
P2P Storage Systems: How Much Locality Can
They Tolerate?

Frédéric Giroire and Julian Monteiro and Stéphane Pérennes
MASCOTTE, joint project INRIA - I3S - CNRS - Univ. of Nice-Sophia, France

Email: {firstname.lastname}@sophia.inria.fr

Abstract—Large scale peer-to-peer systems are foreseen as a
way to provide highly reliable data storage at low cost. To achieve
high durability, such P2P systems encode the user data in a set
of redundant fragments and distribute them among the peers.
In this paper, we study the impact of different data placement
strategies on the system performance when using erasure codes
redundancy schemes. We compare three policies: two of them
local, in which the data are stored in logical neighbors, and
the other one global, in which the data are spread randomly in
the whole system. We focus on the study of the probability to
lose a data block and the bandwidth consumption to maintain
enough redundancy. We use simulations to show that, without
resource constraints, the average values are the same no matter
which placement policy is used. However, the variations in the
use of bandwidth are much more bursty under the local policies.
When the bandwidth is limited, these bursty variations induce
longer maintenance time and henceforth a higher risk of data
loss. Finally, we propose a new external reconstruction strategy
and a suitable degree of locality that could be introduced in order
to combine the efficiency of the global policy with the practical
advantages of a local placement.

I. INTRODUCTION AND SYSTEM DESCRIPTION

The key concept of Peer-to-Peer storage systems is to dis-
tribute redundant data among peers to achieve high reliability
and fault tolerance at low cost. The addition of redundant data
could be done by trivial Replication [1], in which identical
copies of data are sent to different nodes in the system; or
be based on Erasure Codes [2], such as Reed Solomon and
Tornado, as used by some RAID schemes [3]. Hereafter, we
summarize the main parts usually found in such a system:
Data Redundancy. When using Erasure Codes, the original
user data (e.g. files, raw data, etc.) is cut into data-blocks that
are divided into s initial fragments (or pieces). The encoding
scheme produces s+ r fragments that can tolerate r failures.
In other words, the original data-block can be recovered from
any s of the s+r encoded fragments. In a P2P storage system,
these fragments are then placed on s+r different peers of the
network according to a placement policy (which is the main
subject of our study).
Control Mechanism. To ensure a durable long-term storage
despite disk failures, the system must be capable to maintain
a minimum number of fragments available in the network.
This means that the system continuously monitors the number
of fragments of each data-block. This control is done in a
distributed way by the means of a Distributed Hash Table
(DHT) [4]. If this number of fragments drops to a threshold
value r0, the block need to be reconstructed.

Reconstruction Strategy. Setting a low value for r0 decreases
the number of reconstructions (as the reconstruction starts only
after that r−r0 pieces are lost), but increases the probability to
lose a block. After the reconstruction, the regenerated missing
pieces are spread among different nodes.
Data Placement Policies. It has been shown that fragment
(or replica) placement has a strong impact on the system
performance [5]. We study here three different strategies of
data placement as explained in the following and depicted in
Figure 1:
• Global & Random Policy: The s+r fragments of a block

are sent to s+ r peers chosen uniformly at random among all
the N peers present in the system (see [6]).
• Chain Policy: In this policy the fragments of blocks are

stored on the s + r closed set of “logically” (consecutive)
neighbors peers. This policy corresponds to what is done in
most distributed systems implementing a DHT (see [7]).
• Buddy (or RAID) Policy: This is an extreme case of a local

policy, in which the system is composed of small independent
subsystems with s + r peers each. It could be seen as a
collection of local RAID like storage. In this situation, each
peer in the group stores exact the same set of pieces.

The use of the Global strategy allows to distribute more
uniformly the load among peers, leading to a faster recon-
struction and a smoother operation of the system [6]. However,
the use of local strategies brings practical advantages [8]. For
instance, the DHT update mechanisms of the leafset can be
used to simplify the management of the system (e.g. to know
the states of the blocks stored locally). Also, the management
traffic and the amount of meta-information to be stored by the
nodes are kept low.

