Available online at www.sciencedirect.com

sctENCE@DlRECT" Journal of
Algorithms

Journal of Algorithms 53 (2004) 115-136 —
www.elsevier.com/locate/jalgor

A locality-preserving cache-oblivious dynamic
dictionary-

Michael A. Bendet!, Ziyang Duart*, John lacon8, Jing Wu?

@ Department of Computer Science, State Ursitgrof New York, Stony Brook, NY 11794-4400, USA
b Department of Computer and Informati&cience, Polytechnic University,
5 Metrotech Center, Brooklyn, NY 11201, USA

Received 22 February 2002
Available online 8 July 2004

Abstract

This paper presents a simple dictionary structure designed for a hierarchical memory. The
proposed data structuregache-obliviousandlocality-preserving A cache-oblivious data structure
has memory performance optimized for all levels of the memory hierarchy even though it has no
memory-hierarchy-specific parameterization. A locality-preserving dictionary maintains elements of
similar key values stored close together for fast access to ranges of data with consecutive keys.

The data structure presented here is a simplification of the cache-oblivious B-tree of Bender,
Demaine, and Farach-Colton. The structure supports search operatioNsdata items using
O(logg N + 1) block transfers at a level of the memory hierarchy with block sizelnsertion
and deletion operations us¥logg N + Iog2 N/B + 1) amortized block transfers. Finally, the data
structure returns all data items in a given search range usihdogg N + k/B + 1) block transfers.

This data structure was implemented and its performance was evaluated on a simulated memory
hierarchy. This paper presents the results of this simulation for various combinations of block and
memory sizes.

0 2004 Elsevier Inc. All rights reserved.

Y This work appeared in preliminary form in thedeeedings of the 13th Annual ACM—SIAM Symposium on
Discrete Algorithms (SODA), pp. 29-38, January 2002.
* Corresponding author.
E-mail addresseshbender@cs.sunysb.edu (M.A. Bendeiyang@cs.sunysb.edu (Z. Duan),
jilacono@poly.edu (J. lacono), jingwu@cs.sunysb.edu (J. Wu).
1 Supported in part by NSF Grants ACI-032497, CORB08670, and EIA-0112849, HRL Laboratories, and
Sandia National Laboratories.

0196-6774/$ — see front mattéi 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2004.04.014

116 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

1. Introduction

The B-tree [12,25,32,37] is the classic external-memory search tree, and it is widely
used in both theory and practice. The B-tree is designed to support insert, delete, search,
and scan on a two-level memory hierarchy dstiisg of main memory and disk. The basic
structure is a balanced tree having a fan-out proportional to the disk-bloclBsizbe
B-tree uses linear space and its query and update performanoglagy, N + 1) memory
transfers. This is @ (log B)-factor improvement over th®(Ig N) bound obtained by
the RAM-model structures (e.g., [1,31,43,46,50,51]). This improvement translates to
approximately an order of magnitudpeedup, depending on the application.

Although B-trees are in widespread use, they have several limitations. They depend
critically on the block sizeB and therefore are only optimized for two levels of the memory
hierarchy. On the other hand, modern memory hierarchies often have many levels including
registers, several levels of cache, main memang disk. Furthermore, the disparity in the
access times of the levels is growing, and fataremory hierarchies may have even more
levels.

Theoretically, it is possible to create a multilevel B-tree, but the resulting structure is
significantly more complex than the stand&dree. The data structure must be carefully
tuned for each memory level of interest. Furthermore, the amount of wasted space in such
an implementation appears exponential in the number of levels.

In many applications, such as database management systems, it is recognized that the
classic implementation of a B-tree can bdinyzed for modern memory hierarchies by
improving the data layout. For example, many systems heuristically attempt to group
logically close pages physically near eaather in memory in order to improve the
performance of the scan operation [26,35,3618]L,These efforts suggest that data locality
is required at other levels of granularity besides single disk blocks.

1.1. The cache-oblivious model

Traditionally most algorithmic work assumes tRandom Access Mod@RAM), which
consists of a “flat” memory with uniform access times. Recently, however, research has
been performed on developing theoreticaddals for modern complicated hierarchical
memory systems; see, e.g., [3-5,7,49,55,56].

In order to avoid the complications afultilevel memory modis, a body of work has
focused on two-level memory hierarchies. Arguably the most successful two-level model
is the Disk Access ModgIDAM) of Aggarwal and Vitter [6]. In the DAM, the memory
hierarchy consists of an internal memory of sieand an external memory partitioned
into B-sized blocks. The performance metric in this model is the number of block transfers.

Recently, a new model was proposed that comab the simplicity of the two-level
models with the realism of more cofigated hierarchical models. Treache-oblivious
mode] introduced by Frigo, Leiserson, Prokop, and Ramachandran [29,45], enables us
to reason about a simple two-level memory model, but prove results about an unknown,
multilevel memory model. The idea is to avoid any memory-specific parameterization, that
is, to design algorithms that do not use @nformation about memory-access times or
block sizes.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 117

The theory of cache-oblivious algorithms is based onitteal-cache moddi29,45].
As in the DAM model, there are two levela ithe memory hierarchy, which we call
cacheandmemory although they could represent any pair of levels. The main difference
between the cache-oblivious and the DAM model is that paramdieend M are
unknown to a cache-oblivious algorithm. Thisucial difference forces cache-oblivious
algorithms to be optimized for all values & and M and for all levels of the memory
hierarchy.

1.2. Our results

We propose a cache-oblivious and localityqmeving search tree, which is a simplifica-
tion of the cache-oblivious B-tree of Bender,daine, and Farach-Colton [16]. At a level
of the memory hierarchy with block sizg, the number of block transfers during a search
operationisO (logg N + 1), which is asymptotically optimal. Insertions and deletions take
O(logg N + log® N/B + 1) amortized memory trasfers, while scans of data items are
performed asymptotically optimally witt (k/ B + 1) memory transfers. If the scan oper-
ation is not supported, our structure can be modified using indirection, as in [16], so that
all operations us@® (logz N) amortized block transfers.

Like the cache-oblivious B-tree of [16], our data structure is locality preserving. Any
range ofk consecutive keys is stored in a contiguous region of memory of3iz¢. This
layout facilitates scans and ranggeries on most architectures, where accessing sequential
blocks is an order of magnitude fasthan accessing random blocks [30].

