structure (such as item frequency and variabil-
ity), and also a framework for thinking about how these different aspects of statistical learning influence
each other.
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Humans live in a world filled with statistical regularities. Balls
thrown into the air typically fall back to earth; nouns such as dog
or boy are typically preceded by articles such as a or the. There is
no doubt that learners are sensitive to these statistical regularities.
One term to describe the ability to detect and use statistical
structure is statistical learning. Saffran, Aslin, and Newport (1996)
proposed this term to describe infants’ ability to identify word
boundaries solely from the statistical relation between sounds in
the input. It is now widely acknowledged that infants and adults
encode the statistical structure of their environment in a variety of
tasks, including sequence learning (e.g., Haith, Wentworth, &
Canfield, 1993; Stadler, 1992), category boundary detection (e.g.,
Maye, Werker, & Gerken, 2002), word-object association (Smith
& Yu, 2008), cue-category association (Thiessen & Saffran, 2007),
and causal learning (Sobel & Kirkham, 2007). Statistical learning
likely plays a role in many different aspects of development, but it
is thought to play an especially crucial role in language develop-

ment. The discovery that infants are capable of benefiting from
statistical structure in the input led to a reevaluation of the role of
learning in language acquisition, after several decades of theoret-
ical claims that learning played a relatively minor role in the
process (e.g., Chomsky, 1980; Lidz, Gleitman, & Gleitman, 2003).

But the discovery of the importance of statistical learning has, in
turn, raised a new set of issues. Perhaps the most important of
these is the need for a definition of the mechanism (or mecha-
nisms) that makes statistical learning possible. Consider the
breadth of learning phenomena to which the term statistical learn-
ing is applied. One example of statistical learning is identifying
conditional relations among elements of the input, allowing learn-
ers to detect that some aspects of the input are likely to predict
each other or “go together,” like sounds within a word (e.g., Aslin,
Saffran, & Newport, 1998). Infants and adults are sensitive to
conditional relations in both sequentially (e.g., auditory) and si-
multaneously (e.g., visual) presented stimuli—but it is not clear
whether learning from both kinds of input is accomplished by the
same or different mechanisms (e.g., Conway & Christiansen,
2006; Kirkham, Slemmer, & Johnson, 2002). And even beyond
conditional relations, recent work has established that there are a
variety of other statistical relations that influence learning. For
example, infants are able to discover category boundaries simply
from exposure to a distribution of exemplars differing in frequency
(e.g., Maye et al., 2002). In addition, infants and adults are sensi-
tive to the correlation between perceptual features and aspects of
the input that are not directly perceptible (such as word boundar-
ies) and learn to use these perceptual features as cues (e.g., Thies-
sen & Saffran, 2003).
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As this brief discussion indicates, humans are sensitive to both
statistical information contained in a single stimulus (e.g., a word)
and statistical information that can be integrated across several
different stimuli (e.g., the exemplars composing a category). The
breadth of statistical learning phenomena presents a challenge for
a mechanistic account of statistical learning. It is not clear whether
the same mechanism is responsible for sensitivity to both kinds of
statistical information. Furthermore, it is not clear how these kinds
of information interact, and when learners would favor one kind of
information over another (e.g., E. K. Johnson & Jusczyk, 2001;
Thiessen & Saffran, 2003). There have been several mechanisms
proposed to explain statistical learning. However, the vast majority
of these mechanistic accounts have been solely focused on sensi-
tivity to conditional relations, primarily in the context of word
segmentation (e.g., Frank, Goldwater, Griffiths, & Tenenbaum,
2010; Perruchet & Vinter, 1998). These models typically ignore, or
are unable to account for, sensitivity to statistical information that
requires integrating information across exemplars. Similarly, mod-
els of information integration are not intended to account for
sensitivity to conditional relations, or segmentation of fluent input
into smaller chunks (e.g., Feldman, Griffiths, & Morgan, 2009;
Hintzman, 1984). That is, most prior theoretical accounts of sta-
tistical learning are single-process accounts: They focus on one
aspect of statistical learning and are agnostic about other aspects,
or how different aspects of statistical learning might interact.

Our goal in this review was to develop a framework to explain
statistical learning that is able to incorporate the multiple different
kinds of statistical relations to which learners are sensitive. The
framework we propose accounts for statistical learning in terms of
processes that are an integral part of memory. That is, we believe
that sensitivity to statistical information in the environment arises
directly from the way that humans (and other species) store and
access information in memory. In particular, we invoke two
memory-based processes to explain statistical learning: extraction
and storage of statistically coherent units (such as words) from the
input and integration across units stored in memory to identify
central tendency. This account assumes that learning involves the
extraction and storage of statistically coherent chunks of the input
(for evidence in favor of this assumption, see the Discussion in the
the *Extraction and Conditional Statistics section). Storing these
statistically coherent clusters provides an opportunity for integra-
tion of information across the items in memory. Processes of
integration are routinely invoked in models of long-term memory,
especially those concerned with sensitivity to prototypes and cat-
egory formation (e.g., Hintzman, 1984; McClelland & Rumelhart,
1985). Integration will also allow learners to detect those features
that are common across prior exemplars, an ability that has been
argued to play an important role in cue learning (e.g., Thiessen &
Saffran, 2007).

The framework we are advocating extends beyond prior models
of statistical learning, in that it encompasses more than just learn-
ing of conditional relations. By doing so, it provides an opportu-
nity to explore the interplay between different kinds of statistical
information in the environment. This has been an important topic
of research (e.g., E. K. Johnson & Jusczyk, 2001; E. K. Johnson &
Seidl, 2008; Saffran & Thiessen, 2003), but one that has not been
systematically incorporated into theoretical accounts of statistical
learning (though see Adriaans & Kager, 2010). Additionally, this
framework provides an opportunity to generate hypotheses about

the development of statistical learning. Much prior research has
sought to explain how statistical learning might contribute to
development (e.g., Maye et al., 2002; Saffran et al., 1996; Thiessen
& Saffran, 2003). Much less is known about how statistical learn-
ing itself develops and changes with age (though see Hudson Kam
& Newport, 2009; Kirkham et al., 2002). By advancing an account
of the processes underlying statistical learning, it becomes possible
to make principled predictions about how the operation of those
processes should change with age, which provides an opportu-
nity to synthesize research on statistical learning with a broader
developmental view of the factors that should influence statis-
tical learning.

As such, the goal of this review was, first, to provide an
overview of the characteristics of statistical learning. We suggest
that the term statistical learning refers to three qualitatively dif-
ferent kinds of tasks: tasks that require sensitivity to conditional
relations (e.g., word segmentation), tasks that require sensitivity to
distributional information (e.g., category learning), and tasks that
require sensitivity to the relation between perceptual characteris-
tics of the input and the units that organize the input (e.g., cue
learning). Second, we provide a framework that accounts for all of
these disparate statistical learning phenomena. This framework
combines processes responsible for extracting units (e.g., words or
shapes) from the input with processes responsible for integrat-
ing information across those units, and can therefore provide an
account for sensitivity to both statistical information relevant to
a particular stimulus (accomplished via extraction) and arising
from a comparison across multiple stimuli (accomplished via
integration).

In the first section of this review, we discuss the kinds of
statistical structures to which humans are sensitive and propose
that these can be grouped into three categories: conditional, dis-
tributional, and cue-based statistics. As we discuss in the second
section, extraction provides an account for sensitivity to condi-
tional statistical information (such as that used in word segmen-
tation), but is insensitive to other forms of statistical information.
Conversely, as we discuss in the third section, integration across
exemplars provides an account for sensitivity to distributional
information, but no explanation for how exemplars are initially
segmented from the input. But a framework combining these
processes, as we discuss in the fourth section, is capable of
accounting for the full range of statistical learning phenomena,
including detection of category boundaries (e.g., Maye et al., 2002;
Vallabha, McClelland, Pons, Werker, & Amano, 2007), and the
discovery of useful cues for subsequent learning (e.g., Rakison &
Lupyan, 2008; Thiessen & Saffran, 2003), and is also capable of
explaining how different kinds of statistical information interact
and influence each other both in a single set of stimuli (e.g.,
Saffran & Thiessen, 2003) and across developmental time (e.g.,
Thiessen & Saffran, 2003).

Defining Statistical Learning:
What Statistical Relations Are Learned?

Any successful account of statistical learning must be rooted in
a consideration of the kinds of statistical relations to which learn-
ers are sensitive. The term statistical learning has been applied to
a wide variety of situations in which learners demonstrate some
sensitivity to the statistical structure of the input. Though all of
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these learning feats have been grouped under the same umbrella
term statistical learning, no unified mechanistic account has been
set forth to account for all of them. The vast majority of modeling
work on statistical learning has focused on sensitivity to condi-
tional relations, such as those used to segment words (e.g., Chris-
tiansen, Allen, & Seidenberg, 1998; Frank et al., 2010). But adults,
infants, and animals are sensitive to a variety of other statistics that
are not easily captured in terms of conditional relations. For
descriptive purposes, we separate statistical learning into three
categories: conditional, distributional, and cue-based statistical
learning.

Conditional Statistics

Conditional statistics measure the predictive relationship be-
tween two events X and Y. Transitional probability (Harris, 1955;
Hayes & Clark, 1970; Saffran et al., 1996) is a commonly used
example of a conditional statistic and describes the likelihood that
event Y will occur given information that some other event X has
occurred. When X regularly predicts Y, transitional probabilities
are high; transitional probability is low when X rarely predicts Y.
For example, if X occurs 100 times, and the sequence X-Y occurs
30 times, the transitional probability between X and Y is 30%.
Conditional statistics are a more robust metric of the strength of
the relation between two events than the simple frequency of their
co-occurrence (e.g., Aslin et al., 1998). This is due to the fact that
two items can occur together quite frequently simply by virtue of
the fact that they are both high-frequency items in the input. For
example, a phrase like “the man” is relatively common, because
both words are high frequency. However, because “the” can be
followed by many other words, the transitional probability be-
tween “the” and “man” is low.

Human infants and adults are sensitive to conditional statistics,
as are a variety of nonhuman animal species (Aslin et al., 1998;
Toro & Trobalón, 2005). This sensitivity has been investigated
most closely in the context of word segmentation. Across lan-
guages, sounds within a word are more predictable than sounds
across word boundaries (e.g., Harris, 1955). For example, copter is
very likely to come next after heli, but many different words could
occur after happy. To explore whether learners are sensitive to this
statistical property, experimenters have used artificial languages
containing no cues to word segmentation except the statistical
relations among sounds within and across word boundaries. Saf-
fran et al.’s (1996) experiments provide a paradigmatic example of
this experimental strategy. Infants were exposed to fluent speech
containing four nonsense words: pabiku, golabu, padoti, and tu-
daro. These words occurred in random order, with no pauses
between words, for 90 repetitions apiece (approximately 2.5 min).
In the test phase, infants were presented with words, and their
looking time to words was compared with one of two different
kinds of foil items: nonwords (syllables that never occurred to-
gether in the speech stream, such as kutiro) or part-words (sylla-
bles that occurred across word boundaries, such as bupado). In-
fants’ looking times revealed that they were able to discriminate
between words and nonwords, and also between words and part-
words. Statistical coherence is high in word test items, and low in
nonwords and part-words. The finding that a discrimination be-
tween highly coherent and less coherent test items is quickly
learned has been replicated many times, indicating that learners are

sensitive to statistical coherence in the speech stream (e.g., Aslin
et al., 1998; E. K. Johnson & Jusczyk, 2001; Thiessen & Saffran,
2003).

Sensitivity to conditional statistical relations is not limited to
relations between sound sequences within a speech stream. Learn-
ers also display sensitivity to sequential conditional statistics in
tactile, visual, and tonal stimuli (Conway & Christiansen, 2006;
Kirkham et al., 2002; Saffran, Johnson, Aslin, & Newport, 1999).
Furthermore, learners are sensitive to conditional relations among
sequences of actions, both their own and others’ (e.g., Baldwin,
Andersson, Saffran, & Meyer, 2008; Stadler, 1992). Although
most demonstrations of sensitivity to conditional relations have
occurred with sequential presentation, humans are also sensitive to
conditional relations among elements presented simultaneously
(e.g., Fiser & Aslin, 2005). This occurs when participants are
shown complex scenes made up of several individual shapes.
Across these scenes, the presence of one shape predicts the co-
presence of a second shape, or multiple additional shapes. At test,
learners discriminate between groupings of shapes that consis-
tently occurred together and groupings of shapes that were less
likely to co-occur (e.g., Fiser & Aslin, 2002). Note that in these
laboratory demonstrations of sensitivity to conditional statistical
relations, test trials typically involve discrimination between se-
quences with very high conditional relations (often approaching, or
equal to, 100%) and sequences with far lower conditional rela-
tions. It is as yet unclear what minimum difference in likelihood is
necessary to differentiate between conditional relations with dif-
ferent strength.

Critically, human sensitivity to statistical relations is not limited
to elements that occur adjacently. Many of the relations that infants
and adults learn involve regularities between elements that are not
immediately adjacent, as is often the case in language. Although
the predicts a subsequent noun, the noun can follow several words
later (as in the surly professor). If statistical sensitivity were
limited to detecting relations between adjacent items, statistical
learning would be a severely limited learning tool. This is not the
case. Several experiments have demonstrated that infant and adult
learners detect conditional relations between nonadjacent ele-
ments, both in linguistic and nonlinguistic stimuli (Creel, Newport,
& Aslin, 2004; Newport & Aslin, 2004). In sequences where X and
Y are separated by intervening, unpredictable elements—such that
the input might include sequences like XAY, XBY, and XCY—
learners detect that X predicts that Y will follow. This kind of
nonadjacent learning appears to be more difficult than detecting
adjacent relations. For both audio and visual stimuli, the detection
of nonadjacent relationships must be supported by high variability
among intervening elements (Gómez, 2002) or by a perceptual cue
linking the nonadjacent elements (e.g., Baker, Olson, &
Behrmann, 2004; Creel et al., 2004). This kind of support is not
necessary for the discovery of adjacent conditional relations.

Distributional Statistics

Conditional statistics reflect the strength of the relationship
between elements X and Y. In contrast, distributional statistics
reflect the central tendency, or prototypical characteristics, of a set
of elements. These statistics are referred to as distributional be-
cause learners are sensitive to the frequency and variability of
exemplars in the input (e.g., Maye, Weiss, & Aslin, 2008; Mintz,
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2006; Thiessen, 2009). Maye et al.’s (2002) experiments on the
effect of distribution of phonemic exemplars on infants’ discrim-
ination provide a paradigmatic example of distributional statistical
learning. Maye et al. found that infants’ categorical boundaries for
phonetic distinctions, such as /d/ and (unaspirated) /t/, could be
shifted on the basis of the frequency with which they were exposed
briefly to exemplars. When exposed to a bimodal distribution of
sounds, such that a prototypical /d/ and a prototypical unaspirated
/t/ occurred frequently, infants were more likely to discriminate
between exemplars of the two categories. When exposed to a
unimodal distribution, whereby a sound intermediate between /d/
and unaspirated /t/ occurred most frequently, infants were less
likely to discriminate between exemplars from the two categories
even though these exemplars occurred equally often in the two
training regimes. Subsequent work has replicated this result for
other phonetic categories (e.g., Maye et al., 2008).

Sensitivity to the frequency of phonemic exemplars may explain
how infants adapt to the phonemic structure of their native lan-
guage in the first year of life (Werker & Tees, 1984). Sounds near
the prototypical center of a phonemic category that a language uses
occur more frequently than sounds at the boundaries between such
categories (Werker et al., 2007). The role of distributional statistics
in language acquisition is not limited to perception, however. The
frequency of exemplars in the input has been suggested to play an
important role in word learning and discovering syntactic patterns
(e.g., Reber & Lewis, 1977; Thiessen & Yee, 2010). Like sensi-
tivity to conditional information, sensitivity to distributional infor-
mation plays a role in many domains in addition to language.
Learners show sensitivity to statistics relating to categorical struc-
ture in domains, including visual perception (e.g., Dougherty &
Haith, 2002), auditory perception (e.g., Lotto, Kluender, & Holt,
1997), and object categorization (e.g., Rakison, 2004; Younger &
Cohen, 1986). Additionally, many nonhuman animal species are
sensitive to distributional statistics (e.g., Lotto et al., 1997), which
suggests that learning from distributional statistics is a domain-
general ability rather than a language-specific one.

The second feature of the distributional structure of the input to
which learners are sensitive is variability. When exposed to dis-
tributions with high variability, learners accept a wider range of
exemplars as members of a category and are correspondingly less
certain when required to make judgments about stimuli near a
category boundary (e.g., Clayards, Tanenhaus, Aslin, & Jacobs,
2008). When there is very low variability in the input, category
boundaries are comparatively sharper. Note that this discussion of
variability presumes that learners are able to detect within-
category variation, which is not represented according to classical
theories of categorical perception (e.g., Liberman, Harris, Hoff-
man, & Griffith, 1957). Subsequent research, however, has dem-
onstrated that listeners are sensitive to intracategory variation even
with stimuli over which categorical perception can be easily ob-
tained (e.g., McMurry, Tanenhaus, & Aslin, 2002; Miller & Vol-
aitis, 1989; Pisoni & Tash, 1974).

In addition to the frequency and variability of the exemplars
themselves, another distributional feature of the input to which
learners are sensitive is the context in which exemplars occur.
These contextual distributions can serve as cues to categorical
distinctions. For example, Thiessen (2007) found that infants were
more likely to use the categorical distinction between phonemes
(such as /d/ and /t/) in word-learning contexts if they had previ-

ously seen the phonemes associated with different lexical forms
(such as diaper, doggy, tiger, and toothbrush). This is an example
of a phenomenon known as acquired distinctiveness: When two
similar stimuli are paired with distinct contexts, learners distin-
guish between them more easily (Honey & Hall, 1989; James,
1890). This, in turn, makes it more likely that the learner will treat
them as members of different categories, whether in terms of the
learner’s response to those stimuli (e.g., Edwards, Jagielo, Zentall,
& Hogan, 1982) or in terms of detecting a change from one
stimulus to the other (e.g., Thiessen & Yee, 2010).

