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We introduce the principle of robust ordinal regression to multiple criteria group decision, and we present
two new methods using a set of additive value functions as a preference model, called UTAGMS-GROUP and
UTADISGMS-GROUP. With respect to the set of decision makers (DMs), we consider two levels of certainty
for the results. The first level is related to the necessary or possible consequences of indirect preference infor-
mation provided by each DM, whereas the other refers to the subset of DMs agreeing for a specific outcome.
In this way, we investigate spaces of consensus and disagreement between the DMs. The proposed methods
are illustrated by examples showing how they can support real-world group decision.
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1. Introduction

Multiple criteria aggregation model aims at aggregating vector eval-
uations of alternatives in a way consistent with the value system of
the decision maker (DM). It induces a preference structure in a set
of alternatives A, and, therefore, it is also called preference model. Its
subsequent proper exploitation permits to arrive at a final recom-
mendation, which is proposed to the DM. In this paper, preferences
of the DMs on a set of alternatives will be modeled with the use of
the Multi-Attribute Utility Theory (MAUT) [18]. The purpose of
MAUT is to represent these preferences by an overall value (utility)
function U(a)=U(g1(a),…, gm(a)): Rm→ R. The comprehensive
value of an alternative serves as an index used to decide the position
in the ranking, or presence in the subset of the best alternatives, or
the assignment into one of predefined and ordered classes. The sim-
plest form of the value function is the additive form. It is important
to stress that its use involves compensation between criteria, which
are all reduced and expressed in the same unit, and requires rather
strong assumption about mutual independence in the sense of prefer-
ence, which is often difficult to met (see [5,18]). However, as noted in
z.kadzinski@cs.put.poznan.pl
),
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[25], these requirements do not pose significant problems in a poster-
iori analysis. Moreover, additive value functions are appreciated by
the MCDA community for an easy interpretation of numerical scores
of alternatives, as well as for possibility of aggregating quantitative
and qualitative evaluations.

Using additive value functions requires specification of the param-
eters related to the formulation of marginal value functions uj(gj(a)),
j=1,…,m. These parameters follow either directly or indirectly from
preference information provided by the DM. Recently, MCDA
methods based on indirect preference information and on the disag-
gregation–aggregation (or regression) paradigm [14] are considered
more interesting. It is the case, because they require less cognitive effort
from the DM in answering questions concerning her/his preferences.
The philosophy underlying the disaggregation–aggregation paradigm
is to find a mathematical model able to reproduce exemplary decisions
of the DM. Precisely, the DM provides some holistic judgments on a set
of reference alternatives ARpA, and from this information the parame-
ters of a decisionmodel are induced using a methodology called ordinal
regression (see [26]). The ordinal regression consists in the resolution of
mathematical programs in order to infer compatible instances of a con-
sidered preference model, which restore the exemplary decisions for
reference alternatives. It has been used for at least fifty years in the
field of multidimensional analysis. Historically, it has been first applied
withinMAUT to assessweights of an additive linear value function [27],
and then to assess parameters of an additive piece-wise linear value
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function [13]. The latter method, called UTA, initiated a stream of fur-
ther developments, in both theory and applications [25].

We say that an instance of a preference model is compatible with
preference information given by the DM, if it is able to restore her/
his holistic judgments. Usually, among many consistent instances of
a preference model, only one specific instance is considered to give
a recommendation. Since its choice is rather difficult and arbitrary
to a large extent, robust ordinal regression has been proposed recently
with the aim of taking into account all compatible instances of a pref-
erence models [9]. The first robust ordinal regression method has
been the generalization of the UTA method, called UTAGMS [6]. In
UTAGMS, instead of only one compatible additive value function com-
posed of piecewise-linear marginal functions, all compatible additive
value functions composed of general monotonic marginal value func-
tions are taken into account. Further, this approach has been extend-
ed in the UTADISGMS method to deal with sorting problems [8], and in
ELECTREGKMS, which is a general scheme implementing robust ordi-
nal regression to outranking methods [10]. Robust ordinal regression
has also been applied to preference model based on Choquet integral
in order to handle interaction among criteria [1].

The family of methods based on robust ordinal regression has been
originally designed to deal with preferences expressed by a single DM.
However, it is group decision-making that is among the most important
and frequently encountered processes within companies and organiza-
tions [3,29,31]. Typical examples of such problems can be found inman-
agement and business, e.g., evaluation of consumer preferences,
personnel selection, or allocation of priorities to projects (see, e.g., [12]).

In this paper, we present in detail the principle of robust ordinal
regression for group decision. Its first general idea has been intro-
duced in [7]. Precisely, we consider the multiple criteria decision
methods to which robust ordinal regression has been originally ap-
plied, and we propose corresponding methods which deal with pref-
erences expressed by a set of DMs. We focus on methods employing a
set of additive value functions as the preference model, and present
UTAGMS-GROUP and UTADISGMS-GROUP. These methods permit sev-
eral DMs to cooperate in view of making a collective decision:
UTAGMS-GROUP — a choice and ranking decision, and UTADISGMS-
GROUP— a sorting decision. For each DMwho expresses her/his indi-
vidual preference information we use the respective GMS method,
and check whether the necessary and the possible relations or assign-
ments hold for either at least one, or for all DMs. The collective results
account for the preferences expressed by each DM. However, we
avoid discussions of DMs on technical parameters, and rather consid-
er two levels of certainty for the results. The first one is related to the
consequences of preference information provided by each DM on the
outcome. The other involves the subset of DMs agreeing for a specific
outcome. Thus, we reason in terms of necessary and possible out-
comes and coalitions of DMs, and we arrive at four types of results:

• necessary–necessary, i.e. result confirmed by all compatible in-
stances of the preference model for all DMs;

• necessary–possible, i.e. result confirmed by all compatible instances
of the preference model for at least one DM;

• possible–necessary, i.e. result confirmed by at least one compatible
instance of the preference model for all DMs;

• possible–possible, i.e. result confirmed by at least one compatible in-
stance of the preference model for at least one DM.

In this way, robust ordinal regression is used to investigate spaces
of consensus and disagreement between DMs.

The paper is organized in the following way. In the next section,
we recall the basic principles of robust ordinal regression methods
in the framework of MAUT for a single DM, i.e. UTAGMS and UTA-
DISGMS. Section 3 is devoted to the new extension of robust ordinal
regression for multiple criteria group decision. Precisely, we adapt this
principle to group choice, ranking, and sorting problems within
MAUT. In the following section, we consider the case of incompatibility.
Section 5 provides examples showing how the presented methodology
can be applied in practical decision support. The last section contains
conclusions and prospects future developments.

2. Reminder on robust ordinal regression in the framework of
multi-attribute utility theory

We are considering decision problems in which a finite set of alter-
nativesA={a1, a2,…, ai,…, an} is evaluated on a consistent family of cri-
teriaG={g1,…, gj,…, gm}. LetGj denote the value set (scale) of criterion
gj, j∈ J={1,…,m}. Consequently, G(A)=∏j∈JGj represents the evalua-
tion space. From a pragmatic point of view, it is reasonable to assume
that Gjpℝ, for j=1,…,m. Moreover, without loss of generality, we as-
sume that the greater gj(a), the better solution a on criterion gj, for all j∈
J, a ∈ A. Finally, increasingly ordered different values of Gj are denoted
as: xj1,xj2,…,xjnj with xj

kbxj
k+1, k=1, 2,…, nj−1, nj≤n.

Multi-Attribute Utility Theory (MAUT) provides a theoretical
foundation for preference modeling using a value function, which ag-
gregates evaluations of alternatives on multiple criteria. In this paper,
in order to represent preferences of the DM, we use a model in the
form of an additive value function U(a)=∑j=1

m uj(gj(a))∈[0,1],
where uj is the marginal monotone value function for criterion gj,
uj(xj1)=0, for all j ∈ J, and ∑j=1

m uj(xjnj)=1.
In this section, we recall two robust ordinal regression methods

within MAUT. One of them is intended to deal with ranking and
choice problems, whereas the other is intended to support decision
processes related to sorting problems.

2.1. UTAGMS: robust ordinal regression for ranking and choice problems

In multiple criteria ranking and choice problems, alternatives from
A are compared one to any other and the results express relative
judgments with the use of comparative notions. In the choice prob-
lem, the aim is to select a subset of the best alternatives, while in
the ranking problem, alternatives are to be ranked from the best to
the worst, according to the preferences of the DM. The idea of consid-
ering the whole set of compatible value functions to deal with rank-
ing and choice problems was originally introduced in the UTAGMS

method [6], and further generalized in GRIP [4].
The UTAGMS procedure consists of three steps. It starts with the pref-

erence elicitation process, leads through the statement of appropriate or-
dinal regression problems and results in calculation of binary relations on
the set of all alternatives. In this subsection,we recall a general scheme of
the method without going into details, which are presented in [6]:

I. Ask the DM (let us denote her/him by dr) for preference infor-
mation in form of pairwise comparisons of some reference al-
ternatives a,b∈ Adr

RpA. The DM can state that a is at least as
good as (weakly preferred to) b (acdr

b), or a is indifferent to
b (a∼dr

b), or a is strictly preferred to b (a≻dr
b).

InGRIP, theDMmay additionally provide preferences of twoother
types: either a partial preordercdr

⁎ onAdr
R ×Adr

R , such that for a,b,c,d
∈ Adr

R , (a,b)cdr
⁎ (c,d) means a is preferred to b at least asmuch as c

is preferred to d by dr, or a partial preorder cj,dr
⁎ on Adr

A ×Adr
A , such

that for a,b,c,d ∈ Adr
R ,(a,b)cj,dr

⁎ (c,d) means a is preferred to b at
least as much as c is preferred to d by dr on criterion gj, j ∈ J.