Our structure can be easily modified using the method of Brown and Tarjan [23] to
achieveO (logg k) query times, wherg is the difference in rank between the current and
previous queries. This property of our structure, known asdireamic-finger property
implies other finger-type results [33]. For example, given a constant-size shilisfehe
keys in the structure, let(x, y) be the difference in rank betweerandy. The number of
page faults to accessfrom F is thenO (logg mingcr d(f, x)).

Our data structure consists of two arrays. One of the arrays contains the data and a linear
number of blank entries, and the other array contains an encoding of a tree that indexes the
data. The search and update operations involve basic manipulations of these arrays.

We evaluated the algorithm on a simulated memory hierarchy. This paper presents the
results of this simulation for various combinations of block and memory sizes.

1.3. Related work

The first cache-oblivious search tree was proposed by Bender, Demaine, and Farach-
Colton [16]. Our data structures and the cache-oblivious B-tree of [16] have the
same capabilities with exactly the same asymptotic performance. Specifically, both data
structures support inserts, deletes, searches, and scans. Both data structures can be
augmented using indirection to support slightly faster inserts and deletes, but at the
cost of no longer supporting efficient scans. Both data structures can be augmented to
support finger search, although the augmentation required in [16] is more complicated.
The main advantage of the current data structure over [16] is that the our structure is easily
implementable.

118 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136
Table 1
Related work in cache-oblivious data structures
B-tree o Simplification via packed-memory structure/low-height trees [18,22]
o Simplification and persistenceéavexponential structures [15,47]
o Implicit [27,28]
Static search trees e Basic layout [45]
« Experiments [40]
e Optimal constant factor [13]
Linked lists supporting scans [14]
Priority queues [11,20]
Trie layout [8,17]
Computational geometry o Distribution sweeping [19]
e \oronoi diagrams [39]
e Orthogonal range searching [2]
Lower bounds [21]

Brodal, Fagerberg, and Jacob [22] indepeniyateveloped a remarkably similar cache-
oblivious search tree, whose bounds match those presented here. Their data structure
maintains a balanced tree of height lég+ O (1), which they lay out cache-obliviously
in an array of size®(N). The two papers present complementary experimental results.
Publication [22] gives timing results for searches and random inserts, but not worst-case
updates. We evaluate the cost of updates for a range of insertion patterns and a range of
memory hierarchies.

Rahman, Cole, and Raman [47] and Bender, Cole, and Raman [15] consider a different
approach to building cache-oblivious seasttuctures based on exponential search trees
[9,10,52]. The paper [47] gives the first implementation of a cache-oblivious search tree.
These data structures permit fast insertions but lack the ability to scan efficiently.

See Table 1 for more related work on cache-oblivious data structures.

A body of related work shows how to keép elements ordered i@ (N) locations of
memory, subject to insertions and deletions. Itai, Konheim, and Rodeh [34] examine the
problem in the context of priority queues and propose a simple structure Qslog? N)
amortized time per update. Similar resultere obtained by Melville and Gries [42]
and by Willard [57]. Willard [58-60] examine$e problem in the context of dense file
maintenance and develops a more complicated structure Gging® N) worst-case time
per update. Bender, Demaine, and Farach-Colton [16] show that a modification to the
structure of Itai, Konheim, and Rodeh results in a packed-memory structure running in
O((log? N)/B + 1) amortized memory transfers per update angk/B + 1) memory
transfers per traversal éfelements.

2. Description of thestructure

Our data structure maintains a dynamic$storing items with key values from a totally
ordered universe. It supports the following operations:

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 119

1. INSERT(x): Addsx to S, i.e.,§ =S U {x}.
2. DELETE(x): Removest from S, i.e.,§ =S — {x}.
3. PREDECESSORx): Returns the item fron§ that has the largest key value $nthat is
at mosty, i.e., return mayes such thaty < x.
4. ScANFORWARD(): Returns the successor of the most recently accessed itém in
5. ScaNBAckwARD(): Returns the predecessor of the most recently accessed iteém in

We use two separate cache-oblivious structures, the packed-memory structure of
Bender, Demaine, and Farach-Colton [16] (which is closely based upon previous structures
of Itai, Kronheim, and Rodeh [34] and Willard [57-60]) and the static B-tree of Prokop
[45].

The packed-memory structure maintaiNselements in sorted order in an array of
size O(N) subject to insertions, deletions and scans. Insertions and deletions require
O(log? N/B + 1) block transfers and a scan bfelements require® (k/B + 1) block
transfers.

The packed-memory structure is used to store the items. However it does not support
efficient searches. (A naive binary search requ®d¢bg(N/B) + 1) memory transfers,
which is prohibitively large.) We thus use the static cache-oblivious tree structure as an
index into the packed-memory structurenave each leaf in the static cache-oblivious tree
corresponds to one item in the array of the packed-memory structure.

The difficulty with this fusion of structures is that when we insert or delete, the positions
of the elements in the packed-memory structure may be adjusted, invalidating the keys
in the static B-tree. Thus, the static B-tree must be updated to reflect the changes in the
packed-memory structure. We show that the cost of updating the static B-tree does not
dominate the insertion cost. Whenever the array becomes too full or too empty we recopy
the elements into a larger or smaller array.

Before describing our main structure, we present the packed-memory structure and the
static cache-oblivious layout.

2.1. Packed-memory maintenance

In apacked-memory structufé&6], we haveN totally ordered elementsy, xo, ..., xy
to be stored in an array of size O(N). Two update operations are supported: a new
element may be inserted between two existing elements, and an existing element may be
deleted. This structure maintains the following invariants:

1. Order constraintElementy; precedes; in arrayA iff x; < x;.

2. Density constraintThe elements are evenly distributed in the arfayThat is, any
set ofk contiguous elements;, ..., x;x—1 iS stored in a contiguous subarray of size
O (k).

The packed-memory structure of [16] has the following performance guarantees:
Scanning any set o contiguous elements;, ..., x; k1 usesO(k/B + 1) memory
transfers. Inserting or deleting a new element us¢®g® N/B + 1) amortized memory
transfers.

120 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

Described roughly, the packed-memory structure works as follows: When a window of
the array becomes too unbalanced, with most of the elements in one half of the window,
then we spread out the elements, evenly distributing the gaps. The window sizes range
from O(logN) to O(N) and are powers of 2. A window of sizé B a contiguous memory
block of size 2 whose left boundary has an array position that is a multiplé of 2

Associated with window sizes adensity thresholdsvhich are guidelines to determine
the acceptable densities of windows. Tiygper-bound density threshotf a window of
size % is denotedy,, where

TloglogN = TloglogN+1 > - - > TlogN »

and theower-bound density thresholaf a window of size 2 is o, where

PloglogN < PloglogN+1 < *** < PlogN »

andtiogn > plogn- The density of any particular window of siz& mhay deviate beyond
its threshold, but as soon as the deviation is “discovered,” the densities of the windows are
adjusted to be within the threshold.

