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Abstract

This paper presents a simple dictionary structure designed for a hierarchical memor
proposed data structure iscache-obliviousandlocality-preserving. A cache-oblivious data structur
has memory performance optimized for all levels of the memory hierarchy even though it h
memory-hierarchy-specific parameterization. A locality-preserving dictionary maintains eleme
similar key values stored close together for fast access to ranges of data with consecutive ke

The data structure presented here is a simplification of the cache-oblivious B-tree of B
Demaine, and Farach-Colton. The structure supports search operations onN data items using
O(logB N + 1) block transfers at a level of the memory hierarchy with block sizeB. Insertion
and deletion operations useO(logB N + log2 N/B + 1) amortized block transfers. Finally, the da
structure returns allk data items in a given search range usingO(logB N + k/B +1) block transfers.

This data structure was implemented and its performance was evaluated on a simulated
hierarchy. This paper presents the results of this simulation for various combinations of blo
memory sizes.
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1. Introduction

The B-tree [12,25,32,37] is the classic external-memory search tree, and it is w
used in both theory and practice. The B-tree is designed to support insert, delete,
and scan on a two-level memory hierarchy consisting of main memory and disk. The bas
structure is a balanced tree having a fan-out proportional to the disk-block sizeB. The
B-tree uses linear space and its query and update performance areO(logB N + 1) memory
transfers. This is aΘ(logB)-factor improvement over theO(lgN) bound obtained by
the RAM-model structures (e.g., [1,31,43,46,50,51]). This improvement translat
approximately an order of magnitudespeedup, depending on the application.

Although B-trees are in widespread use, they have several limitations. They d
critically on the block sizeB and therefore are only optimized for two levels of the mem
hierarchy. On the other hand, modern memory hierarchies often have many levels inc
registers, several levels of cache, main memory, and disk. Furthermore, the disparity in t
access times of the levels is growing, and future memory hierarchies may have even m
levels.

Theoretically, it is possible to create a multilevel B-tree, but the resulting structu
significantly more complex than the standardB-tree. The data structure must be carefu
tuned for each memory level of interest. Furthermore, the amount of wasted space
an implementation appears exponential in the number of levels.

In many applications, such as database management systems, it is recognized
classic implementation of a B-tree can be optimized for modern memory hierarchies b
improving the data layout. For example, many systems heuristically attempt to
logically close pages physically near eachother in memory in order to improve th
performance of the scan operation [26,35,36,41,48].These efforts suggest that data loca
is required at other levels of granularity besides single disk blocks.

1.1. The cache-oblivious model

Traditionally most algorithmic work assumes theRandom Access Model(RAM), which
consists of a “flat” memory with uniform access times. Recently, however, researc
been performed on developing theoretical models for modern complicated hierarchic
memory systems; see, e.g., [3–5,7,49,55,56].

In order to avoid the complications ofmultilevel memory models, a body of work has
focused on two-level memory hierarchies. Arguably the most successful two-level m
is theDisk Access Model(DAM) of Aggarwal and Vitter [6]. In the DAM, the memor
hierarchy consists of an internal memory of sizeM and an external memory partitione
into B-sized blocks. The performance metric in this model is the number of block tran

Recently, a new model was proposed that combines the simplicity of the two-leve
models with the realism of more complicated hierarchical models. Thecache-oblivious
model, introduced by Frigo, Leiserson, Prokop, and Ramachandran [29,45], enab
to reason about a simple two-level memory model, but prove results about an unk
multilevel memory model. The idea is to avoid any memory-specific parameterization
is, to design algorithms that do not use anyinformation about memory-access times
block sizes.
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The theory of cache-oblivious algorithms is based on theideal-cache model[29,45].
As in the DAM model, there are two levels in the memory hierarchy, which we ca
cacheandmemory, although they could represent any pair of levels. The main differ
between the cache-oblivious and the DAM model is that parametersB and M are
unknown to a cache-oblivious algorithm. This crucial difference forces cache-obliviou
algorithms to be optimized for all values ofB andM and for all levels of the memor
hierarchy.