Our goal is to investigate the amount of resource (bandwidth
and storage space) required to maintain redundancy and to
ensure a given level of reliability. In this paper1, we study
the impacts of placement policies for two different scenarios.
In Section III-A, we study a provisioning scenario, where
peers do not have bandwidth constraints. It allows to estimate
the bandwidth use for different sets of parameters. Then, in
Section III-B, we study a scenario where peers have resource
constraints, that corresponds to the operation of practical sys-
tems. Finally, in Section IV we propose some improvements
of the placement and reconstruction architectures.

1An extended version of this work can be found in the INRIA Research
Report RR-7006, http://hal.inria.fr/inria-00408078

in
ria

-0
04

96
22

0,
 v

er
si

on
 1

 -
29

 J
un

 2
01

0
Author manuscript, published in "IEEE Conference on Local Computer Networks (LCN) (2009) 320--323"

 DOI : 10.1109/LCN.2009.5355104

http://dx.doi.org/10.1109/LCN.2009.5355104
http://hal.inria.fr/inria-00496220/fr/
http://hal.archives-ouvertes.fr

Fig. 1. Placement of two blocks b1 and b2 in the system. Global: s + r
fragments are placed at random among all peers; Chain: fragments are placed
on s + r neighboring peers; Buddy: many small subsystems of size s + r, in
this case all peers inside each small group contain the same data.

Related Work

The majority of existing or proposed systems, e.g., Inter-
memory, CFS, Farsite, PAST, TotalRecall, Glacier, use a local
placement policy. Chun et al. in [6] also discuss the impacts
of placement strategies, but they do not address the case of
Erasure Codes. In [5] the authors study the impact of data
placement on the Mean Time to Data Loss (MTTDL) metric.
But they do not discuss other very important metrics: the
probability to lose a block and the bandwidth usage.

II. SIMULATIONS

To evaluate such a system, we developed a custom cycle-
based simulator that implements all the characteristics de-
scribed in Section I. The simulator models a detailed view
of the system, as it monitors the state and the localisation of
each fragment individually.
Modeling Failures. It is assumed that the nodes stay con-
nected almost all the time into the system. So, we model
the case of peer failures, mainly caused by a disk crash or
by a peer that definitively leaves the system. In both cases,
it is assumed that all the data on the peer’s disk are lost.
Following most works on P2P storage systems [5], peers fails
independently according to a memoryless Poisson process. To
avoid the problem of transient failures and deal with churn,
a peer is just considered lost if it has left the system for a
period longer than a given timeout [9] (set to θ = 12 hours in
our simulations).
Monitored metrics. The simulator keeps detailed traces of
different performance metrics. To be sure that we are studying
a system in a steady state, the first part of the simulation traces
is thrown away. We focus our analysis on three main metrics:

Bandwidth: Average bandwidth consumption per peer, i.e.,
estimated from the number of pieces transmitted and received
per hour due to the reconstruction process;

FDLPY: Fraction of Data Loss Per Year, which gives the
probability to lose a data-block per year;

MTTDL: Mean Time To Data Loss, i.e., the period of time
between two occurrences of data loss in the system.
Simulation parameters. We did a large number of simula-
tions for different sets of the parameters. Otherwise explicit
indicated, the main ones are N = 1005 the number of peers,
F = 1.5·106 the total number of fragments. The fragment size
is 400KB, thus, with s = 9 and r = 6, the system block size
is 6MB. The reconstruction threshold r0 = 2. The amount of

Fig. 2. Illustrative example of the cumulative number of dead blocks for a
period of three years.

stored data and the number of peers are kept constant during
the simulation, this means that dead blocks are re-injected in
the system. Crashed disks reappear empty. The time-step of
the simulator is τ = 1 hour and the simulated time is 10 years.
Peer bandwidth. Each peer has a maximum upload and
download bandwidth, resp. BWup and BWdown. We assume
asymmetric capacities, e.g., ADSL lines (in our experiments
BWdown = 5BWup). So the limiting resource is the upload
bandwidth and it is the one presented in our results. When the
peer’s bandwidth is limited, not all blocks can be reconstructed
at the same time. To model a peer’s bandwidth, we imple-
mented a non blocking FIFO queue with one server: when
there is a peer failure, the blocks to be reconstructed are put
in the queues of the peers in charge of the reconstruction.