II. Formulate the ordinal regression problem to verify that the set
of compatible value functions UAR ;dr

is not empty.
III. Compute the necessary acdr

N b and the possible acdr

P b weak
preference relations for all a,b∈A. On the basis of the set of
all compatible value functions UAR ;dr

, two binary relations on
the set of all alternatives A are defined:

– necessary weak preference relation cdr

N , in case U(a)≥U(b)
for all value functions U ∈ UAR ;dr

compatible with preference
information provided by dr,
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– possibleweak preference relation cdr

P , in case U(a)≥U(b) for
at least one value function U∈UAR ;dr

compatible with prefer-
ence information provided by dr.

Notice that from the two weak preference relations cdr

N and cdr

P ,
one can get preference, indifference, and incomparability in a usual
way.

2.2. UTADISGMS: robust ordinal regression for sorting problems

The sorting problem involves the assignment of a set of alterna-
tives into predefined homogeneous classes. This type of problem
can also be referred to as the discrimination problem or the classifica-
tion problem. However, in these two problems, classes are not neces-
sarily preference ordered whereas sorting refers to classes which are
ordered from the best to the worst. We denote by C1, C2,…, Cp, prede-
fined preference ordered classes having a semantic definition, where
Ch+1 is preferred to Ch, h=1, …, p−1. Robust ordinal regression ap-
proach for sorting problems has been introduced in UTADISGMS [8].

In UTADISGMS, the DM dr is asked to provide a set of assignment ex-
amples. Each assignment example consists of an alternative a⁎∈Adr

R pA
and its desired assignment a*→ [CLdr(a*),CRdr(a*)], where [CLdr(a*),CRdr(a*)] is
an interval of contiguous classes CLdr(a*),CLdr+1(a*),…,CRdr(a*), Ldr(a*)≤
Rdr(a*). Given a value function U, a set of assignment examples is said
to be consistent with U iff:

∀a�; b�∈AR
dr
; Ldr a�

� �
> Rdr

b�
� �

⇒U a�
� �

> U b�
� �

:

Considering all compatible value functions, one obtains two kinds
of assignment for any alternative a ∈ A:

• the necessary assignment Cdr

N (a) specifies the set of indices of classes
Ch for which all compatible value functions U ∈ UAR ;dr

assign a to Ch:

CN
dr

að Þ ¼ LU;Ndr
að Þ;RU;N

dr
að Þ

h i
¼ h∈H : ∀U∈UAR ;dr

it holds h∈ LUdr að Þ;RU
dr

að Þ
h in o

;

• the possible assignment Cdr
P (a) determines the set of indices of classes

Ch for which there exists at least one compatible value function U ∈
UAR ;dr

assigning a to Ch:

CP
dr

að Þ ¼ LU;Pdr
að Þ;RU;P

dr
að Þ

h i
¼ h∈H : ∃U∈UAR ;dr

f or which h∈ LUdr að Þ;RU
dr

að Þ
h in o

;

where Ldr

U (a) and Rdr

U (a) are, respectively, the indices of the worst
and the best class to which alternative a is assigned by value function
U.

The UTADISGMS procedure consists of six steps, out of which three
initial steps agree with those from UTAGMS with respect to their roles.
The remaining three steps concern the computation of boundary indi-
ces of possible and necessary classes and of the resulting assignments.
More detailed description of the method can be found in [8].

I. Ask the DM (dr) for preference information in form of a set of
assignment examples, each one consisting of an alternative a⁎

∈ Adr

R pA and its desired assignment a*→ [CLdr(a*),CRdr(a*)].
II. and III. as in UTAGMS.
IV. Compute for each a ∈ A the boundary indices Ldr

U;P(a), Ldr

U;N(a),
Rdr

U;N(a) and Rdr

U;P(a). Using necessary weak preference relation
cdr

N and possible weak preference relation cdr
P , boundary

indices of the necessary and the possible assignments Ldr
U;P(a),

Ldr
U;N(a), Rdr

U;N(a), Rdr
U;P(a) are defined as follows:

– minimum possible class:
LU;Pdr

að Þ ¼ Max 1f g∪ Ldr a�ð Þ : acN
dr a

�; a�∈AR
dr

n on o
;

– minimum necessary class:
LU;Ndr

að Þ ¼ Max 1f g∪ Ldr a�ð Þ : acP
dr a

�; a�∈AR
dr

n on o
;

– maximum necessary class:
RU;N
dr

að Þ ¼ Min pf g∪ Rdr a�ð Þ : a�cP
dr a; a

�∈AR
dr

n on o
;

– maximum possible class:
RU;P
dr

að Þ ¼ Min pf g∪ Rdr a�ð Þ : a�cN
dr a; a

�∈AR
dr

n on o
:

V. Assign to each a ∈ A its possible assignment CP
dr að Þ ¼

LU;Pdr
að Þ;RU;P

dr
að Þ

h i
:

VI. Assign to each a ∈ A its necessary assignment which is
CN
dr að Þ ¼ LU;Ndr

að Þ;RU;N
dr

að Þ
h i

in case LU;Ndr
að Þ≤RU;N

dr
að Þ, and

Cdr

N(a)=t, otherwise.

3. Robust ordinal regression for group decision problems

In this section, we present an extension of the robust ordinal re-
gression to the case of group decision. In this case, several decision
makers (let us denote a set of DMs by D={d1, …, dp}) cooperate
to make a collective decision. They share the same “description”
of the decision problem, i.e. the same set of alternatives, family
of criteria, and performance matrix. We assume that each DM
plays the same role in the committee, so we do not differentiate
their weights. They offer individual preference information, which
is composed either of pairwise comparisons or exemplary assign-
ments of some reference alternatives. The collective preference
model accounts for preference information expressed by each DM,
and robust ordinal regression is used to combine them into a con-
sensus solution.

We will present two MCDA methods called UTAGMS-GROUP and
UTADISGMS-GROUP. Each of them extends the corresponding GMS
method, originally designed for consideration of preferences of just
a single DM, so that it is capable of dealing with ranking and choice
or sorting group decision problems, respectively. Although the pre-
sented methods concern different types of decision problems, the
scheme of this extension is common for both methods. In the first
stage of this extension, we consider each DM in D individually, and
we identify the necessary and the possible consequences of her/his
preference information. Let us remind that, in general, the necessary
results (relations or assignments) specify themost certain recommen-
dations worked out on the basis of all compatible instances of a pref-
erence model considered simultaneously, while the possible results
identify possible recommendations which stem from at least one in-
stance of a preferencemodel compatible with preference information.
In the second stage, we investigate spaces of consensus for subsets of
decision makers. This is achieved by introduction of a second level of
certainty, which refers to the subset of DMs confirming the specific
outcome. Precisely, we refer again to the possibility and the necessity
of this confirmation, and we verify whether necessary and possible
results follow preference information provided by at least one or
all DMs in D. Notice that at this level, one could alternatively use
terms “supported” and “unanimous” to distinguish statements sup-
ported by at least one DM or all DMs, respectively. In this way, we
are able to indicate what would happen always (for all compatible
instances), sometimes (for at least one compatible instance), or
never (for none of the compatible instances) with respect to a subset
or to the whole set of DMs. Consequently, we provide results of four
different types:

• Necessary–necessary (N, N) results consisting of the necessary (N)
consequences of preference information provided by each DM
which are confirmed for all DMs (N) inD. They specify the rankings,
relations, or assignments to classes which hold when considering
simultaneously all compatible instances of a preference model for
all DMs. They can be perceived as robust with respect to indirect
preference information of all decision makers. Such robustness of
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the necessary–necessary outcomes refers to the fact that the defi-
nite result (comparison of a pair of alternatives or assignment to a
specific class) is the same whichever instance of a preference
model compatible with preference information of any DM would
be used for analysis. Therefore, the necessary–necessary results
can be referred to as “absolutely sure” preference statements.

• Necessary–possible (N, P) results consisting of the necessary (N) con-
sequences of preference information provided by each DM con-
firmed for at least one (P) DM in D. This kind of confirmation
indicates certainty about the specific result expressed by any DM.
Notice, however, that it is important to investigate the subsets of
DMs who agree or differ with respect to the given outcome. In this
way, we are able to state whether the definite result is “absolutely
sure”, “almost sure”, “sure on average”, “barely sure”, or “not sure
at all” against the set D. From the point of view of a single DM,
such analysis may cause her/his reaction in the following iterations.

• Possible–necessary (P, N) results formed by the possible (P) out-
comes of preferences provided by each DM confirmed for all of
them (N). They reflect the full conviction of the set of DMs that a
specific outcome may be true. Again, the truth of some possible–
necessary results can persuade some DMs to change the “possible
truth” into “necessary one” by enrichment of the necessary–possible
and necessary–necessary results in the following iterations.

• Possible–possible (P, P) results reflecting the possible (P) conse-
quences of preferences provided by each DM confirmed for at
least one of them (P). They refer to the most general outcomes,
which can be obtained when considering individually any compat-
ible model of any DM. Notice that if possible–possible relation or as-
signment is true, one needs to treat it as an indication with the
lowest level of certainty which is accounted by the method. Howev-
er, if this specific outcome is false, then this negative result can be
confirmed with the greatest confidence, because it is observed si-
multaneously for all compatible models for all DMs.

3.1. Existing approaches and characteristics of the new methods

MAUT has been used to model preferences of the DMs and to build
a collective model in several group decision support methods. Most of
them are devoted to multiple criteria ranking problems (see [20]). For
example, Jarke et al. [15] proposed a negotiation system which allows
arriving at a common value function through exchange of informa-
tion, negotiation and use of axioms to contract the feasible space,
until DMs marginal value functions are identical. Vetschera [30]
took advantage of MAUT to develop a general framework for group
decision making where great emphasis is put on the feedback from
the group to individual opinions, which may lead to reconsideration
of the supplied preference information or its incremental specifica-
tion. Matsatsinis et al. [21] proposed to construct a UTA-like decision
model for each individual DM along with a satisfaction measurement
model to measure the group members' satisfaction on the collective
decision. Damart et al. [2] addressed multiple criteria sorting prob-
lems and proposed a methodology in which the group of DMs dis-
cusses how to sort some exemplary alternatives. The agreed sorting
examples are incorporated into the collective model and all the indi-
vidual models. If the group feels the collective model is satisfactory,
then the procedure stops. The method is based on an disaggregation
approach for ELECTRE TRI, but it can also be applied to value-based
methods, such as the traditional UTADIS, as well. For the review of re-
cent developments in group decision making, see [19,24].