1.2. Our results

We propose a cache-oblivious and locality-preserving search tree, which is a simplific
tion of the cache-oblivious B-tree of Bender, Demaine, and Farach-Colton [16]. At a lev
of the memory hierarchy with block sizeB, the number of block transfers during a sea
operation isO(logB N +1), which is asymptotically optimal. Insertions and deletions t
O(logB N + log2 N/B + 1) amortized memory transfers, while scans ofk data items are
performed asymptotically optimally withO(k/B + 1) memory transfers. If the scan ope
ation is not supported, our structure can be modified using indirection, as in [16], s
all operations useO(logB N) amortized block transfers.

Like the cache-oblivious B-tree of [16], our data structure is locality preserving.
range ofk consecutive keys is stored in a contiguous region of memory of sizeO(k). This
layout facilitates scans and rangequeries on most architectures, where accessing sequ
blocks is an order of magnitude faster than accessing random blocks [30].

Our structure can be easily modified using the method of Brown and Tarjan [2
achieveO(logB k) query times, wherek is the difference in rank between the current a
previous queries. This property of our structure, known as thedynamic-finger property,
implies other finger-type results [33]. For example, given a constant-size subsetF of the
keys in the structure, letd(x, y) be the difference in rank betweenx andy. The number of
page faults to accessx from F is thenO(logB minf ∈F d(f, x)).

Our data structure consists of two arrays. One of the arrays contains the data and
number of blank entries, and the other array contains an encoding of a tree that inde
data. The search and update operations involve basic manipulations of these arrays

We evaluated the algorithm on a simulated memory hierarchy. This paper prese
results of this simulation for various combinations of block and memory sizes.

1.3. Related work

The first cache-oblivious search tree was proposed by Bender, Demaine, and F
Colton [16]. Our data structures and the cache-oblivious B-tree of [16] have
same capabilities with exactly the same asymptotic performance. Specifically, bot
structures support inserts, deletes, searches, and scans. Both data structures
augmented using indirection to support slightly faster inserts and deletes, but
cost of no longer supporting efficient scans. Both data structures can be augme
support finger search, although the augmentation required in [16] is more compli
The main advantage of the current data structure over [16] is that the our structure is
implementable.
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Table 1
Related work in cache-oblivious data structures

B-tree • Simplification via packed-memory structure/low-height trees [18
• Simplification and persistence via exponential structures [15,47
• Implicit [27,28]

Static search trees • Basic layout [45]
• Experiments [40]
• Optimal constant factor [13]

Linked lists supporting scans [14]

Priority queues [11,20]

Trie layout [8,17]

Computational geometry • Distribution sweeping [19]
• Voronoi diagrams [39]
• Orthogonal range searching [2]

Lower bounds [21]

Brodal, Fagerberg, and Jacob [22] independently developed a remarkably similar cach
oblivious search tree, whose bounds match those presented here. Their data s
maintains a balanced tree of height logN + O(1), which they lay out cache-oblivious
in an array of sizeΘ(N). The two papers present complementary experimental res
Publication [22] gives timing results for searches and random inserts, but not wors
updates. We evaluate the cost of updates for a range of insertion patterns and a r
memory hierarchies.

Rahman, Cole, and Raman [47] and Bender, Cole, and Raman [15] consider a d
approach to building cache-oblivious searchstructures based on exponential search t
[9,10,52]. The paper [47] gives the first implementation of a cache-oblivious search
These data structures permit fast insertions but lack the ability to scan efficiently.

See Table 1 for more related work on cache-oblivious data structures.
A body of related work shows how to keepN elements ordered inO(N) locations of

memory, subject to insertions and deletions. Itai, Konheim, and Rodeh [34] exami
problem in the context of priority queues and propose a simple structure usingO(log2 N)

amortized time per update. Similar resultswere obtained by Melville and Gries [42
and by Willard [57]. Willard [58–60] examinesthe problem in the context of dense fi
maintenance and develops a more complicated structure usingO(log2 N) worst-case time
per update. Bender, Demaine, and Farach-Colton [16] show that a modification
structure of Itai, Konheim, and Rodeh results in a packed-memory structure runn
O((log2 N)/B + 1) amortized memory transfers per update andO(k/B + 1) memory
transfers per traversal ofk elements.

2. Description of the structure

Our data structure maintains a dynamic setS storing items with key values from a total
ordered universe. It supports the following operations:
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1. INSERT(x): Addsx to S, i.e.,S = S ∪ {x}.
2. DELETE(x): Removesx from S, i.e.,S = S − {x}.
3. PREDECESSOR(x): Returns the item fromS that has the largest key value inS that is

at mostx, i.e., return maxy∈S such thaty � x.
4. SCANFORWARD(): Returns the successor of the most recently accessed item inS.
5. SCANBACKWARD(): Returns the predecessor of the most recently accessed itemS.