Cue-Based Statistics

A final ability that falls under the umbrella of statistical learning
is cue discovery and weighting. This occurs when learners detect
that some perceptual feature of the input indicates the presence of
a property that is not directly accessible from the perceptual
characteristics of the input. For example, unlike the white spaces
between words in print, word boundaries in speech are not marked
by a consistent perceptual feature. Similarly, many internal char-
acteristics, such as animacy or emotional state, cannot be directly
observed. Instead, the presence of these properties must be inferred
from the directly perceptible cues with which the properties are
associated (e.g., Rakison & Lupyan, 2008). Cue-based statistical
learning refers to the process through which infants discover
which perceptible attributes of the input are correlated with attri-
butes that are not directly perceptible, and how they learn to weight
some cues more heavily than others (e.g., E. K. Johnson & Seidl,
2008).

In the context of statistical learning, the most widely studied
example of cue-based learning is the discovery of acoustic cues to
word boundaries such as pauses, phonotactics, and lexical stress
(e.g., E. K. Johnson & Jusczyk, 2001). For example, words in
English typically begin with a stressed syllable (Cutler & Carter,
1987), and adults treat stressed syllables as word onsets (e.g.,
Cutler & Norris, 1988). By the time they are 8–9 months of age,
English-learning infants also use stress as a cue to word onsets
(e.g., E. K. Johnson & Jusczyk, 2001). Strikingly, although
younger infants fail to use stress as a cue (Thiessen & Saffran,
2003), they can be taught to do so through exposure to isolated
words instantiating a regular stress pattern (Thiessen & Saffran,
2007). Similarly, infants can learn to use phonotactic regularities
to segment fluent speech (Saffran & Thiessen, 2003). Critically,
learners are able to identify these cue regularities when the cue
functions probabilistically rather than deterministically (e.g., Grat-
ton, Coles, & Donchin, 1992; Thiessen & Saffran, 2007).

This discussion of cues to word boundaries illustrates an im-
portant point about cue-based statistical learning: Learners gener-
alize their knowledge about cues to novel settings. Once an infant
has discovered that stress predicts word onsets, that knowledge
will be applied widely. Infants will even apply their knowledge to
settings in which it is incorrect, as in settings in which the corre-
lation between cues and word boundaries is violated because a
word is stressed on the second syllable (e.g., P. W. Jusczyk,
Houston, & Newsome, 1999; Thiessen & Saffran, 2007). Of
course, generalization can and does occur in conditional and dis-
tributional statistical learning (e.g., Maye, Weiss, & Aslin, 2008;
Thiessen, 2011a). The generalization in cue-based statistical learn-
ing is especially notable, though, in that it alters subsequent
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learning. This process has been referred to as “learning how to
learn” (e.g., Harlow, 1949; Thiessen & Saffran, 2003; Yerkes,
1943). Once the perceptual features that cue underlying structure
have been learned, these perceptual features change the way that
learners detect structure in the future (e.g., Curtin, Mintz, &
Christiansen, 2005).

Like other forms of statistical learning, cue-based learning is not
limited to linguistic input. Cue-based statistical learning plays a
role in visual tasks from simple flanker-style response tasks (e.g.,
Lehle & Hubner, 2008), to judgments about whether a particular
pattern of motion corresponds to animate or inanimate objects
(e.g., Rakison, 2005), to nonlinguistic auditory tasks (e.g., Holt &
Lotto, 2006), and many other domains. In all of these domains,
learners weight the use of a cue at least partially as a function of
the strength of the probabilistic relationship between the cue and
the critical category or response (e.g., Gratton et al., 1992; Thies-
sen & Saffran, 2004). In each of these domains, however, the
critical feature of cue-based statistical learning is that the cue, once
identified, serves to shape subsequent learning.

Many theories of cue weighting rely on attention to explain the
increasing sensitivity to valid cues (e.g., Griffiths & Mitchell,
2008; Lehle & Hubner, 2008; Samuelson & Smith, 2000; Smith,
Jones, & Landau, 1996). That is, once a cue has been identified,
attention to the cue affects subsequent learning and performance.
Attentional theories of cue-based learning are quite consistent with
the fact that the salience of the cue appears to play an important
role in how easily a cue is learned (e.g., Trabasso & Bower, 1968).
Indeed, salience can be a more powerful factor than reliability in
predicting learners’ generalizations. In some instances in which a
very subtle cue is reliable, learners will generalize on the basis of
a less reliable but more noticeable cue (e.g., Emberson, Liu, &
Zevin, 2009; Lidz et al., 2003). The emphasis on salience over
reliability is heightened when learners are under time pressure
(e.g., Lamberts, 1995). This should not be taken to mean that
salience is necessarily separate from or in opposition to statistical
learning. What a learner considers to be a salient property of the
input is due in part (though certainly not entirely) to their prior
experience with statistical structure of the environment (e.g.,
Honey & Hall, 1989). As this discussion indicates, a complete
model of statistical learning should incorporate effects of, and
influences on, attention. This is a point to which we return in the
Linking Extraction and Integration Through Attention section.

Summary

Although it is clear that learners are sensitive to many different
kinds of statistical relations in the input across a variety of input
domains, it is unclear whether all three forms of statistical learning
share the same underlying mechanism, as might be implied by the
fact that all are referred to by the term statistical learning. Our goal
in this review was to advance a memory-based framework for
statistical learning that will clarify this mechanistic question. This
framework is based on the combination of two processes that we
term extraction and integration. Extraction is the process of iden-
tifying statistically coherent clusters (defined by conditional rela-
tions) of perceptual features and storing them in memory as
discrete representations (such as word forms). Integration is the
process of comparing across those clusters to identify commonal-
ities and the central tendency of the input. As we argue, neither

process in isolation is capable of accounting for the range of
statistical learning phenomena described above. In combination,
however, they enable a unified framework to explain the entire
range of statistical learning.

Extraction and Conditional Statistics

Models of conditional statistical learning can be classified into
two groups: boundary-finding models and clustering models.
Boundary-finding models search for regions in the input where
conditional relations between adjacent elements are (relatively)
low and impute a boundary between units there. For example,
some serial recurrent networks are trained to predict individual
elements in a sequence of speech sounds on the basis of previous
sounds. Word boundaries can be inferred at any region where
predictability of the next sound falls below a threshold (e.g.,
Elman, 1990). Boundary-finding models do not represent or store
the units (such as words) whose boundaries they discover; rather,
they learn and represent the statistical relations between elements
in the input. Clustering models, by contrast, store clusters of
statistically related elements (e.g., Giroux & Rey, 2009). In word
segmentation tasks, for example, clustering models store clusters
of speech sounds with strong conditional relations in a lexicon of
candidate word forms (see Orbán, Fiser, Aslin, & Lengyel, 2008,
for an example of a clustering model in a nonlinguistic domain).
Several different types of clustering models have been proposed in
the statistical learning literature. Two of the most prominent ap-
proaches are chunking (Perruchet & Vinter, 1998) and Bayesian
hypothesis testing (e.g., Frank et al., 2010).

Different clustering models invoke very different processes, and
it is not yet clear which type of clustering model is the most
faithful simulation of the human learning process (Frank et al.,
2010). Assessing which formulation of the clustering approach is
the best fit to human learning is beyond the scope of this review.
However, all clustering models concur that the output of learning
is a set of statistically coherent clusters that have been extracted
from the input and stored in memory as discrete representations. In
this section, we review the evidence that statistical learning does,
in fact, result in the formation of this type of discrete representa-
tion. This evidence provides strong support for the claim that
conditional statistical learning involves some form of extraction of
coherent clusters (such as word forms) from the input. But al-
though a process of extraction allows for sensitivity to conditional
statistical relations, we argue that clustering models are poorly
suited to explain sensitivity to distributional and cue-based statis-
tical regularities. That is to say, a complete account of statistical
learning requires some process in addition to extraction.

Evidence in Favor of Extraction

The primary claim of clustering models is that learning results in
discrete representations that have been extracted from the input
(e.g., words from a sentence, or shapes from a visual array). This
claim has been examined directly on a number of occasions with
linguistic stimuli in statistical learning tasks and is supported by
evidence that humans treat the items they segment as lexical items.
For example, infants accept words from the synthesized speech in
English utterances after exposure to a stream of synthesized speech
(Saffran, 2001). Similarly, infants and adults learn labels for novel
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objects more easily when provided the opportunity to segment the
labels from fluent speech (Graf Estes, Evans, Alibali, & Saffran,
2007; Mirman, Magnuson, Graf Estes, & Dixon, 2008). These
results indicate that the objects that infants and adults identify via
statistical learning are represented in the unitized manner consis-
tent with word forms, as should be the case if clustering models are
correct.

In clustering approaches, speech segmentation consists of syn-
thesizing a set of elements (e.g., syllables) into larger units (e.g.,
words). This means that learners should differ in their response to
subcomponents of a unit (e.g., eleph from the word elephant) as
they become more familiar with the overall unit. As the learner
becomes more familiar with the larger unit, the subcomponents
embedded within that unit become less plausible candidate items
to segment from the input. To put this in terms of linguistic
materials, as a learner becomes more certain that elephant is a
word, eleph becomes a less compelling candidate word; the word
interferes with other potential word forms embedded within it. As
the longer word form accrues more evidence, the embedded com-
ponents become less plausible and are removed from the lexicon
(Frank et al., 2010; Perruchet & Vinter, 1998). Although different
clustering models instantiate this competition between clustered
units and their embedded components differently, they share the
prediction that these items compete to be extracted (e.g., Giroux &
Rey, 2009; Orbán et al., 2008).

This competition between extracted units and embedded com-
ponents is not present in boundary-finding models (e.g., Christian-
sen et al., 1998). Boundary-finding models identify boundaries on
the basis of the probabilistic structure of the input. For example,
with linguistic stimuli such as a sequence of syllables, these
models learn the likelihood that two syllables will co-occur, and
posit word boundaries at regions in the sequence where predict-
ability is low. Increased exposure strengthens the model’s knowl-
edge of the probabilistic relations between all of the syllables
within a word equally. This is a key difference between clustering
and boundary-finding approaches that leads to an empirically
testable prediction (e.g., Giroux & Rey, 2009). From a clustering
perspective, as learners become more familiar with units (e.g., a
word), they should become less able to distinguish subcomponents
from within that unit (e.g., eleph from elephant) from a random
configuration of elements; their knowledge of embedded subcom-
ponents weakens due to interference as their familiarity with the
overall unit increases. From a boundary-finding perspective, as the
learner becomes more familiar with a unit, they should also be-
come better at distinguishing embedded components from random
configurations of elements. This is because boundary-finding mod-
els are storing the likelihood of transitions between elements rather
than extracting words.

In laboratory experiments, humans conform to the predictions of
a clustering account, rather than a boundary-finding approach: As
exposure to the language increases, participants actually become
less able to identify the sublexical embedded components within a
word (Giroux & Rey, 2009). Indeed, this phenomenon is not
limited to speech. Fiser and Aslin (2005) demonstrated the same
process with visual input. In their experiments, participants were
presented with a series of visual scenes composed of 12 shapes
displayed simultaneously. These shapes were distributed into com-
binations that always occurred together, a kind of conditional
statistic to which learners are sensitive (e.g., Fiser & Aslin, 2002).

While participants learned the three-shape complexes, they failed
to distinguish spurious pairs from pairs that were embedded in a
complex. For example, if star-triangle-square and moon-diamond-
hexagon were both true triplets, learners would fail to distinguish
between star-triangle and square-moon (see Orbán et al., 2008, for
further discussion). Fiser and Aslin (2005) refer to this as an
“embeddedness constraint”: As overarching structures are learned,
knowledge of the constituent forms embedded in those structures
is attenuated. The fact that this constraint can be seen for both
sequential linguistic input and simultaneous visual input suggests
that the extraction of units (as opposed to simply learning transi-
tions between elements) is a domain-general feature of conditional
statistical learning.

The Relation Between Extraction and
Conditional Statistics

The extraction of statistically coherent clusters is informative
with respect to the format representations in memory. It is impor-
tant to note, however, that it is possible to define “statistically
coherent” in a variety of ways. Several different models of con-
ditional statistical learning (primarily with respect to word seg-
mentation) have been suggested, many of which take advantage of
different statistical metrics (see Frank et al., 2010, for an overview
of several different clustering models). Most of these models fit
extant human data reasonably well, so it is not yet possible to
conclusively differentiate between them. All of these models,
though, are meant to achieve sensitivity to conditional relations—
that is, to identify clusters in the input whose elements strongly
predict each other. This is important, because human learners are
sensitive to conditional relations, and not simply identifying items
in the input that frequently occur (e.g., Aslin et al., 1998). To
illustrate how clustering models achieve sensitivity to conditional
relations, we discuss two types of models: a chunking model and
a Bayesian model. Although this is not an exhaustive review, the
principles that enable these models to identify clusters that are
coherent (not merely frequent) will provide an introduction to the
logic that underlies clustering models more generally.

For many kinds of input, statistical coherence and frequency are
confounded. As an example, consider the difference between
words (syllable groupings that are coherent) and spurious syllable
groupings formed across word boundaries (such as the grouping
tyba in pretty baby). Because by definition the words pretty and
baby will occur more frequently than the conjunction of these two
words, the statistically coherent items are also the more frequent
items. As such, before claiming that a model is sensitive to
conditional probability, it is important to demonstrate that they are
not simply responding to the frequency with which an item occurs.
A stringent test of a model’s ability to benefit from conditional
statistics in linguistic input is to present the model with a language
in which one set of words occurs twice as often as a second set of
words. In this case, although all the words have stronger condi-
tional relations than part-words, the part-words formed between
the frequent words occur just as often as the uncommon words.
Both adults and infants are capable of learning a language of this
type (i.e., of distinguishing between words and part-words), based
solely on conditional statistical relations rather than frequency
(Aslin et al., 1998). Both chunking models and Bayesian models
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are capable of identifying words when presented with a language
of this type, though they succeed in somewhat different ways.

To segment words, chunking models such as Parser (Perruchet
& Vinter, 1998) rely on three processes: activation, decay, and
interference. When initially exposed to a string of syllables, Parser
randomly groups them into chunks. These chunks receive a set
level of activation when they are first created; as the model
proceeds through the input stream, the activation of the chunks
stored in memory decreases over time (unless the chunks are
reencountered) due to the effect of decay. Groupings of the input
that are less likely to occur (e.g., syllables that co-occur across
word boundaries) are less likely to be chunked. Even when they
are chunked, they are less likely to be chunked again (because they
occur relatively rarely), and thus more subject to decay. Over time,
then, the chunks that are highly active in memory begin to reflect
the statistical structure of the input, because those chunks that
occur more often (i.e., words) receive more activation, and decay
less, than infrequent chunks.

In addition to the frequency of chunks, Parser (Perruchet &
Vinter, 1998) is sensitive to conditional structure. After exposure
to a string of speech, the words in Parser’s lexicon are more highly
activated even than spurious syllable groupings across word
boundaries that occur equally often. This is due to the effect of
interference. If a component element (a syllable) within a chunk
occurs in a different chunk, the prior chunk suffers interference.
Consider the effect of interference on Parser’s segmentation of a
language with four words, diti, bugo, dapu, and dobi, where the
first two words occur twice as often as the second two words (e.g.,
Aslin et al., 1998; Thiessen & Saffran, 2003). Any possible spu-
rious syllable grouping that Parser chunks (e.g., tibu) is only one
of several possible part-words that the model might chunk that
contains syllables that overlap with each other (e.g., ti in tibu and
tida). Whenever a chunk is created that overlaps with another
chunk, the strength of these chunks will decrease due to interfer-
ence. Thus, over a long period of exposure, part-words will be less
active than words because words suffer from interference from
fewer other potential chunks (Perruchet & Vinter, 1998).

Bayesian models of statistical word segmentation invoke quite
different processes, but yield a similar insight about the way in
which an extraction process favors words over spurious groupings
of syllables across word boundaries (and thus achieves sensitivity
to conditional relations). Bayesian models of word segmentation
are hypothesis-testing models: They formulate a set of hypotheses
about the potential segmentations of a string of text and then assess
the likelihood of those hypotheses (e.g., Brent, 1999; Goldwater,
Griffiths, & Johnson, 2009). For example, given a string of text
like pretty baby, a Bayesian model might formulate segmentation
hypotheses like pre tty ba by; prettyba by; prettybaby; pretty baby;
and so on. To see how a Bayesian model assesses the likelihood of
these different hypotheses, consider Goldwater et al.’s (2009)
lexical model. The model estimates the likelihood of each candi-
date word form, based largely on the number of times the word
form occurs in the text (the model’s prior probabilities also play a
role and bias it toward shorter words over longer words). Then the
model estimates the likelihood of the hypothesis by multiplying
the individual probability of the words posited by the hypothesis.
This means that a segmentation hypothesis with fewer words (such
as pretty baby) will tend to have an advantage over a segmentation

hypothesis with more words (such as pre tty ba by), because there
will be fewer terms to be multiplied.

The use of probability explains why Bayesian models favor
extraction of words over extraction of frequent part-words. Con-
sider, again, the artificial language with four words, diti, bugo,
dapu, and dobi, where the first two words occur twice as often as
the second two words (e.g., Aslin et al., 1998; Thiessen & Saffran,
2003). Although the part-words formed from the frequent words
(tibu and godi) occur just as often as the infrequent words, they are
less likely to be segmented. This is due to the fact that the
part-words must occur less frequently than the words from which
they are formed. Every time a part-word occurs, the word from
which it was formed necessarily occurs as well, but the word can
occur without the part-word (e.g., when ditu is followed by dobi,
the part-word tibu does not occur). Because of this, segmentation
hypotheses consisting of real words will tend to be more likely
than segmentation hypotheses including part-words. The compe-
tition between words and part-words occurs not due to activation
and interference (as in chunking models) but due to the fact that
words will tend to be evaluated as higher probability than part-
words, because they occur more frequently.

Bayesian and chunking models of word segmentation differ on
many dimensions, but they are both sensitive to the key difference
between words and part-words in these artificial languages: Words
occur with greater predictability than spurious combinations of
syllables across word boundaries. Because clustering models are
searching for a limited set of items to extract (as opposed to, for
example, storing the entire speech stream intact in memory), words
and part-words compete. The greater predictability of words means
that these items have an advantage in the competition to be
extracted. Although different clustering models simulate this com-
petition in different ways, they converge on the suggestion that the
search for a limited set of items to extract gives rise to sensitivity
to conditional statistical information.

