
 

Design and Analysis of Connected Dominating Set Formation for Topology 
Control in Wireless Ad Hoc Networks 

 
Bo Han and Weijia Jia 

Department of Computer Science, City University of Hong Kong 
83 Tat Chee Avenue, Kowloon, Hong Kong 

Email: Bo.Han@student.cityu.edu.hk, wjia@cs.cityu.edu.hk 
 

 
Abstract – To efficiently manage ad hoc networks, this paper 

proposes a novel distributed algorithm for connected dominating 
set (CDS) formation in wireless ad hoc networks with time and 
message complexity O(n). This Area algorithm partitions the 
nodes into different areas and selectively connects two 
dominators that are two or three hops away. Compared with 
previous well-known algorithms, we confirm the effectiveness of 
this algorithm through analysis and comprehensive simulation 
study. The number of nodes in the CDS formed by this Area 
algorithm is up to around 55% less than that constructed by 
others.  

Keywords-wireless ad hoc networks; minimum connected 
dominating set; distributed algorithm; topology control 

I.  INTRODUCTION 
In wireless ad hoc networks that are formed by 

autonomous mobile devices communicating by radio, 
topology control plays an important role in the performance of 
the protocols used in the network, such as routing, clustering 
and broadcasting. There are two approaches for topology 
control in ad hoc networks – transmission range control and 
hierarchical topology organization (clustering). The goal of 
this technique is to control the topology of the graph 
representing the communication links between network nodes, 
with the purpose of maintaining some global graph property 
while reducing energy consumption. Moreover, topology 
control has the positive effect of reducing contention when 
accessing wireless channels. In general, when the nodes’ 
transmission ranges are relatively short, many nodes can 
transmit simultaneously without interfering with each other.  

As mentioned above, transmission range control is a 
general approach to topology control in ad hoc networks. The 
construction of hierarchical topology (clustering) is another 
effective solution in topology control. Cluster-based 
constructions are commonly regarded as a variant of topology 
control in the sense that energy-consuming tasks can be 
shared among the members of a cluster. 

Although wireless ad hoc networks have no physical 
infrastructure, it is natural to construct clusters through 
connected dominating set formation. In general, a dominating 
set (DS) of a graph G = (V, E) is a subset V' ⊂ V such that 
each node in V−V' is adjacent to at least one node in V', and a 
connected dominating set is a dominating set whose induced 
sub-graph is connected. It has been pointed out that “The most 
basic clustering that has been studied in the context of ad hoc 
networks is based on dominating sets” [4]. Moreover, the 
CDS can also play an important role for message broadcasting 

in ad hoc networks [3]. Unfortunately, the dominating set and 
connected dominating set problems have been shown to be 
NP-Complete [5]. Even for a unit disk graph (UDG) [1], the 
problem of finding a minimum CDS (MCDS) is still NP-
Complete [7].  

This paper presents a novel distributed algorithm, named 
the Area algorithm, for CDS formation in wireless ad hoc 
networks. In this algorithm, we partition the nodes into 
different areas and selectively connect two dominators that are 
two or three hops away. Note that, the clusterheads in most 
clustering algorithms [17, 22] usually form a DS. Since they 
focused on clusterhead selection, the clusterheads and 
gateways (selected to connect two clusterheads) construct a 
CDS with relatively large size. The contribution of this paper 
mainly lies in that we introduce the Area concept to 
significantly reduce the number of connectors that connect 
two neighboring dominators, thus reduce the total size of final 
CDS. 

The rest of the paper is organized as follows. Section 2 
introduces the related work. Section 3 describes the network 
assumption and preliminaries used in this paper. In Section 4, 
we present our novel distributed CDS formation algorithm 
and give the performance analysis. Section 5 presents the 
simulation results. We point out future directions and 
summarize major results in Section 6. 

II.  RELATED WORK 
In this section we discuss related work with respect to 

topology control in two categories: Transmission Range 
Control and Hierarchical Topology Organization (in the 
context of connected dominating set formation). 