We use two separate cache-oblivious structures, the packed-memory struct
Bender, Demaine, and Farach-Colton [16] (which is closely based upon previous stru
of Itai, Kronheim, and Rodeh [34] and Willard [57–60]) and the static B-tree of Pro
[45].

The packed-memory structure maintainsN elements in sorted order in an array
size O(N) subject to insertions, deletions and scans. Insertions and deletions r
O(log2 N/B + 1) block transfers and a scan ofk elements requiresO(k/B + 1) block
transfers.

The packed-memory structure is used to store the items. However it does not s
efficient searches. (A naïve binary search requiresO(log(N/B) + 1) memory transfers
which is prohibitively large.) We thus use the static cache-oblivious tree structure
index into the packed-memory structure, where each leaf in the static cache-oblivious t
corresponds to one item in the array of the packed-memory structure.

The difficulty with this fusion of structures is that when we insert or delete, the posi
of the elements in the packed-memory structure may be adjusted, invalidating th
in the static B-tree. Thus, the static B-tree must be updated to reflect the changes
packed-memory structure. We show that the cost of updating the static B-tree do
dominate the insertion cost. Whenever the array becomes too full or too empty we r
the elements into a larger or smaller array.

Before describing our main structure, we present the packed-memory structure a
static cache-oblivious layout.

2.1. Packed-memory maintenance

In a packed-memory structure[16], we haveN totally ordered elementsx1, x2, . . . , xN

to be stored in an arrayA of size O(N). Two update operations are supported: a n
element may be inserted between two existing elements, and an existing element
deleted. This structure maintains the following invariants:

1. Order constraint: Elementxi precedesxj in arrayA iff xi ≺ xj .
2. Density constraint: The elements are evenly distributed in the arrayA. That is, any

set ofk contiguous elementsxj , . . . , xj+k−1 is stored in a contiguous subarray of s
Θ(k).

The packed-memory structure of [16] has the following performance guaran
Scanning any set ofk contiguous elementsxj , . . . , xj+k−1 usesO(k/B + 1) memory
transfers. Inserting or deleting a new element usesO(log2 N/B + 1) amortized memory
transfers.
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Described roughly, the packed-memory structure works as follows: When a wind
the array becomes too unbalanced, with most of the elements in one half of the w
then we spread out the elements, evenly distributing the gaps. The window sizes
from O(logN) to O(N) and are powers of 2. A window of size 2i is a contiguous memor
block of size 2i whose left boundary has an array position that is a multiple of 2i .

Associated with window sizes aredensity thresholds, which are guidelines to determin
the acceptable densities of windows. Theupper-bound density thresholdof a window of
size 2k is denotedτk , where

τlog logN > τlog logN+1 > · · · > τlogN,

and thelower-bound density thresholdof a window of size 2k is ρk , where

ρlog logN < ρlog logN+1 < · · · < ρlogN,

andτlogN > ρlogN . The density of any particular window of size 2k may deviate beyon
its threshold, but as soon as the deviation is “discovered,” the densities of the windo
adjusted to be within the threshold.

The values of the densities are determined according to an arithmetic progre
Specifically, letτlogN be any positive constant less than 1, and letτlog logN = 1. Let

δ = (τlog logN − τlogN)/(logN − log logN).

Then, define density thresholdτk to be

τk = τlog logN − (k − log logN)δ.

Similarly, let ρlogN be any constant less thanτlogN , and letρlog logN be any constant les
thanρlogN . Let

δ′ = (ρlogN − ρlog logN)/(logN − log logN).

Then, define density thresholdρk to be

ρk = ρlog logN + (k − log logN)δ′.

We say that a window of the array of size 2k is overflowingif the number of data elemen
in the region exceedsτk2k . We say that a window of the array of size 2k is underflowingif
the number of data elements in the region is less thanρk2k.

To insert (delete) an elementx at locationA[j ], we examine the windows containin
A[j ] of size 2k , for k = log logN, . . . , logN until the smallest window is found that
not overflowing or underflowing. We then insert (delete) the elementx andrebalancethis
window. To rebalance the window, we rearrange the elements and the window so that
gaps are evenly spaced. The simplest way to implement a rebalance is first to compress
elements on one side of the window, and then to redistribute the elements through
window. Thus, each element is moved at most twice.