The values of the densities are determined according to an arithmetic progression.
Specifically, letriogy be any positive constant less than 1, andiigfiogy = 1. Let

8 = (Tioglogh — Tlogn)/(10g N — loglogN).
Then, define density threshotg to be
Tk = Tloglogy — (k —loglogN)s.

Similarly, let pogn be any constant less thagy, and letpiogiogy be any constant less
thanpiogy . Let

8" = (plogn — Ploglogn)/(I0g N —loglogN).
Then, define density threshotg to be
Pk = Ploglogn + (k —loglogN)s'.

We say that a window of the array of siz&i8 overflowingif the number of data elements
in the region exceeds 2¢. We say that a window of the array of siz&ig underflowingf
the number of data elements in the region is less hah.

To insert (delet§ an element at locationA[j], we examine the windows containing
A[j] of size %, for k = loglogN, ..., logN until the smallest window is found that is
not overflowing or underflowing. We then insert (delete) the elememdrebalancethis
window. To rebalance the window, we rearge the elements and the window so that the
gaps are evenly spaced. The simplest way tdément a rebalance is first to compress the
elements on one side of the window, and then to redistribute the elements throughout the
window. Thus, each element is moved at most twice.

2.2. Static structure

We review a cache-obliviougtatictree structure of Prokop [45], which is used in most
cache-oblivious search structures. Givenomplete binary tree, we describe a mapping

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 121

from the nodes of the tree to positions of an array. This mapping, caiecEmde Boas
layout, resembles the recursive structure in the van Emde Boas data structure [53,54]. The
cache oblivious structure can perform any traversal from the root to a leaf M aode

tree inO(loggz N + 1) memory transfers, which is asymptotically optimal.

We now describe the van Emde Boas layout. Suppose the tree comatams and
has height: = Ig(N + 1). Conceptually split the tree at the middle level of edges, below
the nodes of heighk/2. This split breaks the tree into thep recursive subtreet of
height| /2], and severabottom recursive subtreds, ..., B, of height[x/2]. Thus there
are? = ®©(+/N) bottom recursive subtrees and each subtree contiR&V) nodes. The
mapping of the nodes in each subtree to pos#iin memory is obtained by recursively
laying out each subtree and comibig these layouts in the orddr, B1, ..., Bg in an array.

The base case is reached when the trees have one node.

We now introduce the notion ¢dvels of detaito partition the tree into disjoint recursive
subtrees. In the finest level of detail, 0, each node is its own recursive subtree. In the
coarsest level of detaiflg i1, the entire tree forms a unique recursive subtree. In general,
level of detailk is derived by starting with the entire tree, recursively partitioning it, and
exiting the recursion whenever a recursive subtree has height Note that according
to the van Emde Boas layout, each recursibtiee is stored in aontiguous block of
memory. At level of detaik, all recursive subtrees have heights betwéert and Z.

Thus, the following lemma describes the performance of the van Emde Boas layout.

Lemma 1 [45]. Consider anN-node complete binary search trdethat is stored in a
van Emde Boas layout. Then a traversalflirfrom the root to a leaf use® (logg N + 1)
memory transfers.

Proof. If N < B, there are at most 2 memory transfers because theltrean cross
only one block boundary. IN > B, let k be the coarsest level of detail such that every
recursive subtree contains at mdsinodes. Thus, every recursive subtree is stored in at
most 2 memory blocks. Since tr@ehas height IgV + 1), and the height of the subtrees
ranges from(lg B)/2 to IgB, the number of subtrees traversed from the root to a leaf is
at most 2logV/log B = 2logy N. Since each subtree can be in at most 2 memory blocks,
traversing a path from the root to a leaf uses at most 4 lgnemory transfers. O

2.3. Dynamic cache-oblivious structure

Our dynamic cache-oblivious locality-presing dictionary uses the packed-memory
structure to store its data, and it uses the static structure as an index into the packed-
memory structure. Henceforth, we use tleent “array” to refer to the packed memory
structure storing the data, and “tree” to nefe the static cache-oblivious structure that
serves as an index. We use this terminology even though the “tree” is actually stored as an
array.

The N data items are stored in a packed-neeynstructure, which is an array of
size®(N). Recall that the items appear in the array in sorted order but some of the array
positions are kept blank.

122 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

Recall that the static cache-oblivious stiure consists of a complete tree. lletdenote
theith leftmost leaf in the tree. In our structure there are pointers between array position
A[i] and leafT;, for all values ofi. We maintain the invariant that[i] and 7; store the
same key value. All internal nodes &f store the maximum of the nonblank key value(s)
of its children. If a node has two children with blank key values, it also has a blank key
value.

We now describe the supported operations.

PREDECESSORx): Predecessor is carried out by traversing the tree from the root to a
leaf. Since each internal node stores the imaxn key value of the leaves in its induced
subtree, this search is similar to thersdard predecessor search on a binary search tree.
When the search has reached a nadét decides whether to branch left or right by
comparing the search key to the keyudd left child.

Theorem 2. The operatiorPREDECESSORx) usesO (loggz N + 1) block transfers.

Proof. Search in our structure is similar to th@(logz N + 1) root-to-leaf traversal
described in Lemma 1, except that the process of examining the key value of the current
node’s left child at every step may cause an additiendbg, N + 1) block transfers. O

SCANFORWARD(), SCANBACKWARD(): These operations are implemented by scan-
ning forward or backwards to the next non-blank item in the array from the last item ac-
cessed. Because of the density constraint on the array, we are guaranteed that we only scan
0 (1) elements to find a non-blank element.

Theorem 3. A sequence ok SCANFORWARD or SCANBACKWARD operations uses
O (k/B + 1) block transfers.

Proof. A sequence ok SCANFORWARD or SCANBACKWARD operations only accesses
O (k) consecutive elements in an array in order. Thus, scan takégB + 1) block
transfers. O

INSERT(x), DELETE(x): We describe NSERT(x); DELETE(x) proceeds in the same
manner. We insertin three stages: First, we perform a predecessor query to find the location
in the array to inserkt. Then, we inserk into the array using the insertion algorithm of
the packed-memory structure. Finally, we update the key values in the tree to reflect the
changes in the array.