A. Transmission Range Control 
Previous proposals for topology control took advantage of 

some original research topics in computational geometry, such 
as the minimum spanning tree [20], the Delaunay 
Triangulation [19], the Relative Neighborhood Graph [21], or 
the Gabriel Graph [8]. Most of these contributions mainly 
considered energy-efficiency of paths in the resulting 
topology. The CBTC algorithm [18] was the first construction 
to focus on several desired properties. A nice literature review 
of transmission range control can be found in [4]. 

B. Connected Dominating Set 
Das et al proposed a MCDS based routing algorithm for 

wireless ad hoc networks [2]. This algorithm is a distributed 
version of Guha and Khuller’s centralized algorithm to 
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calculate connected dominating set [10]. The algorithm 
proposed by Wu and Li first finds a connected dominating set 
and then prunes certain redundant nodes from the CDS [11]. 
Their algorithm is fully localized, but does not guarantee a 
good approximation ratio. Hereafter, this algorithm [11] is 
referred to as Rule 1&2 (so named for the two pruning rules). 
Stojmenovic et al also presented a distributed construction of 
CDS in the context of clustering and broadcasting [12]. The 
solution proposed in [23] relies on all nodes having a common 
clock and requires two-hop neighbor information. In CEDAR 
[13], a virtual infrastructure called the core is constructed to 
approximate a minimum dominating set (not connected) of the 
underlying network. 

For distributed clustering algorithm, it is undesirable to 
have neighboring cluster-heads [17]. It is also undesirable to 
have one-hop away neighboring dominators in dominating set 
formation. This leads to the well-known concept of maximal 
independent set (MIS). An independent set of graph G = (V, 
E) is a subset S ⊂ V such that for any pair of vertices in S, 
there is no edge between them. Obviously, a MIS S is also an 
independent DS. The two heuristic algorithms proposed by 
Alzoubi et al [14] take advantage of the property of MIS, thus 
may guarantee a constant approximation ratio of 8 and 12 
respectively. Although these two algorithms are distributed, 
they are not localized. To address the problem of non-
localized computation, Alzoubi et al also proposed a message-
optimal localized algorithm with linear time and message 
complexity [15]. The approximation ratio of this algorithm is 
bounded by 192. Recently, Wang et al proposed an efficient 
distributed method to construct a low-cost weighted minimum 
connected dominating set [24].  

III.  NETWORK ASSUMPTIONS AND PRELIMINARIES  
In this paper, we assume that an ad hoc network comprises 

a group of nodes communicating with the same transmission 
range. Scheduling of transmission is the responsibility of 
MAC layer. Each node has a unique ID and each node knows 
the ID and degree of its neighbors, which can be achieved 
through periodically broadcasting “HELLO” messages by 
each node. Since the emphasis of this paper is on the CDS 
formation, we do not consider the node mobility. Dynamic 
topology change can be handled by the mechanisms proposed 
in [11, 15]. We call the nodes in the dominating set 
dominators, the nodes not in the dominating set dominatees, 
and the nodes that connect two or three hops away dominators 
connectors. Especially, we call the connector that connects 
dominators two and three hops away as one-hop connector 
and two-hop connector, respectively. Next, we give some 
well-known preliminaries.  

Preliminary 1: By building a dominating set through MIS 
construction, for every node u, the number of dominators 
inside the disk centered at u with radius k-unit is bounded by 
a constant lk. 

Proof: Alzoubi et al gave a proof through calculation of lk 
< (2k + 1)2 – 1 [15]. When k = 2, 3, we have lk = 23, 47. 
Recently, Li et al have proved that l3 = 42 [16]. 

Preliminary 2: Let G be a UDG and opt be the size of a 
minimum CDS for G, then the size of any MIS for G is at most 
3.8×opt + 1.2. 

The proof of this preliminary bounds the size of any MIS 
in G and can be found in [9]. 

Preliminary 3: In a DS, the maximum distance to another 
closest dominator from any dominator is 3. 

Proof: By contradiction. Assume that the maximum 
distance from a dominator u to the closest dominator v is 4, 
and the shortest path between u and v is {u, x, y, z, v}. 
According to the definition of dominating set, node y must 
have a dominator, say w, which is one hop closer (three hops) 
to u than v. This contradicts the assumption that v is the 
closest dominator to u. 