The proposal for group decision making introduced in this paper
compares positively to existing methods which address multiple cri-
teria group decision problems in several ways. First of all, it considers
possible and necessary consequences of preference information pro-
vided by all DMs, which no previous method did. It provides “sure”
and “plausible” preference statements referring to necessary and pos-
sible results. Its outcomes have several properties of general interest
for MCDA. Secondly, following the assumptions of the basic methods
for a single DM, and the general trend described in [20], it requires
specification of exemplary decisions for reference alternatives which
play the role of a training set. This is concordant with “learning
from examples” methodology, which is a paradigm of artificial intel-
ligence and knowledge discovery. Moreover, the proposed methods
make use of very general and flexible preference models, i.e. we con-
sider general non-decreasing marginal value functions (rather than
piecewise linear marginal value functions). They are also very useful,
because they do not involve any arbitrary and restrictive parametri-
zation. Furthermore, when searching for the spaces of consensus
and disagreement between decision makers, they accept existence
of all instances of a preference model compatible with preferences
provided by all DMs, and assesses the results in the set of alternatives
A with respect to all these instances. Distinguishing the necessary–
necessary, necessary–possible, possible–necessary, and possible–pos-
sible consequences of using all compatible instances of a preference
model of all DMs, the proposed methods answer questions of robust-
ness concern. Another appeal of such an approach stems from the fact
that it gives space for interactivity with the DMs. Presentation of the
four types of results for group decision, and their comparison with
consequences of one's own preferences, is a good support for generat-
ing reactions from particular DMs. Namely, (s)he could wish to enrich
the necessary–possible and possible–possible results or to contradict a
part of it by impoverishing the necessary–necessary and possible–
necessary outcomes. The suggested way of proceeding is to analyze
the necessary and possible consequences, and in the following itera-
tions add comparisons concerning pairs (a, b) for which the possible
relation was satisfied, but not the necessary one, or restrict the range
of possible classes for some alternatives. Obviously, we admit that
the DMs may remove or modify previously provided pieces of prefer-
ence information. This is likely to happen, for example, in case of incon-
sistent judgments of at least twoDMs or, in general, when a DM realizes
that nobody else shares her/his point of view (i.e., advantage of one al-
ternative over the other or possible assignment to a given class). These
reactions can be integrated in the indirect preference information in the
following stages. As a consequence, it is easier for the DMs to associate
pieces of their preference information with the result and, therefore, to
control the impact of each piece of information (s)he provides on the
result.

Note that apart from reasoning in terms of the necessary and the
possible at the two levels of certainty, UTAGMS-GROUP and UTA-
DISGMS-GROUP share several other aspects justifying their joint con-
sideration. This includes the use of a general additive value function
as an underlying preference model, requirement of exercising deci-
sions by the DMs rather than forcing them to specify directly values
of some parameters, robust elicitation of a preference model, and in-
consistency management (see Section 4).

3.2. UTAGMS-GROUP

In case of ranking and choice problems, each DM dr ∈D gives pref-
erence information required by UTAGMS and GRIP methods. Using this
information, the possible and the necessary preference relations cdr

P

and cdr

N are computed for all decision makers dr ∈ D. Then, four pref-
erence relations cD′

N,N, cD′
N,P, cD′

P,N, and cD′
P,P, can be determined for all

subset of DMs, D′pD.

Definition 3.1.
1. acN;N

D′ b: acdr

N b for all ∈ D′,

2. acN;P
D′ b: acdr

N b for at least one dr ∈ D′,

3. acP;N
D′ b: acdr

P b for all dr ∈ D′,

4. acP;P
D′ b: acdr

P b for at least one dr ∈ D′.

From the four relationscN;N
D′ ;cN;P

D′ ;c
P;N
D′ ; andc

P;P
D′ , one can obtain in-

difference (∼), preference (≻), and incomparability (?), in a usual
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way, i.e. ≻ is the asymmetric part of c, and ∼ is its symmetric
part (see Table 1). The preference relations obtained from
cN;N

D′ ;cN;P
D′ ;c

P;N
D′ ; andcP;P

D′ are employed to form the rankings that are
presented to the DMs as end results of the UTAGMS-GROUP method
at the current stage of interaction. Although in the considered frame-
work it is also possible to handle preference information about inten-
sity of preference, we will skip this type of preferences to save space.

Some properties which are satisfied by the relationscN,N,cN,P,cP,N,
and cP,P, help to drive the solution process and to elaborate con-
sensus among DMs. The most important properties are discussed in
Appendix A, whereas some supplementary properties are given in
e-Appendix D.

In the UTAGMS-GROUP method, we are not considering the prefer-
ence information provided by the DMs as a whole. Instead, they are
encouraged to provide the preference information incrementally by
possibly small pieces. If they associated with these pieces some nu-
merical confidence levels, we could define valued preference rela-
tions on the set of alternatives.

3.2.1. Specification of pairwise comparisons with decreasing confidence
levels

The UTAGMS method is intended to support the DM in an interac-
tive process by permitting the DM an incremental specification of
pairwise comparisons. Let c1dr

pc2dr
p…pct,dr

be embedded sets
of pairwise comparisons of reference alternatives provided by a spe-
cific DM, dr. Each of those sets ct,dr

, t=1, …, s, is modeled with a set
of constraints generating the set of compatible value functions UAR

t;dr .
Each time we pass from ct−1,dr

to ct,dr
, t=2, …, s we add new con-

straints concerning pairs (a,b) ∈ ct,dr
, while (a,b) ∉ ct−1,dr

. Thus,
the sets of compatible value functions are embedded in the inverse
order of the related set of pairwise comparisons ct,dr

, t=1, …s, i.e.
UAR

1;dr UAR

2;dr …UAR

s;dr . We suppose that UAR

s ≠t. For each confidence level
t, we can compute the corresponding possible and necessary weak
preference relations ct,dr

P and ct,dr

N as defined in [6].
In the context of groupdecision,we assume thatwe pass fromct−1,D′

to ct,D′ , whenever any decision maker dh ∈ D′ adds some new pairwise
comparisons of reference alternatives. Obviously, for all a, b, ∈ A we can
compute cN;N

t;D′ ;c
N;P
t;D′ ;c

P;N
t;D′ ; andc

P;P
t;D′ .

3.2.2. Valued preference relations
Let θt,dr

be the confidence level assigned by dr ∈D′ to the pairwise
comparisons provided in iteration t, which, however, were not in the
set of her/his reference statements in iteration t−1. We assume that
for each dr ∈ D′, 1=θ1,dr

≥θ2,dr
≥…≥θs,dr

>0. Precisely, if dr adds new
preference statements or makes more precise some of her/his already
supplied statements in the t-th iteration, then θt,dr

bθt−1,dr
. Otherwise,

if only some other DMs provide additional preference information in
the t-th iteration, θt,dr

=θt−1,dr
. Consequently, if we pass from ct−1,D′

toct,D′ , then for all dr ∈D′ we have θt,dr
≤θt−1,dr

and for at least one dh
∈ D′ we have θt,dh

bθt−1,dh
.

Let us also denote by ct;dr ;D′ the sets of partial preorders provided
by DMs in D′, such that we consider statements of dr with the confi-
dence level not less than θt,dr

, and statements of all other DMs dh ∈
D′ with the confidence level. Let cN;N

t;dr ;D′ , c
N;P
t;dr ;D′ , c

P;N
t;dr ;D′ , and cP;P

t;dr ;D′ ,
be the relations corresponding to ct;dr ;D′ .
Table 1
The necessary–necessary, necessary–possible, possible–necessary, and possible–possible
relations inferred from cN;N

D′ ;cN;P
D′ ;c

P;N
D′ ; and cP;P

D′ .

bcN;N
D′ a not(bcN;N

D′ a) bcP;P
D′ a not(bcP;P

D′ a)

acN;N
D′ b a∼N;N

D′ b a≻N;N
D′ b acP;P

D′ b a∼P;P
D′ b a≻P;P

D′ b

not(acN;N
D′ b) bcN;N

D′ a a?N;ND′ b not(acP;P
D′ b) b≻P;P

D′ a –

bcN;P
D′ a not(bcN;P

D′ a) bcP;N
D′ a not(bcP;N

D′ a)

acN;P
D′ a a∼N;P

D′ b a≻N;P
D′ b acP;N

D′ b a∼P;N
D′ b a≻P;N

D′ b

not(acN;P
D′ b) b≻N;P

D′ a a?N;PD′ b not(acP;N
D′ b) bcP;N

D′ a a?P;ND′ b
On the basis of nested sets of pairwise comparisons and corre-
sponding confidence levels θt,dr

,t=1,…s, dr ∈ D′, a valued necessary–
necessary preference relation RN;N

D′ : A� A→ θ1;dr ; θ2;dr ;…; θs;dr ;
� �

0 can
be built as follows for all a, b ∈ A:

• if for all dr ∈ D′ there exists at least one t such that ac t,dr

N b, then
RN;N
D′ a; bð Þ ¼ mindr max θt;dr : ac

N
t;dr b; t ¼ 1;…; s

n on o
;

• if for any dr ∈ D′ there is no single t for which ac t, dr

N b, then RN;N
D′

(a,b)=0.