2.2. Static structure

We review a cache-obliviousstatic tree structure of Prokop [45], which is used in m
cache-oblivious search structures. Given a complete binary tree, we describe a mapp
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from the nodes of the tree to positions of an array. This mapping, calledvan Emde Boas
layout, resembles the recursive structure in the van Emde Boas data structure [53,5
cache oblivious structure can perform any traversal from the root to a leaf in anN node
tree inO(logB N + 1) memory transfers, which is asymptotically optimal.

We now describe the van Emde Boas layout. Suppose the tree containsN items and
has heighth = lg(N + 1). Conceptually split the tree at the middle level of edges, be
the nodes of heighth/2. This split breaks the tree into thetop recursive subtreeA of
height�h/2�, and severalbottom recursive subtreesB1, . . . ,B� of height�h/2	. Thus there
are� = Θ(

√
N) bottom recursive subtrees and each subtree containsΘ(

√
N) nodes. The

mapping of the nodes in each subtree to positions in memory is obtained by recursive
laying out each subtree and combining these layouts in the orderA,B1, . . . ,B� in an array.
The base case is reached when the trees have one node.

We now introduce the notion oflevels of detailto partition the tree into disjoint recursiv
subtrees. In the finest level of detail, 0, each node is its own recursive subtree.
coarsest level of detail,�lgh	, the entire tree forms a unique recursive subtree. In gen
level of detailk is derived by starting with the entire tree, recursively partitioning it,
exiting the recursion whenever a recursive subtree has height� 2k. Note that according
to the van Emde Boas layout, each recursive subtree is stored in acontiguous block of
memory. At level of detailk, all recursive subtrees have heights between 2k−1 and 2k .

Thus, the following lemma describes the performance of the van Emde Boas layo

Lemma 1 [45]. Consider anN -node complete binary search treeT that is stored in a
van Emde Boas layout. Then a traversal inT from the root to a leaf usesO(logB N + 1)

memory transfers.

Proof. If N < B, there are at most 2 memory transfers because the treeT can cross
only one block boundary. IfN � B, let k be the coarsest level of detail such that ev
recursive subtree contains at mostB nodes. Thus, every recursive subtree is stored i
most 2 memory blocks. Since treeT has height lg(N + 1), and the height of the subtre
ranges from(lgB)/2 to lgB, the number of subtrees traversed from the root to a le
at most 2 logN/logB = 2 logB N . Since each subtree can be in at most 2 memory blo
traversing a path from the root to a leaf uses at most 4 logB N memory transfers. �
2.3. Dynamic cache-oblivious structure

Our dynamic cache-oblivious locality-preserving dictionary uses the packed-memo
structure to store its data, and it uses the static structure as an index into the p
memory structure. Henceforth, we use the term “array” to refer to the packed memo
structure storing the data, and “tree” to refer to the static cache-oblivious structure th
serves as an index. We use this terminology even though the “tree” is actually store
array.

The N data items are stored in a packed-memory structure, which is an arrayA of
sizeΘ(N). Recall that the items appear in the array in sorted order but some of the
positions are kept blank.
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Recall that the static cache-oblivious structure consists of a complete tree. LetTi denote
the ith leftmost leaf in the tree. In our structure there are pointers between array po
A[i] and leafTi , for all values ofi. We maintain the invariant thatA[i] andTi store the
same key value. All internal nodes ofT store the maximum of the nonblank key value
of its children. If a node has two children with blank key values, it also has a blank
value.

We now describe the supported operations.
PREDECESSOR(x ): Predecessor is carried out by traversing the tree from the roo

leaf. Since each internal node stores the maximum key value of the leaves in its induc
subtree, this search is similar to the standard predecessor search on a binary search
When the search has reached a nodeu, it decides whether to branch left or right b
comparing the search key to the key ofu’s left child.

Theorem 2. The operationPREDECESSOR(x ) usesO(logB N + 1) block transfers.

Proof. Search in our structure is similar to theO(logB N + 1) root-to-leaf traversa
described in Lemma 1, except that the process of examining the key value of the c
node’s left child at every step may cause an additionalO(logB N + 1) block transfers. �

SCANFORWARD(), SCANBACKWARD(): These operations are implemented by sc
ning forward or backwards to the next non-blank item in the array from the last item
cessed. Because of the density constraint on the array, we are guaranteed that we o
O(1) elements to find a non-blank element.