IV.  AREA BASED CDS FORMATION ALGORITHM 

A. Overview 
A well-known method for building connected dominating 

set is to construct a MIS first, which is also a dominating set, 
then add some connectors to guarantee the connectivity. This 
method was utilized by Alzoubi et al [14, 15]. The algorithms 
in [14] were implemented by first electing a leader r among 
the nodes, which was going to be the root of a spanning tree 
T. The approximation ratios of these algorithms are attractive, 
however, the message complexity O(nlogn) which is bounded 
by the distributed leader election, is quite high in real practice 
[6]. Moreover, they are not localized algorithms. The 
algorithm presented in [15] has an optimal message 
complexity O(n), but it connects any pair of dominators (at 
most three hops away) by adding one or two  connectors. 
Consequently, the resultant CDS has a relative large size with 
some redundant connectors. 

Our main objective of this Area algorithm is to reduce the 
size of CDS. We use the most-valued-nodes as the metric to 
select the nodes among all nodes in the graph for the CDS. 
The value of a node is a performance-related characteristic 
such as node ID, node degree, or remaining battery life. In 
this paper, we define two kinds of most-valued-nodes, one is 
the node with the minimum ID among all the candidates of 
dominators or connectors (the resulting Area algorithm is 
called Min ID), and the other is the node with the maximum 
degree among all the candidates (hence, called Max Degree). 
In the following description of Area algorithm, we will use 
node degree as the selection metric. 

B. Max Degree Algorithm 
Define the rank of node u to be an ordered pair of (δu, idu) 

where δu is the node degree and idu is the node ID of u. We 
say that a node u with rank (δu, idu) has a higher order than a 
node v with rank (δv, idv) if δu > δv, or δu = δv and idu < idv. 
Each node is in one of the four states: unmarked, dominatee, 
dominator and connector. Each node is initially in an 
unmarked state and subsequently enters either the dominatee 
or dominator state. The connector state can only be entered 
from the dominatee state. In this Area algorithm, we partition 
the nodes into different areas and each area is supposed to 
have a unique area ID. Thus, each node is also assigned an 
area ID to indicate which area it belongs to. For simplicity of 
description, we first give some definitions below: 

Definition 1: Seed Dominator – A dominator that has the 
highest rank among its one-hop neighbors. 
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Definition 2: Non-seed dominator – A dominator that has 
at least one one-hop neighbor with higher rank. 

Definition 3: Border Dominator – A dominator that has 
two or three hops away neighboring dominators with different 
area ID. 

1) Area Formation: First, an unmarked node u with the 
highest rank among its unmarked one-hop neighbors becomes 
a dominator and broadcasts a DOMINATOR message to its 
neighbors. Note that such node does exist in the beginning. 
After receiving a DOMINATOR message, a node, say v, 
changes its state to be the dominatee if its current state is 
unmarked. If it is the first time that v receives a 
DOMINATOR message, v also broadcasts a DOMINATEE 
message to its neighbors. The same procedure is repeated 
until each node becomes either a dominator or a dominatee.  

In fact, seed dominators are the starting points of the 
process of these MIS based algorithms and they are the cores 
of the areas. The ID of a seed dominator automatically 
becomes the ID of the corresponding area. During the area 
formation, we add an item, Area ID, into the DOMINATOR 
message to indicate the area that the dominator belongs to. 
When an unmarked node receives the first DOMINATOR 
message, it becomes a dominatee of the area indicated in this 
message. Each dominatee also inserts its area ID into the 
DOMINATEE message that it broadcasts to its neighbors. 
Then every non-seed dominator can know the area it belongs 
to from its neighboring dominatees. If neighboring 
dominatees have different area IDs, the non-seed dominator 
can arbitrarily select one area to join. The nodes with the 
same area ID form an area eventually. 

2) Area Connection: After the nodes are partitioned into 
different areas, the following steps are executed by the related 
nodes: 
1. Each dominatee broadcasts a ONE-HOP-DOMINATOR 

message which contains all node IDs and area IDs of its 
one-hop away dominators. 

2. After receiving a ONE-HOP-DOMINATOR message, 
each node knows its two-hop away dominators and the 
corresponding neighbors to connect these dominators. The 
neighbor with higher rank has the priority to be chosen as a 
connector (maybe NOT the connector in the final CDS). 