A valued necessary–possible preference relation RN;P
D′ : A� A→

θ1 ;dr ; θ2 ;dr ;…; θs ;dr ;0
� �g can be built as follows for all a, b ∈ A:

• if for at least one dr ∈ D′ there exists at least one t such that ac t,dr
N b,

then RN;P
D′ : A� A→maxdr max θ1 ;dr : ac

N
t;dr b; t ¼ 1;…; s

n on o
,

• if for all dr ∈ D′ there is no single t for which ac t,dr

N b, then
RN;P
D′ a; bð Þ ¼ 0.

A valued possible–necessary preference relation RP;N
D′ : A� A→

1−θ1 ;dr ;1−θ2 ;dr ;…;1−θs ;dr ;1
� �g can be built as follows for all a, b∈ A:

• if for all dr ∈ D′ there exists at least one t such that ac t,dr

P b, then

RP;N
D′ a; bð Þ ¼ mindr min 1−θt ;dr : not acP

t;dr b
� �

; t ¼ 1;…; s
n on o

,

• if for all dr ∈ D′ and for all t we have ac t,dr

P b, then RP;N
D′ a; bð Þ ¼ 1.

A valued possible–possible preference relation RP;P
D′ : A� A→

1−θ1 ;dr ;1−θ2 ;dr ;…;1−θs ;dr ;1
� �g can be built as follows for all a, b∈ A:

• if for at least one dr ∈ D′ there exists at least one t such that ac t,dr
P b,

then RP;P
D′ a; bð Þ ¼ maxdr min 1−θt ;dr : not acP

t;dr b
� �

; t ¼ 1;…; s
n on o

,

• if for any dr ∈ D′ and for all t we have ac t,dr

P b, then RP;P
D′ a; bð Þ ¼ 1.

3.3. UTADISGMS-GROUP

In case ofmultiple criteria sorting problems, for each DM dr∈D, we
consider the set of all compatible value functions UAR ;dr

. Given a set Adr

R

of assignment examples, for each a∈ A and for each dr ∈D, we define
the possible and necessary assignments using UTADISGMS, i.e.:

CP
dr

að Þ ¼ h∈H : ∃U∈UAR ;dr
assigning a to Ch

n o
and

CN
dr

að Þ ¼ h∈H : ∀U∈UAR ;dr
assigning a to Ch

n o

Then, the four assignments CN;N
D′ að Þ;CN;P

D′ að Þ;CP;N
D′ að Þ, and CP;P

D′ að Þ, can
be computed for all subsets of decision makers D′pD.

Definition 3.2.
1. CN;N

D′ að Þ=∩dr∈D′CN
dr að Þ,

2. CN;P
D′ að Þ=vdr∈D′CN

dr að Þ,
3. CP;N

D′ að Þ=∩dr∈D′CP
dr að Þ,

4. CP;P
D′ að Þ=vdr∈D′CP

dr að Þ.

In Appendix B, we present a few important properties which are
satisfied by the assignments CN, N(a), CN, P(a), CP, N(a) and CP, P(a),
and help to arrive at a consensus solution. Some additional properties
of these outcomes are given in e-Appendix F.

3.3.1. Specification of exemplary assignments with decreasing confidence
levels

The UTADISGMS method is intended to support incremental specifi-
cation of exemplary assignments of reference alternatives. Let [L1,dr(a*),
R1,dr(a*)] [L2,dr(a*),R2,dr(a*)] … [Lt,dr(a*),Rt,dr(a*)] be embedded sets of
dr's exemplary assignments. The sets of compatible value functions are
embedded in the same order as the sets of the exemplary assignments
[Lt,dr(a*),Rt,dr(a*)],t=1,…,s, a*∈Adr

R, i.e.UAR

1;dr UAR

2;dr … UAR

s;dr . We suppose
that UAR

s;dr≠t. For each iteration t, we can compute corresponding
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possible and necessary assignments Ct, dr

P (a) and Ct, dr

N (a) for each
a ∈ A, as defined in [8].

In the context of group decision, let us denote by
Lt;D′ ;Rt;D′

h i
¼ ∪dr∈D′ Lt;dr a�ð Þ;Rt;dr a�ð Þ� 	

. We assume that we pass from

Lt−1;D′ ;Rt−1;D′

h i
to Lt;D′ ;Rt;D′

h i
, whenever any decision maker dr ∈ D′

adds or makes more precise some exemplary assignments of refer-
ence alternatives. Obviously, for all a ∈ A we can compute
CN;N
t;D′ að Þ;CN;P

t;D′ að Þ;CP;N
t;D′ að Þ, and CP;P

t;D′ að Þ. The possible–possible and
possible–necessary assignments are expressed as nested sets of
classes that correspond to the different confidence levels.

4. Management of incompatible preference statements

Application of the methods introduced in this paper for a set D′ of
decision makers is conditioned by the non-emptiness of the set of
compatible instances of a preference model for each dr ∈ D′. If it is
the case, we are able to compute the necessary and the possible con-
sequences of preference information provided by all DMs, which are
subsequently combined into outcomes of the respective GROUP
method. Analysis of incompatibility of preference information provid-
ed by a single DM is discussed in [6,8], and is inspired by procedures
introduced in [22,23]. In this section, we consider the case of incom-
patibility in the context of group decision. In such a case, there is no
instance of a preference model which is compatible with all pieces
of preference information of all DMs.

Given a set of DMsD′pD, a value function U is compatible if it sat-
isfies the following set of LP constraints:

EA
R

D′ ;X


 �
uj xkj
� �

−uj x k−1ð Þ
j

� �
≥0; j¼ 1;…;m; k¼ 2;…;nj

uj x1j
� �

¼ 0; j ¼ 1;…;m; ∑m
j¼1uj x

nj
j

� �
¼ 1

g EA
R

D′ ;group


 �
;

where for ranking problems EA
R

D′;X


 �
¼ EA

R

D′ ;rank


 �
, such that:

U a�ð Þ≥U b�ð Þ þ ε if a�≻dr
b�

U a�ð Þ ¼ U b�ð Þ if a�∼dr
b�

)
∀ a�; b�
� �

∈BR
dr
;dr∈D′

)
EA

R

D′ ;rank


 �
;

or for sorting problems EA
R

D′ ;X


 �
¼ EA

R

D′ ;sort


 �
, such that:

U a�
� �

≥U b�
� �þε;∀a�∈AR

di
; b�∈AR

dj

such that Ldi a�
� �

> Rdj
b�
� �

; di; dj;∈D′

)
EA

R

D′ ;sort


 �
:

Notice that the set of compatible value functions UD′ is not empty

if the optimal value of ε (let us denote it by ε⁎) obtained by the max-
imization of ε, subject to the set of constraints EA

R

D′ ;group


 �
, is greater

than 0, i.e. UD′≠t if and only if ε⁎>0.
Suppose that UD′ is empty. As UD′ corresponds to the intersection

of sets of compatible value functions for all dr ∈ D′ (each one being
non-empty), this means that exemplary decisions of at least two
DMs are contradictory. Identifying which are these contradictory
statements amounts at solving inconsistency. This can be achieved
by solving the following mixed integer programming (MIP) problem:

Minimize : f ¼ ∑
a�b�∈condition a�b�ð Þ

υa� ;b�

s.t. EA
R

D′ ;group


 �
, where for ranking problems condition(a*b*)=a*cdrb*,

for each dr ∈ D′, and EA
R

D′ ;X


 �
¼ EA

R

D′ ;rank


 �
′
, such that:

U a�ð Þ þMυa� ;b�≥U b�ð Þ þ ε if a�≻dr
b�;dr∈D′

U a�ð Þ þMυa� ;b�≥U b�ð Þ
U b�ð Þ þMυa� ;b�≥U a�ð Þ

)
if a�∼dr

b�;dr∈D′

)
EA

R

D′ ;rank


 �′

;

or for sorting problems condition a�b�ð Þ ¼ Ldi a
�ð Þ > Rdj

b�ð Þ; for di;dj∈D′
;

and EA
R

D′ ;X


 �
¼ EA

R

D′ ;sort


 �′

, such that:

U a�ð Þ−U b�ð Þ þMυa� ;b�≥ε;∀a�∈AR
di
; b�∈AR

dj
;

such that Ldi a
�ð Þ > Rdj

b�ð Þ;di;dj∈D′

)
EA

R

D′ ;sort


 �′

;

where M>1 and υa*,b* are binary variables. If υa*,b*=1, then the corre-
sponding constraint is always satisfied,which is equivalent to elimination
of this constraint. The optimal solution of the above program indicates
one of theminimal subsets of constraints being the cause of incompatibil-
ity. Other subsets can be identified by adding constraints that forbid find-
ing again the same solutions which have been already identified in the
previously conducted optimizations:

∑
a� ;b�ð Þ∈Si

υa� ;b�≤f �i −1;

where fi⁎ is the optimal value of the objective function in the i-th iteration,
Si={(a*,b*):υa*,b** i =1}, and υa*,b** i are the values of the binary variables at
the optimum found while identifying i-th minimal subset underlying
incompatibility.

Note, however, that dealing with inconsistency in this way could
be perceived as unfair by some DMs, because it could lead to removal
of a significant subset of preferences of a particular DM, while pre-
serving all statements of all other DMs. We could prevent such situa-
tions by accounting for minimization of the maximal number υD′ of
pieces of preference information of each DM that should be removed.
For example, in case of ranking problems, this could be achieved
through solving the following MIP problem:

s:t:

Minimize : υD′ ;

EA
R

D′ ;group
υD′≥υdr

υdr
¼ ∑a� ≻dr ;∼drf gb�υa�b� ; for each dr∈D′

)
EA

R
;minmax

D′ ;group

� �
;

where υdr
is a variable defined separately for each DM that identifies

the number of removed pieces of preference information which
were provided by her/him. Other minimal subsets can be identified
analogously to the previous case.