Extraction Alone Is Insufficient
to Explain Statistical Learning

Clustering models of conditional statistical learning are a good
fit to the general characteristics of human sensitivity to conditional
structure (e.g., Frank et al., 2010; Giroux & Rey, 2009; Orbán et
al., 2008). But despite the fact that these models are able to extract
the same items from the input as human learners, they are insuf-
ficient—in isolation—to explain other aspects of statistical learn-
ing. This is because models of extraction are concerned only with
how learners identify a set of consistent clusters in the input, and
store those clusters in memory. However, the extraction a set of
clusters (such as words) does not explain either distributional or
cue-based statistical learning, which both require the ability to
generalize from prior experience. In the case of distributional
learning, a model must be able to generalize to a novel exemplar
on the basis of prior experience with a series of exemplars varying
along some dimension (or set of dimensions). For cue-based sta-
tistical learning, a model must generalize prior experience with a
cue (e.g., phonotactic patterns) to novel settings. A learner who is
capable only of extraction will fail to detect the common features
among extracted items, and be unable to benefit from them.

Indeed, this means that clustering models are unable to model
some aspects of word segmentation. This can be seen, for example,
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if a clustering model such as Parser (Perruchet & Vinter, 1998) is
presented with a sequence of words all exhibiting a phonotactic
regularity. As an example, consider what would occur if Parser
were presented with a segmentation stream containing four words
all following an str-initial pattern: strafing, straggler, straiten, and
stranded. Because the syllables within these words have strong
conditional relations, Parser would segment all four words if given
enough exposure to the input. If a new fifth word were introduced
into the segmentation stream, Parser would segment it quickly as
well, having previously identified the other four (e.g., Perruchet,
Tyler, Galland, & Peereman, 2004). However, Parser would seg-
ment that fifth word just as quickly if the word were consistent
with the str-initial pattern (e.g., stripling) as if it were not. Parser
has no way of detecting the phonotactic regularity and applying it
to subsequent segmentation. A model that only extracts word
forms from fluent speech has no mechanism for comparing across
the items it has extracted. By contrast, human learners quickly
learn to take advantage of those kinds of phonotactic regularities to
facilitate subsequent segmentation (e.g., Saffran & Thiessen, 2003;
Thiessen & Saffran, 2007). Extraction provides a lexicon of can-
didate words, but it does not describe how the commonalities
across those words are detected or used.

Extraction alone is similarly ill equipped to account for distri-
butional statistical learning, because extraction does not assess the
similarity among extracted items. Similarity is critically important
for discovering categories (e.g., Madole & Oakes, 1999). The
effect of similarity among prior exemplars can most clearly be
seen in the fact that humans are sensitive to the central tendency,
or prototype, of a set of exemplars. Given exposure to a series of
individual exemplars, memory preserves individual details of
some, if not all, of those exemplars (e.g., Hintzman, 1976; Hintz-
man, Block, & Summers, 1973). In addition to recognizing prior
exemplars as familiar, participants will also often verify novel
exemplars as familiar if they are close to the average of the
collective exemplars (e.g., Nosofsky & Zaki, 2002; Roediger &
McDermott, 1995). However, discovery of central tendency, cat-
egory structure, and abstract concepts is only possible if learning
involves some process that benefits from the similarity of stored
exemplars. Models that do nothing but extract conditional-related
elements are able to store exemplars, but they do not take full
advantage of the information that they have stored.

Summary

Clustering models have been proposed to simulate human learn-
ing in many kinds of sequential learning tasks in which identifi-
cation of conditional relations plays a role. These models extract
clusters of conditionally related elements from the input and store
them in memory. Although the majority of these models have
focused on word segmentation (e.g., Goldwater et al., 2009; Per-
ruchet & Vinter, 1998), they have also been shown to provide a
good fit to other tasks, such as sequence learning or segmentation
of visual arrays into smaller chunks (e.g., Orbán et al., 2008).
Despite the success of clustering models in identifying conditional
statistical structure, the process of extracting chunks of
conditional-related elements is insufficient, on its own, to account
for the full range of statistical learning phenomena. Extraction of
a set of items does not account for distributional or cue-based
statistical learning. In the next section, we discuss a complemen-

tary set of models that fail to acquire conditional statistical struc-
ture but that provide excellent sensitivity to distributional infor-
mation by integrating information across stored exemplars.

Integration and Distributional Statistics

For many kinds of stimuli, statistical structure is not a function
of the sequence or conditionalized probability in which they occur,
but rather their distribution along a continuum of similarity. This
is the case, for example, in learning phonetic categories. Relatively
unpopulated regions along a perceptual continuum are likely to
indicate a boundary between phonetic categories. Regions of per-
ceptual space near a category boundary (e.g., between /p/ and /b/
along a continuum of voice-onset time) are ambiguous: Exemplars
there are equally close to either category, so it is difficult to
determine their category membership (Liberman et al., 1957). Due
to communicative pressures favoring clarity, speakers produce
relatively few exemplars in these regions, and therefore regions
with a sparse number of exemplars provide a cue to category
boundaries (e.g., Maye et al., 2002). To identify the category
structure in the input, the order of the exemplars does not matter,
nor is there any necessary conditional relationship between one
exemplar (or category) and the next. Instead, the most important
statistical property is the distribution of exemplars across the
continuum: their frequency and variability in relation to other
exemplars (e.g., Clayards et al., 2008; Maye et al., 2002). Models
that provide sensitivity to distributional statistics, therefore, must
take advantage of different kinds of regularities in the input. In
particular, these models are dependent on some encoding of the
similarity structure of the input. Using similarity, these models are
able to integrate across exemplars to identify the central tendency
of the input and to generalize to novel instances, two abilities that
we believe are necessary for a complete description of statistical
learning.

Similarity and Generalization

Modeling the effect of similarity on human learning has been
conducted in a number of different ways. According to exemplar
memory accounts, all prior exemplars are stored in memory (e.g.,
Hintzman, 1984; Nosofsky & Zaki, 2002). Sensitivity to central
tendency occurs by summation across prior exemplars. A retrieval
cue activates all memory traces simultaneously, weighted by their
similarity to the cue (e.g., Hintzman, 1986). An alternative ap-
proach, a distributed system, does not represent individual memory
traces. Instead, each experience affects a distributed set of units.
The memory trace of a particular experience is represented by the
change in the strength of interconnections between those units. In
such a system (e.g., McClelland & Rumelhart, 1985), traces are
“superimposed” over each other because each trace influences the
connections between units. The primary difference between these
approaches is that exemplar memory models preserve each expe-
rience independently, whereas in distributed models the collective
impact of multiple traces is preserved. In both approaches, how-
ever, sensitivity to the central tendency of collected experience
arises without explicit representation. For example, both kinds of
models allow for sensitivity to prototypes and abstract categories
to emerge as a function of the aggregation of multiple prior
memories (e.g., Hintzman, 1986).
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For ease of exposition, we describe the characteristics of long-
term memory models primarily in terms of exemplar memory
models such as Hintzman’s (1984) MINERVA 2. Framing the
discussion in terms of memory trace models does not represent a
necessary theoretical commitment; with relatively minor altera-
tions, the framework we describe could be altered to incorporate a
distributed long-term memory system, as in a connectionist archi-
tecture. However, we favor an exemplar memory model frame-
work—at least for descriptive purposes—because it establishes an
immediate point of connection with conditional statistical learning.
The exemplars extracted via conditional statistical learning can
feed into the discrete representations used in exemplar memory
models. But our central theoretical claim does not relate to the
superiority of exemplar memory models over distributed models of
long-term memory. Instead, our central argument is that accounts
of statistical learning are incomplete unless they incorporate two
processes available in models of long-term memory: sensitivity to
similarity and integration across multiple exemplars.

MINERVA 2 is a model intended to abstract the central ten-
dency of a set of exemplars. It does so by comparing a current
exemplar (whatever perceptual stimulus is being experienced) with
exemplars previously stored in long-term memory, and returning a
weighted average of the stored exemplars. The average is weighted
by similarity: The prior exemplars that are most similar to the
current exemplar contribute most strongly to the response gener-
ated from long-term memory. In MINERVA 2 (Hintzman, 1984),
a memory trace is encoded as a vector of features with values
ranging between �1 and 1; 1 can be thought of as the presence of
the feature, �1 as its absence, and 0 as an indeterminate value. The
similarity between two percepts can be computed as the sum of
the product of cross-multiplication between the vectors, divided by
the number of nonzero features. For example, 1, �1, 1, �1 is a
four-feature percept that is maximally similar to 1, �1, 1, �1,
yielding a similarity value of 1. It is maximally dissimilar to �1,
1, �1, 1, yielding a similarity value of �1. Note that in a distrib-
uted memory model, the same effect would be realized as overlap
in the pattern of activation caused by the two experiences.

When a retrieval cue (or probe) is sent to previously stored
traces in long-term memory, the weighted average of all the stored
traces is returned. This average (the echo) has two characteristics:
intensity and content. The intensity is related to the similarity
between the probe and prior experiences; the more similar the
probe is to previous experiences, the more active the echo is. The
content of the echo is the sum (normalized by the number of
traces) of the activity of the traces in memory, weighted by their
activity. Traces more similar to the probe will contribute more to
the echo than dissimilar traces. Depending on the specificity of the
probe, many or few traces may be highly activated, and depending
on the homogeneity among (especially highly) active traces, the
content of the echo may be ambiguous, or consistent. The returned
echo, then, has the property of embodying the weighted average of
all of the activated traces, leading MINERVA 2 to be able to
emulate prototype formation and schema abstraction (Hintzman,
1986).

Like many models of long-term memory, MINERVA 2 is char-
acterized by sensitivity to similarity structure in the input
(achieved via the vector coding scheme) and an ability to integrate
information across prior exemplars (achieved via the probe/echo
process). This enables MINERVA 2 to identify the central ten-

dency of prior examples (Hintzman, 1984). Just as importantly, it
allows the model to generalize on the basis of prior experience
(Hintzman, 1986). This is because when the model is presented
with a stimulus, the most similar prior experiences are activated.
Even if the stimulus is novel, some prior experiences will be
activated. If the activated prior exemplars have consistent features,
those features will be returned from long-term memory, and guide
the response to the (novel) stimulus to be similar to that of other,
similar experiences in the past. This allows MINERVA 2 to benefit
from commonalities across prior experiences, unlike those models
of conditional statistical learning that merely extract items from
the input but fail to detect their commonalities.

Similarity Sensitivity and Distributional Statistics

The processes embodied in MINERVA 2 (and many other
models of long-term memory) yield sensitivity to distributional
statistical information such as frequency and variability. For an
example of how a similarity-based memory trace system gives rise
to sensitivity to distributional information, consider learning to use
phonemic contrasts in word-object association tasks. Thiessen
(2007; see also Thiessen & Yee, 2010) found that 14-month-old
infants’ use of phonemic contrasts in a word-object association
task is facilitated by exposure to those phonemes in distinct lexical
forms. Infants often fail to use phonemic differences in such tasks;
after habituation to a novel object labeled daw, infants accept taw
as a label for the object (e.g., Stager & Werker, 1998). Thiessen
(2007) found that exposure to the phonemes /d/ and /t/ in distinct
lexical contexts lessened children’s willingness to accept minimal
pair labels interchangeably. After exposure to dawbow and taw-
goo, children no longer accepted taw as a label for the object
previously called daw. This was not simply due to increased
exposure to the sounds /d/ and /t/, as hearing the sounds in dawgoo
and tawgoo (an identical lexical context) did not facilitate chil-
dren’s performance. Instead, exposure to the sounds in distinctive
contexts appears to be critical. This may be related to the phenom-
enon of acquired distinctiveness: Two similar percepts (in this
case, /d/ and /t/) become more easily distinguishable if they are
paired with different contexts or consequences (e.g., Hall, 1991).

MINERVA’s vector coding can be applied in a straightforward
manner to the stimuli (dawbow, tawgoo, daw, and taw) used in
Thiessen’s (2007) experiment (see Table 1). To do so, we use a
16-feature vector, with the first eight features coding the first
syllable, and the next eight coding the second syllable. Within each
syllable, the first four features describe the voicing status of the
consonant, and then whether it is bilabial, alveolar, or glottal

Table 1
Vector Coding Scheme for Daw, Taw, Dawbow, Tawgoo,
and Dawgoo

Features

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Daw 1 0 0 1 1 �1 �1 �1 0 0 0 0 0 0 0 0
Taw �1 0 0 1 1 �1 �1 �1 0 0 0 0 0 0 0 0
Dawbow 1 0 0 1 1 �1 �1 �1 1 1 0 0 �1 1 0 1
Tawgoo �1 0 0 1 1 �1 �1 �1 1 0 1 0 �1 1 1 1
Dawgoo 1 0 0 1 1 �1 �1 �1 1 0 1 0 �1 1 1 1
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(because this demonstration requires no dentals, fricatives, or
liquids, these features are omitted). The next four features describe
the vowel on the basis of whether it is front/back, rounded/
unrounded, high/low, and long/short (in the front/back feature, for
example, 1 indicates a front vowel and �1 indicates a back vowel).
Though this coding system is loosely based on classical linguistic
feature systems (e.g., Chomsky & Halle, 1968), it should be
viewed solely as a notational convenience. It does not imply that
learners actually represent speech in a featural, abstract manner
(for discussion, see Thiessen, 2011a; Thiessen & Yee, 2010; ).
Instead, it is meant simply to capture in a quantitative way the fact
that some lexical forms are more similar than others, information
that is lost in many models of conditional statistical learning. The
training regime from Thiessen (2007) can be simulated by two
different sets of traces. The first set consists of dawbow and
tawgoo, and the second set consists of dawgoo and tawgoo.

Consider what happens when these two sets of traces are probed
with the test items infant participants heard: daw and taw. For the
memory set consisting of dawgoo and tawgoo, the probe of daw
activates traces of dawgoo more than traces of tawgoo; the probe
of taw has precisely the opposite effect. However, because dawgoo
and tawgoo differ only in the voicing of their first consonant, the
echo that is returned in response to daw differs from that returned
to taw only with respect to the single feature of the voicing status
of the first consonant. The daw echo is weighted more toward
voicing on this single feature; the taw echo is weighted more
toward voicelessness. In all other respects, the daw echo and the
taw echo are identical. In contrast, for the set of traces consisting
of dawbow and tawgoo, the echoes returned to probes of daw and
taw are more distinct. In this case, the echoes differ not only in the
feature representing voicing for the consonant in the first feature
but also in the features corresponding to place of articulation for
the consonant in the second syllable. The daw echo contains traces
of bilabial activation (due to its association with the second syl-
lable bow), whereas the taw echo is more weighted toward glottal
articulation. Thus, in the case in which phonemes have been
experienced in different lexical contexts, probes containing those
phonemes result in more differentiable echoes. Unlike chunking
models, the MINERVA 2 model (Hintzman, 1984) captures the
phenomenon that experiencing phonemes in different lexical con-
texts should promote differentiation of those phonemes (e.g.,
Thiessen, 2007; Thiessen & Pavlik, in press).

In addition to identifying categories from the distribution of
exemplars across contexts, memory trace models are able to use
the frequency of different exemplars to learn category boundaries.
Consider Maye et al.’s (2002) demonstration that the distribution
of exemplars along a continuum of voicing influences their dis-
criminability. In a unimodal distribution in which most of the
exemplars occur near the center, either endpoint on the continuum
(voiced or voiceless) is equally near to the largest mass of exem-
plars. Therefore, the echo created in response to the probe of either
endpoint is fairly similar, with an ambiguous central value for
voicing. The result is quite different if the learner has been exposed
to a bimodal distribution, with one mass of exemplars near the
voiceless endpoint, another near the voiced endpoint, and compar-
atively few in the middle. In this case, the echo to the voiceless
probe is primarily informed by the large mass of voiceless exem-
plars. The echo in response to the voiced probe is primarily
influenced by the large mass of voiced exemplars. Therefore, the

two echoes are more distinct than in the unimodal context, in
which both echoes are influenced by the mass of central exem-
plars.

Note that the input to the learning process in the Maye et al.
(2002) experiment is simplified from actual language in a number
of ways. First, the exemplars varied along only a single feature
(voicing). Second, all of the exemplars fell into discrete steps
along this continuum, such that there were many identical exem-
plars. Third, the same speaker produced all of the exemplars.
Finally, infants were not required to generalize their knowledge to
new contrasts (though see Maye et al., 2008). As such, it is not
clear whether the distributional learning made possible by
MINERVA 2’s sensitivity to central tendency (Hintzman, 1986)
would suffice for learning from naturalistic language input. As
such, the claim here is not that trace memory is sufficient for
language learning (though see P. W. Jusczyk, 1993). Rather, the
claim is a more limited one: that sensitivity to similarity, and
integration across prior experience, is sufficient to describe the
kinds of distributional statistical learning phenomena seen in lab-
oratory experiments with infants, adults, and animals. Although
these processes are also undoubtedly necessary for natural lan-
guage acquisition, they are unlikely to be sufficient—models of the
acquisition of natural language are likely to require additional
processes.

Finally, the process of integration across exemplars instantiated
in models like MINERVA 2 (Hintzman, 1984) also yields sensi-
tivity to variability. The discovery of nonadjacent relations pro-
vides an example of this. Discovering nonadjacent relations—such
as discovering that ko predicts be in novel words like kotibe,
kosube, komabe, and kolabe—is more difficult than discovering
adjacent relations (e.g., Creel et al., 2004). One factor that facili-
tates the discovery is the variability of the element intervening
between the nonadjacent relationship. When exposed to a string of
A-X-C items, where A predicts C, both infants and adults are
better able to detect the nonadjacent A–C relationship when the
intervening X item is more variable (Gómez, 2002). When there
are very few syllables that can fill the X position, learners fail to
detect the nonadjacent relationship. The MINERVA 2 framework
provides a straightforward mechanistic account to explain this
effect of variability (for a more extensive discussion, see Thiessen
& Pavlik, in press).