The first two steps are straightforward; we now describe the third step in more detail.
First, we copy the updated keys from the array into the corresponding locations in the
tree. We then update all of the ancestors & tipdated leaves. We proceed through this
subtree according to th@ostordertraversal, that is, the tree traversal where both children
are visited before their parent. The updating process changes the key value of a node to
reflect the maximum of the key values of its children. By updating using the postorder
traversal, we can guarantee that when we reagiven node the values of its children have
been updated already.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 123

Lemma 4. To perform a postorder traversal anhleaves in the tree and their ancestors
requiresO (logz N + k/B + 1) block transfers.

Proof. We consider the largest level of detail in the tree where recursive subtrees are
smaller thanB. Consider the horizontal stripes formed by the subtrees at this level of
detail. On any root-to-leaf path we pass throu@tiogz N + 1) stripes. We number the
stripes from the bottom of the tree starting at 1. Each stripe consists of a forest of subtrees
of the original tree. If the root of a treE, in stripei is a child (in the full tree) of a leaf of

a treeTy in stripei + 1, we say thaf, is atree-childof 7.

Accessing all of the items in one tree in any stripe uses at most two memory transfers,
since the subtree is stored in a consecutive region of memory of size aBmdg& now
analyze the cost of accessing one of the stripe-2 femsd all of its stripe-1 tree-children.

The size of all of these trees is in the rang® to B. In the postorder traversal, all of the
stripe-1 trees are accessed in the order that they are stored in the array. Since all of the
stripe-1 tree-children of are stored consecutively in memory, the number of page faults
caused by accessirfgconsecutive items in the stripe-1 treesiofn postorder is at most

1+ 2¢/B, provided memory can hold 2 blocks. Accessing all of the item¥ itakes 2
memory transfers provided that memory can hold 2 blocks. Accessing aagsecutive

items inT and all the descendant tree-childrendiwes interleaving accesses to items in

T and accesses tfi's tree-children. Interleaving these operations takes no more block
transfers than doing operations separateaigyjgled sufficient cache is available. Thus, at
most 2+ 2k/ B block transfers are performed if memory can hold 4 blocks.

By the above argument, a2 (logg N)-sized cache is enough to support the claimed
bounds. However, only a constant-sized cachadtually necessary because most of the
nodes belong to subtrees in stripes 1 and 2. At most& ftaction of nodes are in all
other stripes, so we can afford to pay omemory transfer for each of these accesses
and then one additional transfer to bring back into memory a block that may have
been prematurely evicted. dfe specifically, to accegsconsecutive items in the tree in
postorder primarily consists of accessing letelnd level-2 subtrees. In addition, there are
at mostO(logg N + k/B) items accessed at stripes 3 and higher. Each of these accesses
caused) (1) memory transfers. Thug) (logz N + k/B + 1) block transfers are performed
to accesg consecutive items in the tree in postorder, given a cache of 5 blocks.

Theorem 5. The number of block transfers caused by theERT(x) and DELETE(x)
operations isO (logg N +l0g? N/B + 1).

Proof. We describe the proof fomNISERT(x); DELETE(x) proceeds in the same manner.
The predecessor query costglogz N + 1). The cost of inserting into the packed memory
structure isO (log? N/B + 1) amortized memory transfers. Let be the actual number

of items changed in the array by the packed-memory structure. By Lemma 4, updating
the internal nodes use3(logz N + w/B + 1) memory transfers. Sincé (w/B + 1) is
asymptotically the same as the actual numbénack transfers performed by the packed-
memory structure’s insertion into the array, it is tg¢log? N/B + 1) amortized cost of
insertion into the packed-memory structure. Therefore the emis&RT operation uses
O(log? N/B + logg N + 1) amortized memory transfers

124 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

2.4. Finger searches

We now show how to perform finger searches on our structure. Brown and Tarjan [23]
explain how to use level-linking in order to execute finger searches efficiently. The level-
linking method involves using left and right level pointers on every node. We can then
execute finger searches by following a combination of the regular tree pointers and the
level-linking pointers.

Here for clarity of presentation we present a different approach and avoid the use of
these pointers altogethér.

Lemma 6. Let x and y be leaves in the static index structure. lkebe the leaf-distance
betweernx andy, wherek is knownto the algorithm. Lep a pointer to leafc. The pointer
p can be moved to leafin O(logg k + 1) block transfers.

Proof. We assume without loss of generality that x. The following algorithm is used
to search fow:

1. Move p up [lgk] nodes. Call this node.

2. Move p down[lg k] nodes searching for using the normal tree searching rules.

3. Pointerp now points to a leaf node. If z is y, stop. Otherwise, move to z's
successor.

4. Movep up [lgk] nodes. Call this node.

5. Move p down[lg k] nodes searching for using the normal tree searching rules.

Correctness

Since the nodes andb are at heightlogk], the number of leaves in each of their
induced subtrees is at leastNote that the induced subtreemtontains, and the induced
subtree ofb contains at least leaves that are adjacent to the largest leaf in the induced
subtree ofz. Thus,y must be in the induced subtree of eitlacor b. The algorithm must
find y because it searches the nodes in the induced subtrees af battb, and thus it is
correct.

Runtime

In the static structure, any traversal from an internal no@é heighth to a leaf in its
induced subtree takes tim@(logg & + 1) memory transfers. This follows from applying
the logic of Lemma 7 to the induced subtreeqofThe algorithm does at most four such
searches. O

Lemma?. Letx andy be leaves in the static index structure. Let the leaf-distance between
x andy bek, wherek is unknownto the algorithm. Lep a pointer to leafc. The pointer
p can be moved to leafin O (log k + 1) block transfers.

2 Note that avoiding additional pointers is not a wevttile goal in itself because Morin's dictionary diet can
be employed to reduce the number ofrgers per node on any dictionary [44].

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 125

Proof. We guess the value @f using the doubly exponential sequen&le, 222, 223, e,
and we repeat the method in Lemma 6 untils found. This guessing ends at or before
22" since 29" > k. Thus, the runtime iy %% log, 22 < 2log, 22" =
O(logg k) block transfers. O

From Lemmas 6 and 7 we obtain the following theorem:

Theorem 8. Letd(x, y) be the rank distance betweemndy. Given a pointer to an item,
the operatiorPREDECESSORy) can be executed i@ (logg (d(x, y) + 1)) block transfers.