In general, the algorithms presented in this paper provide several
subsets of constraints among which the DMs must choose to retrieve
a consistent collective model. Obviously, these alternative solutions
for removing incompatibility are presented to the DMs in the form
of pairwise comparisons or assignment examples. Revealing such dif-
ferent possibilities is informative for negotiations between DMs.
Moreover, knowing the various ways of solving inconsistency permits
them to understand the conflicting aspects of their statements, to
learn about their preferences, and to make the elicitation process
more flexible.

In case DMs provided confidence levels for pieces of their preference
information, we could differentiate the weight of each piece, and in this
way pay attention of the DMs to some particular subsets. In this case,
once all theminimal subsets of pieces of preference information causing
incompatibility are identified, for each of themwe need to analyze con-
fidence levels associated with pairs {(a*,b*):υa*b*=1}. This would
allow indication of the subset for which one of the following objectives
is minimal:

• comprehensive sum of confidence levels for all DMs,
• maximal sum of confidence levels for any DM,
• maximal confidence level of any piece of preference information for
any DM.



Table 2
Evaluation table for the problem of ranking sales managers.

ID Name g1 g2 g3

I Alexievich 4 16 63
II Bassama 28 18 28
III Calvet 26 40 44
IV Dubois 2 2 68
V El Mrabat 18 17 14
VI Feeret 35 62 25
VII Fleichman 7 55 12
VIII Fourny 25 30 12
IX Frechet 9 62 88
X Martin 0 24 73
XI Petron 6 15 100
XII Psorgos 16 9 0
XIII Smith 26 17 17
XIV Varlot 62 43 0
XV Yu 1 32 64

Table 3
Preference information provided by each DM in D in the first iteration.

Pairwise comparisons

d1 (Calvet (III)≻Dubois (IV)), (Feeret (VI), Alexievich (I)≻Bassama (II))
d2 (Fourny (VIII)≻Bassama (II), Petron (XI)), (Alexievich (I)≻El Mrabat (V)),

(Varlot (XIV)≻Petron (XI))
d3 (Yu (XV) c Alexievich (I)≻Smith (XIII)), (Fleichman (VII)≻Bassama (II))
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5. Illustrative examples

In this section, we illustrate how a decision aiding process can be
supported by the introduced methods. We will use UTAGMS-GROUP
for considering the problem which has been originally discussed in
[6], and we show results of UTADISGMS-GROUP on the example from
[32], which has been reconsidered in [8] to illustrate application of
the UTADISGMS method. The results are computed using implementa-
tion of the methods on the Decision Desktop platform [28]. Some im-
plementation issues, presentation of the UTAGMS-GROUP and
UTADISGMS-GROUP systems in the framework of the Decision Desk-
top platform, as well as a general scheme of their use in real-world
decision processes, are provided in e-Appendix G.
5.1. Ranking problem: ordering sales managers

A medium size firm wants to hire new international sales man-
agers. A recruitment agency has interviewed 15 potential candidates
which have been evaluated on 3 criteria (sales management skills
(g1), international experience (g2), and human qualities (g3)) with a
[0,100] scale. The evaluations of candidates are provided in Table 2.
Table 4
The matrix ofcN;N

1;D ;c
N;P
1;D;c

P;N
1;D ; andcP;P

1;D relations in the first iteration for all subsets of DMs fo
whom the necessary and possible relation hold, respectively).

I II III IV V VI VII

I NNN NPP PPP PPP NNN PPP PPP
II ∗PP NNN P∗P PPP NNN ∗∗∗ PP∗
III PPP PNP NNN NNP NNN PPP PPP
IV PPP PPP ∗∗P NNN PPP P∗P PPP
V ∗∗∗ PPP P∗P PPP NNN ∗∗∗ PP∗
VI PPP NNN PPP PNP NNN NNN NNN
VII PPP PPN PPP PPP PPN PPP NNN
VIII PPP PNP PPP PNP PNP PPP PPP
IX NNN NPN PPP NNN NNN PPP NNN
X PPP PPP PPP PPP PPP PPP PPP
XI PPP PPP P∗P NNN PPP P∗P PPP
XII ∗∗∗ PP∗ P∗∗ PPP PP∗ ∗∗∗ PP∗
XIII ∗P∗ PPP P∗P PPP NNN ∗∗∗ PP∗
XIV PPP PPP PP∗ PNP PPP PP∗ PPP
XV PPN PPP PPP PPP PPN PPP PPP
There are three DMs in the agency who have attended the inter-
views. They constitute a selection committee which should indicate
the small subset of the best salesmanagers, or from another perspective,
eliminate thegreatest number of relatively bad candidates. Let us denote
them by D={d1, d2, d3}. They are able to express confident judgments
about some candidates which form their own sets of reference alterna-
tives. Preference information provided by each of the DMs is presented
in Table 3.

In the following step of themethod,we verifywhether for this initial
preference information the set of compatible value functions UAR ;dr

for
each dr ∈ D, and the set of compatible value function UD for all DMs
are not empty. If there would be no instance of a preference model
which is compatible with all pieces of preference information of all
DMs, the DMs whose statements underly incompatibility would be
asked to reconsider their preference information. The presentation of
the subsets of pairwise comparisons underlying incompatibility allows
easy identification of the reasons of the conflict. In this case, preference
information of all DMs is consistent, so we can compute the necessary
and the possible weak preference relations acdr

N b and acdr

P b for all
a,b ∈ A for dr, r=1,2,3. Generally, it shall consist in solving 2×3×
152 small LP problems, i.e. for 3 DMs 152 LP problems to verify
the truth of cdr

N and 152 LP problems for checking the truth of cdr

P

for all (a,b)∈A×A. However, one can limit the number of LP problems
which need to be solved, knowing that cN and c P are reflexive,
that they hold for all a,b ∈ A such that aΔb, and that cdr

Npcdr
P for

each dr ∈ D. Note, however, that all optimization problems solved
within the framework of the proposed methods are relatively small lin-
ear programs, so their solution requires a computational effort which is
much lower than the capacity of popular linear programming solvers.

Subsequently, the necessary and the possible consequences of
preference information given by each DM are combined into consensus
results using the framework which is provided by the UTAGMS-GROUP.
They are presented in Table 4. For the compactness of their presentation
we associatewith the set of three involved DMs the string of three signs.
The position of each sign in the string corresponds to the identifier of
theDM. The signs should be interpreted in the followingwaywhen con-
sidering the results computed for the given DM:

• N — a (alternative from the row) is necessarily weakly preferred to
b (alternative from the column),

• P — a is possibly weakly preferred to b,
• ∗ — a is not even possibly weakly preferred to b.

With respect to the results of UTAGMS-GROUP:

• acN;N
D b iff the cell (a,b) is filled with “NNN” (e.g., (II,V)),

• acN;P
D b iff in the cell (a,b) there is at least one “N” (e.g., (III,IV)),

• acP;N
D b iff in the cell (a,b) there is not any “*” (e.g., (I,II), (I,III)),
r the problem of ranking sales managers (N and P at the given position indicate DMs for

VIII IX X XI XII XIII XIV XV

PPP P∗∗ PPP PPP NNN NPN PPP PPP
P∗P ∗P∗ PPP PPP NNN NNN PPP PPP
NNN PPP PPP PNP NNN NNN PPN PPP
P∗P P∗∗ PPP PPP PPP PPP P∗P PPP
P∗P ∗∗∗ PPP PPP NNN PPP PPP PP∗
NNN PPP PPP PNP NNN NNN PPN PPP
PPP ∗∗∗ PPP PPP PPN PPN PPP PPP
NNN ∗P∗ PPP PNP NNN PNP PPN PPP
NPN NNN NNN PPP NNN NPN PPN NNN
PPP PPP NNN PPP PPP PPP PPP PPP
P∗P PPP PPP NNN NNN PPP P∗P PPP
P∗∗ ∗∗∗ PPP ∗∗∗ NNN PP∗ P∗P PP∗
P∗P ∗P∗ PPP PPP NNN NNN PPP PP∗
PP∗ PP∗ PPP PNP NNN PPP NNN PPP
PPP PPP PPP PPP PPN PPN PPP NNN



Table 5
Additional preference information provided by each DM in D in the second iteration.

Additional pairwise comparisons

d1 (Calvet (III)≻Petron (XI)), (Feeret (VI)≻Varlot (XIV))
d2 (Frechet (IX)≻Fourny (VIII)), (Fleichman (VII)≻Varlot (XIV))
d3 (Smith (XIII)≻Dubois (IV)), (Calvet (III)≻Petron (XI))
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• acP;P
D b iff in the cell (a,b) there is at least one “P” or “N” (e.g., (I,IX),

(I,X)).

One can see that the inferred model restores preference information
provided by all DMs (e.g., (Calvet cd1

N Dubois), (Yu cd3
N Alexievich)). In

the first iteration, when preference information is yet rather poor, the
possible–possible is very rich, i.e., for most pairs of managers (a,b) it is
true that acP;P

D b, as well as that bcP;P
D a. In particular, there are only 9 or-

dered pairs of alternatives (a,b) for which the possible-possible relation
does not hold, i.e.not acP;P

D b
� �

, and 176 ordered pairs for which the pos-
sible–necessary relation is true, i.e., (a,b) such that acP;N

D b. On the other
hand, it is rather unusual that one alternative is at least good as another
alternative for all compatible value functions for any DM. Thus, the nec-
essary–possible cN;P

D relation, and in particular the necessary–necessary
cN;N

D relation, is rather poor. This confirms that taking into account all cri-
teria values as characteristic points increases the degree of freedom in
assessing the compatible value functions. This feature is not, however,
a disadvantage of the presented methodology, because we are looking
for robust conclusions. Therefore, we want to explore the whole space
of compatible value functions, which is not the case when a limited set
of characteristic points and a linear interpolation between them is con-
sidered. Obviously, it holds cN;N

1;DpcN;P
1;DpcP;P

1;D and cN;N
1;DpcP;N

1;DpcP;P
1;D.