Consider what would occur if long-term memory contained four
exemplars: kotibe, kosube, komabe, and kolabe. A subsequent
probe to memory that is similar to these items (such as the first
syllable ko) would activate all of these traces. The resultant echo
returned from memory would be strongly consistent about the
information that is constant across all of these traces. The incon-
sistent information would tend toward canceling itself out (e.g.,
Hintzman, 1986). Therefore, upon a probe of ko, this memory
system would return koXbe, where the X represents information
that is inconsistent across the traces and thus not strongly endorsed
in the echo. Furthermore, inconsistent elements are more likely to
cancel out as there are more exemplars with different elements. If
a learner experiences only two strings (e.g., komabe and kolabe),
both of the X elements contribute fairly strongly to the echo,
especially for those features for which they are consistent. If a
learner experiences many unique strings, none of those individual
exemplars contributes as strongly to the overall echo. Only the
information that is consistent across all of the traces is strongly
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represented. In highly variable input, the information about the X
element is likely to be lost or cancelled out, and would not
contribute to the judgment of similarity between prior exemplars
and novel strings obeying the A-C regularity.

On the surface, tasks such as detecting nonadjacent relations,
learning category boundaries, and using contextual information to
disambiguate phonemes share little in common. One advantage of
modeling is that it provides an opportunity to assess whether the
same process can potentially explain behavior in very different
tasks. Although the MINERVA 2 architecture—and more gener-
ally, models of information integration—are not new (e.g., Hintz-
man, 1984; McClelland & Rumelhart, 1985), their application to
statistical learning phenomena has been relatively limited (though
see Adriaans & Kager, 2010). A novel claim of this framework is
that integration across exemplars can explain all of the distribu-
tional statistical learning phenomena discussed above. If this claim
is correct, it should be possible to model all of these phenomena
using the same computational model (for a demonstration using an
updated version of the MINERVA 2 architecture, see Thiessen &
Pavlik, in press).

Extraction and Integration:
Two Incomplete Approaches

Extraction and integration each account for an aspect of statis-
tical learning. Extraction is the process via which statistically
coherent clusters of elements are stored in memory. Integration
allows learners to discover the central tendency of the exemplars
stored in memory, and benefit from their similarity and distribu-
tion. One possible view of these processes is that they operate
independently and in isolation, accounting for separate aspects of
statistical learning. As the discussion in the previous section indi-
cates, models of long-term memory are able to simulate distribu-
tional learning by integrating information across multiple exem-
plars. However, these models are typically not designed to
simulate learning from conditional relations. Memory trace models
such as MINERVA 2 (Hintzman, 1984), or the McClelland and
Rumelhart (1985) model, do not have a principled way to segment
sequential input into discrete chunks, and they often assume that
the input for learning comes presegmented (e.g., P. W. Jusczyk,
1993). As such, these models are agnostic with respect to the
processes that lead to extraction of coherent chunks from contin-
uous input.

Similarly, many models of extraction are limited in their ability
to benefit from similarity structure. For example, chunking models
of statistical learning such as Parser (Perruchet & Vinter, 1998)
have no way of detecting consistent phonological cues that occur
in the words that they segment. If Parser were presented with a
sequence of verbs all ending in –ed, it may, depending on the
length of exposure and statistical structure of the input, segment all
of the verbs successfully. However, Parser has no way of deducing
that the novel verb is also likely to end with the same –ed suffix
upon presentation of a novel verb stem, because Parser has no
mechanism for comparing across chunks and identifying these
similarities. For Parser to take advantage of these kinds of word-
form regularities, they must be coded in advance (e.g., Perruchet &
Tillmann, 2010). This difficulty is not unique to a chunking
approach. Models of segmentation via conditional statistical rela-
tions often require that other cues (such as phonological cues) be

built in ahead of time, rather than learned over the course of
exposure to the input (e.g., Christiansen et al., 1998). These
models assume (explicitly or implicitly) that the processes under-
lying the extraction of word forms from fluent speech can be
modeled independently of the process of integration of information
across those word forms.

As this discussion indicates, most models of statistical learning
choose to simulate conditional and distributional statistical learn-
ing separately (though see Adriaans & Kager, 2010, for an excep-
tion). This is consistent with the possibility that conditional and
distributional statistical learning operate separately. Such a pro-
posal accounts for conditional statistical learning (accomplished
via extraction) and distributional statistical learning (accomplished
via sensitivity to similarity across memory traces). Each kind of
process performs a separate task, and can be modeled quite suc-
cessfully in isolation (e.g., Giroux & Rey, 2009; Hintzman, 1986;
McClelland & Rumelhart, 1985; Perruchet & Vinter, 1998). How-
ever, if these processes are entirely separate, then there is no
opportunity to account for cue-based statistical learning. Models of
extraction have no way of discovering the phonemic regularities
that come to play an important role in word segmentation (e.g.,
E. K. Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003).
Similarly, models of integration lack a principled approach to
apply the knowledge they acquire to word segmentation (e.g.,
P. W. Jusczyk, 1993). These difficulties suggest that an approach
in which extraction and integration are conceptualized completely
independently is inadequate. Instead, our perspective is that these
two systems are deeply intertwined.

We believe that it is possible to create a framework that ac-
counts for the full range of statistical learning phenomena only by
combining extraction and integration in a single approach. From
our perspective, the processes of integration and extraction bidi-
rectionally influence each other. One route of influence is that the
exemplars segmented from continuous input (via the process of
extraction) serve as the input for the process of integration. This is
consistent with the assumptions made by many models of long-
term memory, which operate over exemplars that have previously
been segmented from the input but which are agnostic with respect
to the process via which the input is segmented (e.g., Hintzman,
1984; P. W. Jusczyk, 1993). In the domain of word segmentation,
for example, this perspective suggests that conditional statistical
cues allow infants to extract a set of candidate word forms, even
before they have discovered phonological cues to word boundaries
(Thiessen & Saffran, 2003). Once these word forms are stored, it
is possible to integrate information across them and discover the
phonological regularities that are consistent across these word
forms, such as, in English, word-initial lexical stress (Thiessen &
Saffran, 2007).

The second route of influence between the processes of extrac-
tion and integration is that the regularities discovered via the
process of integration serve to inform subsequent extraction. Con-
sider word segmentation again: It is a well-established finding that
discovering phonological regularities changes subsequent segmen-
tation (e.g., Saffran & Thiessen, 2003; Thiessen & Saffran, 2007).
Indeed, many phonological cues, once learned, are weighted more
heavily than the conditional relation between syllables (E. K.
Johnson & Jusczyk, 2001). For example, once English-learning
infants have discovered that stress is correlated with word-initial
position, they will segment sequences like TARis (from guiTAR is)
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from fluent speech, despite the strong conditional relation between
the syllables in the word guitar (P. W. Jusczyk et al., 1999). The
fact that these phonological cues exert a greater influence on
segmentation than conditional statistics has often been interpreted
to mean that segmentation via phonological cues is driven by a
different process than sensitivity to conditional relations (e.g.,
E. K. Johnson & Seidl, 2008).

The suggestion that use of phonological cues arises from a
different process than sensitivity to conditional relations is a nat-
ural extension of the view that segmentation via statistical cues
requires the calculation of transitional probabilities. Transitional
probabilities, by definition, are sensitive only to the conditional
relations between syllables, and not to any kind of phonological
regularities (e.g., E. K. Johnson & Jusczyk, 2001; Saffran et al.,
1996). However, as we demonstrate in the next section, sensitivity
to phonological cues can arise from the same segmentation system
as sensitivity to conditional relations. This is only possible so long
as the processes of extraction and integration are synthesized into
a complete framework, which underscores the importance of con-
sidering these processes in combination rather than in isolation.

Summary

There are a variety of statistical regularities in which the
critical statistical structure is a distributional structure: It re-
lates to the frequency or variability of exemplars in the input.
Models of conditional statistical learning— especially word
segmentation— do not typically take advantage of this kind of
distributional information (e.g., Christiansen et al., 1998; Frank
et al., 2010; Perruchet & Vinter, 1998; though see Adriaans &
Kager, 2010). Doing so requires a learning mechanism that is
capable of taking advantage of the similarity between exem-
plars and identifying their central tendency. Models of long-
term memory are ideally suited to this purpose because they
have the ability to integrate information across exemplars,
accentuating consistent information while de-emphasizing con-
flicting aspects of the exemplars. This process of integration
allows these models to simulate a wide variety of distributional
statistical learning phenomena, including discovering category
boundaries, learning to use phonemic contrasts for word learn-
ing, and identifying nonadjacent relations (for more extensive
discussion, see Thiessen & Pavlik, in press).

Despite the success of models of long-term memory in sim-
ulating distributional statistical learning by integrating across
exemplars, these models typically ignore the process via which
exemplars are extracted from the input (e.g., Hintzman, 1984;
P. W. Jusczyk, 1993). The fact that most models and theoretical
proposals consider extraction and integration separately under-
estimates the potential of statistical learning. Models of distri-
butional learning are incomplete because they fail to provide a
principled account of the origin of the exemplars across which
they integrate information, and models of conditional learning
are incomplete because the regularities that are discovered via
distributional learning (e.g., phonological regularities) are
never used to constrain subsequent extraction. Only a unified
framework— one that combines the processes of extraction and
integration— can remedy this.

Combining Integration and Extraction
for Word Segmentation

Statistical learning has been researched most thoroughly with
respect to word segmentation. Because of this, word segmentation
provides the best domain to assess any potential account of statis-
tical learning. Our goal was to assess the potential for an account
of statistical learning that combines the processes of extraction and
integration, so we discuss this account in the context of word
segmentation. We propose that a framework that incorporates both
of these processes will be able to account for a wider variety of
results than any prior account of statistical learning. Prior models
and theoretical accounts of statistical learning have been single-
process accounts: They are focused on either extraction or inte-
gration. Modeling these processes separately, and exploring them
in laboratory tasks, has resulted in important advances in our
understanding of statistical learning. But studying these processes
separately fails to take into account how they influence each other,
and how this interaction changes across development.

Indeed, even in the same task, infants show different weightings
of information available via extraction and integration as a func-
tion of age. When presented with a language for which conditional
statistical information and phonological cues (discovered via the
process of integration) conflict, younger infants favor conditional
cues and older infants favor phonological cues (e.g., Thiessen &
Saffran, 2003). Although prior laboratory experiments have been
tremendously informative in mapping infants’ weighting of differ-
ent sources of information across age (e.g., E. K. Johnson &
Jusczyk, 2001; P. W. Jusczyk et al., 1999), these experiments do
not provide a general account of when infants will favor informa-
tion that is derived from a single stimulus (i.e., conditional statis-
tics), and when they will favor information that is derived from
integration information across multiple exemplars (such as phono-
logical regularities). This highlights the necessity of an account
that incorporates both the processes of extraction and integration.

As discussed previously, there are multiple possible computa-
tional implementations of both extraction and integration. To im-
plement the process of integration in this framework, we continue
to use the MINERVA (Hintzman, 1984) exemplar memory ap-
proach described above. For an implementation of the process of
extraction, we have chosen to use Parser, a chunking model
(Perruchet & Vinter, 1998). Although these implementation
choices are not arbitrary, they should not be taken as a claim that
these are the only possible implementations for an account of
statistical learning that combines extraction and integration. In-
stead, these choices were made because of the straightforward
manner in which it is possible to combine a chunking model with
an exemplar memory model: The chunks extracted via the process
of chunking are fed to long-term memory as the exemplars to be
integrated across. The novel contribution of this framework is not
an examination of a particular computational instantiation of the
processes of extraction and integration, but rather an exploration of
how these processes work in concert.

Benefits of a Chunking Model of Extraction

There are three advantages to a chunking model (as an imple-
mentation of the process of extraction) for the present framework:
Chunking provides an adequate fit to human performance in con-
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ditional statistical learning tasks; it does so without calculating
transitional probabilities; it can be combined easily with exemplar
memory models (our choice as an implementation of the process of
integration). A brief discussion of Parser (Perruchet & Vinter,
1998) will help to illustrate these points. Parser segments words
due to the effects of activation, decay, and interference. When
exposed to a sequence of syllables, Parser randomly groups them
into chunks. This grouping is thought to reflect the action of
attention; only those syllables that are simultaneously held in
attention are chunked. Over time, the activation of these chunks
decays unless the chunks are subsequently encountered again, in
which case their activation is increased. If a syllable within a
chunk occurs in a different chunk, the prior chunk suffers inter-
ference and loses activation. On average, words will be encoun-
tered more than spurious groupings across word boundaries (such
as tyba from pretty baby), so the effect of interference will be
comparatively larger for spurious groupings than for real words.
As the model receives more exposure to the language, the chunks
that are most active come to reflect the statistical structure of the
input, because the chunks that occur more often (i.e., words)
receive more activation, and decay less, than spurious groupings.

Chunking models provide a good fit to human data from word
segmentation tasks. Perhaps the most compelling point of conver-
gence between the chunking approach and human data is that
chunking models are constructing a set of potential word forms
(i.e., chunks). As discussed previously, this also appears to be what
human learners are doing during word segmentation tasks. For
example, segmentation appears to yield representations of the
segmented items as a single unit, as opposed to a set of associa-
tions of the elements (e.g., syllables) within the unit (Fiser &
Aslin, 2005; Giroux & Rey, 2009). Moreover, the items that are
learned in a segmentation task appear to be lexicalized, in that they
are potential labels for novel objects (Graf Estes et al., 2007;
Mirman et al., 2008). The fit between chunking models and human
performance suggests that Parser is a good starting point as a
computational instantiation of the process of extraction.

For the purposes of combining extraction with integration to
provide an account of cue-based statistical learning, Parser (Per-
ruchet & Vinter, 1998) has a second advantage: It segments
without calculating transitional probabilities. Transitional proba-
bilities describe the conditional relation between syllables (e.g.,
Aslin et al., 1998; Saffran et al., 1996). Transitional probability
models segment on the basis of these conditional relations, for
example, by inserting word boundaries at regions where the prob-
abilities fall below a certain threshold (e.g., Frank et al., 2010).
Because transitional probabilities are, by definition, only influ-
enced by the conditional relation between syllables, segmentation
via transitional probabilities is necessarily insensitive to phono-
logical regularities such as phonotactics, coarticulation, or lexical
stress (E. K. Johnson & Jusczyk, 2001). A model that segments via
transitional probabilities does not know, for example, that certain
phoneme pairs are much more likely to occur at word boundaries
than within a word; instead, it segments solely on the basis of the
likelihood that syllables co-occur. Because of this, theories of
segmentation that incorporate both phonological regularities and
transitional probabilities often do so using stages of processing.
First the speech stream is segmented by phonological regularities,
and then transitional probabilities are used to segment candidate
words from ambiguous regions of the input where phonological

regularities are uninformative (e.g., Mersad & Nazzi, 2011;
Shukla, Nespor, & Mehler, 2007).

By contrast, according to chunking models, learners are not
calculating transitional probabilities in order to segment speech.
Instead, the items that are extracted from speech are stored as a
function of activation, interference, and decay. Thus, from the
perspective of chunking accounts, statistical measures like transi-
tional probability are understood as a description of the statistical
structure of the input, but play no part in the process of learning.
To illustrate this point, consider backward and forward transitional
probabilities. Humans are sensitive to conditional relations in both
a forward-going (Batman predicts Robin) and a backward-going
(the does not strongly predict cat going forward, but cat has a
strong “backward prediction” to the) direction (e.g., Onnis &
Thiessen, in press; Peluchi, Hay, & Saffran, 2009). This is con-
sistent with the principles of a chunking model such as Parser. As
an example, if Parser has segmented an artificial language in such
a way that bapi is a candidate lexical item, this chunk suffers as
much interference from an item like balu (which lowers the
forward transitional probabilities of bapi) as it does from an item
like gopi (which lowers the backward transitional probabilities).
From a chunking perspective, sensitivity to transitional probability
in both directions arises naturally from interference (Perruchet &
Desaulty, 2008). Rather than attempting to calculate both the
forward-going and backward-going transitional probabilities (and
choosing a method to combine these different metrics), Parser
(Perruchet & Vinter, 1998) achieves segmentation by dint of
processes that do not require calculation of transitional probabili-
ties. This means that it may be possible for chunking models—
unlike transitional probability models—to achieve sensitivity to
phonological cues with the same process that yields sensitivity to
conditional relations (Perruchet & Tillmann, 2010).

Indeed, the fact that it is possible to achieve segmentation
without explicit computation of transitional probabilities has im-
portant implications. Although the experimental stimuli in statis-
tical learning experiments are often described in terms of transi-
tional probabilities, it is not clear what (if any) statistic is
responsible for learning in these experiments. Saffran et al. (1996)
were careful to note that transitional probability is only one of
many possible descriptive statistics, and does not necessarily map
onto the underlying computations of learners. Subsequent re-
searchers have attempted to determine what kinds of explicit
computations best capture learners’ sensitivity to statistical struc-
ture (e.g., Aslin et al., 1998; Frank et al., 2010). For example, some
authors have suggested that mutual information may better capture
learners’ statistical intuitions than transitional probabilities, be-
cause it captures the strength of the relationship between X and Y
in both forward-going and backward-going directions (e.g., Brent,
1999; Redington, Chater, & Finch, 1998). Chunking models side-
step this debate about the statistical computations underlying
learning, because they are not computing explicit statistics (Per-
ruchet & Vinter, 1998). Rather, from this perspective, sensitivity to
conditional statistical information arises from memory-based pro-
cesses such as activation, interference, and decay.

A final advantage of a chunking model such as Parser (Perruchet
& Vinter, 1998), with its emphasis on processes involved in
memory, is that it can be combined with a model of long-term
memory in a straightforward manner. One link between them is
that the chunks that arise from the process of extraction can be fed
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to long-term memory. There, the features that are consistent across
those chunks can be identified through the process of integration.
The knowledge that is accumulated in long-term memory can then
influence subsequent chunking. This is possible because chunking
does not depend on transitional probabilities to group and extract
elements from the input. Rather, it relies on attention, which can be
weighted toward different groupings as a function of prior expe-
rience (Perruchet et al., 2004). Parser’s incorporation of attention
as the mechanism that guides extraction means that it is flexible
enough to benefit from the information stored in long-term mem-
ory. This is critically important; some method of benefiting from
long-term memory is necessary for any successful combination of
the processes of extraction and integration.