3. Simulation results

We now explore how the block sizg and the cache siz¥ affect the performance of
our cache-oblivious data structure and howadhehe-oblivious data structure compares to
a standard B-tree. In our simulations we began with an empty structure and inserted many
elements. Each data entry is an unsigned 32-bit integer, so the domain space of the data
elements ig0, 232 — 1]. Whenever the array becomes too full we recopy the elements into
a larger array.

We tested our structure using the following input patterns:

1. Insert at Head—The elements are inserted at the beginning of the array. This insertion
pattern models close to worst-case bebawef the packed-memory array, where the
inserts “hammer” on one region of the array.

2. Random Inserts-An element is chosen randomly from its domain space for each
insertion. We implement the random imssby assigning each new element a random
32-bit key.

3. Bulk Inserts—This insertion pattern is a middle ground between random inserts and
insert at head. In this strategy we pick a random element to insert and insert a sequence
of elements just before it. (We performetlpacked-memory-structure modification
after each element is inserted.) We run the simulations with bulk sizes of 1, 10, 100,
1000, 10,000, 100,000, and 1,000,000. Observe that random inserts and insert at head
are special cases of bulk insert with bulk size 1 and 1,000,000, respectively.

Our experiments have three parts. First, we test the packed-memory structure to measure
the amortized number of moved elements or array positions scanned per insertion. We
consider different density thresholds as wadldifferent density patterns. We next built a
memory simulator, which models which blocks are in memory and which blocks are on
disk. We adopt the standard Least Recently Used (LRU) replacement strategy and assume
full associativity. Thus, whenever we touctbbck that is not in memory, we increment
the page-fault count, bring the block into memaand eject the leasecently-used block.

We separately measure the number of pamdt$ caused by packed-memory-structure
manipulations and index-structure manipulations. Finally, we compare our structure with
a standard B-tree. In the simulations, memory and block sizes are chosen from a range to
represent many possible system configurations.

126 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

3.1. Scans and moves

We measure both the number of elements moved and the number of array positions
scanned, that is, touched during a rebala Note that each moved element is moved
approximately twice. This is because when wealance an interval, first we compress the
elements at one end of the interval, and thersp&ce the elements evenly in the interval,
moving each element twice. Figure 1 shows oesults of moves for the insert-at-head
insertion strategy. We consider density parameters of 50%, 60%, 70%, 80%, and 90%.
With a 60% density threshold the average number of moves is only 320 when inserting
1,000,000 elements, and only 350 when inserting 2,000,000 elements. Even with a 90%
density threshold the number of moves is only 1100 when inserting 2,000,000 elements.
Figure 2 shows in the worst case, the number of movéﬁ(legz(N)).

Figure 3 shows the number of moves for random inserts. There are only a small constant
number of element moves or scanned elements per random insertion. Figure 4 depicts bulk
inserts ranging from best case (random) to worst case (insert-at-head); the number of moves
increases with the bulk size.

3.2. Page faults

We first focus on the page faults caused by the packed-memory structure using the
insert-at-head insertion strategy. As expected, the number of page faults is more sensitive
to B than to N. The number of page faults behaves roughly lineaBinas depicted

Average number of moves per insert v.s. number of elements
insert at head

1200 T T T T T T T

1000

800

600

number of moves

400

200

0 1 1 1 1 1 1 L 1 1
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06
number of elements

Fig. 1. Average number of moves per insert versus numbdenfents using different density thresholds with the
insert-at-head insertion pattern.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 127

(Average number of moves per insert)/(log"2 (number of elements)) v.s. number of elements
insert at head

6 T T T T T T T T T
100% - 90%
100% - 80% -------
55 | 100% - 70% ==

5 60%
100% - 50%

[&]
T

»
[&)]
T
1

E
T
1

w
T
\
\
\
1

N
3
T
1

(Avg. moves)/(log"2 (number of elements))
w
(&}
T
1

N
T
1

-
(&)
T

1

1 1 1 1 1 1 1 1 1 1
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06
number of elements

Fig. 2. (Average number of moves per ins;e(ﬁt)gz(number of elements)) versus number of elements using
different density thresholds with the insert-at-head itige pattern. This graph demonstrates that the worst case
truly is (~)(Iog2 N) amortized moves per insertion.

average number of moves per insert v.s. number of elements
insert randomly

20 T T T T T T T T T
100% - 90%
100% - 80%
100% - 70% --
18 - 100% - 60% 7
100% - 50% -—-
16 [.

-
H
T

1

-
o

number of moves per insert
-
N

4
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
number of elements

Fig. 3. Average number of moves per insert versus numbetements using different density thresholds with
random insertion pattern. The dips occurs witemelements are recopied to a larger array.

128 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

average number of moves per insert v.s. number of elements
Density Threshold 100% - 50%, bulk insert

300 T T T T T T T T T
1000000 ——
100000 -------
10000 -
250
200 +
(2}
[0
>
o
€
S 150 |
5]
[T U
<
S |/
c
100 -
50 + s
i i | 1 - 1

0 i N . I o
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
number of elements

Fig. 4. Average moves per insert versus number of efesnasing density threshold 100%—-50%, bulk insert with
bulk sizes 110, 100 ..., 1000000.

average pagefault per insert at cache size 65536 but different page sizes and page numbers,
density threshold 100% - 50%,insert at head

1.8 T T T T T T T T T

average pagefault per insert

0 1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

number of elements

Fig. 5. Average page faults per insert, at total memarg §5536 bytes, but with different page sizes and page
numbers.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 129

average pagefault per insert at page size 1024 bytes but different number of of pages,
density threshold 100% - 50%, insert at head

0.6 T T T T T T T T T

average pagefault per insert

o Lt |
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

number of elements

Fig. 6. Average page faults per insert, at page size bd@4vith different numbers of pages, insert at head.

in Figs. 5 and 6. Specifically, Fig. 5 suggests that the number of page faults decreases
linearly when B increases linearly and/ remains fixed. Figure 6 indicates that the
number of page faults decreases roughly linearly wieiis fixed and M increases
exponentially.

Overall, these results are promising. E¥eninsertions at the head, the number of page
faults per insertion is less than 1 for most reasonable valudsarid M. There are few
page faults because we are attempting terihismto one portion of the array which can be
keptin cache unless a rebalance window is Iatigen the cache size, a relatively infrequent
event.