The preference relations obtained from cN;N
1;D ;c

N;P
1;D;c

P;N
1;D; and cP;P

1;D,
constitute the corresponding rankings, which should be used to work
out a final recommendation. The DMs could view outcomes of UTAGMS

designed for a single DM and results of the UTAGMS-GROUP method,
which enables them to get their own clear view of the problem and to
compare consequences of one's own decisions with the collective deci-
sion of the whole group of DMs. In case of ranking problems, they are
asked to pay special attention to the necessary–necessary results,
which correspond to the most certain recommendation (see Fig. 1).

However, the UTAGMS-GROUP method is intended to be used in-
teractively, so that the DMs could provide pairwise comparisons in-
crementally, looking at consequences of the introduced preference
information. Therefore, we will discuss the final results after the sec-
ond iteration. Interaction with the method by providing further refer-
ence statements may be encouraged by suggestion of the pairs of
alternatives for which it would be useful to get opinion of a particular
DM. Such additional pairwise comparisons should intend to enrich
the necessary–necessary relation. Therefore, in the first order the
DMs may be asked to confirm the truth of the preference relation
for pairs of alternatives (a,b) satisfying the following:

• acP;N
D b, which means that all DMs agree that a is possibly at least as

good as b,
Ale

CalvetFeeret

Fourny FleichmanBassama

Smith

Varlot

El Mrabat

Psorgos

Fig. 1. Partial preorder cN;N
1;D and the graph of the necessary–possible cN;P

1;D relation fo
• acN;P
D b, which means that at least one DM is certain about the ad-

vantage of a with respect to b,
• there is not any other alternative that is preferred to a and b in
terms of the acN;N

D b.

In this perspective, it is useful for the DMs to analyze the part of the
necessary-possible graph concerning alternatives which at the current
stage of the interaction could be considered as potential best options.
Such a graph is presented in the frame at the bottomof Fig. 1. For themo-
ment being, let us suppose that considering the initial results, our DMs
are able to provide additional preference information (see Table 5), al-
though their opinion about the relative comparisons of these candidates
may not be as certain as the initial preference information.

One can observe that the relations converge with the growth of the
number of pairwise comparisons (see Table 6). Precisely, the necessary–
possible and necessary–necessary relations are enriched (cN;N

2;DtcN;N
1;D

andcN;P
2;D′tcN;P

1;D′ , e.g., (Calvetc
N;N
2;D Dubois)while not(CalvetcN;N

1;D Dubois)
and (FleichmancN;P

2;D Petron)while not(FleichmancN;P
1;D Petron)), where-

as the “possible-” relations are impoverished ( cP;N
2;DpcP;N

1;D and
cP;P

2;D′pcP;P
1;D′ , e.g., not(Varlot c

P;P
2;D Feeret) while (Varlot cP;P

1;D Feeret)
and not(Dubois cP;N

2;D Fleichman) while (DuboiscP;N
1;D Fleichman)). The

indication of the best alternatives and of the worst ones can be based
on the following observations:

• There are three alternatives (Calvet, Feeret, and Frechet) for which
there is no other alternative which is at least as good as them in
the necessary–necessary and necessary–possible rankings, i.e.
∄a∈A, such that a≠b and acN;P

D b, with b∈ {Calvet, Feeret, Frechet}.
They need to be perceived as the potential best options.

• There are five alternatives (Calvet, Feeret, Frechet, Martin, and Yu)
for which at least one instance of a compatible preference model
for every DM admits that they are possibly not worse than any
other alternative, i.e. ∀a∈A, a≠b and bcP;N

D a, with b={Calvet,
Feeret,Frechet,Martin,Yu}. There are also two additional alterna-
tives (Alexievich and Bassama) for which at least one model of
any DM confirms that they may be at least as good as any other al-
xievich Dubois

Frechet Petron

MartinYu

Feeret

Varlot

Calvet Frechet

Petron

necessary-possible relation for
the subset of the best alternatives

r the subset of the best alternatives for the problem of ranking sales managers.



Table 6
The matrix ofcN;N

2;D ;c
N;P
2;D ;c

P;PN
2;D ; andcP;P

2;D relations in the second iteration for all subsets of DMs for the problem of ranking sales managers (N and P at the given position indicate DMs
for whom the necessary and possible relation hold, respectively).

I II III IV V VI VII VIII IX X XI XII XIII XIV XV

I NNN NPP PPP PPN NNN PPP PPP PPP P∗∗ PPP PPN NNN NPN PPP PPP
II ∗PP NNN P∗P PPN NNN ∗P∗ PP∗ P∗P ∗∗P PPP PPN NNN NNN PPP PPP
III PPP PNP NNN NNN NNN PPP PPP NNN PPP PPP NNN NNN NNN PPN PPP
IV PP∗ PP∗ ∗∗∗ NNN PPP P∗∗ P∗∗ P∗P P∗∗ PPP PPP PPP PP∗ P∗P PP∗
V ∗∗∗ PPP P∗P PPP NNN ∗∗∗ PP∗ P∗P ∗∗∗ PPP PPP NNN PPP PPP PP∗
VI PPP NNN PPP PNN NNN NNN NNN NNN PPP PPP PNN NNN NNN NNN PPP
VII PPP PPN PPP PNN PPN PPP NNN PPP ∗∗∗ PPP PNN PNN PPN PNP PPP
VIII PPP PNP PPP PNP PNP PPP PPP NNN ∗∗∗ PPP PNP NNN PNP PPN PPP
IX NNN NNN PPP NNN NNN PPP NNN NNN NNN NNN NPP NNN NNN PNP NNN
X PPP PPP PPP PPP PPP PPP PPP PPP PPP NNN PPP PPP PPP PPP PPP
XI PP∗ PP∗ ∗∗∗ NNN PPP PP∗ P∗∗ P∗P PP∗ PPP NNN NNN PP∗ P∗P PP∗
XII ∗∗∗ PP∗ ∗∗∗ PPP PP∗ ∗∗∗ P∗∗ P∗∗ ∗∗∗ PPP ∗∗∗ NNN PP∗ P∗∗ PP∗
XIII ∗P∗ PPP P∗P PPN NNN ∗∗∗ PP∗ P∗P ∗∗P PPP PPN NNN NNN PPP PP∗
XIV PPP PPP PP∗ PNP PPP ∗∗∗ P∗P PP∗ P∗∗ PPP PNP NNN PPP NNN PPP
XV PPN PPP PPP PPN PPN PPP PPP PPP PPP PPP PPN PPN PPN PPP NNN
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ternative, i.e. ∀a∈A,, a≠c andccP;N
D a, with c={Alexievich,Bassama}.

They can be viewed as “good” options.
• There are three alternatives (Dubois, Martin, and Psorgos) for
which at least one model of every DM admits that they are possibly
not better than any other alternative, i.e. ∀a∈A, a≠b and acP;N

D b,
with b={Dubois,Martin,Psorgos}. There are also seven additional
alternatives for which at least one model of any DM confirms that
they can be not better than any other alternative. Therefore, they
should be viewed as rather “bad” options (only Alexievich, Calvet,
Feeret, Frechet, and Petron are excluded from this set).

• There are five alternatives (Dubois, Fleichman, Martin, Psorgos, and
Yu) which are not weakly preferred to any other alternative in the
necessary–necessary ranking. Dubois, Martin, and Psorgos are not
weakly preferred to any other alternative in the necessary–possible
ranking, whereas many other alternatives are weakly preferred
over them in the “necessary-” rankings. Thus, they should be con-
sidered as the potential worst options.

The partial preorder cN;N
2;D is illustrated in Fig. 2. The DMs may be

satisfied with the results and indicate three candidates (Calvet,
Feeret, and Frechet) as the best ones. Alternatively, they may want
to pursue the iterative process, adding some new pairwise compari-
sons of reference alternatives until they perceive the outcomes of
the method as decisive enough to make the choice. The new pairwise
comparisons should intend to restrict the number of pairs of
CalvetFeeret

Fourny FleichmanBassama Varlot

DSmith

El Mrabat

Psorgos

Fig. 2. Partial preorder cN;P
2;D for the pr
alternatives connected by incomparability in terms of the neces-
sary–necessary relation, which should lead to reduction of the set of
the best alternatives.

5.2. Sorting problem: assigning buses to the classes of technical state

A transport company is about to classify 76 buses into 4 prede-
fined and preference ordered classes C1–C4, such that C1 will group
the buses being in the worst technical state, needing a vary major re-
vision, C2 will group the buses being in the lower-intermediate tech-
nical state, needing a major revision, C3 will group the buses being in
the upper-intermediate technical state, needing a minor revision, and
C4 will group the buses being in the best technical state, needing no
revision. The buses were evaluated according to a total of 8 quantita-
tive criteria reflecting their performance and technical parameters.
The names and types of the criteria along with the performance ma-
trix for a subset of buses are presented in Table 7 (see [32]; a com-
plete data set is provided in e-Appendix H).

In the first step of the method, the diagnostic experts are asked to
provide possibly imprecise assignments of a few buses to the prede-
fined classes. The experts know relatively well the technical state of
some buses, and are able to provide a typical example for each class,
as well as some additional imprecise assignments of other buses. Al-
though imprecise statements still leave some freedom in assigning
the alternatives to different classes, from another perspective they
Frechet

AlexievichPetron MartinYu

ubois

oblem of ranking sales managers.



Table 7
Table of criteria and a part of performance matrix for the problem of assigning buses to
the classes of technical state.