3. Upon reception of the ONE-HOP-DOMINATOR 
message from all its neighboring dominatees, a dominatee 
broadcasts a TWO-HOP-DOMINATOR message which 
contains all node IDs and area IDs of its two-hop away 
dominators. 

4. After receiving a TWO-HOP-DOMINATOR message, 
each dominator knows its three-hop away neighboring 
dominators and the relevant neighbors to connect these 
dominators. Also, the neighbor with higher rank has the 
priority to become a connector. 

After having the knowledge of all the two-hop and three-
hop away neighboring dominators, each dominator can know 
whether it is a border dominator. Dominators inside an area 
only try to connect their two-hop away neighboring 
dominators with larger IDs by selecting one connector. Border 
dominators only connect one two-hop or three-hop away 
neighboring dominator with larger IDs in an adjacent area by 
selecting one or two connectors. That is, if a border dominator 
has connected to a two-hop away neighboring dominator in an 
adjacent area, it will not try to connect the three-hop away 
neighboring dominator in the same adjacent area. Then the 
dominating set is constructed through a sweep of the network 
spreading outwards from the seed dominators. To illustrate 
the algorithm, Figure 1 gives an example of the CDS 
formation using Max Degree algorithm. 

3) Example: In Figure 1, the IDs of nodes are labeled 
beside the nodes. Black nodes represent the dominators, black 
nodes with outer circle represent the seed dominators and gray 
nodes represent the connectors. A possible execution scenario 
is shown in Figure 1(b - d), as explained below: 
1. Initially all nodes are unmarked (Figure 1(a)). 
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(a) Initial topology 

7

8

6

5

4 3

2

1

27

26

24

23

22
21

20

19

18

17
16

1513

12

14

11

10

9

25

 
(b) Seed Dominators selected 
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(c) More dominators selected 
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(d) Complete CDS formation 

Figure 1.  CDS Construction by Max Degree Algorithm 
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2. Nodes 7 and 14 declare themselves as dominators, since 
they have the highest ranks among their unmarked one-hop 
neighbors. These two dominators are also seed dominators. 
After receiving a DOMINATOR message, nodes 5, 9, 13, 
15, 16, 20, 22, 23, 24, 25, 26 and 27 declare themselves as 
the dominatees and broadcast DOMINATEE messages 
(Figure 1(b)). 

3. After receiving DOMINATEE messages from their 
neighbors, nodes 6, 10, 18, 19 and 21 declare themselves as 
dominators and broadcast DOMINATOR messages. The 
reason is that all their neighbors with higher ranks became 
dominatees, thus their ranks become the highest among their 
unmarked neighbors. At this time, all the dominators form a 
MIS and there are two areas centered at dominators 7 and 
14 respectively. Suppose dominators 10 and 6 choose to 
join the areas with ID 7 and 14, respectively. (Figure 1(c)). 

4. After each dominatee broadcasts ONE-HOP-
DOMINATOR and TWO-HOP-DOMINATOR messages, 
every dominator knows its two-hop and three-hop away 
neighboring dominators. According to the definition, 
dominators 6, 10 and 14 know that they are border 
dominators. Finally, dominatees 22 and 24 are selected to 
become connectors by dominator 7 to connect dominators 
10, 18 and 19; dominatee 27 is selected as connector by 
dominator 6 to connect dominator 14. Dominatee 17 is 
selected by dominator 6 to connect the two adjacent areas. 
Obviously, all the black and gray nodes form a connected 
dominating set of the graph and the induced sub-graph is 
indicated by the thick black lines (Figure 1(d)). 

Note that compared with dominatee 9 with rank (3, 9), 
dominatee 27 has a higher rank (4, 27), so it is selected by 
dominator 6 to connect dominator 14. Dominatee 27 is also 
the only node that connects dominators 14 and 21. Since 
dominator 10 has a two-hop away neighboring dominator 
(node 6) in the adjacent area, it will not try to connect its 
three-hop away neighboring dominator, node 14, in the same 
area. From the above example, we can see that the benefit of 
using the area concept is that dominators can selectively 
connect to their two or three hops away neighboring 
dominators, thus, reduce the size of the final CDS. 