Remark 1 (Size of the simulated system) In practice, peers
have huge disks of tens of Gigabytes, each one containing tens
of thousands of blocks. As we want to be able to simulate a
storage system for several years in a reasonable time, we chose
a disk size and bandwidth limits around 100 times smaller than
the one expected in practice.

Remark 2 (Measuring block losses) As it is difficult to sim-
ulate in a reasonable time events of very low probability,
for example, a probability of lose data of 10−20, we chose
non realistic values for some parameters (in particular, the
reconstruction threshold r0 = 2 and the disk MTBF = 90
days are set very low). In this way, we experience data loss
in our simulations.

III. SIMULATION RESULTS

A. Without Resource Constraints

First, we study the provisioning scenario (unlimited band-
width), which is important to measure the required bandwidth
to maintain the system. Briefly, the results shown here are: (1)
the three placement strategies have the same value of average
bandwidth demand; (2) however local policies exhibit strong
variations in resource usage across peers; (3) they have the
same probability to lose a data-block, (4) but the MTTDLs of
the Buddy and the Chain policies are longer.

in
ria

-0
04

96
22

0,
 v

er
si

on
 1

 -
29

 J
un

 2
01

0

TABLE I
SUMMARY OF RESULTS (WITHOUT BANDWIDTH CONSTRAINTS).

Policy Bandwidth (kbit/s) FDLPY (blocks) MTTDL (years)
Global 1.99 (± 1.34) 4.1 · 10−4 (± 0.6 · 10−4) 0.02 (± 0.02)
Chain 1.99 (± 12.83) 4.1 · 10−4 (± 8.6 · 10−4) 4.0 (± 3.0)
Buddy 1.99 (± 15.92) 4.4 · 10−4 (± 25.4 · 10−4) 25.8 (± 21.7)

1) Bandwidth Usage:: The left column of Table I shows
the average value of upload bandwidth usage across peers
during time, (i.e., at each time step we measure the average
number of fragments transmitted by each peer), along with
the experimental standard deviation (in parenthesis). First, as
expected, the average bandwidth use across peers is roughly
the same for all policies. The reason is that the different
placement policies do not change the number of pieces that
have to be reconstructed, but they change the repartition of
these pieces among peers.

However, the variations are not the same. The Chain policy
and Buddy policy variations are significantly higher. Analysing
the bandwidth usage per user at a typical instant of time we
see that the load is around 2 kbit/s for all the users and
all strategies. However, we see that the distributions of the
bandwidth are not the same at all. In the case of Global policy,
the reconstruction load is evenly distributed among all the
peers. On the opposite scenario, Buddy policy, when a failure
happens, only the immediate neighbors possess the remaining
pieces of the blocks, which induces a high bandwidth demand
on the group of s+r peers. The situation for the Chain policy
is similar to the Buddy, but less correlated, as a peer failure
induces reconstructions on blocks in a distance of 2(s+r)−1.

2) Probability to Lose a Block: The probability to lose a
block in the three different policies are shown in the middle
column of the Table I, normalized as the Fraction of Data
Loss Per Year (FDLPY). When there is no bandwidth limit,
the expected number of dead blocks is the same for the three
policies. As a matter of fact, the probability for a block to
die does not depend on where its fragments are placed. It
can be easily calculated using a Markov Chain Model, see for
example [10]. But, we note that the deviations during time
of the number of dead blocks is higher for local policies. To
explain that, we look at the MTTDL.

3) Mean Time To Data Loss (MTTDL): The measure of
the time between two occurrences of data loss shows that the
three policies have very distinct behaviors, as depicted in the
right column of Table I. However, as we have seen before,
the three policies have in average the same number of dead
blocks per year. In other words, the average quantity of data
loss per year is the same, but the distribution across time of
these losses is very different.

The Figure 2 illustrates an example of the cumulative
number of dead blocks for a period of 3 years for the three
placement policies under the same fault scenario. We see that
the loss occurs regularly for the Global policy. Conversely,
they occur very rarely for the Buddy placement, but, when
they occur, they affect a large batch of data. Basically, all the
blocks of a small buddy subsystem of size s + r peers lose

6 7 9 10 12 14 15 17 18

U
nl

im
.