Linking Extraction and Integration
Through Attention

In isolation, the process of extraction explains conditional sta-
tistical learning, and the process of integration explains distribu-
tional statistical learning. But neither process, alone, is able to
account for cue-based statistical learning: the fact that prior expe-
rience enables learners to identify phonological regularities and
use those regularities to constrain subsequent extraction (e.g.,
Lew-Williams & Saffran, 2012; Saffran & Thiessen, 2003; Thies-
sen & Saffran, 2007). By combining the processes of integration
and extraction in a single framework, we believe that it is possible
to explain cue-based statistical learning. This is possible because
both memory trace models (our choice for a computational imple-
mentation of integration) and chunking models (our choice for a
computational implementation of extraction) emphasize the role of
attention in learning. Memory trace models typically incorporate
differences in attentional weighting to explain increasing reliance
on more reliable cues (e.g., Griffiths & Mitchell, 2008; Kruschke,
2001). In the word recognition and phonetic structure acquisition
model (P. W. Jusczyk, 1993), for example, infants learn the fea-
tures of their language from exposure to the distribution of sounds
in their native language. On the basis of this distribution, the
learner’s attention is weighted toward features that occur across a
wide variety of memory traces. That is, the echoes that result from
probes of long-term memory traces guide the learner’s attention.
This leads infants to prefer the sound pattern of their native
language to the sound patterns of foreign languages (P. W. Jusc-
zyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993).

Chunking is similarly dependent on attention: Elements in the
input are only chunked together when they are simultaneously held
in attention. This raises the possibility that attention provides an
avenue via which the information stored in memory traces can
influence subsequent chunking behavior. Chunking models neces-
sarily incorporate attention, given the proposed centrality of atten-
tion to the ability to chunk. However, attention in these models is
often not explicitly simulated or does not behave in a systematic
manner. Parser is no exception in this regard. Attention in Parser
is deployed randomly, grouping together between one and three
perceptual primitives. To interface with a set of memory traces,
and to provide a better model of human learning, attention must
influence chunking in a more orderly fashion. This would be
possible if the distribution of attention (and thus, chunking) were
influenced by prior experience. For example, most content words
in English show word-initial stress (e.g., Cutler & Carter, 1987).

English speakers, and English-learning infants, eventually become
sensitive to this regularity and use it as a cue to subsequent word
segmentation (e.g., E. K. Johnson & Jusczyk, 2001; P. W. Jusczyk,
Cutler, & Redanz, 1993). Presently, Parser has no way of discov-
ering and taking advantage of this kind of information. But this
would be possible if Parser allowed similarity across prior chunks
to influence attention in subsequent chunking.

If attention behaved systematically in Parser, then the size of
chunks would not be entirely determined by chance. Instead,
Parser could develop a bias to deploy attention to maximize the
similarity between current chunks and prior exemplars. For exam-
ple, if Parser were learning English, the prototypical word would
be stress-initial. This is due to the fact that if Parser had success-
fully identified several words, any probe to long-term memory
would return an echo that conveys clear information only on those
features that were consistent across the majority of the (highly
active) traces. If Parser knew the words BAby, DOGgy, TAble, and
SHOE, the phonemic information would not be consistent across
traces, but the stress pattern would be consistent. A probe to a
lexicon like this would return an echo that is agnostic with re-
sponse to phonemic identity but strongly consistent with the pat-
tern that word-initial syllables are stressed. This could serve as a
signal to bias attention to begin a chunk on a stressed syllable.
Note that this approach provides a unified mechanism to explain
infants’ use of multiple different cues. Segmentation via condi-
tional statistical information and via lexical stress arises from
intimately related processes: chunking and the similarity across
chunks. This is in contrast to conceptualizations in which phono-
logical cues and “statistical” cues have been envisioned as com-
petitors, arising from different processes (e.g., E. K. Johnson &
Jusczyk, 2001; E. K. Johnson & Seidl, 2008).

This proposal about the effect of prior experience on attention is
qualitatively different from the effect of experience in the original
instantiation of Parser (Perruchet & Vinter, 1998). In Parser’s
original architecture, experience served to make chunks longer, as
larger and larger segments of the input can be chunked as percep-
tual primitives. In our conception, prior experience helps to con-
strain the nature of chunks and makes them more similar to those
chunks that have been previously experienced. Indeed, this warp-
ing of chunks toward prior experience is necessary to account for
the fact that segmentation is influenced by the word-likeness of
potential word forms in a speech stream. Boundary-finding models
account for this by allowing several cues, such as stress and
phonotactics, to influence the location of word boundaries (e.g.,
Christiansen et al., 1998). Parser can account for this phenomenon
if chunks are constrained to be wordlike (i.e., to respect acoustic
regularities) as demonstrated by Perruchet and Tillmann (2010).
Perruchet and Tillmann altered Parser such that chunks were
constrained to match estimates of wordlikeness (such that wordlike
segments were more likely to be initially chunked). This proposal
is similar to our framework, with one important exception: In
Perruchet and Tillman’s extension of Parser, ratings of wordlike-
ness are entered directly into the chunking algorithm. In our
framework, learning about wordlikeness occurs from the experi-
ence of chunking itself. In that way, the learner’s prior experience
influences what they are likely to chunk in the future.

The effect of prior experience on attention is applicable to a
wide variety of cues, including lexical stress and phonotactics. If
one of the sequences in the speech stream matches a previously
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experienced chunk, then that memory is activated most strongly
and guides segmentation (e.g., Bortfeld, Morgan, Golinkoff, &
Rathbun, 2005). If the speech stream contains novel words, no
single trace is predominantly activated. Novel incoming speech
activates many or all of the traces in memory, graded by the
similarity of the input to prior chunks (e.g., Goldinger, 1998).
Elements of those words that conflict cancel each other out, and
only the information that is consistent across words is returned
from long-term memory (e.g., Hintzman, 1984). In the case of
stress, this highlights a word (or chunk) initial cue. But the inter-
action between traces and chunking can just as easily identify cues
to word-final position. Consider an infant who has previously
chunked the lexical forms typing, singing, laughing, and kissing.
Upon being presented with the novel string jumping jack, the
infant should avoid the segmentation jump ingjack. The infant’s
prior experience with ing is activated by the presentation of the
novel string jumping jack. Those prior experiences contradict on
many, if not most features, but consistently indicate that ing occurs
in chunk-final position in the infant’s lexicon. Components of the
input are only chunked together if they are attended simultane-
ously, so the ability of prior experience to guide attention is
crucial.

As these examples indicate, a synthesis between chunking and
memory trace models allows for segmentation to adapt to the
characteristics of the native language. Neither chunking nor mem-
ory trace models alone are capable of simulating cue-based statis-
tical learning (though as Perruchet and Tillmann, 2010, demon-
strate, chunking models can be sensitive to acoustic cues—but in
that formulation, Parser has no way of learning cues), whereas in
combination they can do so. Early in learning, chunking proceeds
largely in the absence of strategic or cue-based learning. However,
the candidate words that are discovered via chunking contain
potential acoustic cues to word boundaries. These chunks (with
embedded cues) are fed to long-term memory, allowing for detec-
tion of similarity across chunks. To the extent that these chunks
correspond to words, and to the extent that there are acoustic cues
correlated with word boundaries, memory trace models are capable
of discovering the acoustic features of the input that predict word
boundaries. Then these features can be used to bias attention in
the chunking process, leading to subsequent chunkings that are
more likely to match the acoustic characteristics of prior words
(e.g., stress or phonotactic patterns). Although there is much
computational work to be done to flesh out this framework, the
combination of chunking and memory trace models presents the
potential to incorporate a far wider range of statistical learning
phenomena than any prior model.

Additional Benefits of a Synthesized Framework

In addition to providing a mechanistic account for cue-based
statistical learning, the synthesis of chunking and exemplar mem-
ory models has a secondary benefit: It may bring chunking models
into better alignment with human performance in statistical learn-
ing tasks. Although chunking models have been largely successful
in simulating conditional statistical learning, there are some phe-
nomena that present difficulties for chunking models. Pairing
chunking with long-term memory processes may alleviate some of
these difficulties. Without a fully specified computational model, it
is impossible to exhaustively demonstrate an advantage for this

framework in comparison to chunking models in isolation. Nev-
ertheless, there are conditional statistical learning phenomena that
suggest our framework may be a better fit to human performance
than chunking models in isolation.

For example, one conditional learning phenomenon that pres-
ents difficulty for chunking in isolation is the endorsement of
illusory words. The compelling nature of illusory words was
demonstrated by Endress and Mehler (2009), who familiarized
participants with a language containing trisyllabic words that were
each generated from a “prototype” word from which they differed
by a single syllable (e.g., the prototype kofuta might spawn the
words kobita, lifuta, and kofuno). The prototype word was never
presented in the language; only the subsidiary words that differed
from the prototype were presented to participants. After exposure,
participants were able to distinguish words they heard from foil
items with low-transitional probabilities. However, they selected at
chance between words that actually occurred in the exposure and
the prototypical words that they had never heard. This suggests
that exposure to the exemplars (clustered around the prototype in
similarity space) enabled participants to form a representation of
the prototype even though they never heard it (e.g., Bomba &
Siqueland, 1983).

Parser does not account for prototype formation. But exemplar
memory models are perfectly suited to capture this phenomenon.
For example, in MINERVA 2 (Hintzman, 1984) the words from
the language would be represented as feature vectors. Assuming
that the words have been segmented successfully from the lan-
guage—due, from our perspective, to the process of chunking—
any test item that overlaps with the feature vectors will activate
those memories. Because all of the words generated from the
prototype are equally similar to the prototype (all differ from it by
one syllable), any test trial on which the prototype occurs will
activate all of the prototype-generated words equally. The memory
trace that is returned from a probe of the prototype will sum across
all of the prototype-generated words. Information that is inconsis-
tent across the words (the single syllable changed from the proto-
type) will be inconsistent across these memory traces, and thus
cancel out. But the information that is consistent—the components
of the words that are consistent with the prototype—will be
strongly active. In this way, exemplar memory models react as
though they have previously experienced the prototype, even
though it has never been presented. Unlike naïve chunking models,
chunking models that feed into an exemplar memory system that is
sensitive to similarity can account for verification of “illusory”
prototype words.

A similar problem (for accounts of statistical learning in which
chunking operates in isolation) is presented by evidence that
learners are able to detect conditional regularities across category
members, rather than individual exemplars. The most striking
demonstration of this is an experiment by Brady and Oliva (2008),
in which participants saw a series of images (presented sequen-
tially) with strong conditional relations between certain categories
of images; for example, the category kitchen might predict the
category office. Importantly, each exemplar of a category (i.e.,
each unique image) was only seen once. Chunking models such as
Parser (Perruchet & Vinter, 1998) have no natural way to identify
the category-level conditional relations, because these models are
extracting and storing previously seen exemplars. Because no
exemplar is ever reexperienced, none of the stored chunks would
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be informative. However, the process of integration involves com-
parison across exemplars, highlighting consistent information (in
this case, category membership). Once this comparison occurs and
learners discover the category-level regularity, it is possible to
identify the conditional relation among the categories.

Summary

In isolation, neither the process of extraction nor the process of
integration can provide a complete account of statistical learning.
Without sensitivity to similarity, and the ability to compare across
exemplars, extraction provides no explanation of how categorical
structure is learned. Conversely, integration provides no explana-
tion of how exemplars are segmented from the input, and models
of integration—such as memory trace models (e.g., Hintzman,
1984; McClelland & Rumelhart, 1985)—often assume that the
input for learning has previously been segmented by some other
process (e.g., P. W. Jusczyk, 1993). The partial nature of each
solution is illustrated by the combination of chunking and memory
trace models we have chosen to instantiate extraction and integra-
tion. Separately, trace memory models and chunking models can
each account for different aspects of statistical learning. Both kinds
of models are based on general principles of memory, but neither
model alone is complete.

The benefit of combining the processes of extraction and inte-
gration in a single approach is straightforward. Unlike prior ac-
counts, the framework we have proposed can account for all three
aspects of statistical learning: conditional, distributional, and cue
based. Of course, integrating these processes into a computational
model (as opposed to a verbal framework) presents a number of
computational challenges. First, information must be encoded in
some format that is sensitive to similarity. This is standard in
memory trace approaches but would require changes to many
extant models of extraction, such as chunking models. Second, the
distributional characteristics of chunks stored in long-term mem-
ory must serve to guide subsequent extraction. In the combination
of exemplar memory models and chunking that we have outlined,
this would be done because prior experience would bias attention
during the formation of chunks. On this account, conditional
statistics are detected via chunking, mediated by attention and
working memory limitations. Distributional statistics arise due to
the accretion of exemplars in long-term memory, and the distri-
butional characteristics of those exemplars. Cue-based statistical
learning occurs when the distributional characteristics of the
chunks in long-term memory influences attention during subse-
quent chunking.

This account is not fully specified, but it possesses a number of
advantages even so. First and foremost, our framework unifies
sensitivity to conditional statistics with distributional and cue-
based statistical learning. As such, it encompasses a wider range of
phenomena than most prior models of statistical learning, which
have primarily been limited to conditional statistical learning. This
approach broadens statistical learning beyond word segmentation
and suggests ways in which modeling of statistical learning can
incorporate phenomena such as syntactic learning. Our mechanism
of comparing across prior memory traces has natural connections
to previous work in syntactic learning involving item-based or
frame-based learning (e.g., MacWhinney, 1982; Mintz, 2003).
Second, this framework is based on the characteristics of human

memory. This potentially provides an avenue to integrate the
literature on statistical learning with the literature on implicit
learning more generally. Finally, the framework that we have
proposed in this review is consistent with compelling evidence that
statistical learning results in discrete, chunklike representations
(e.g., Graf Estes et al., 2007; Orbán et al., 2008).

Conclusion

The benefit of any theoretical account is not only its ability to
account for previously observed data in a different way than
previous accounts but also its ability to make novel predictions.
The extraction and integration framework we have outlined does
so in a variety of different domains. Here, we highlight one
particular domain—word segmentation—that has been particularly
important in research on statistical learning. Doing so will illumi-
nate how the extraction and integration framework incorporates a
wider range of data than previous accounts, does so in a unique
manner, and yields new predictions about statistical learning. As
before, we describe this framework using a chunking model and an
exemplar memory model as the specific computational implemen-
tations of extraction and integration.

How Development and Experience Alter Word
Segmentation

From our perspective, sensitivity to both statistical and phono-
logical cues is due to intimately related processes. Previously
identified chunks (extracted via conditional statistical learning)
provide the opportunity to discover acoustic regularities (identified
via distributional statistical learning) that can alter subsequent
learning. This suggests that the very earliest form of word seg-
mentation is due to universal cues, such as those provided by
utterance boundaries (e.g., Seidl & Johnson, 2006) and statistical
coherence in the speech stream (e.g., Thiessen & Saffran, 2003).
But learning should quickly adapt to the characteristics of the
native language as infants discover word forms that provide them
with information about the acoustic regularities in their linguistic
environment (Thiessen & Saffran, 2007).

Note that from this perspective, the central mechanisms of
statistical learning do not change across development. Develop-
mental differences in statistical learning (e.g., Howard & Howard,
2001; Hudson Kam & Newport, 2005) are due to changes in
factors that are peripheral to these mechanisms (Thompson-Schill,
Ramscar, & Chrysikou, 2009). Many of these factors are altered by
both maturation and prior experience. For example, even very
young infants are sensitive to the distinction between stressed and
unstressed syllables (e.g., P. W. Jusczyk & Thompson, 1978). But
it is only after extensive experience with English that infants begin
to use stress as a cue to word segmentation (e.g., Jusczyk, Houston,
& Newsome, 1999). Curtin et al. (2005) argue that this is due to the
fact that infants’ experience with the language makes stress a much
more salient part of their representation of speech. From our
perspective, prior experience does not exert a direct effect on
statistical learning, because experience is not a mechanism in and
of itself. Instead, prior experience influences a learner’s perception
and attention in ways that determine which aspects of the stimulus
are represented in working memory and long-term memory.

The hypothesis that word segmentation begins with the ability to
chunk items from the input suggests that word segmentation
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should begin early in life, as the ability to chunk is presumably an
early developing one depending largely on memory. This is in-
consistent with the common citation of 7 months as the earliest age
at which infants are capable of segmenting words from fluent
speech (e.g., E. K. Johnson & Seidl, 2008; P. W. Jusczyk & Aslin,
1995). It may be that this inconsistency can be resolved. There is
evidence that word segmentation begins much earlier than 7
months, at least in some situations. The Jusczyk and Aslin exper-
iments likely underestimated infants’ word segmentation abilities.
In those experiments, children were exposed to only 12 tokens of
each word. In subsequent experiments, including some that have
demonstrated segmentation earlier than 7 months of age (e.g.,
Thiessen & Saffran, 2003), infants have been exposed to many
more tokens of each word, which facilitates segmentation (e.g.,
Saffran et al., 1996; Thiessen, Hill, & Saffran, 2005). As such, the
question of when infants first begin to be able to segment words
from fluent speech remains open.

Moreover, when presented with input where the chunking prob-
lem is simplified, infants may be able to succeed at a very young
age. The first simplification that can help infants chunk is the
presence of pauses at the beginning and ending of utterances (e.g.,
Seidl & Johnson, 2006). These pauses serve as a natural indication
of the beginning and end of a chunk, which increases the likeli-
hood that infants’ early chunks will have at least some correspon-
dence with word boundaries. The second simplification that can
help infants chunk is an unambiguous statistical structure. In
natural languages, occurrences of words are often widely spaced,
and perceptual primitives occur in many different words. Both of
these factors increase the difficulty of finding wordlike chunks in
the input (e.g., Perruchet & Vintner, 1998). When presented with
simplified input, infants are capable of benefiting from statistical
structure at a much younger age (e.g., Kirkham et al., 2002). Thus,
the use of chunking as a mechanism of extraction predicts that
infants can segment words from fluent speech from a very age, so
long as they are provided with simplified input. Note that both of
these simplifications are available cross-linguistically and that
infants can benefit from them without any prior knowledge of the
structure of the language. If this account is correct, even very
young infants should show some ability to segment lexical forms
from fluent speech if the input has appropriate pauses (e.g., Seidl
& Johnson, 2006) or a clear statistical structure (e.g., Onnis,
Christiansen, Chater, & Gómez, 2003).