C. Performance Analysis 
In this subsection, we show the correctness, analyze the 

time and message complexity of the Area algorithm, and give 
the approximation ratio of this algorithm. 

Theorem 1. The dominators and connectors selected by 
the Area algorithm form a CDS.  

Proof: In this Area algorithm, it can be easily proved that 
each dominator has at least one two-hop away neighboring 
dominator in the area it belongs to if there is any other 
dominator existing in the same area. To connect each pair of 
two-hop away dominators, we can guarantee the connectivity 
inside these areas. Note that we also connect two adjacent 
areas using at least one path, thus, this theorem is proved. 

Theorem 2. The Area algorithm has both time and 
message complexity of O(n). 

Proof: The time complexity of this algorithm is bounded 
by MIS construction which has the worst time complexity 
O(n). The worst case occurs when all nodes are distributed in 

a line and in either ascending or descending order of their 
ranks. The rest of the process have time complexity at most 
O(n). Since each node sends a constant number of messages, 
the total number of messages is also O(n).  

Theorem 3. Let G be a unit disk graph and opt be the size 
of a minimum CDS for G, then the size of CDS constructed by 
this Area algorithm is within a constant approximation ratio 
of opt. 

Proof: From Preliminary 2, we know that the size of MIS 
is at most 3.8×opt + 1.2. Since each pair of nodes in MIS 
introduces at most two nodes to CDS, from Preliminary 1, the 
number of nodes in the CDS is at most (42×2/2 +1)×(3.8×opt 
+1.2) = 163.4×opt + 51.6. 

The density µ of graph can be calculated as  
µ(r) = (nπr2)/A                           (1) 

where n is the number of nodes in the graph, A is the area of 
the graph and r is the transmission range.  

Let D be the maximum density of packing of n equal 
circles in a circle. The upper bound of D is given in [25]: 

D 
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From (1) and (2), we can further refine l2 in Preliminary 1 
to be 21. Remember that, in this Area algorithm, the 
dominators and one-hop connectors form a CDS in the 
induced sub-graph of each area. Let opt' be the size of a 
minimum CDS for the induced sub-graph of an area. Through 
the similar analysis of Theorem 3, the size of CDS for an area 
is at most (21/2 +1)×(3.8×opt' +1.2) < 44×opt' + 14. 

Next section gives extensive simulation study to verify the 
efficiency of this Area algorithm in terms of the size of CDS. 

V.  EXPERIMENTAL SIMULATION 
We compare the proposed two Area algorithms, Min ID 

and Max Degree, with Rule 1&2 [11] and Alzoubi’s algorithm 
[15] in this section. For simplicity, we call Alzoubi’s 
algorithm as AWF in the following. As mentioned above, 
Rule 1&2 first finds a CDS and then prunes some redundant 
nodes from the CDS using two rules (Rule 1 and Rule 2). In 
the first phase, each node is marked true (dominator) if it has 
two unconnected neighbors. According to Rule 1, a marked 
node can unmark itself if its neighbor set is covered by 
another neighboring marked node. According to Rule 2, a 
marked node can unmark itself if its neighborhood is covered 
by two other neighboring directly connected marked nodes. 
The combination of Rules 1 and 2 is fairly efficient to reduce 
the size of CDS. AWF can also be briefly described as two 
phases. In the first phase, a MIS is constructed. Note that, this 
MIS is also a DS. In the second phase, each dominatee 
identifies the dominators that are at most two hops away from 
itself and broadcasts this information. Using such information 
from all neighbors, each dominator identifies a path of at most 
three hops to each dominator that is at most three hops away 
from itself, and informs all nodes in this path to become the 
connectors and join the final CDS.  
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(a) # of nodes in CDS (n ∈[60, 200]) 
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(b) # of nodes in CDS (n ∈[200, 1000]) 

Figure 2.  The number of nodes in CDS when r is 15 units 
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(a) n ranges from 60 to 200 
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(b) n ranges from 200 to 1000 

Figure 3.  The number of nodes in CDS when r is 30 units 

In the simulation scenario, a given number of nodes 
(ranging from 60 to 200 with increment step of 20 and from 
200 to 1000 with increment step of 100, respectively) were 
randomly and uniformly distributed in a square simulation 
area of size 100 by 100 units. Each node has a fixed 
transmission range r (r = 15, 30 units, respectively). All the 
simulation results presented here were obtained by running 
these algorithms on 300 connected graphs. This allows us to 
test these algorithms on increasing density of network from n 
= 60, r = 15, and µ(r) = 4 (sparse network) to n = 1000, r = 
30, and µ(r) = 283 (very dense network). 