Although random insertions are close to the best case in terms of number of elements
moved, they are close to the worst caseeimts of number of page faults. This is because
since the location of the insert in the array is chosen randomly, The relevant page is unlikely
to be in the cache already. Thus, we expecagepfault per insertion, which is supported
by Fig. 7. The situation for bulk insertions as illustrated in Fig. 8 is dramatically better than
for random insertions because the cost of ihge fault is amortized over the number of
elements inserted in a region.

We next measure the number of page faultsseduby the entire structure, separately
considering the contribution from the searching the index and the scanning the array. We
consider bulk sizes of 1, 10, 100, 1000, 10,000, 100,000, and 1,000,000; see Figs. 9 and 10
and Tables 2 and 3. Interestingly, the worst case is for random inserts where there are
typically two page faults caused by the index and one caused by the scanning structure.
As the bulk size increases to 10 and then 100 we obtain almost order-of-magnitude

130

average pagefault per insert

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

average pagefault per insert at pagesize 1024 bytes but different number of pages,
density threshold 100% - 50%, insert randomly

'
Il
I
I
!
1
1

h
1
i
i
!
i
!

1
[
I
I
i
'
|

!
!
i
!
1
Lo
il
|
I
i
b

1

1

1

1

1

100000 200000 300000 400000 500000 600000 700000 800000 900000

1e+06

0 L
0
number of elements

Fig. 7. Average page faults per insert, at page size bd@4vith different numbers of pages, insert randomly.

average pagefault per insert at pagesize 1024 bytes, page number 64, with different bulk size,
density threshold 100% - 50%

1.1 T T

0.9

1000000 -

average pagefault per insert

1 1 1 1 1 1
100000 200000 300000 400000 500000 600000 700000 800000 900000
number of elements

0
0 1e+06

Fig. 8. Average page faults per insert, at page 4@24 and page number 64, but with different bulk sizes
1,10, 100 ...,1000000.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 131

pick a random element and insert a bulk of adjacent elements
summary of the page fault rates (cache size: 64K, page size: 1024 byte insert 1,000,000 elements totally)

35 T T T T T
array pagefault ——
index pagefault ---x---
N total ---%---
3 L -
25 4

average page fault per insert

0 1 2 3 4 5 6
log base 10 of (bulk size)

Fig. 9. Page fault rate versus lggbulk size (insert 1,000,000 elements, page size 1024 bytes, page number 64),
our data structure.

pick a random element and insert a bulk of adjacent elements
summary of the page fault rates of B-tree with different node sizes
(cache size: 64K, page size: 1024 byte insert 1,000,000 elements totally)

8 T T T T T
[node size: 128 byte —+—
Y node size: 216 byte ---x---
7 K node size: 512 byte ---%--- |
Y node size: 1024 byte &
\ node size: 2048 byte ---m--
\
6F i
\
b5 0 Y
2 A 1
9] \
Q
% ~
8
[}
je}
o
Q -
>
©
2 2 -
3 4 5 6

log base 10 of (bulk size)

Fig. 10. Page fault rate versus legbulk size (insert 1,000,000 elements, page size 1024 bytes, page number
64), B-tree.

132 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

Table 2
Page fault rate of our data structure. We inserted 10@@elements; the page size was 1024 bytes and there were
64 pages

Bulk size Array pagefault Index pagefault Total
10° 1.0 2.2 32

10t 0.28 023 051
107 0.076 0028 Q10
103 0.083 00095 0093
10t 0.37 0024 Q39
10° 0.65 0031 Q69
108 0.83 0030 Q86
Table 3

Page fault rate of the B-tree. We inserted 1,000,0@@nehts; the page size was 1024 bytes and there were 64
pages

Bulk size Node size

128 256 512 1024 2048
10° 37 32 29 52 7.7
10t 0.40 033 031 054 080
102 0.053 Q048 Q047 Q067 0091
103 0.020 Q019 Q022 0020 Q024
104 0.016 Q016 Q016 Q016 Q016
10° 0.016 Q016 Q016 Q016 Q016
108 0.016 Q016 Q016 Q016 Q016

improvements in efficiency. For larger busizes the rebalancinig the packed-memory
structure hurts the cachenfermance, increasing the number of page faults. However, the
performance is never worse than for random insertions.

We also simulated a B-tree. The data structure is a modification of David Carlson’s
implementation [24] based on the one found in [38]. The data entries in the B-tree are also
32 bitintegers. Each node of the B-tree contains at rBafdta entries an@ + 1 branches.

The page fault rate of insertion into the B-tree is tested with diffeBeand different bulk
sizes.

Insert at head is by far the best case for B-trees. Interestingly, this is not even the case
B-trees are optimized for because there is little advantage t8tkieed fan-out since an
entire root-to-leaf path fits in cache. When we increBskut keep the node size within
the size of a page, the performance improves. However, if the node size gets larger than
the page size, the performance gets much worse, especially when inserting randomly. We
measured the search efficiency when searching for a random key from 1,000,000 indexed
elements. When the page size is 1024 bytes, the average page fault per search of the B-tree
with node size 816 is 3.77, whereas the average page fault per search for our structure
is 3.69.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 133

4, Conclusion

We have developed and simulated a new cache-oblivious locality-preserving dictionary,
which supportsNSERT, DELETE, and S AN operations. Our structure has two advantages
not held by the standard B-tree. First, it is cache oblivious, that is, it is not parameterized
by the block size or any other characteristi€th@ memory hierarchy. Second, it is locality
preserving. That is, unlike any other dynamic dictionary except for [16,22], the structure
keeps data stored compactly in memory in order.

Interestingly, although our structure is algorithmically more sophisticated than the B-
tree, it may be of comparable difficulty to implement. Unlike the B-tree structure, which
requires dynamic memory allocation and pointer manipulation, our structure is just two
static arrays.

Different insertion patterns have different costs in our structure and in the standard B-
tree. Our simulations indicate that our worst-case performance is at least as good as the
worst-case performance of the B-tree fgpital block and memory sizes. Indeed, when
the B-tree is not optimized for the block size then our structure outperforms the B-tree.
This worst-case performance is exhibited during random insertions. On the other hand,
because we must keep data in order, we cammettch the B-tree performance when all
insertions are to the same location. However, even in the adversarial case, we still perform
better than when data is evenly distributed. More research needs to be done to test our data
structure on actual input distributions.

For the special case where we know the block size and where the two-level DAM model
is an accurate cost model of the system, thiee®-is of course the best option since it is
optimized for the DAM model. However, it is becoming increasingly important to optimize
for multilevel memories. Moreover, the research effort in clustering B-tree blocks and
keeping data in order suggests that even two-level memory hierarchies (i.e., disk and main
memory) do not obey the DAM model. More work should be performed on developing
more realistic cost models and testing our structure on these models.