Code Criterion Type Bus g1 g2 g3 g4 g5 g6 g7 g8

g1 Maximum speed Gain a1 90 2.52 38 481 21.8 26.4 0.7 145
g2 Compression

pressure
Gain a2 76 2.11 70 420 22.0 25.5 2.7 110

g3 Blacking Cost a3 63 1.98 82 400 22.0 24.8 3.7 101
g4 Torque Gain a4 90 2.48 49 477 21.9 25.1 1.0 138
g5 Summer fuel

consumption
Cost . . . . . . . . .

g6 Winter fuel
consumption

Cost a74 87 2.48 52 465 21.9 24.6 1.4 135

g7 Oil consumption Cost a75 86 2.50 55 456 22.0 25.1 1.5 130
g8 Horse power Gain a76 88 2.52 46 472 21.8 23.8 1.1 141

Table 9
Computation of the results of UTADISGMS-GROUP for exemplary alternatives for the
problem of assigning buses to the classes of technical state.

Bus Cd1

P Cd1

N Cd2

P Cd2

N Cd3

P Cd3

N CN;N
D CN;P

D CP;N
D CP;P

D

a6 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1
a19 C1 C1 C1−C2 C1 C1 C1 C1 C1−C2
a28 C1−C3 C2−C3 C1−C3 C2−C3 C1−C3
a35 C3−C4 C3−C4 C3 C3 C3 C3 C3−C4
a43 C1−C3 C2−C4 C1−C3 C2−C3 C1−C4
a72 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4
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are very useful, since they exclude from consideration all the remain-
ing classes. The preference information is given in Table 8.

For this initial preference information the sets of compatible value
functions UAR ;dr

;dr∈D, are not empty. It appears, however, that
there is no additive value function UD compatible with the reference
assignments of all DMs, which means that the preference information
introduced by at least two DMs is inconsistent. The analysis of incom-
patibility reveals that assignment (a40→C2) provided by d1 and
(a30→C1) provided by d3 cannot be represented together by any ad-
ditive value function. The two DMs are presented this subset of exem-
plary assignments as a reason underlying incompatibility. They are
asked either to reconsider their statements concerning these two al-
ternatives or to remove it. Suppose that d1 modifies the assignment
of a40 to C1. In consequence, the system becomes consistent, and we
compute the necessary and the possible weak preference relations
acdr

N a*,acdr

P a*,a*cdr

N a,a*cdr

P a for a ∈ A and a*∈Adr

R for dr∈D. It re-
quires solving (3×2×6×76) LP problems, i.e. for 3 DMs for all or-
dered pairs (a, a⁎) and (a⁎, a) such that a ∈ A and a*∈Adr

R we need
to solve an LP problem which indicates the truth of the necessary
and the possible weak preference relations. Further, for each alterna-
tive a ∈ A for each DM, we compute LU;Pdr

; LU;Ndr
;RU;N

dr
;, and RU;P

dr
. Then, on

the basis of these indices we specify the possible Cdr

P and the necessary
Cdr

N assignments. Finally, we combine them into consensus results
using the framework which is provided by UTADISGMS-GROUP. The
results obtained for a few representative alternatives for each DM
considered individually, as well as for DMs viewed simultaneous-
ly, are presented in Table 9.

The necessary–necessary assignments can be considered as robust
with respect to the exemplary judgments of all DMs. One may recog-
nize the obtained necessary–necessary ranges of classes as the “abso-
lutely sure” preference statements. However, in the initial iteration,
when preference information is yet rather poor, the possible weak
preference relation used to assess the necessary assignments is very
rich, i.e., for each DM for most of pairs of buses (ai, ak) it is true that
aicdr

P ak, as well as that akcdr

P ai. Therefore, in most cases, one can ob-
serve that Cdr

N(a)= t, which also results in empty necessary–neces-
sary assignments ( CN;N

D (a)=t). Table 10 summarizes non-empty
necessary–necessary assignments, which is the case of 9 buses
Table 8
Exemplary assignments of some reference buses for d1, d2, and d3, for the problem of
assigning buses to the classes of technical state.

a∈Ad1

R Ld1
Rd1

a∈Ad2

R Ld2
Rd2

a∈Ad3

R Ld3
Rd3

a1 C2 C2 a1 C2 C2 a13 C3 C3
a32 C3 C3 a5 C3 C3 a26 C2 C2
a34 C1 C1 a7 C4 C4 a30 C1 C1
a35 C3 C4 a12 C2 C2 a35 C3 C3
a40 C2 C2 a28 C2 C3 a42 C2 C3
a44 C4 C4 a40 C1 C1 a74 C4 C4
assigned to the extreme classes. With respect to the necessary–possi-
ble assignments, they are non-empty if Cdr

N(a)≠t for any dr ∈ D. One
can observe such non-empty assignments for 27 buses (see Table 10),
which means that at least one DM is either sure about their desired
class and expresses it directly in her/his preference statements, or
all instances of a preference model compatible with her/his prefer-
ence information confirm the same resulting assignment. Obviously,
for every bus a ∈ A, it holds CN;N

D (a)pCN;P
D (a).

The possible–possible assignments review all possible conse-
quences of preference information of all DMs on sorting of the
whole set of buses (see Table 11). For most buses the possible–possi-
ble assignment is non-univocal. Precisely, we have 9 buses assigned
to a single class C1 or C4, 6 and 22 buses assigned, respectively, to
the range of two and three contiguous classes, and 37 buses which
can be possibly assigned to all four classes. This means that when
choosing randomly a compatible instance of a preference model for
any DM, for almost a half of the analyzed buses we cannot exclude
any class from the set of possible resulting assignments. Such obser-
vation underlines flexibility of the applied preference model.

The ranges of possible–possible classes are usually too general to be
decisive enough. Being toowide, they do not allow answering questions
about the most characteristic range of classes for each alternative. In-
stead, one can analyze the possible–necessary assignments, which are
formed by the intersection of the possible ranges of classes for all DMs
(Table 12). If the possible–necessary assignment was not empty, then
at least one compatible preference model for each DM admits assign-
ment to a given class. It needs to be considered as a certain recommen-
dation and consensus solution. Consequently, the DMs are asked to pay
special attention to the possible–necessary results for sorting problems.
In this case, one can see that the number of buses possibly assigned to
all four classes by all DMs has decreased to 6, and the number of
buses which are assigned to more precise ranges consisting of a single
class or two contiguous classes has almost tripled. The average width
of the possible–necessary assignments for all alternatives is equal to
2.18. If the possible–necessary assignment was empty for some alterna-
tive, which is not the case for this particular problem, it would indicate
disagreement between DMs.

The illustration of the use of the UTADISGMS-GROUP method will be
stopped after the initial stage. However, this approach is intended to be
used interactively, so that the DMs could either add some new assign-
ments of reference alternatives or revise the previous judgments. Obvi-
ously, it would result in new necessary–necessary, necessary–possible,
possible–necessary, and possible–possible assignments. Since the final
Table 10
Necessary–necessary CN;N

D and necessary–possible CN;P
D assignments for the problem of

assigning buses to the classes of technical state.

CN;N
D Assigned buses CN;P

D Assigned buses

C1 a6, a23, a40, a60, a62,
a69

C1 a6, a19, a23, a30, a34, a40, a47, a50, a60, a62, a63,
a69

C2 - C2 a1, a12, a26
C3 - C3 a5, a32, a35
C4 a18, a29, a72 C4 a7, a18, a29, a44, a49, a57, a72, a74, a76



Table 11
Possible–possible CP;P

D assignments for the problem of assigning buses to the classes of
technical state.

CP;P
D Assigned buses

C1 a6, a23, a40, a60, a62, a69
C1−C2 a14, a19
C1−C3 a2, a5, a8, a12, a21, a24, a26, a27, a28, a30, a34, a36,

a38, a39, a45, a46, a47, a48, a50, a63, a66, a67
C2−C4 a32, a44, a51
C3−C4 a35, a49, a61
C4 a18, a29, a72
C1−C4 The remaining 37 buses
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decision is based on CP;N
D , the DMs should be encouraged by the analyst

to provide their preferences concerning two types of alternatives:

• these for which the range of possible–necessary assignment is wide
at the current stage of the interaction; this would result in the more
precise assignment in the following iteration;

• non-reference alternatives, which, when assigned to some class by
any DM, may affect possible assignment of numerous set of other
alternatives, i.e. these which are necessarily not worse and/or not
better than many other alternatives.

6. Conclusions

In this paper, we introduced the principle of robust ordinal regres-
sion to multiple criteria group decision. After recalling the robust or-
dinal regression methods within MAUT for choice and ranking
problems (UTAGMS and GRIP), and for sorting problems (UTADISGMS),
we extended all these methods to multiple criteria group decision
problems in UTAGMS-GROUP and UTADISGMS-GROUP. For each DM,
who expresses her/his individual preferences, we consider all com-
patible instances of a preference model, and compute the necessary
and the possible results. Then, we search for the spaces of consensus
and disagreement between the DMs. We present results of this inves-
tigation in form of different combinations of the necessary and the
possible outcomes, which have several properties of general interest
for MCDA and stimulate interactivity of the DMs with the method.

As far as future developments are concerned, we wish to extend
other MCDA methods which are based on the principle of robust or-
dinal regression to group decision, i.e. ELECTREGKMS [10] and PRO-
METHEEGKS [16]. Note that in this paper, we reasoned only in
terms of the necessary and the possible with respect to the set of
DMs, avoiding discussions on technical parameters such as weights.
In this way, the proposed methods are restricted only to group deci-
sion made by a selection committee where all DMs play the same
role. An interesting future development concerns differentiation of
the roles of the DMs. Moreover, we plan to extend the presented
methodology with the selection of the representative preference
Table 12
Possible–necessary CP;N

D assignments for the problem of assigning buses to the classes
of technical state.