Theorem 3. A sequence ofk SCANFORWARD or SCANBACKWARD operations uses
O(k/B + 1) block transfers.

Proof. A sequence ofk SCANFORWARD or SCANBACKWARD operations only accesse
O(k) consecutive elements in an array in order. Thus, scan takesO(k/B + 1) block
transfers. �

INSERT(x), DELETE(x): We describe INSERT(x); DELETE(x) proceeds in the sam
manner. We insert in three stages: First, we perform a predecessor query to find the l
in the array to insertx. Then, we insertx into the array using the insertion algorithm
the packed-memory structure. Finally, we update the key values in the tree to refle
changes in the array.

The first two steps are straightforward; we now describe the third step in more d
First, we copy the updated keys from the array into the corresponding locations
tree. We then update all of the ancestors of the updated leaves. We proceed through
subtree according to thepostordertraversal, that is, the tree traversal where both child
are visited before their parent. The updating process changes the key value of a n
reflect the maximum of the key values of its children. By updating using the post
traversal, we can guarantee that when we reacha given node the values of its children ha
been updated already.



M.A. Bender et al. / Journal of Algorithms 53 (2004) 115–136 123

rs

s are
el of
e
btrees
f

sfers,

.
e

ll of the
ults
t

in
lock
at

ed
the
ll
ses
have

in
are
esses
d

er.
ry
r
dating

d-
f

Lemma 4. To perform a postorder traversal onk leaves in the tree and their ancesto
requiresO(logB N + k/B + 1) block transfers.

Proof. We consider the largest level of detail in the tree where recursive subtree
smaller thanB. Consider the horizontal stripes formed by the subtrees at this lev
detail. On any root-to-leaf path we pass throughΘ(logB N + 1) stripes. We number th
stripes from the bottom of the tree starting at 1. Each stripe consists of a forest of su
of the original tree. If the root of a treeTa in stripei is a child (in the full tree) of a leaf o
a treeTb in stripei + 1, we say thatTa is a tree-childof Tb.

Accessing all of the items in one tree in any stripe uses at most two memory tran
since the subtree is stored in a consecutive region of memory of size at mostB. We now
analyze the cost of accessing one of the stripe-2 treesT and all of its stripe-1 tree-children
The size of all of these trees is in the range

√
B to B. In the postorder traversal, all of th

stripe-1 trees are accessed in the order that they are stored in the array. Since a
stripe-1 tree-children ofT are stored consecutively in memory, the number of page fa
caused by accessing� consecutive items in the stripe-1 trees ofT in postorder is at mos
1 + 2�/B, provided memory can hold 2 blocks. Accessing all of the items inT takes 2
memory transfers provided that memory can hold 2 blocks. Accessing anyk consecutive
items inT and all the descendant tree-children involves interleaving accesses to items
T and accesses toT ’s tree-children. Interleaving these operations takes no more b
transfers than doing operations separately, provided sufficient cache is available. Thus,
most 2+ 2k/B block transfers are performed if memory can hold 4 blocks.

By the above argument, anΩ(logB N)-sized cache is enough to support the claim
bounds. However, only a constant-sized cache is actually necessary because most of
nodes belong to subtrees in stripes 1 and 2. At most a 1/B fraction of nodes are in a
other stripes, so we can afford to pay onememory transfer for each of these acces
and then one additional transfer to bring back into memory a block that may
been prematurely evicted. More specifically, to accessk consecutive items in the tree
postorder primarily consists of accessing level-1 and level-2 subtrees. In addition, there
at mostO(logB N + k/B) items accessed at stripes 3 and higher. Each of these acc
causesO(1) memory transfers. Thus,O(logB N + k/B +1) block transfers are performe
to accessk consecutive items in the tree in postorder, given a cache of 5 blocks.�
Theorem 5. The number of block transfers caused by theINSERT(x ) and DELETE(x )
operations isO(logB N + log2 N/B + 1).