Global
Chain with External Recons.
Chain
Buddy

Max. Available Upload Bandwidth (kbit/s)
Fr

ac
tio

n
of

 d
ea

d
bl

oc
ks

 p
er

 y
ea

r (
%

)

0
5

10
15

20
25

30

 0
.0

5

 0
.0

5

 0
.0

5

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 4
.3

9

 2
.8

8

 1
.4

8

 1
.1

8

 0
.8

0

 0
.5

9

 0
.5

1

 0
.3

9

 0
.3

5

 0
.0

4

 1
0.

60

 6
.7

8

 3
.4

9

 2
.7

1

 1
.7

6

 1
.2

7

 1
.1

0

 0
.8

7

 0
.7

8

 0
.0

4

 2
5.

98

 1
9.

41

 1
2.

47

 1
0.

24

 7
.0

8

 5
.2

3

 4
.6

2

 3
.6

1

 3
.2

0

 0
.0

4

Fig. 3. Fraction of block losses per year (see Remark 2) for different
bandwidth limits. Note that, for this set of parameters, the results obtained
with the chain policy using external reconstruction shows an improvement of
about 50% to the original chain policy.

all their blocks at the same time. The behavior of the Chain
policy is somewhere in the middle of both.

B. Results under Resource Constraints

In this section, we study the behavior of the system with
bandwidth limitation per peer (each peer having a maximum
upload and download bandwidth). In this context we show
that, using similar available resources, the amount of data loss
is no more the same for the three data placement policies.
The Global policy behaves considerably better in comparison
to the Chain and Buddy policy. Furthermore, the local policies
now experience more loss events (smaller MTTDL).

1) Reconstruction Time versus Bandwidth: Experiments
shows that limiting the available bandwidth the average recon-
struction time is a lot longer for the Chain policy and even
more for the Buddy policy when compared to the Global one.
As an example, for a maintenance bandwidth of 6 kbit/s, the
reconstruction time is around 49 hours for the Chain policy and
82 hours for the Buddy, but only 2 hours for the Global policy
(Figure is not shown for space reasons). This bandwidth limit
corresponds to three times the average bandwidth usage of the
system (as computed without resource constraints). Hence, we
see that the irregularity of the reconstruction load among peers
has a very strong impact on the reconstruction time, even if
each policy has the same average bandwidth demand. Thus,
under resource constraints, the big local events constituted by
peer failures induce longer reconstruction time and henceforth
an increase of data loss when using the local policies, as shown
in the following.

in
ria

-0
04

96
22

0,
 v

er
si

on
 1

 -
29

 J
un

 2
01

0

2) FDLPY versus Bandwidth: A critical performance
measure of a P2P storage architecture is the probability to lose
a block for a given amount of bandwidth. Figure 3 compares
the trade-offs of the three policies for different values of
BWup. We see that the Global policy behaves a lot better
for any bandwidth limit than the Chain policy, which itself
is more efficient than the Buddy policy. For example, for a
bandwidth limit of 18 kbit/s (which represents 9 times the
average bandwidth need of the system), the Global experiences
0.04% of data loss per year, to compare with 0.78% and 3.2%
for the Chain and the Buddy, respectively.

3) MTTDL versus Bandwidth: Opposed to what was
showed without bandwidth constraints, the Global policy be-
haves better than the others with low bandwidth limitations.
For instance, without resource constraints, the time between
data loss were 0.02, 4.0, and 25.8 years respectively for
the Global, Chain and Buddy. Conversely, with an available
bandwidth of 6 kbit/s, these values are 166, 53, and 75 (in
hours), many orders of magnitude less. These results show
that the impact of the bandwidth limits per peer needs to be
taken into account when analysing such systems.

IV. PROPOSITION FOR P2P STORAGE SYSTEM
ARCHITECTURES

In this section, we propose a new reconstruction architecture
for the Chain policy, namely external reconstruction, and
show that it can lower the duration of the sending phase of
reconstructions, and thus improve the probability to lose data.

The idea is to use peers outside the Chain group to carry out
the reconstruction process. In this way, the bandwidth usage is
more uniformly spread among peers. More precisely, only the
upload bandwidth of the retrieval phase of the reconstruction
is needed locally, while the bandwidth for the sending phase
is provided by all the peers of the system. Hence, the External
Reconstruction has two main advantages: a local control for
discovering failed peers and updating the data-blocks’ states;
a more uniform distribution of resources among peers, which
lowers the reconstruction time. However, a small cost is paid:
the external peer in charge of the reconstruction does not
contain any previous piece of the reconstructing block.