CP;N
D Assigned buses

C1 a6, a19, a23, a30, a34, a40, a47, a50, a60, a62, a63, a69
C1−C2 a8, a14, a17, a27
C1−C3 a2, a10, a11, a15, a20, a21, a24, a36, a38, a39, a45, a46, a48, a53, a66, a67, a70
C1−C4 a3, a9, a16, a52, a58, a68
C2 a1, a12, a26
C2−C3 a25, a28, a31, a41, a42, a43, a64
C2−C4 a4, a13, a22, a33, a37, a55, a56, a59, a65, a71, a73, a75
C3 a5, a32, a35
C3−C4 a51, a54, a61
C4 a7, a18, a29, a44, a49, a57, a72, a74, a76
model. We wish to work out a single preference model and repre-
sentative results which follow its use, without losing advantage of
knowing all compatible instances of a preference model for all
DMs (see, e.g., [11,17]). The representative value function or the
representative set of parameters are about to highlight the most sta-
ble part of the robust results. In this way, we will support the DMs
with a very intuitive representation of the output of the robust ordi-
nal regression methods and with an image of an achieved consensus
solution. Consequently, we will be able to combine the robustness
analysis conducted within UTAGMS-GROUP, UTADISGMS-GROUP,
ELECTREGKMS-GROUP, and PROMETHEEGKS-GROUP with the clarity
of classical UTA-like and outranking-based methods.
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Appendix A. Properties of the relations cN,N, cN,P, cP,N, and cP,P

The following properties of the relations obtained in the UTAGMS-
GROUP help to drive the solution process and to elaborate consensus
among DMs. We will start with discussing the link between prefer-
ence information provided by any decision maker dr ∈ D′pD and
the results of UTAGMS-GROUP.

Remark Appendix A.1. In the absence of any pairwise comparison of
reference alternatives:

1. the necessary–necessary weak preference relation c N;N
D′ boils

down to weak dominance relation Δ in A (aΔb iff gj (a)≥gj (b),
j=1,…,m);

2. cN;P
D′ =cN;N

D′ ;

3. the possible–necessary weak preference relationcP;N
D′ is a complete

relation such that for any pair a, b ∈ A:
– a ∼P;N

D′ b⇔ [(not(aΔb) and not(bΔa)) or ((aΔb) and (bΔa))],

– a ≻P;N
D′ b⇔ [(aΔb) and not(bΔa)];

4. cP;P
D′ =cP;N

D′ , and thus cP;N
D′ is negatively transitive;

5. each pairwise comparison provided by the dr ∈ D′, for which the
dominance relation does not hold, contributes to enriching cN;P

D′ ,
i.e. it makes the relation cN;P

D′ true for at least one more pair of
alternatives.

The above property allows distinguishing the consequences stem-
ming from the analysis of the sole evaluation matrix from the out-
comes resulting from application of preference information
provided by the DMs. Moreover, since at the beginning cN;P

D′ =cN;N
D′

and c P;P
D′ =c P;N

D′ , one can later observe how these results diverge
with the growth of the preference information.

At any stage of the method, each pairwise comparison provided by
dr ∈ D′pD is reflected in the necessary–possible results.

Remark Appendix A.2. For all a9 and any decision maker a16:

1. acdr b⇒acN;P
D′ b;

2. a≻dr b⇒not bcP;N
D′ a

� �
:

In this way, each DM knows how her/his statements could influence
the collective results in a direct way. However, the preference informa-
tion provided by each DM is then translated into the necessary and pos-
sible outcomes. The truth of these relations is subsequently reflected in
the necessary–possible and possible–possible results. Their reflection in
the necessary–necessary and possible–necessary outcomes requires
confirmation of the specific result by each dr ∈ D′. These observations
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can also be generalized to any two subsets of DMs,D′,D″pD such that
D′pD″. The above statements can be summarized in formal terms as
follows:

Remark Appendix A.3. For any decision maker dh ∈ D′pD:

1. cN;N
D′ pcN;N

dhf g ¼ cN
dh

¼ cN;P
dhf gpcN;P

D′ ;

2. cP;N
D′ pcP;N

dhf g ¼ cP
dh

¼ cP;P
dhf gpcP;P

D′ :

In general, for all D′, D″pD such that D′pD″:

1. cN;N
D″ pcN;N

D′ pcN;P
D′ pcN;P

D″ ;

2. cP;N
D″ pcP;N

D′ pcP;P
D′ pcP;P

D″ :

The above remark could be also used for the comparison of out-
comes obtained for a single DM and collective results. In particular,
each DM could view that (s)he is capable of turning the falsity to the
truth of the possible–possible and necessary–possible relation for a par-
ticular pair of alternatives, and that without her/his confirmation any
possible–necessary and necessary–necessary relation cannot be true.

The interdependencies between cN,N, cN,P, cP,N, and cP,P are
summarized by Proposition Appendix A.1.

Proposition Appendix A.1. For any subset of decision makersD′pD:

1. cN;N
D′ pcN;P

D′ ,

2. cN;N
D′ pcP;N

D′ ,

3. cN;P
D′ pcP;P

D′ ,

4. cP;N
D′ pcP;P

D′ ,

5. cN;N
D′ pcP;P

D′ .

Proof. See e-Appendix C.1. □

Note that being aware about inclusion relations between different
types of results helps the analyst to drive the solution process. Since
the final recommendation should be based on the necessary–neces-
sary relation, which specifies the most certain recommendation, it
should be as rich as possible. This could be achieved by encouraging
the DMs to provide additional preference information, which allows
turning the truth of cP,P (the most general result) into the truth of
cP,N or cN,P, and then into the truth of cN,N (the most strict result).

The decision support process could also benefit from Proposition
Appendix A.2.

Proposition Appendix A.2. cN;N
D′ is a partial preorder (i.e. a reflexive

and transitive binary relation) for all D′pD.

Proof. See e-Appendix C.2. □

Since the necessary–necessary relation is a partial preorder, it can
be presented graphically as a directed acyclic graph in which alterna-
tives that are indifferent are grouped within a single vertex, and di-
rected edges represent the truth of ≻N,N relation. When drawing
such a graph (also called Hasse diagram), one can take advantage of
the transitivity property of ≻N,N and show to the DMs an easily inter-
pretable transitivity reduction, which is the graph with the fewest
edges that represents the same reachability.

An important property of the preference relations corresponding
to different confidence levels is stated by the following proposition.

Proposition Appendix A.3. cN;N
t;D′ ;c

N;P
t;D′ ; cP;N

t;D′ ; and cP;P
t;D′ are nested

binary relations:

1. cN;N
t;D′ tcN;N

t−1;D′ ,

2. cN;P
t;D′ tcN;P

t−1;D′ ,

3. cP;N
t;D′ pcP;N

t−1;D′ ,

4. cP;P
t;D′ pcP;P

t−1;D′
Proof. See e-Appendix C.3. □

Consequently, when additional preference information is provid-
ed, the necessary–possible and necessary–necessary relations are
enriched, whereas the possible–possible and possible–necessary rela-
tions are impoverished. In this way, the DMs may control the impact
of each piece of information on the evolution of the outcomes.

Appendix B. Properties of the assignments CN,N(a), CN,P(a), CP,N(a),
and CP,P(a)

Let us present a few remarks and properties that are satisfied by the
assignments CN,N(a), CN,P(a), CP,N(a), and CP,P(a). To save space, we do
not discuss their practical usefulness. It could be explained analogously
to the properties presented for UTAGMS-GROUP in Appendix A.

Remark Appendix B.1. In the absence of any assignment example:

1. the possible–necessary and possible–possible assignments (CP,N

(a) and CP,P (a)) are equal to the whole range of classes C1–Cp;
2. the necessary–necessary and necessary–possible assignments (CN,N

(a) and CN,P (a)) are empty.

Proposition Appendix B.1. Assume that CN;N
D′ (a) and CP;N

D′ (a) are not
empty, and denote byLN;ND′ (a) andRN;N

D′ (a) the worst and the best class
of the range CN;N

D′ (a), and by LP;ND′ (a) and RP;N
D′ (a) the worst and the

best class of the range CP;N
D′ (a). For any decision maker dr ∈ D′pD

and for any of her/his reference alternatives a*∈Adr

R:

1. LN;ND′ a�ð Þ≥Ldr a�ð Þ and RN;N
D′ a�ð Þ≤Rdr a�ð Þ;

2. LP;ND′ a�ð Þ≥Ldr a�ð Þ and RP;N
D′ a�ð Þ≤Rdr a�ð Þ:

Proof. See e-Appendix E.1. □

Remark Appendix B.2. For any decision maker dh ∈ D′pD:

1. CN;N
D′ að ÞpCN;N

dhf g að Þ ¼ CN
dh

að Þ ¼ CN;P
dhf g að ÞpCN;P

D′ að Þ;
2. CP;N

D′ að ÞpCP;N
dhf g að Þ ¼ CP

dh
að Þ ¼ CP;P

dhf g að ÞpCP;P
D′ að Þ:

In general, for all D′ D″pD, such that D′pD″:

1. CN;N
D} (a)pCN;N

D′ (a)pCN;P
D′ (a)pCN;P

D″ (a),

2. CP;N
D″ (a)pCP;N

D′ (a)pCP;P
D′ (a)pCP;P

D″ (a).

Proposition Appendix B.2. For any alternative a ∈ A and any subset
of decision makers D′pD:

1. CN;N
D′ (a)pCN;P

D′ (a),

2. CN;N
D′ (a)pCP;N

D′ (a),

3. CN;P
D′ (a)pCP;P

D′ (a),

4. CP;N
D′ (a)pCP;P

D′ (a),

5. CN;N
D′ (a)pCP;P

D′ (a).

Proof. See e-Appendix E.2. □

Notice that for both methods introduced in this paper, interdepen-
dencies between different types of results can be illustrated in the
Hasse diagram (see Fig. B.3).

Proposition Appendix B.3. For all t=2,…,s, and for all a ∈ A,

CP;P
t;D′ að ÞpCP;P

t−1;D′ að Þ and CP;N
t;D′ að ÞpCP;N

t−1;D′ að Þ:

Proof. See e-Appendix E.3. □



Fig. B.3. Hasse diagram of the four types of results obtained in GROUP methods.
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Appendix C. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.dss.2011.10.005.
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