Proof. We describe the proof for INSERT(x); DELETE(x) proceeds in the same mann
The predecessor query costsO(logB N +1). The cost of inserting into the packed memo
structure isO(log2 N/B + 1) amortized memory transfers. Letw be the actual numbe
of items changed in the array by the packed-memory structure. By Lemma 4, up
the internal nodes usesO(logB N + w/B + 1) memory transfers. SinceO(w/B + 1) is
asymptotically the same as the actual number of block transfers performed by the packe
memory structure’s insertion into the array, it is theO(log2 N/B + 1) amortized cost o
insertion into the packed-memory structure. Therefore the entire INSERT operation uses
O(log2 N/B + logB N + 1) amortized memory transfers.�
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2.4. Finger searches

We now show how to perform finger searches on our structure. Brown and Tarja
explain how to use level-linking in order to execute finger searches efficiently. The
linking method involves using left and right level pointers on every node. We can
execute finger searches by following a combination of the regular tree pointers a
level-linking pointers.

Here for clarity of presentation we present a different approach and avoid the u
these pointers altogether.2

Lemma 6. Let x andy be leaves in the static index structure. Letk be the leaf-distanc
betweenx andy, wherek is knownto the algorithm. Letp a pointer to leafx. The pointer
p can be moved to leafy in O(logB k + 1) block transfers.

Proof. We assume without loss of generality thaty � x. The following algorithm is used
to search fory:

1. Movep up �lgk	 nodes. Call this nodea.
2. Movep down�lgk	 nodes searching fory using the normal tree searching rules.
3. Pointerp now points to a leaf nodez. If z is y, stop. Otherwise, movep to z’s

successor.
4. Movep up �lgk	 nodes. Call this nodeb.
5. Movep down�lgk	 nodes searching fory using the normal tree searching rules.

Correctness
Since the nodesa andb are at height�logk	, the number of leaves in each of the

induced subtrees is at leastk. Note that the induced subtree ofa containsx, and the induced
subtree ofb contains at leastk leaves that are adjacent to the largest leaf in the indu
subtree ofa. Thus,y must be in the induced subtree of eithera or b. The algorithm mus
find y because it searches the nodes in the induced subtrees of botha andb, and thus it is
correct.

Runtime
In the static structure, any traversal from an internal nodea of heighth to a leaf in its

induced subtree takes timeO(logB h + 1) memory transfers. This follows from applyin
the logic of Lemma 7 to the induced subtree ofa. The algorithm does at most four su
searches. �
Lemma 7. Letx andy be leaves in the static index structure. Let the leaf-distance bet
x andy bek, wherek is unknownto the algorithm. Letp a pointer to leafx. The pointer
p can be moved to leafy in O(logB k + 1) block transfers.

2 Note that avoiding additional pointers is not a worthwhile goal in itself because Morin’s dictionary diet ca
be employed to reduce the number of pointers per node on any dictionary [44].
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Proof. We guess the value ofk using the doubly exponential sequence 221
,222

,223
, . . . ,

and we repeat the method in Lemma 6 untily is found. This guessing ends at or befo
22�lg lgk	

since 22
�lg lg k	 � k. Thus, the runtime is

∑�lg lgk	
i=0 logB 22i � 2 logB 22�lg lg k	 =

O(logB k) block transfers. �
From Lemmas 6 and 7 we obtain the following theorem:

Theorem 8. Letd(x, y) be the rank distance betweenx andy. Given a pointer to an itemx,
the operationPREDECESSOR(y ) can be executed inO(logB(d(x, y)+1)) block transfers.

3. Simulation results

We now explore how the block sizeB and the cache sizeM affect the performance o
our cache-oblivious data structure and how thecache-oblivious data structure compares
a standard B-tree. In our simulations we began with an empty structure and inserted
elements. Each data entry is an unsigned 32-bit integer, so the domain space of t
elements is[0,232− 1]. Whenever the array becomes too full we recopy the elements
a larger array.

We tested our structure using the following input patterns:

1. Insert at Head—The elements are inserted at the beginning of the array. This inse
pattern models close to worst-case behavior of the packed-memory array, where t
inserts “hammer” on one region of the array.

2. Random Inserts—An element is chosen randomly from its domain space for e
insertion. We implement the random insert by assigning each new element a rand
32-bit key.

3. Bulk Inserts—This insertion pattern is a middle ground between random inserts
insert at head. In this strategy we pick a random element to insert and insert a se
of elements just before it. (We perform the packed-memory-structure modificati
after each element is inserted.) We run the simulations with bulk sizes of 1, 10
1000, 10,000, 100,000, and 1,000,000. Observe that random inserts and insert
are special cases of bulk insert with bulk size 1 and 1,000,000, respectively.