Early in the process of extracting a lexicon from the input, then,
infants depend on cues that are available cross-linguistically:
pauses, words presented in isolation, and unambiguous statistical
structure. The words that they discover from these early cues may
provide an important database from which to extract linguistic
regularities relevant to word segmentation (e.g., Thiessen & Saf-
fran, 2003). Likely the first piece of information infants can use is
the presence of familiar words in the speech stream (e.g., Bortfeld
et al., 2005). Previously known chunks provide an anchor for
chunking subsequent information in much the same way as
utterance-initial pauses (Perruchet et al., 2004). That is, for an
infant who already knows baby, the phrase “baby bottle” now
presents a much easier segmentation than it does for an infant who
has previously chunked neither word. Additionally, experience
with the language provides an infant with information about many
other language-specific acoustic cues to word boundaries, includ-
ing stress (e.g., E. K. Johnson & Jusczyk, 2001) and phonotactics

(Mattys, Jusczyk, Luce, & Morgan, 1999). This adaptation to the
native language may explain why younger infants fail to segment
words from fluent speech when given the same amount of input as
older infants (e.g., P. W. Jusczyk & Aslin, 1995).

The effect of prior experience on attention is applicable to a
wide variety of cues, including lexical stress and phonotactics. If
one of the sequences in the speech stream matches a previously
experienced chunk, then that memory is activated most strongly
and guides segmentation (e.g., Bortfeld et al., 2005). If, however,
the speech stream contains novel words, then no single prior
memory trace is strongly activated. Instead, multiple traces are
activated to a degree depending on their similarity to the input.
Thus, the features that are consistent across the majority of previ-
ous words come to guide segmentation (e.g., Hintzman, 1986;
Thiessen & Pavlik, in press). For infants learning English, the
majority of words they know are likely to be stressed on their first
syllable (e.g., Cutler & Carter, 1987). Novel incoming speech
activates many or all of these words, depending on the similarity
of the input to prior chunks (e.g., Goldinger, 1998). Elements of
those words that conflict cancel each other out, and only the
information that is consistent across words is returned from long-
term memory (e.g., Hintzman, 1984). In this case, novel incoming
speech activates the knowledge that words are stressed on their
first syllable, and this serves to guide subsequent chunking behav-
ior. Attention is distributed across time in such a way that stressed
syllables mark the onset of candidate chunkings.

Increased native-language experience typically means that older
infants will be more successful in segmenting fluent speech than
younger learners (e.g., P. W. Jusczyk & Aslin, 1995). However,
this is not always the case. When infants are presented with speech
that violates the regularities they have learned from their prior
experience, older infants will perform worse than younger infants
(e.g., Thiessen & Saffran, 2003). This is because older infants are
reliant on the similarity structure in previously identified lexical
forms and will mis-segment the input. For example, 9-month-olds
presented with a stream of speech in which words are segmented
on the second syllable (as in the phrase guiTAR is) will mistakenly
treat the stressed syllable as the onset of a chunk (e.g., E. K.
Johnson & Jusczyk, 2001). Younger infants, who have not yet
identified the acoustic regularity, will chunk randomly and even-
tually identify the statistical structure of the input (e.g., Thiessen &
Saffran, 2003). As such, familiarity with the acoustic regularities
in lexical forms is a double-edged sword. It allows for faster, more
efficient learning in input where the input follows the regularities
that the infant has previously learned. Instead of chunking ran-
domly, the infant’s first candidate segmentations of the stream
follow the regularities of the language, and are thus more likely to
be correct. However, when the learner is placed in an environment
that violates the regularities they have learned, learning will be
slow or inaccurate (e.g., Finn & Hudson, 2008).

This proposed account has the advantage of integrating several
phenomena previously seen as distinct. Many accounts of word
segmentation have treated acoustic regularities as being in com-
petition with statistical regularities, such that infants might choose
to focus on one or the other (e.g., E. K. Johnson & Seidl, 2008).
Similarly, some theories have suggested that words in isolation
might be sufficient for identifying a lexicon or for identifying
regularities among words in isolation, such that statistical learning
(read as sensitivity to transitional probabilities) is never necessary
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for learning in the infants’ natural environment (e.g., Brent &
Siskind, 2001; E. K. Johnson & Jusczyk, 2001). From our per-
spective, all of these phenomena arise from the operation of the
same central processes. Words in isolation are preferentially chun-
ked, because pauses provide a strong cue to group elements within
(and not across) pause boundaries. Sensitivity to regularities such
as stress arises due to the similarity structure of previous chunks
influencing subsequent chunking. And sensitivity to the statistical
structure measured by transitional probabilities arises due to ubiq-
uitous processes of decay and interference in chunking (e.g.,
Perruchet & Vinter, 1998).

Comparison to Other Accounts

The most obvious distinction between our framework and other
models of statistical learning is that most other theoretical accounts
of statistical learning have solely attempted to explain conditional
statistical learning (e.g., Frank et al., 2010; Gambell & Yang,
2004; Perruchet & Vinter, 1998). Our framework is different from
these in that in addition to accounting for the extraction (condi-
tional statistical learning), it encompasses integration (distribu-
tional statistical learning). Even if we limit the scope of compar-
ison to conditional statistical learning, however, our framework
differs from many other accounts. Our framework falls squarely
within the tradition of clustering models of statistical learning,
because one of the core principles of the account is that learners
are extracting and storing discrete representations (e.g., words)
from continuous input. Most connectionist models of word seg-
mentation, by contrast, can be characterized as boundary-finding
models (e.g., Christiansen et al., 1998; Gambell & Yang, 2004).
These models learn to predict the next element in a sequence on
the basis of previous elements (e.g., Elman, 1990). Word bound-
aries are identified as regions where the next prediction is poor. It
should be noted, though, that although many connectionist net-
works are boundary finding, this does not mean that all connec-
tionist networks are boundary finding. It is possible to create a
connectionist network that extracts word forms or even that rep-
resents discrete units in much the same way as chunking models
(e.g., Boucher & Dienes, 2003).

A second important contrast between this framework and many
(though certainly not all) models of conditional statistical learning
is that this framework does not rely on the calculation of transi-
tional probabilities for segmentation. From our perspective, tran-
sitional probabilities are a useful descriptor of the statistical struc-
ture of the input, but they do not guide learning. Instead, learning
occurs due to the competition between potential groups (e.g.,
competition between words and spurious groupings of syllables
that occur across word boundaries) in the process of extraction.
This allows factors other than conditional relations, especially
perceptual cues to grouping, to influence which items are extracted
from continuous input. Transitional probabilities are incapable of
incorporating other sources of information; by definition, they are
only sensitive to the conditional relations between syllables (e.g.,
Aslin et al., 1998). As such, theories that seek to incorporate
transitional probabilities and phonological cues to segmentation
tend to do so in a stagelike manner, where phonological cues are
used in one stage and transitional probabilities in another (e.g.,
Mersad & Nazzi, 2011; Shukla et al., 2007). Our framework, by

contrast, suggests that sensitivity to conditional and perceptual
cues are incorporated into the same process of extraction.

Beyond the characterization of the processes underlying condi-
tional statistical learning, the framework outlined in this review is
distinct in that it attempts to encompass a wider range of statistical
learning phenomena than prior accounts: not just sensitivity to
conditional probabilities, or exemplar distribution, or cue learning,
but all three. In this regard, the most similar model to the account
we have laid out in this review is StaGe model (Adriaans & Kager,
2010). The StaGe model invokes two processes: sensitivity to
conditional probabilities (implemented via observed/expected
probabilities, a statistic closely related to mutual information) and
generalization. Generalization allows the model to make predic-
tions about segmentation of novel words on the basis of phonot-
actic patterns in the lexicon. These generalizations are governed by
principles derived from optimality theory, such that the likeliest
generalization (absent other evidence) is the one that violates the
fewest constraints. In this way, the model uses the words that it
segments (via probability) as a basis for generalizing about the
phonotactic structure of the input.

Despite the similarity in scope between the StaGe (Adriaans &
Kager, 2010) model and our perspective, there are two important
differences. First, the StaGe model uses a boundary-finding model
to achieve segmentation (via observed/expected probabilities),
whereas our framework depends on a clustering approach, one that
extracts candidate word forms into a proto-lexicon. Second, the
StaGe model achieves generalization through reference to optimal-
ity theory (e.g., Prince & Smolensky, 1997). This has the advan-
tage of being a more formal—and thus better constrained—pro-
posal than our use of similarity across exemplars. However, it also
renders the StaGe model explicitly linguistic: The processes that
govern generalization in language should be different than the
processes that govern generalization for nonlinguistic stimuli. By
contrast, though similarity is not operationalized in our proposal,
our perspective suggests that the same process should govern
generalization across domains: comparing the present instance
with prior exemplars on the basis of similarity. This is, of course,
a distinction that is susceptible to empirical testing. Indeed, recent
results suggest that at least some forms of linguistic generaliza-
tions are due to domain-general processes of similarity, rather than
domain-specific constraints (e.g., Thiessen, 2011a).

Novel Predictions and Next Steps

By combining conditional and distributional learning, the ex-
traction and integration framework accounts for a wider range of
statistical learning phenomena than prior accounts. To do so, the
framework invokes a set of processes and specifies the way they
interact. In addition to providing a new explanatory framework for
statistical learning, this account leads to a set of novel predictions.
Identifying some of these predictions will help to better explicate
the framework as well as indicate some of the ways in which it
might be falsifiable. To do so, we discuss two sets of predictions:
one relating to the role of attention in individual differences in
conditional statistical learning and the other relating to the discov-
ery of prototypical elements among sequentially presented stimuli.

Although statistical learning is often described as a kind of
incidental or implicit learning (e.g., Perruchet & Pacton, 2006;
Saffran, Newport, Aslin, Tunick, & Barrueco, 1997), this should
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not be taken to mean that statistical learning can proceed in the
absence of attention. A variety of converging evidence indicates
that attention is important, even necessary, for statistical learning.
Infants identify statistical structure more successfully in stimuli to
which they are more likely to attend (Thiessen et al., 2005). Baker
et al.z(2004) found that adults presented with visual displays were
only able to detect conditional relations among elements to which
they attended. Similarly, when adults are distracted by a secondary
task, they fail to detect the conditional relations in a to-be-
segmented language (Toro, Sinnett, & Soto-Faraco, 2005). Even
though statistical learning occurs in the absence of learners’ intent
to discover statistical patterns (e.g., Fletcher et al., 2005), some
degree of attention to the input is necessary for learning.

Our framework provides a natural way to account for this
effect of attention. From our perspective, consistent with
chunking models (e.g., Perruchet & Vinter, 1998), the process
of extraction involves the binding together of elements of the
input into a discrete representation. That cannot occur unless
the elements are held simultaneously in attention. This leads to
a series of predictions about the process of conditional statis-
tical learning. One is that conditional relations involving more
salient elements in the input—the elements that are most likely to
attract attention —should be learned more quickly than conditional
relations involving less salient elements. This prediction is consistent
with anecdotal observations about conditional statistical learning
(e.g., Hayes & Clark, 1970) but has not been extensively tested. A
second prediction is that attention may serve to mediate individual
differences in statistical learning. Learners who are better able to
maintain attention and resist distraction should be able to extract
items (such as words) from the input more successfully than
learners who have more difficulty maintaining attention. Individ-
ual differences in attention are likely to have the largest effect in
childhood, when executive control is developing, leading to rela-
tively larger individual differences. Although these predictions
have yet to be assessed, the extraction and integration framework
clearly suggests that the items learners extract from the speech
stream may not perfectly reflect the statistical structure of the
input; instead, extraction is influenced by extra-statistical factors
such as attention.

In much the same way that the extraction and integration frame-
work predicts that learners’ representations may not perfectly
reflect the conditional statistical structure of the input, the frame-
work predicts that it should be possible to observe distortions of
the distributional statistical structure of the input. This prediction
arises from the framework’s method of combining conditional and
distributional statistics: Distributional statistics are computed over
the items extracted from the input. If an item is never extracted
from the input, it will not influence the learner’s emerging sense of
the central tendency and variation of the distributional structure of
the input. That is, learners may miss some aspect of the distribu-
tional structure of the input by failing to extract a portion of the
input. If this is the case, it should be possible to influence a
learner’s representation of distributional information by making
some items easier to extract, and other items more difficult.

As an example, consider Endress and Mehler’s (2009) demon-
stration that exposure to a set of words leads to the representation
of a “prototype” word that has never been seen. After exposure to
words like kobita, lifuta, and kofuno, participants endorse kofuta as
familiar, even though they have not previously heard it. The

extraction and integration framework predicts that the endorse-
ment of this prototype is critically dependent on the extraction of
the individual words. Only when the words have been extracted
can learners compare across them, and integrate their information
in such a way that the central tendency (i.e., the prototype word)
becomes apparent. One way to affect the ease with which these
words are extracted would be to insert pauses within words (e.g.,
between the first and second syllable of each word). Another
possibility would be to alter the coarticulatory cues such that the
first and second syllables of each word sound as though they are
from different utterances. Either kind of acoustic cue would lead
learners to segment part-words (such as bitali or futako), rather
than words, from the speech stream (e.g., E. K. Johnson & Jusc-
zyk, 2001). We predict that this would inhibit the representation of
a prototype word, because the items that learners would integrate
across (the part-words they have extracted) do not have a consis-
tent prototypical structure. Importantly, this result would demon-
strate a difference even though the statistical structure of the input
is identical to the statistical structure of input without acoustic
cues. Such a result would be consistent with our framework’s
prediction that rather than creating a prototypical representation by
directly accessing the statistical structure of the input, the proto-
type is critically dependent on the items learners extract from the
input.

Although we have primarily focused on how this framework
relates to statistical learning in the domain of word segmentation,
it is intended to apply much more broadly. One natural, linguisti-
cally relevant extension of this framework is to assess its fit to
learning syntactic regularities. One critique of statistical learning
approaches to language is that statistical learning may be unable to
account for learning of syntactic patterns (e.g., Marcus, 2000;
Marcus & Berent, 2003). For example, although the relevant units
for word segmentation are speech sounds that are directly percep-
tible in the input, the relevant units for discovering syntactic
regularities are categories—such as noun and verb—that are not
directly available. As such, any statistical learning approach to
syntactic learning must incorporate a mechanism for learning
about these categories from the exemplars (i.e., word forms) in the
input, which should tap into the same processes that we have
termed distributional statistical learning. Learning of syntactic
regularities is a domain in which sensitivity to conditional and
distributional statistical learning need to be examined in concert
(e.g., Thompson & Newport, 2007), and therefore provides an
intriguing test of the principles underlying the extraction and
integration framework. For example, one prediction of this frame-
work is that the same mechanisms that underlie word segmentation
underlie syntactic learning, and therefore learning at one level of
language should influence learning at other levels (e.g., Onnis &
Thiessen, in press).

Summary and Conclusion

The goal of this framework is twofold: first, to outline the range
of statistical learning phenomena beyond conditional statistical
learning and, second, to explore the possibility of synthesizing all
of these phenomena into a unified account. With respect to the first
goal, we have suggested two additional kinds of accomplishments
to which the term statistical learning is routinely applied. One is
learning based on a distribution of exemplars (e.g., Maye et al.,
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2002; Thiessen, 2011b; Thiessen & Yee, 2010). The other is
learning to identify perceptual cues to aspects of the statistical
structure of the input that are not directly perceptible, such as word
boundaries (e.g., Saffran & Thiessen, 2003; Thiessen & Saffran,
2007). These different aspects of statistical learning have rarely
been considered in totality. Most modeling and theorizing about
statistical learning has been focused on conditional statistical
learning. Importantly, our framework posits that these types of
learning are linked by more than a label. We believe that a
satisfactory approach to statistical learning should integrate all
three aspects of statistical learning. Doing so enriches our under-
standing of the processes underlying statistical learning.

We propose that a complete account of statistical learning
must incorporate two interdependent processes: one that ex-
tracts statistically coherent items from the input and one that
compares and integrates information across those items. The
extracting process (which we have described in terms of chunk-
ing) is responsible for sensitivity to conditional relations in the
input. The process of integration (which we have described in
terms of an exemplar memory model) enables sensitivity to
distributional information. Additionally, the process of compar-
ison allows for learning of cues related to statistical structure
(such as cues to word boundary), allowing the process of
extraction to adapt to the characteristics of the input (e.g., the
phonological characteristics of a native language). These two
processes map onto different aspects of memory. Chunking is
dependent on working memory, whereas comparison across
previously extracted chunks depends on long-term memory.
Unlike most prior models of statistical learning, which are
focused solely on conditional statistical learning (e.g., Chris-
tiansen et al., 1998; Frank et al., 2010), our framework incor-
porates both forms of human memory, allowing it to encompass
a much wider range of statistical learning phenomena.

In the past decade, research on statistical learning has ex-
panded dramatically from its original focus on word segmen-
tation. Despite this expansion, however, virtually all of the
models advanced to explain statistical learning have focused on
conditional statistical learning (e.g., Goldwater et al., 2009;
Orbán et al., 2008; Perruchet & Vinter, 1998). The extraction
and integration framework moves beyond the focus on condi-
tional statistical learning by combining conditional statistical
learning with distributional statistical learning. From this per-
spective, sensitivity to statistical structure in the input arises
from processes that are integral to memory such as decay,
activation, and interference. Although this framework is not a
fully specified computational model, and developing such a
model is an important challenge, it does have a set of important
strengths. It encompasses a wider range of statistical learning
phenomena than previous accounts. It provides a framework for
statistical learning that does not require explicit computation of
conditional or distributional statistics, rendering it psychologi-
cally plausible and consistent with accounts of implicit learning
more generally (e.g., Boucher & Dienes, 2003; Reber, 1967).
Finally, it provides a way of describing how learners move from
a reliance on statistical structure to adapting to the perceptual
characteristics of the input, such as the discovery of acoustic
cues to word segmentation.

References

Adriaans, F. C., & Kager, R. (2010). Adding generalization to statistical
learning: The induction of phonotactics from continuous speech. Journal
of Memory and Language, 62, 311–331. doi:10.1016/j.jml.2009.11.007

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of
conditional probability statistic by 8-month-old infants. Psychological
Science, 9, 321–324. doi:10.1111/1467-9280.00063

Baker, C. I., Olson, C. R., & Behrmann, M. (2004). Role of attention and
perceptual grouping in visual statistical learning. Psychological Science,
15, 460–466. doi:10.1111/j.0956-7976.2004.00702.x

Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting
dynamic human action via statistical structure. Cognition, 106, 1382–
1407. doi:10.1016/j.cognition.2007.07.005

Bomba, P. C., & Siqueland, E. R. (1983). The nature and structure of infant
form categories. Journal of Experimental Child Psychology, 35, 294–
328. doi:10.1016/0022-0965(83)90085-1

Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. (2005).
Mommy and me: Familiar names help launch babies into speech-stream
segmentation. Psychological Science, 16, 298–304. doi:10.1111/j.0956-
7976.2005.01531.x

Boucher, L., & Dienes, Z. (2003). Two ways of learning associations.
Cognitive Science, 27, 807–842. doi:10.1207/s15516709cog2706_1

Brady, T. F., & Oliva, A. (2008). Statistical learning using real-world
scenes: Extracting categorical regularities without conscious intent. Psy-
chological Science, 19, 678–685.