If we do not need scans then we can use one level of indirection to perform searches and
updates in amortized (logz N + 1) memory transfers (see [16] for details). We can also
use our data structure to keep data order@Him superblocks thiaare arbitrarily placed
in memory. Thus, practitioners can benefit from the cache-oblivious index structure and
modify the superblocks according to need.

Acknowledgments
The authors gratefully acknowledge Jon Bentley, Erik Demaine, Martin Farach-Colton,

Petr Kon€ny, and Torsten Suel for useful discussions.

References

[1] G.M. Adel'son-Vel'ski, E.M. Landis, An algorithm for organitian of information, Dokl. Akad. Nauk
SSSR 146 (1962) 263-266 (in Russian).

134 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

[2] P.K. Agarwal, L. Arge, A. Danne B. Holland-Minkley, Cache-obliwus data structures for orthogonal
range searching, in: Proceedings of 19th Annual ACVhBgsium on Computational Geometry, San Diego,
CA, 2003, pp. 237-245.

[3] A. Aggarwal, B. Alpern, A.K. Chandra, M. Snir, A model for hierarchical memory, in: Proceedings of the
19th Annual ACM Symposium on Theory of Computing, New York, 1987, pp. 305-314.

[4] A. Aggarwal, A.K. Chandra, Virtual memory algorithms, in: Proceedings of the ACM Symposium on Theory
of Computation, 1988, pp. 173-185.

[5] A. Aggarwal, A.K. Chandra, M. Snir, Hierarchical memory with block transfer, in: Proceedings of the 28th
Annual IEEE Symposium on Foundations of Qauter Science, Los Angeles, CA, 1987, pp. 204-216.

[6] A. Aggarwal, J.S. Vitter, The input/output complgxof sorting and related problems, Comm. ACM 31 (9)
(1988) 1116-1127.

[7] B. Alpern, L. Carter, E. Feig, T. Selker, The unifo memory hierarchy model of computation, Algorith-
mica 12 (2-3) (1994) 72-109.

[8] S. Alstrup, M.A. Bender, E.D. Demaine, M. Faracli®©n, J.I. Munro, T. Rauhe, M. Thorup, Efficient tree
layout in a multilevel memory hierarchy, http://www.arXiv.org/abs/cs.DS/0211010, 2002.

[9] A. Andersson, Faster deterministic sorting aedrehing in linear space, in: Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, 1996, pp. 135-141.

[10] A. Andersson, M. Thorup, Tight(er) worst-e&adounds on dynamic searching and priority queues, in:
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 2000, pp. 335-342.

[11] L. Arge, M.A. Bender, E.D. Demaine, B. Hollaridinkley, J.I. Munro, Cache-oblivious priority queue
and graph algorithm applications, in: Procerdi of the 34th Annual ACM Symposium on Theory of
Computing, Montréal, Canada, 2002, pp. 268-276.

[12] R. Bayer, E.M. McCreight, Organization and maitdace of large ordered indexeActa Informatica 1 (3)
(1972) 173-189.

[13] M.A. Bender, G.S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu, J. lacono, A. L6pez-Ortiz, The cost of cache-
oblivious searching, in: Proceedings of the 44thnfial Symposium on Foundations of Computer Science,
Cambridge, MA, 2003, pp. 271-282.

[14] M.A. Bender, R. Cole, E.D. Demaine, M. Farachi0n, Scanning and traversing: maintaining data for
traversals in a memory hierarchy, in: Proceedingthef10th Annual European Symposium on Algorithms,
Rome, Italy, in: Lecture Notes in Comput. Sci., vol. 2461, 2002, pp. 139-151.

[15] M.A. Bender, R. Cole, R. Raman, Exponential stames for efficient cache-oblivious algorithms, in:
Proceedings of the 29th International Colloquium Automata, Languagesxd Programming, Malaga,
Spain, in: Lecture Notes in Comput. Sci., vol. 2380, 2002, pp. 195-207.

[16] M.A. Bender, E. Demaine, M. Farach-Colton, Cagbblivious B-trees, in: Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, 2000, pp. 399—-409.

[17] M.A. Bender, E.D. Demaine, M. Farach-Coltonf{iEiEnt tree layout in a multilevel memory hierarchy, in:
Proceedings of the 10th Annual European SymposimnAlgorithms, Rome, Italy, in: Lecture Notes in
Comput. Sci., vol. 2461, 2002, pp. 165-173.

[18] M.A. Bender, Z. Duan, J. lacono, J. Wu, A localityegerving cache-oblivious dynamic dictionary, in:
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 29—
38.

[19] G.S. Brodal, R. Fagerberg, Cache oblivious distithhusweeping, in: Proceedings of the 29th International
Colloguium on Automata, Languages)d Programming, Malaga, Spain; Lecture Notes in Comput. Sci.,
vol. 2380, 2002, pp. 426-438.

[20] G.S. Brodal, R. Fagerberg, Funnel heap—a cachw&iobs priority queue, in: Proceedings of the 13th
Annual International Symposium on Algorithms and Gartation, Vancouver, Canada, in: Lecture Notes in
Comput. Sci., vol. 2518, 2002, pp. 219-228.

[21] G.S. Brodal, R. Fagerberg, On the limits of cad®iviousness, in: Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, San Diego, CA, 2003, pp. 307-315.

[22] G.S. Brodal, R. Fagerberg, R. Jacob, Cache oblivemasch trees via binary trees of small height (extended
abstract), in: Proceedings of the 13th ACM—SIAM Symposium on Discrete Algorithms, 2002, pp. 39-48.

[23] M.R. Brown, R.E. Tarjan, Design and analysis of a data structure for representing sorted lists, SIAM J.
Comput. 9 (1980) 594-614.

[24] D. Carlson, Software design using C++, http://cis.stvincent.edu/carlsond/swdesign/swd.html, 2001.

M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136 135

[25] D. Comer, The ubiquitous B-tree, ACM Comput. Surveys 11 (2) (1979) 121-137.

[26] J.V. den Bercken, B. Seeger, P. Widmayer, A generic approach to bulk loading multidimensional index
structures, in: M. Jarke, M.J. Carey, K.R. Dittrich, F.H. Lochovsky, P. Loucopoulos, M.A. Jeusfeld (Eds.),
VLDB'97, Proceedings of 23rd International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, Kaufmann, 1997, pp. 406-415.