Our experiments have three parts. First, we test the packed-memory structure to m
the amortized number of moved elements or array positions scanned per insertio
consider different density thresholds as wellas different density patterns. We next buil
memory simulator, which models which blocks are in memory and which blocks a
disk. We adopt the standard Least Recently Used (LRU) replacement strategy and
full associativity. Thus, whenever we touch ablock that is not in memory, we increme
the page-fault count, bring the block into memory, and eject the least-recently-used block
We separately measure the number of page faults caused by packed-memory-struct
manipulations and index-structure manipulations. Finally, we compare our structur
a standard B-tree. In the simulations, memory and block sizes are chosen from a r
represent many possible system configurations.
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3.1. Scans and moves

We measure both the number of elements moved and the number of array po
scanned, that is, touched during a rebalance. Note that each moved element is mo
approximately twice. This is because when we rebalance an interval, first we compress
elements at one end of the interval, and then wespace the elements evenly in the interv
moving each element twice. Figure 1 shows ourresults of moves for the insert-at-he
insertion strategy. We consider density parameters of 50%, 60%, 70%, 80%, and
With a 60% density threshold the average number of moves is only 320 when ins
1,000,000 elements, and only 350 when inserting 2,000,000 elements. Even with
density threshold the number of moves is only 1100 when inserting 2,000,000 ele
Figure 2 shows in the worst case, the number of moves isΘ(log2(N)).

Figure 3 shows the number of moves for random inserts. There are only a small co
number of element moves or scanned elements per random insertion. Figure 4 depi
inserts ranging from best case (random) to worst case (insert-at-head); the number o
increases with the bulk size.

3.2. Page faults

We first focus on the page faults caused by the packed-memory structure usi
insert-at-head insertion strategy. As expected, the number of page faults is more se
to B than toN . The number of page faults behaves roughly linear inB, as depicted

Fig. 1. Average number of moves per insert versus number of elements using different density thresholds with t
insert-at-head insertion pattern.
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Fig. 2. (Average number of moves per insert)/(log2(number of elements)) versus number of elements u
different density thresholds with the insert-at-head insertion pattern. This graph demonstrates that the worst c
truly is Θ(log2 N) amortized moves per insertion.

Fig. 3. Average number of moves per insert versus number of elements using different density thresholds w
random insertion pattern. The dips occurs whenthe elements are recopied to a larger array.
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Fig. 4. Average moves per insert versus number of elements using density threshold 100%–50%, bulk insert w
bulk sizes 1,10,100, . . . ,1000000.

Fig. 5. Average page faults per insert, at total memory size 65536 bytes, but with different page sizes and p
numbers.
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Fig. 6. Average page faults per insert, at page size 1024but with different numbers of pages, insert at head

in Figs. 5 and 6. Specifically, Fig. 5 suggests that the number of page faults dec
linearly whenB increases linearly andM remains fixed. Figure 6 indicates that t
number of page faults decreases roughly linearly whenB is fixed andM increases
exponentially.

Overall, these results are promising. Evenfor insertions at the head, the number of pa
faults per insertion is less than 1 for most reasonable values ofB andM. There are few
page faults because we are attempting to insert into one portion of the array which can
kept in cache unless a rebalance window is larger then the cache size, a relatively infreque
event.

Although random insertions are close to the best case in terms of number of ele
moved, they are close to the worst case in terms of number of page faults. This is beca
since the location of the insert in the array is chosen randomly, The relevant page is u
to be in the cache already. Thus, we expect a page fault per insertion, which is support
by Fig. 7. The situation for bulk insertions as illustrated in Fig. 8 is dramatically better
for random insertions because the cost of thepage fault is amortized over the number
elements inserted in a region.

We next measure the number of page faults caused by the entire structure, separat
considering the contribution from the searching the index and the scanning the arr
consider bulk sizes of 1, 10, 100, 1000, 10,000, 100,000, and 1,000,000; see Figs. 9
and Tables 2 and 3. Interestingly, the worst case is for random inserts where the
typically two page faults caused by the index and one caused by the scanning str
As the bulk size increases to 10 and then 100 we obtain almost order-of-mag
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Fig. 7. Average page faults per insert, at page size 1024but with different numbers of pages, insert randomly

Fig. 8. Average page faults per insert, at page size1024 and page number 64, but with different bulk siz
1,10,100, . . . ,1000000.
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mber
Fig. 9. Page fault rate versus log10(bulk size) (insert 1,000,000 elements, page size 1024 bytes, page numbe
our data structure.