Brent, M. R. (1999). Speech segmentation and word discovery: A compu-
tational perspective. Trends in Cognitive Sciences, 3, 294–301. doi:
10.1016/S1364-6613(99)01350-9

Brent, M. R., & Siskind, J. (2001). The role of exposure to isolated words
in early vocabulary development. Cognition, 81, B33–B44. doi:10.1016/
S0010-0277(01)00122-6

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive
Psychology, 4, 55–81. doi:10.1016/0010-0285(73)90004-2

Chomsky, N. (1980). Rules and representations. New York, NY: Columbia
University Press. doi:10. 1017/S0140525X00001515

Chomsky, N., & Halle, M. (1968). The sound pattern of English. New
York, NY: Harper & Row.

Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998). Learning to
segment speech using multiple cues: A connectionist model. Language
and Cognitive Processes, 13, 221–268. doi:10.1080/016909698386528

Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008).
Perception of speech reflects optimal use of probabilistic speech cues.
Cognition, 108, 804–809. doi:10.1016/j.cognition.2008.04.004

Conway, C. M., & Christiansen, M. H. (2006). Statistical learning within
and between modalities. Psychological Science, 17, 905–912. doi:
10.1111/j.1467-9280.2006.01801.x

Creel, S. C., Newport, E. L., & Aslin, R. N. (2004). Distant melodies:
Statistical learning of nonadjacent dependencies in tone sequences.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 30, 1119–1130. doi:10.1037/0278-7393.30.5.1119

Curtin, S., Mintz, T. H., & Christiansen, M. H. (2005). Stress changes the
representational landscape: Evidence from word segmentation. Cogni-
tion, 96, 233–262. doi:10.1016/j.cognition.2004.08.005

Cutler, A., & Carter, D. M. (1987). The predominance of strong initial
syllables in the English vocabulary. Computer Speech & Language, 2,
133–142. doi:10.1016/0885-2308(87)90004-0

Cutler, A., & Norris, D. (1988). The role of strong syllables in segmenta-
tion for lexical access. Journal of Experimental Psychology: Human
Perception and Performance, 14, 113–121. doi:10.1037/0096-1523.14
.1.113

Dougherty, T. M., & Haith, M. M. (2002). Infants’ use of constraints to
speed information processing and to anticipate events. Infancy, 3, 457–
473. doi:10.1207/S15327078IN0304_03

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

811A MEMORY-BASED APPROACH TO STATISTICAL LEARNING

http://dx.doi.org/10.1016/j.jml.2009.11.007
http://dx.doi.org/10.1111/1467-9280.00063
http://dx.doi.org/10.1111/j.0956-7976.2004.00702.x
http://dx.doi.org/10.1016/j.cognition.2007.07.005
http://dx.doi.org/10.1016/0022-0965%2883%2990085-1
http://dx.doi.org/10.1111/j.0956-7976.2005.01531.x
http://dx.doi.org/10.1111/j.0956-7976.2005.01531.x
http://dx.doi.org/10.1207/s15516709cog2706_1
http://dx.doi.org/10.1016/S1364-6613%2899%2901350-9
http://dx.doi.org/10.1016/S1364-6613%2899%2901350-9
http://dx.doi.org/10.1016/S0010-0277%2801%2900122-6
http://dx.doi.org/10.1016/S0010-0277%2801%2900122-6
http://dx.doi.org/10.1016/0010-0285%2873%2990004-2
http://dx.doi.org/10.1080/016909698386528
http://dx.doi.org/10.1016/j.cognition.2008.04.004
http://dx.doi.org/10.1111/j.1467-9280.2006.01801.x
http://dx.doi.org/10.1111/j.1467-9280.2006.01801.x
http://dx.doi.org/10.1037/0278-7393.30.5.1119
http://dx.doi.org/10.1016/j.cognition.2004.08.005
http://dx.doi.org/10.1016/0885-2308%2887%2990004-0
http://dx.doi.org/10.1037/0096-1523.14.1.113
http://dx.doi.org/10.1037/0096-1523.14.1.113
http://dx.doi.org/10.1207/S15327078IN0304_03


Edwards, C. A., Jagielo, J. A., Zentall, T. R., & Hogan, D. E. (1982).
Acquired equivalence and distinctiveness in matching to sample by
pigeons: Mediation by reinforcer-specific expectancies. Journal of Ex-
perimental Psychology: Animal Behavior Processes, 8, 244–259. doi:
10.1037/0097-7403.8.3.244

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14,
179–211. doi:10.1207/s15516709cog1402_1

Emberson, L., Liu, R., & Zevin, J. D. (2009, August). Statistics all the way
down: How is statistical learning accomplished using varying produc-
tions of novel, complex sound categories? Paper presented at the 31st
annual meeting of the Cognitive Science Society, Amsterdam, the Neth-
erlands.

Endress, A. D., & Mehler, K. (2009). Primitive computations in speech
processing. The Quarterly Journal of Experimental Psychology, 62,
2187–2209. doi:10.1080/17470210902783646

Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of
categories on perception: Explaining the perceptual magnet effect as
optimal statistical inference. Psychological Review, 116, 752–782. doi:
10.1037/a0017196

Finn, A., & Hudson, C. L. (2008). The curse of knowledge: First language
knowledge impairs adult learners’ use of novel statistics for word
segmentation. Cognition, 108, 477–499. doi:10.1016/j.cognition.2008
.04.002

Fiser, J., & Aslin, R. N. (2002). Statistical learning of new visual feature
combinations by infants. Proceedings of the National Academy of Sci-
ences, 99, 15822–15826. doi:10.1073/pnas.232472899

Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical
learning of visual feature hierarchies. Journal of Experimental Psychol-
ogy: General, 134, 521–537. doi:10.1037/0096-3445.134.4.521

Fletcher, R. C., Zafiris, O., Frith, C. D., Honey, R. A. E., Corlett, R., Zilles,
K., & Fink, G. R. (2005). On the benefits of not trying: Brain activity
and connectivity reflecting the interactions of explicit and implicit
sequence learning. Cerebral Cortex, 15, 1002–1015. doi:10.1093/cercor/
bhh201

Frank, M. C., Goldwater, S., Griffiths, T., & Tenenbaum, J. B. (2010).
Modeling human performance in statistical word segmentation. Cogni-
tion, 117, 107–125. doi:10.1016/j.cognition.2010.07.005

Gambell, T., & Yang, C. (2004). Statistics learning and universal gram-
mar: Modeling word segmentation. Paper presented at the 20th Interna-
tional Conference on Computational Linguistics, Geneva, Switzerland.

Giroux, I., & Rey, A. (2009). Lexical and sublexical units in speech
perception. Cognitive Science, 33, 260–272. doi:10.1111/j.1551-6709
.2009.01012.x

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical
access. Psychological Review, 105, 251–279. doi:10.1037/0033-295X
.105.2.251

Goldwater, S., Griffiths, T. L., & Johnson, M. (2009). A Bayesian frame-
work for word segmentation: Exploring the effects of context. Cogni-
tion, 112, 21–54. doi:10.1016/j.cognition.2009.03.008

Gómez, R. L. (2002). Variability and detection of invariant structure.
Psychological Science, 13, 431–436. doi:10.1111/1467-9280.00476

Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007).). Can
infants map meaning to newly segmented words? Statistical segmenta-
tion and word leaning. Psychological Science, 18, 254 –260. doi:
10.1111/j.1467-9280.2007.01885.x

Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of
information: Strategic control of activation of responses. Journal of
Experimental Psychology: General, 121, 480–506. doi:10.1037/0096-
3445.121.4.480

Griffiths, O., & Mitchell, C. J. (2008). Negative priming reduces affective
ratings. Cognition & Emotion, 22, 1119 –1129. doi:10.1080/
02699930701664930

Haith, M. M., Wentworth, N., & Canfield, R. L. (1993). The formation of

expectations in early infancy. In C. Rovee-Collier & L. P. Lipsitt (Eds.),
Advances in infancy research. Norwood, NJ: Ablex.

Hall, G. (1991). Perceptual and associative learning. Oxford, England:
Clarendon Press.

Harlow, H. F. (1949). The formation of learning sets. Psychological
Review, 56, 51–65. doi:10.1037/h0062474

Harris, Z. (1955). From phoneme to morpheme. Language, 31, 190–222.
doi:10.2307/411036

Hayes, J. R., & Clark, H. H. (1970). Experiments in the segmentation of an
artificial speech analog. In J. R. Hayes (Ed.), Cognition and the devel-
opment of language (pp. 221–234). New York, NY: Wiley.

Hintzman, D. L. (1976). Repetition and memory. Psychology of Learning
and Motivation, 10, 47–91. doi:10.1016/S0079-7421(08)60464-8

Hintzman, D. L. (1984). MINERVA 2: A simulation model of human
memory. Behavior Research Methods, 16, 96 –101. doi:10.3758/
BF03202365

Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory
model. Psychological Review, 93, 411–428. doi:10.1037/0033-295X.93
.4.411

Hintzman, D. L., Block, R. A., & Summers, J. J. (1973). Contextual
associations and memory for serial position. Journal of Experimental
Psychology, 97, 220–229. doi:10.1037/h0033884

Holt, L. L., & Lotto, A. J. (2006). Cue weighting in auditory categoriza-
tion: Implications for first and second language acquisition. Journal of
Acoustical Society of America, 119, 3059–3071. doi:10.1121/1.2188377

Honey, R. C., & Hall, G. (1989). Acquired equivalence and distinctiveness
of cues. Journal of Experimental Psychology: Animal Behavior Process,
15, 338–346. doi:10.1037/0097-7403.15.4.338

Howard, D. V., & Howard, J. H. (2001). When it does hurt to try: Adult age
differences in the effects of instructions on implicit pattern learning.
Psychonomic Bulletin & Review, 8, 798–805. doi:10.3758/BF03196220

Hudson Kam, C. L., & Newport, E. L. (2005). Regularizing unpredictable
variation: The roles of adult and child learners in language formation and
change. Language Learning and Development, 1, 151–195. doi:10.1080/
15475441.2005.9684215

Hudson Kam, C. L., & Newport, E. L. (2009). Getting it right by getting
it wrong: When learners change languages. Cognitive Psychology, 59,
30–66. doi:10.1016/j.cogpsych.2009.01.001

James, W. (1890). The principles of psychology. New York, NY: Holt.
doi:10. 1037/11059-000

Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-
olds: When speech cues count more than statistics. Journal of Memory
and Language, 44, 548–567. doi:10.1006/jmla.2000.2755

Johnson, E. K., & Seidl, A. (2008). Clause segmentation by 6-month-old
infants: A crosslinguistic perspective. Infancy, 13, 440 – 455. doi:
10.1080/15250000802329321

Jusczyk, P. W. (1993). From general to language-specific capacities: The
WRAPSA model of how speech perception develops. Journal of Pho-
netics, 21, 3–28.

Jusczyk, P. W. (1997). The discovery of spoken language. Cambridge, MA:
MIT Press.

Jusczyk, P. W., & Aslin, R. N. (1995). Infants’ detection of the sound
patterns of words in fluent speech. Cognitive Psychology, 29, 1–23.
doi:10.1006/cogp.1995.1010

Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for
the predominant stress patterns of English words. Child Development,
64, 675–687. doi:10.2307/1131210

Jusczyk, P. W., Friederici, A. D., Wessels, J. M. I., Svenkerud, V. Y., &
Jusczyk, A. M. (1993). Infants’ sensitivity to the sound patterns of native
language words. Journal of Memory and Language, 32, 402–420. doi:
10.1006/jmla.1993.1022

Jusczyk, P. W., Houston, D. M., & Newsome, M. (1999). The beginnings
of word segmentation in English-learning infants. Cognitive Psychology,
39, 159–207. doi:10.1006/cogp.1999.0716

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

812 THIESSEN, KRONSTEIN, AND HUFNAGLE

http://dx.doi.org/10.1037/0097-7403.8.3.244
http://dx.doi.org/10.1037/0097-7403.8.3.244
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1080/17470210902783646
http://dx.doi.org/10.1037/a0017196
http://dx.doi.org/10.1037/a0017196
http://dx.doi.org/10.1016/j.cognition.2008.04.002
http://dx.doi.org/10.1016/j.cognition.2008.04.002
http://dx.doi.org/10.1073/pnas.232472899
http://dx.doi.org/10.1037/0096-3445.134.4.521
http://dx.doi.org/10.1093/cercor/bhh201
http://dx.doi.org/10.1093/cercor/bhh201
http://dx.doi.org/10.1016/j.cognition.2010.07.005
http://dx.doi.org/10.1111/j.1551-6709.2009.01012.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01012.x
http://dx.doi.org/10.1037/0033-295X.105.2.251
http://dx.doi.org/10.1037/0033-295X.105.2.251
http://dx.doi.org/10.1016/j.cognition.2009.03.008
http://dx.doi.org/10.1111/1467-9280.00476
http://dx.doi.org/10.1111/j.1467-9280.2007.01885.x
http://dx.doi.org/10.1111/j.1467-9280.2007.01885.x
http://dx.doi.org/10.1037/0096-3445.121.4.480
http://dx.doi.org/10.1037/0096-3445.121.4.480
http://dx.doi.org/10.1080/02699930701664930
http://dx.doi.org/10.1080/02699930701664930
http://dx.doi.org/10.1037/h0062474
http://dx.doi.org/10.2307/411036
http://dx.doi.org/10.1016/S0079-7421%2808%2960464-8
http://dx.doi.org/10.3758/BF03202365
http://dx.doi.org/10.3758/BF03202365
http://dx.doi.org/10.1037/0033-295X.93.4.411
http://dx.doi.org/10.1037/0033-295X.93.4.411
http://dx.doi.org/10.1037/h0033884
http://dx.doi.org/10.1121/1.2188377
http://dx.doi.org/10.1037/0097-7403.15.4.338
http://dx.doi.org/10.3758/BF03196220
http://dx.doi.org/10.1080/15475441.2005.9684215
http://dx.doi.org/10.1080/15475441.2005.9684215
http://dx.doi.org/10.1016/j.cogpsych.2009.01.001
http://dx.doi.org/10.%201037/11059-000
http://dx.doi.org/10.1006/jmla.2000.2755
http://dx.doi.org/10.1080/15250000802329321
http://dx.doi.org/10.1080/15250000802329321
http://dx.doi.org/10.1006/cogp.1995.1010
http://dx.doi.org/10.2307/1131210
http://dx.doi.org/10.1006/jmla.1993.1022
http://dx.doi.org/10.1006/jmla.1993.1022
http://dx.doi.org/10.1006/cogp.1999.0716


Jusczyk, P. W., & Thompson, E. (1978). Perception of a phonetic contrast
in multisyllabic utterances by 2-month-old infants. Attention, Percep-
tion, & Psychophysics, 23, 105–109. doi:10.3758/BF03208289

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical
learning in infancy: Evidence for a domain general learning mechanism.
Cognition, 83, B35–B42. doi:10.1016/S0010-0277(02)00004-5

Kruschke, J. K. (2001). Towards a unified model of attention in associative
learning. Journal of Mathematical Psychology, 45, 812– 863. doi:
10.1006/jmps.2000.1354

Lamberts, K. (1995). Categorization under time pressure. Journal of Ex-
perimental Psychology: General, 124, 161–180. doi:10.1037/0096-3445
.124.2.161

Lehle, C., & Hubner, R. (2008). On-the-fly adaptation of selectivity in the
flanker task. Psychonomic Bulletin & Review,15, 814–818. doi:10.3758/
PBR.15.4.814

Lew-Williams, C., & Saffran, J. R. (2012). All words are not created equal:
Expectations about word length guide infant statistical learning. Cogni-
tion, 122, 241–246.

Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957).
The discrimination of speech sounds within and across phoneme bound-
aries. Journal of Experimental Psychology, 54, 358–368. doi:10.1037/
h0044417

Lidz, J., Gleitman, H., & Gleitman, L. (2003). Understanding how input
matters: Verb learning and the footprint of universal grammar. Cogni-
tion, 87, 151–178. doi:10.1016/S0010-0277(02)00230-5

Lotto, A. J., Kluender, K. R., & Holt, L. L. (1997). Perceptual compensa-
tion for coarticulation by Japanese quail. Journal of Acoustical Society
of America, 102, 1134–1140. doi:10.1121/1.419865

MacWhinney, B. (1982). Basic syntactic processes. In S. Kuczaj (Ed.),
Language development, 1: Syntax and semantics (pp. 73–136). Hills-
dale, NJ: Erlbaum.

Madole, K. L., & Oakes, L. M. (1999). Making sense of infant categori-
zation: Stable processes and changing representations. Developmental
Review, 19, 263–296.

Marcus, G. F. (2000). Pabiku and Ga Ti Ga: Two mechanisms infants use
to learn about the world. Current Directions in Psychological Science, 9,
145–147. doi:10. 1111/1467-8721. 00080

Marcus, G. F., & Berent, I. (2003). Are there limits to statistical learning?
Science, 300, 53–55. doi:10.1126/science.300.5616.53

Mattys, S. L., Jusczyk, P. W., Luce, P. A., & Morgan, J. L. (1999).
Phonotactic and prosodic effects on word segmentation in infants. Cog-
nitive Psychology, 38, 465–494. doi:10.1006/cogp.1999.0721

Maye, J., Aslin, R. N., & Tanenhaus, M. K. (2008). The weckud wetch of
the wast: Lexical adaptation to a novel accent. Cognitive Science, 32,
543–562. doi:10.1080/03640210802035357

Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning
in infants: Facilitation and feature generalization. Developmental Sci-
ence, 11, 122–134. doi:10.1111/j.1467-7687.2007.00653.x

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distri-
butional information can affect phonetic discrimination. Cognition, 82,
B101–B111. doi:10.1016/S0010-0277(01)00157-3

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the
representation of general and specific information. Journal of Experi-
mental Psychology: General, 114, 159–188. doi:10.1037/0096-3445
.114.2.159

McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2002). Gradient effects
of within-category phonetic variation on lexical access. Cognition, 86,
B33–B42. doi:10.1016/S0010-0277(02)00157-9

Mersad, K., & Nazzi, T. (2011). Transitional probabilities and positional
frequency phonotactics in a hierarchical model of speech segmentation.
Memory & Cognition, 39, 1085–1093.