[27] G. Franceschini, R. Grossi, Optimal cache-obliviaowplicit dictionaries, in: Proceedings of the 30th
International Colloquium on Atomata, Languages and Programmi(ICALP), in: Lecture Notes in
Comput. Sci., vol. 2719, 2003, pp. 316-331.

[28] G. Franceschini, R. Grossi, Optimal worst-case operations for implicit cache-oblivious search trees, in:
Proceedings of the 8th Workshop on Algorithms and Data Structures (WADS), 2003, pp. 114-126, in press.

[29] M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran, Cache-oblivious algorithms, in: Proceedings of the
40th Annual Symposium on Foundations ofrouter Science, New York, 1999, pp. 285-297.

[30] J. Gray, G. Graefe, The five minute ruentyears later, SIGMOD Record 26 (4) (1997).

[31] L.J. Guibas, R. Sedgewick, A dichromatic framelwéor balanced trees, in: Proceedings of the 19th Annual
Symposium on Foundations of Computer Science, Ann Arbor, Ml, 1978, pp. 8-21.

[32] S. Huddleston, K. Mehlhorn, A nedata structure for representing taat lists, Acta Informatica 17 (1982)
157-184.

[33] J. lacono, Alternates to splay trees witl»(logn) worst-case access times, in: Proceedings of the 11th
Symposium on Discrete Algorithms, 2001, pp. 516-522.

[34] A. Itai, A.G. Konheim, M. Rodeh, A sparse table irapientation of priority queues, in: S. Even, O. Kariv
(Eds.), Proceedings of the 8th Colloquium on Automhatmguages, and Programming, Acre (Akko), Israel,
in: Lecture Notes in Comput. Sci., vol. 115, 1981, pp. 417-431.

[35] I. Kamel, C. Faloutsos, On packing R-trees, Proc. International Conference on Information and
Knowledge Management, 1993, pp. 490-499.

[36] K. Kim, S.K. Cha, Sibling clustering of tree-baseubsial indexes for efficient spatial query processing, in:
Proc. ACM Internat. Conf. Informatipand Knowledge Management, 1998, pp. 398—405.

[37] D.E. Knuth, Sorting and Searching, The Art of Goater Programming, vol. 3, second ed., Addison—-Wesley,
Reading MA, 1998.

[38] R.L. Kruse, A.J. Ryba, Data Structures and ProgBasign in C++, Prentice-Hall, Upper Saddle River, NJ,
1998.

[39] P. Kumar, E. Ramos, I/O-efficient cdnsction of Voronoi diagrams, Manuscript, 2003.

[40] R.E. Ladner, R. Fortna, B.-H. Nguyen, A companm of cache aware and cache oblivious static search
trees using program instrumentation, in: ExperiraéAigorithmics: From Algorithm Design to Robust and
Efficient Software, in: Lecture Nes in Comput. Sci., vol. 2547, 2002, pp. 78-92.

[41] L. Arge, K. Hinrichs, J. Vahrenhold, J. Vitter, fiffient bulk operations on dynamic r-trees, in: ALENEX,
1999, pp. 328-348.

[42] R. Meville, D. Gries, Controlled density sorting, Inform. Process. Lett. 10 (1980) 169-172.

[43] J. Nievergelt, E.M. Reingold, Binary se#artrees of bounded balance, SIAM J. Comput. 2 (1973) 33-43.

[44] P. Morin, Putting your dictionary on a diet, Techal Report TR-02-07, Carleton University School of Com-
puter Science, November 2002.

[45] H. Prokop, Cache-oblivious algorithms, Master'ssiseMassachusetts Institute of Technology, Cambridge,
MA, June 1999.

[46] W. Pugh, Skip lists: a probabilistic alternative todrated trees, in: F. Dehne, J.-R. Sack, N. Santoro (Eds.),
Proceedings of the Workshop on Algorithms and Data Structures, Ottawa, ON, Canada, in: Lecture Notes in
Comput. Sci., vol. 382, 1989, pp. 437-449.

[47] N. Rahman, R. Cole, R. Raman, Optimized predecessor data structures for internal memory, in: Proceedings
of the 5th Workshop on Algorithms Engineering, Aarhus, Denmark, 2001, pp. 67—78.

[48] V. Raman, Locality preserving dictionaries: thgand application to clustering in databases, in: ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1999.

[49] J.E. Savage, Extending the Hong-Kung model to meshierarchies, in: Proceedings of the 1st Annual
International Conference on Computing and Cormalorics, in: Lecture Notes in Comput. Sci., vol. 959,
1995, pp. 270-281.

[50] R. Seidel, C.R. Aragon, Randomized search trees, Algorithmica 16 (4-5) (1996) 464—-497.

[51] D.D. Sleator, R.E. Tarja Self-adjusting binary search trees, J. ACM 32 (3) (1985) 652-686.

136 M.A. Bender et al. / Journal of Algorithms 53 (2004) 115-136

[52] M. Thorup, Faster deterministic sorting and pityp queues in linear space, in: Proc. of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 550-555.

[53] P. van Emde Boas, Preserving order in a forest in less than logarithmic time, in: Proceedings of the 16th
Annual Symposium on Foundations of ComgnuScience, Berkeley, CA, 1975, pp. 75-84.

[54] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue, Math.
Systems Theory 10 (2) (1977) 99-127.

[55] J.S. Vitter, External memory algorithms and data structures, in: J. Abello, J.S. Vitter (Eds.), External Memory
Algorithms and Visualization, in: DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc.,
1999, pp. 1-38.

[56] J.S. Vitter, E.A.M. Shriver, Algorithms for parallel memory, II: Hierarchical multilevel memories, Algorith-
mica 12 (2-3) (1994) 148-169.

[57] D.E. Willard, Inserting and deleting records ifobked sequential files, Technical Report TM81-45193-5,
Bell Laboratories, 1981.

[58] D.E. Willard, Maintaining dense sequential §ilin a dynamic environment, in: Proceedings of the 14th
Annual ACM Symposium on Theory of Cqmating, San Francisco, CA, 1982, pp. 114-121.

[59] D.E. Willard, Good worst-case algorithms for inserting and deleting records in dense sequential files, in:
Proceedings of the 1986 ACM SIGMOD Internatibi@onference on Management of Data, Washington,
DC, 1986, pp. 251-260.

[60] D.E. Willard, A density control algorithm for doing $ertions and deletions in a sequentially ordered file in
good worst-case time, Inform. and Comput. 97 (2) (1992) 150-204.