Fig. 10. Page fault rate versus log10(bulk size) (insert 1,000,000 elements, page size 1024 bytes, page nu
64), B-tree.
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Table 2
Page fault rate of our data structure. We inserted 1,000,000 elements; the page size was 1024 bytes and there
64 pages

Bulk size Array pagefault Index pagefault Tota

100 1.0 2.2 3.2
101 0.28 0.23 0.51
102 0.076 0.028 0.10
103 0.083 0.0095 0.093
104 0.37 0.024 0.39
105 0.65 0.031 0.69
106 0.83 0.030 0.86

Table 3
Page fault rate of the B-tree. We inserted 1,000,000 elements; the page size was 1024 bytes and there we
pages

Bulk size Node size

128 256 512 1024 2048

100 3.7 3.2 2.9 5.2 7.7
101 0.40 0.33 0.31 0.54 0.80
102 0.053 0.048 0.047 0.067 0.091
103 0.020 0.019 0.022 0.020 0.024
104 0.016 0.016 0.016 0.016 0.016
105 0.016 0.016 0.016 0.016 0.016
106 0.016 0.016 0.016 0.016 0.016

improvements in efficiency. For larger bulksizes the rebalancingin the packed-memor
structure hurts the cache performance, increasing the number of page faults. However
performance is never worse than for random insertions.

We also simulated a B-tree. The data structure is a modification of David Car
implementation [24] based on the one found in [38]. The data entries in the B-tree a
32 bit integers. Each node of the B-tree contains at mostB data entries andB +1 branches
The page fault rate of insertion into the B-tree is tested with differentB and different bulk
sizes.

Insert at head is by far the best case for B-trees. Interestingly, this is not even th
B-trees are optimized for because there is little advantage to theB-sized fan-out since a
entire root-to-leaf path fits in cache. When we increaseB but keep the node size withi
the size of a page, the performance improves. However, if the node size gets larg
the page size, the performance gets much worse, especially when inserting random
measured the search efficiency when searching for a random key from 1,000,000 i
elements. When the page size is 1024 bytes, the average page fault per search of th
with node size 816 is 3.77, whereas the average page fault per search for our st
is 3.69.
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4. Conclusion

We have developed and simulated a new cache-oblivious locality-preserving dicti
which supports INSERT, DELETE, and SCAN operations. Our structure has two advanta
not held by the standard B-tree. First, it is cache oblivious, that is, it is not paramet
by the block size or any other characteristics of the memory hierarchy. Second, it is locali
preserving. That is, unlike any other dynamic dictionary except for [16,22], the stru
keeps data stored compactly in memory in order.

Interestingly, although our structure is algorithmically more sophisticated than th
tree, it may be of comparable difficulty to implement. Unlike the B-tree structure, w
requires dynamic memory allocation and pointer manipulation, our structure is jus
static arrays.

Different insertion patterns have different costs in our structure and in the standa
tree. Our simulations indicate that our worst-case performance is at least as good
worst-case performance of the B-tree for typical block and memory sizes. Indeed, wh
the B-tree is not optimized for the block size then our structure outperforms the B
This worst-case performance is exhibited during random insertions. On the other
because we must keep data in order, we cannotmatch the B-tree performance when
insertions are to the same location. However, even in the adversarial case, we still p
better than when data is evenly distributed. More research needs to be done to test
structure on actual input distributions.

For the special case where we know the block size and where the two-level DAM m
is an accurate cost model of the system, the B-tree is of course the best option since it
optimized for the DAM model. However, it is becoming increasingly important to optim
for multilevel memories. Moreover, the research effort in clustering B-tree blocks
keeping data in order suggests that even two-level memory hierarchies (i.e., disk an
memory) do not obey the DAM model. More work should be performed on develo
more realistic cost models and testing our structure on these models.

If we do not need scans then we can use one level of indirection to perform search
updates in amortizedO(logB N + 1) memory transfers (see [16] for details). We can a
use our data structure to keep data ordered within superblocks that are arbitrarily placed
in memory. Thus, practitioners can benefit from the cache-oblivious index structur
modify the superblocks according to need.
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