Miller, J. L., & Volaitis, L. E. (1989). Effect of speaking rate on the
perceptual structure of a phonetic category. Perception & Psychophys-
ics, 46, 505–512. doi:10.3758/BF03208147

Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories
in child directed speech. Cognition, 90, 91–117. doi:10.1016/S0010-
0277(03)00140-9

Mintz, T. H. (2006). Finding the verbs: Distributional cues to categories
available to young learners. In K. Hirsh-Pasek & R. Golinkoff (Eds.),
Action meets word: How children learn verbs (pp. 31–63). New York,
NY: Oxford University Press. doi:10.1093/acprof:oso/9780195170009
.003.0002

Mirman, D., Magnuson, J. S., Graf Estes, K., & Dixon, J. A. (2008). The
link between statistical segmentation and word learning in adults. Cog-
nition, 108, 271–280. doi:10.1016/j.cognition.2008.02.003

Newport, E. L., & Aslin, R. N. (2004). Learning at distance I. Statistical
learning of non-adjacent dependencies. Cognitive Psychology, 48, 127–
162. doi:10.1016/S0010-0285(03)00128-2

Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype models
revisited: Response strategies, selective attention, and stimulus general-
ization. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 28, 924–940. doi:10.1037/0278-7393.28.5.924

Onnis, L., Christiansen, M., Chater, N., & Gómez, R. (2003). Reduction of
uncertainty in human sequential learning: Evidence from artificial lan-
guage learning. Paper presented at the 25th Annual Conference of the
Cognitive Science Society, Boston, Massachusetts.

Onnis, L., & Thiessen, E. D. (in press). Language experience changes
subsequent learning. Cognition.

Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning
of visual chunks by human observers. Proceedings of the National
Academy of Sciences, 105, 2745–2750. doi:10.1073/pnas.0708424105

Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Statistical learning in a
natural language by 8-month-old infants. Child Development, 80, 674–
685. doi:10.1111/j.1467-8624.2009.01290.x

Perruchet, P., & Desaulty, S. (2008). A role for backward transitional
probabilities in word segmentation? Memory & Cognition, 36, 1299–
1305. doi:10.3758/MC.36.7.1299

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learn-
ing: One phenomenon, two approaches. Trends in Cognitive Sciences,
10, 233–238. doi:10.1016/j.tics.2006.03.006

Perruchet, P., & Tillmann, B. (2010). Exploiting multiple sources of
information in learning an artificial language: Human data and model-
ing. Cognitive Science, 34, 255–285. doi:10.1111/j.1551-6709.2009
.01074.x

Perruchet, P., Tyler, M. D., Galland, N., & Peereman, R. (2004). Learning
nonadjacent dependencies: No need for algebraic-like computations.
Journal of Experimental Psychology: General, 133, 573–583. doi:
10.1037/0096-3445.133.4.573

Perruchet, P., & Vinter, A. (1998). PARSER: A model for word segmen-
tation. Journal of Memory and Language, 39, 246–263. doi:10.1006/
jmla.1998.2576

Pisoni, D. B., & Tash, J. (1974). Reaction times to comparisons within and
across phonetic categories. Perception & Psychophysics, 15, 285–290.
doi:10.3758/BF03213946

Prince, A., & Smolensky, P. (1997, March 14). Optimality: From neural
networks to universal grammar. Science, 275, 1604–1610. doi:10.1126/
science.275.5306.1604

Rakison, D. H. (2004). Infants’ sensitivity to correlations between static
and dynamic features in a category context. Journal of Experimental
Child Psychology, 89, 1–30. doi:10.1016/j.jecp.2004.06.001

Rakison, D. H. (2005). A secret agent? How infants learn about the identity
of objects in a causal scene. Journal of Experimental Child Psychology,
91, 271–296. doi:10.1016/j.jecp.2005.03.005

Rakison, D. H., & Lupyan, G. (2008). Developing object concepts in
infancy: An associative learning perspective: I. Introduction. Mono-
graphs of the Society for Research in Child Development, 73, 1–29.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

813A MEMORY-BASED APPROACH TO STATISTICAL LEARNING

http://dx.doi.org/10.3758/BF03208289
http://dx.doi.org/10.1016/S0010-0277%2802%2900004-5
http://dx.doi.org/10.1006/jmps.2000.1354
http://dx.doi.org/10.1006/jmps.2000.1354
http://dx.doi.org/10.1037/0096-3445.124.2.161
http://dx.doi.org/10.1037/0096-3445.124.2.161
http://dx.doi.org/10.3758/PBR.15.4.814
http://dx.doi.org/10.3758/PBR.15.4.814
http://dx.doi.org/10.1037/h0044417
http://dx.doi.org/10.1037/h0044417
http://dx.doi.org/10.1016/S0010-0277%2802%2900230-5
http://dx.doi.org/10.1121/1.419865
http://dx.doi.org/10.%201111/1467-8721.%2000080
http://dx.doi.org/10.1126/science.300.5616.53
http://dx.doi.org/10.1006/cogp.1999.0721
http://dx.doi.org/10.1080/03640210802035357
http://dx.doi.org/10.1111/j.1467-7687.2007.00653.x
http://dx.doi.org/10.1016/S0010-0277%2801%2900157-3
http://dx.doi.org/10.1037/0096-3445.114.2.159
http://dx.doi.org/10.1037/0096-3445.114.2.159
http://dx.doi.org/10.1016/S0010-0277%2802%2900157-9
http://dx.doi.org/10.3758/BF03208147
http://dx.doi.org/10.1016/S0010-0277%2803%2900140-9
http://dx.doi.org/10.1016/S0010-0277%2803%2900140-9
http://dx.doi.org/10.1093/acprof:oso/9780195170009.003.0002
http://dx.doi.org/10.1093/acprof:oso/9780195170009.003.0002
http://dx.doi.org/10.1016/j.cognition.2008.02.003
http://dx.doi.org/10.1016/S0010-0285%2803%2900128-2
http://dx.doi.org/10.1037/0278-7393.28.5.924
http://dx.doi.org/10.1073/pnas.0708424105
http://dx.doi.org/10.1111/j.1467-8624.2009.01290.x
http://dx.doi.org/10.3758/MC.36.7.1299
http://dx.doi.org/10.1016/j.tics.2006.03.006
http://dx.doi.org/10.1111/j.1551-6709.2009.01074.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01074.x
http://dx.doi.org/10.1037/0096-3445.133.4.573
http://dx.doi.org/10.1037/0096-3445.133.4.573
http://dx.doi.org/10.1006/jmla.1998.2576
http://dx.doi.org/10.1006/jmla.1998.2576
http://dx.doi.org/10.3758/BF03213946
http://dx.doi.org/10.1126/science.275.5306.1604
http://dx.doi.org/10.1126/science.275.5306.1604
http://dx.doi.org/10.1016/j.jecp.2004.06.001
http://dx.doi.org/10.1016/j.jecp.2005.03.005


Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of
Verbal Learning and Verbal Behavior, 6, 855–863. doi:10.1016/S0022-
5371(67)80149-X

Reber, A. S., & Lewis, S. (1977). Implicit learning: An analysis of the form
and structure of a body of tacit knowledge. Cognition, 5, 333–361.
doi:10.1016/0010-0277(77)90020-8

Redington, M., Chater, N., & Finch, S. (1998). Distributional information:
A powerful cue for acquiring syntactic categories. Cognitive Science, 22,
425–469. doi:10.1207/s15516709cog2204_2

Roediger, H. L., & McDermott, K. B. (1995). Creating false memories:
Remembering words not presented in lists. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 21, 803–814. doi:
10.1037/0278-7393.21.4.803

Saffran, J. R. (2001). Words in a sea of sounds: The output of infant
statistical learning. Cognition, 81, 149 –169. doi:10.1016/S0010-
0277(01)00132-9

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996, December 13).
Statistical learning by 8-month-old infants. Science, 274, 1926–1928.
doi:10.1126/science.274.5294.1926

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999).
Statistical learning of tone sequences by human infants and adults.
Cognition, 70, 27–52. doi:10.1016/S0010-0277(98)00075-4

Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S.
(1997). Incidental language learning: Listening (and learning) out of the
corner of your ear. Psychological Science, 8, 101–105.

Saffran, J. R., & Thiessen, E. D. (2003). Pattern induction by infant
language learners. Developmental Psychology, 39, 484 – 494. doi:
10.1037/0012-1649.39.3.484

Samuelson, L. K., & Smith, L. B. (2000). Children’s attention to rigid and
deformable shape in naming and non-naming tasks. Child Development,
71, 1555–1570. doi:10.1111/1467-8624.00248

Seidl, A., & Johnson, E. K. (2006). Infant word segmentation revisited:
Edge alignment facilitates target extraction. Developmental Science, 9,
565–573. doi:10.1111/j.1467-7687.2006.00534.x

Shukla, M., Nespor, M., & Mehler, J. (2007). An interaction between
prosody and statistics in the segmentation of fluent speech. Cognitive
Psychology, 54, 1–32.

Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in young children:
A dumb attentional mechanism? Cognition, 60, 143–171. doi:10.1016/
0010-0277(96)00709-3

Smith, L., & Yu, C. (2008). Infants rapidly learn word-referent mappings
via cross-situational statistics. Cognition, 106, 1558–1568. doi:10.1016/
j.cognition.2007.06.010

Sobel, D. M., & Kirkham, N. Z. (2007). Bayes nets and babies: Infants’
developing statistical reasoning abilities and their representation of
causal knowledge. Developmental Science, 10, 298–306. doi:10.1111/j
.1467-7687.2007.00589.x

Stadler, M. A. (1992). Statistical structure and implicit serial learning.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 18, 318–327. doi:10.1037/0278-7393.18.2.318

Stager, C. L., & Werker, J. F. (1998). Methodological issues in studying
the link between speech perception and word learning. In C. Rovee-
Collier, L. P. Lipsitt, & H. Hayne (Series Eds.), Advances in infancy
research (pp. 237–256). Stamford, CT: Ablex.

Thiessen, E. D. (2007). The effect of distributional information on chil-
dren’s use of phonemic contrasts. Journal of Memory and Language, 56,
16–34. doi:10.1016/j.jml.2006.07.002

Thiessen, E. D. (2009). Statistical learning. In E. Bavin (Ed.), Cambridge
handbook of child language (pp. 35–50). Cambridge, England: Cam-
bridge University Press. doi:10.1017/CBO9780511576164.003

Thiessen, E. D. (2011a). Domain general constraints on statistical learning.
Child Development, 82, 462– 470. doi:10.1111/j.1467-8624.2010
.01522.x

Thiessen, E. D. (2011b). When variability matters more than meaning: The
effect of lexical forms on use of phonemic contrasts. Developmental
Psychology, 47, 1448–1458. doi:10.1037/a0024439

Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech
facilitates word segmentation. Infancy, 7, 53–71. doi:10.1207/
s15327078in0701_5

Thiessen, E. D., & Pavlik, P. (in press). iMinerva: A mathematical model
of distributional statistical learning. Cognitive Science.

Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress
and statistical cues to word boundaries by 7- to 9-month-old infants.
Developmental Psychology, 39, 706–716. doi:10.1037/0012-1649.39.4
.706

Thiessen, E. D., & Saffran, J. R. (2004). Spectral tilt as a cue to word
segmentation in infancy and adulthood. Perception & Psychophysics,
66, 779–791. doi:10.3758/BF03194972

Thiessen, E. D., & Saffran, J. R. (2007). Learning to learn: Infants’ acqui-
sition of stress-based strategies for word segmentation. Language Learning
and Development, 3, 73–100. doi:10.1080/15475440709337001

Thiessen, E. D., & Yee, M. N. (2010). Dogs, bogs, labs, and lads: What
phonemic generalizations indicate about the nature of children’s early
word-form representations. Child Development, 81, 1287–1303. doi:
10.1111/j.1467-8624.2010.01468.x

Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax:
The role of transitional probability. Language Learning and Develop-
ment, 3, 1–42.

Thompson-Schill, S. L., Ramscar, M., & Chrysikou, E. G. (2009). Cogni-
tion without control: When a little frontal lobe goes a long way. Current
Directions in Psychological Science, 18, 259–263. doi:10.1111/j.1467-
8721.2009.01648.x

Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2005). Speech segmentation by
statistical learning depends on attention. Cognition, 97, B25–B34.

Toro, J. M., & Trobalón, J. B. (2005). Statistical computations over a
speech stream in a rodent. Perception & Psychophysics, 67, 867–875.
doi:10.3758/BF03193539

Trabasso, T., & Bower, G. H. (1968). Attention in learning: Theory and
research. New York, NY: Wiley.

Turk-Browne, N. B., Isola, P. J., Scholl, B. J., & Treat, T. A. (2008).
Multidimensional visual statistical learning. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 34, 399–407. doi:
10.1037/0278-7393.34.2.399

Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J., & Amano, S.
(2007). Unsupervised learning of vowel categories from infant-directed
speech. Proceedings of the National Academy of Sciences, 104, 13273–
13278. doi:10.1073/pnas.0705369104

Werker, J. F., Pons, F., Dietrich, C., Kajikawa, S., Fais, L., & Amano, S.
(2007). Infant-directed speech supports phonetic category learning in
English and Japanese. Cognition, 103, 147–162. doi:10.1016/j.cognition
.2006.03.006

Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception:
Evidence for perceptual reorganization during the first year of life. Infant
Behavior and Development, 7, 49 – 63. doi:10.1016/S0163-
6383(84)80022-3

Yerkes, R. M. (1943). Chimpanzees: A laboratory colony. New Haven,
CT: Yale University Press.

Younger, B. A., & Cohen, L. B. (1986). Developmental change in infants’
perception of correlations among attributes. Child Development, 57,
803–815. doi:10.2307/1130356

Received June 14, 2011
Revision received August 2, 2012

Accepted September 10, 2012 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

814 THIESSEN, KRONSTEIN, AND HUFNAGLE

http://dx.doi.org/10.1016/S0022-5371%2867%2980149-X
http://dx.doi.org/10.1016/S0022-5371%2867%2980149-X
http://dx.doi.org/10.1016/0010-0277%2877%2990020-8
http://dx.doi.org/10.1207/s15516709cog2204_2
http://dx.doi.org/10.1037/0278-7393.21.4.803
http://dx.doi.org/10.1037/0278-7393.21.4.803
http://dx.doi.org/10.1016/S0010-0277%2801%2900132-9
http://dx.doi.org/10.1016/S0010-0277%2801%2900132-9
http://dx.doi.org/10.1126/science.274.5294.1926
http://dx.doi.org/10.1016/S0010-0277%2898%2900075-4
http://dx.doi.org/10.1037/0012-1649.39.3.484
http://dx.doi.org/10.1037/0012-1649.39.3.484
http://dx.doi.org/10.1111/1467-8624.00248
http://dx.doi.org/10.1111/j.1467-7687.2006.00534.x
http://dx.doi.org/10.1016/0010-0277%2896%2900709-3
http://dx.doi.org/10.1016/0010-0277%2896%2900709-3
http://dx.doi.org/10.1016/j.cognition.2007.06.010
http://dx.doi.org/10.1016/j.cognition.2007.06.010
http://dx.doi.org/10.1111/j.1467-7687.2007.00589.x
http://dx.doi.org/10.1111/j.1467-7687.2007.00589.x
http://dx.doi.org/10.1037/0278-7393.18.2.318
http://dx.doi.org/10.1016/j.jml.2006.07.002
http://dx.doi.org/10.1017/CBO9780511576164.003
http://dx.doi.org/10.1111/j.1467-8624.2010.01522.x
http://dx.doi.org/10.1111/j.1467-8624.2010.01522.x
http://dx.doi.org/10.1037/a0024439
http://dx.doi.org/10.1207/s15327078in0701_5
http://dx.doi.org/10.1207/s15327078in0701_5
http://dx.doi.org/10.1037/0012-1649.39.4.706
http://dx.doi.org/10.1037/0012-1649.39.4.706
http://dx.doi.org/10.3758/BF03194972
http://dx.doi.org/10.1080/15475440709337001
http://dx.doi.org/10.1111/j.1467-8624.2010.01468.x
http://dx.doi.org/10.1111/j.1467-8624.2010.01468.x
http://dx.doi.org/10.1111/j.1467-8721.2009.01648.x
http://dx.doi.org/10.1111/j.1467-8721.2009.01648.x
http://dx.doi.org/10.3758/BF03193539
http://dx.doi.org/10.1037/0278-7393.34.2.399
http://dx.doi.org/10.1037/0278-7393.34.2.399
http://dx.doi.org/10.1073/pnas.0705369104
http://dx.doi.org/10.1016/j.cognition.2006.03.006
http://dx.doi.org/10.1016/j.cognition.2006.03.006
http://dx.doi.org/10.1016/S0163-6383%2884%2980022-3
http://dx.doi.org/10.1016/S0163-6383%2884%2980022-3
http://dx.doi.org/10.2307/1130356

	The Extraction and Integration Framework: A Two-Process Account of Statistical Learning
	Defining Statistical Learning: What Statistical Relations Are Learned?
	Conditional Statistics
	Distributional Statistics
	Cue-Based Statistics
	Summary

	Extraction and Conditional Statistics
	Evidence in Favor of Extraction
	The Relation Between Extraction and Conditional Statistics
	Extraction Alone Is Insufficient to Explain Statistical Learning
	Summary

	Integration and Distributional Statistics
	Similarity and Generalization
	Similarity Sensitivity and Distributional Statistics
	Extraction and Integration: Two Incomplete Approaches
	Summary

	Combining Integration and Extraction for Word Segmentation
	Benefits of a Chunking Model of Extraction
	Linking Extraction and Integration Through Attention
	Additional Benefits of a Synthesized Framework
	Summary

	Conclusion
	How Development and Experience Alter Word Segmentation
	Comparison to Other Accounts
	Novel Predictions and Next Steps
	Summary and Conclusion

	References