A rough estimate of the gain in terms of reconstruction time
can be given. In the internal reconstruction, local peers have to
support s+r−r0 uploads of pieces. However, when using the
external reconstruction, they only have to support s uploads
of pieces. As the local peers basically are the bottleneck of
the reconstruction, the gains in terms of bandwidth and hence
of reconstruction time are roughly 1− s/(s− 1 + r − r0).

Note that the gains in terms of data loss will be significantly
higher. Figure 3 also compares the internal and external
policies. It gives the trade-off between the average number
of dead blocks per year and the available bandwidth. For the
same bandwidth, the fraction of data loss decreases by a factor
between 0.5 and 0.6 for this set of parameters.
Exponential relation between the probability to die and the
reconstruction time. During a reconstruction, a block dies if
it loses r0 +1 fragments before it finishes. The probability for

a peer to be alive after a time T is e−λT , where λ is the peer
failure rate. Hence a good approximation of the probability to
die during a reconstruction lasting a time T is given by

Pr[die|Rtime = T] =
(
s+ r0
r0 + 1

)
(1− e−λT)r0+1(e−λT)s−1.

Hence we have an exponential relationship between the
number of block losses and the neighborhood size. The
neighborhood size should mainly be chosen in function of
two parameters: the disk size and the peer bandwidth. Note
that a size of D

(r−r0)BWup
allows to reconstruct the blocks in

one time step and is sufficient to get the benefits of Global
(with D the number of fragments per disk, BWup expressed
in blocks/time step and 1/(r − r0) the fraction of blocks of
the lost disk that go beyond the threshold).

Concluding, to implement a local policy, the neighborhood
should at least be a little bit larger than s+ r, as the marginal
utility of increasing the neighborhood size is tremendous for
very small sizes. In addition, the neighborhood size should
be chosen in function of the disk size: Larger the number of
fragments per disk, the larger the neighborhood should be.

V. CONCLUSION

In this paper, we showed that placement policies strongly
impact the performance of P2P storage systems. We studied
three different policies, a Global and two local, and showed
that, under resource constraints the Global policy behaves
better in terms of probability to lose data and MTTDL than the
local policies. We showed that, by using a new reconstruction
strategy, namely external reconstruction, and by increasing the
size of the neighborhood, local policies can have performances
almost equivalent to the ones of the Global, while keeping their
practical advantages.

ACKNOWLEDGMENT

This work was partially funded by the European project IST/FET
AEOLUS and the ANR projects SPREADS and DIMAGREEN.

REFERENCES

[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in Proc. of ACM SOSP, 2001.

[2] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A
quantitative comparison,” in Proc. of IPTPS, vol. 2, 2002, pp. 328–338.

[3] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (raid),” in Proc. of ACM SIGMOD, 1988.

[4] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
evolution of peer-to-peer systems,” in Proc. of PODC, 2002.

[5] Q. Lian, W. Chen, and Z. Zhang, “On the impact of replica placement
to the reliability of distributed brick storage systems,” in Proc. of
ICDCS’05, vol. 0, 2005, pp. 187–196.

[6] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica maintenance
for distributed storage systems,” in Proc. of NSDI, 2006, pp. 45–58.

[7] J. R. Douceur and R. P. Wattenhofer, “Large-scale simulation of replica
placement algorithms for a serverless distributed file system,” in Proc.
of MASCOTS, 2001, pp. 311–319.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” in Proc. NSDI,
San Francisco, California, 2004, pp. 85–98.

[9] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding
vs. replication,” in Peer-to-Peer Systems IV. LNCS, 2005, pp. 226–239.

[10] O. Dalle, F. Giroire, J. Monteiro, and S. Pérennes, “Analysis of failure
correlation impact on peer-to-peer storage systems,” in Proc. of the 9th
Intl. Conf. on Peer-to-Peer Computing (P2P’09), 2009, to Appear.

in
ria

-0
04

96
22

0,
 v

er
si

on
 1

 -
29

 J
un

 2
01

0