When the CDS is used for routing in ad hoc networks, the 
number of nodes responsible for routing can be reduced to the 
number of nodes in the CDS. Thus, we prefer smaller size of 
CDS. Figures 2(a) and 2(b) show the simulation results when 
the node’s transmission range is 15 units. Figure 2(a) shows 
the trend when the number of nodes in the network ranges 
from 60 to 200 (the corresponding graph is sparse), whereas 
Figure 2(b) shows the trend when the number of nodes in the 
network ranges from 200 to 1000 (the corresponding graph is 
dense). The number of nodes in the CDS increases when more 
nodes join the network, because the number of dominators 
increases and more nodes may be selected as the connectors, 
thus the size of CDS increases. From the two figures, we also 
notice that the size of CDS is more sensitive to the number of 
nodes in the range from 60 to 200   (sparse network) than to 
that in the range from 200 to 1000 (dense network). As the 
number of nodes increases, the gap between the two Area 
algorithms and the other two becomes significant. And among 
these four algorithms, the performance of Max Degree is the 
best. When the number of nodes in the network reaches 1000, 

the number of nodes in the CDS constructed by Max Degree 
is only about 60% of that constructed by Rule 1&2 or AWF. 

Figures 3(a) and 3(b) show the results when the node’s 
transmission range is set as 30 units and the number of nodes 
in the networks ranges from 60 to 200 and from 200 to 1000, 
respectively. When the transmission range increases, as more 
nodes may be connected, the network becomes denser if the 
number of nodes is fixed. In this case, the size of CDS only 
increases slightly as the size of the network increases. Based 
on our simulation results, we find that among these four 
algorithms, Min ID outperforms the other three, followed by 
Max Degree, in very dense networks. Comparing Figures 2(a) 
and 2(b) with Figures 3(a) and 3(b), we find that increasing 
the node’s transmission range can increase the coverage area 
of each node and, therefore, increase the density of the 
network, which leads to a smaller size of the CDS. When the 
number of nodes in the network reaches 1000, the number of 
nodes in the CDS constructed by Min ID is only about 45% of 
that constructed by Rule 1&2. We also compared the number 
of two-hop connectors in the CDS constructed by Min ID, 
Max Degree and AWF and the simulation results are given in 
Figures 4(a) and 4(b) respectively. We can see that both Min 
ID and Max Degree select much less two-hop connectors than 
AWF. In very dense networks, the number of two-hop 
connectors in the CDS constructed by Min ID and Max 
Degree approximates to zero. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a novel distributed algorithm 

for connected dominating set formation in wireless ad hoc 
networks. In this Area algorithm, we partition the nodes into  
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different areas and selectively connect dominators that are two 
or three hops away. The time complexity and message 
complexity of this algorithm are both O(n). Moreover, this 
algorithm is localized, in which simple local node behavior 
achieves a desired global objective. From the simulation 
study, we have observed that this Area algorithm always 
outperforms Rule 1&2 [11] and AWF [15] regardless of the 
size and density of the networks in terms of the size of CDS. 

In this Area algorithm, each node only requires the 
knowledge of its one-hop neighbors and a constant number of 
two-hop and three-hop neighbors, thus, the communication 
overhead is expected to be low. For the limited space, we will 
not present the related results here and refer the interested 
reader to [26]. For simplicity, we did not consider the issues 
of node energy and mobility. Our current work focuses on 
using the integration of residue energy and node mobility as 
the selection criteria instead of node ID and node degree. 
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(a) transmission range r = 15 units 

0

4

8

12

16

20

100 200 300 400 500 600 700 800 900 1000

number of nodes in the network

nu
mb

er
 o

f 
t
wo

-h
op

c
on
n
ec

to
rs

 i
n
 t

he
 C

DS

Min ID

Max Degree

AWF
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Figure 4.  The number of two-hop connectors in CDS when n is from 100 to 1000 
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