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Lipinski and others, through concepts such as drug-likeness,

re-focussed drug discovery back to the principles of medicinal

chemistry in the high-throughput era as key to reducing attrition.

More recently, the need to go further in defining what makes

a good lead has been recognised with the concept of

leadlikeness. Leadlikeness implies cut-off values in the

physico-chemical profile of chemical libraries such that they

have reduced complexity (e.g. MW below <400) and other

more restricted properties. We examine these concepts in the

context of Virtual (theoretically possible), Tangible (chemically

feasible) and Real (physically available) worlds of molecules.

In a thought experiment, we take the HTS concept to the

extreme: screening an estimated 60 million ‘Global Collection’

on 5000 targets and realising that perhaps millions of drug

candidates might be found that could not possibly be handled

in reality. Sampling of the Virtual and Tangible worlds is therefore

a necessity. We show that the world of Reals is significantly

under-sampled as the MW of compounds increases. This

supports the design and screening of ‘reduced complexity’

(leadlike) compound libraries, preferably with synthetic

handles available for rapid chemical iteration and detected as

interesting by careful screening or biophysical assays.

Addresses
1GlaxoSmithKline Research and Development, Gunnels Wood Road,

Stevenage, Hertfordshire SG1 2NY, UK

e-mail: mike.m.hann@gsk.com
2Division of Biocomputing, University of New Mexico School of

Medicine, MSC 08 4560, 1 University of New Mexico,
Albuquerque New Mexico 87131-0001, USA

e-mail: toprea@salud.unm.edu

Current Opinion in Chemical Biology 2004, 8:255–263

This review comes from a themed issue on

Combinatorial chemistry

Edited by A Ganesan and Anthony D Piscopio

Available online 7th May 2004

1367-5931/$ – see front matter

� 2004 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.cbpa.2004.04.003

Abbreviations
ACD Available Chemicals Directory

HAC hydrogen bond acceptors

HAM high-activity molecule

HDO hydrogen bond donors

HTS high-throughput screening

MDDR MDL Drug Data Report

RNG number of rings

RO5 rule of fives

RTB rotatable bonds

VTR Virtual/Tangible/Real

WDI World Drug Index

Introduction
Preclinical drug research has placed an increased pressure

on earlier stages of the discovery process [1–3], in parti-

cular on the choice of leads or drug prototypes [4] (i.e. the

molecular structures that undergo the process of optimi-

zation before reaching candidate drug status [5]). In this

review, we discuss the reasons for this pressure, briefly

analyzing the evolution of concepts that aim at improving

the quality of leads [6,7], and the understanding of lead-

like space [8]. These concepts are currently used to assist

the design and construction of virtual and physical com-

pound collections for screening.

Two distinct scenarios occur. In the first, one does not

have any specific target in mind at the time when the

compound collection is assembled. In the physical world,

this corresponds to most in-house collections for high-

throughput screening (HTS) that have evolved in the

pharmaceutical industry through the historical collection

of samples synthesized and acquired over many years. In

the virtual in silico world, this can be extended to the

concept of a virtual library that is not target-specific. A

subset of possible (or tangible) compounds in the library

includes those that experience suggests can be physically

assembled on demand through established chemistries.

The second scenario occurs when constructing a more

focused library for a specific target (or group of related

targets), using target-based information to focus or bias

the selection. In the physical world, this corresponds to

target-specific (focused) libraries available from many

chemical vendors or as designed and synthesized intern-

ally within a pharmaceutical company. In the virtual

world, such compound sets can be derived from analyzing

high-activity molecules (HAMs), or from known leads

co-crystallized with the target of interest. The possible
collection is in this case represented by a much more

limited set of target molecules that meet, for example,

specific pharmacophoric criteria, although they may still

be part of a larger array, which is actually synthesized.

This is because of the nature of combinatorial chemistry,

which is usually done in n by m arrays.

One of the major efforts to revise the input/output (or the

signal/noise) ratio with regards to the effectiveness of

chemical aspects of drug discovery has been in the area of

cheminformatics. In the strictest sense, chemical infor-

matics integrates data via computer-assisted manipula-

tion of chemical structures [9]. Chemical inventory and

compound registration are vital to cheminformatics, but it

is their combination with other theoretical tools from the

wider realm of computational chemistry and their linkage

to physical organic chemistry, pharmacodynamics and
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pharmacokinetics (and eventually, to the amelioration/

avoidance of undesirable pharmacology leading to tox-

icology) that brings unique capabilities in the area of lead

and drug discovery. In recent years, cheminformatics

has emerged as the informatics-driven technological

push in preclinical research, since it attempts to link all

the involved scientific partners, from virtual screening

to animal toxicology via one central element: chemical
structure. Cheminformatics has been given increased

attention in the early stages of lead discovery, where

the concept of leadlikeness has gained increased impor-

tance: the processes by which interesting starting points

for medicinal chemistry can be found need to become

cost effective.

Issues in early lead discovery
The innovation deficit [1] of pharmaceutical R&D,

whereby there appears to be a lack of truly new therapies

being developed, can in part be explained by the desire to

have a ‘best-in-class’ strategy for products (thus securing a

lasting product), in contrast to the ‘first-in-class’ strategy

(i.e. being the first to market a new class of therapeutics).

Because ‘first-in-class’ therapeutics rarely remain ‘first-

in-class’ (e.g. Cimetidine was surpassed by Ranitidine,

and Felodipine by Amlodipine), the incentive to be

strong innovators is somewhat lacking unless a company

also commits to improving on its own ‘first-in-class’ pro-

ducts. Pharmaceutical companies therefore often follow

similar trends and molecular targets in a market-driven

prioritization process [3], which can slow the pace of

innovation with new targets. While companies will aspire

to be truly innovative, the market experience often makes

the prospects of developing truly new products daunting

[3,10�].

Lipinski’s seminal analysis of reasons why compounds fail

to progress to become oral drugs and the resulting ‘rule of

fives’ (RO5) [11] pointed out the dangers of ignoring

pharmacokinetic properties in combinatorial library

design. Given the time-lag between lead discovery and

drug launch (usually 8–15 years [12]), we may still be

witnessing the effects of progressing drug candidates

from the pre-RO5 era. A decade after the initial shift

in the lead discovery paradigm toward HTS and combi-

natorial chemistry, pharmaceutical R&D productivity

remains low. In addition to ignoring or forgetting many

of the principles of medicinal chemistry in the early years

of the new technologies, the goalposts have also been

continually moving. Thus, the criteria that candidate

drugs must fulfill before approval are increasingly

demanding.

HTS clearly works as a method for finding starting

points for drug-discovery programs, but how can it be

made more effective?

The preclinical drug-discovery cascade, starting from

HTS and moving into the launched drug phase requires

the screening of the order of one million compounds to

find a suitable lead for one ultimately successful outcome

[13] (Figure 1).

If we knew a priori more about the relationship between

chemotypes and target activity, this ratio would

undoubtedly improve. Thus, HTS is usually more suc-

cessful for so called ‘tractable targets’ (e.g. kinases or G-

protein coupled receptors) [14]. Not withstanding this

lack of chemotype-activity knowledge, there are also

many process enhancements that should be considered

as being helpful in improving the overall success in

HTS. Often there is a high rate of false positives in

single-dose single-experiment assays (see Figure 1);

partly, this is the risk of doing n ¼ 1 experiments.

Post-HTS analyses [15] are often further clouded by

the screening of reactive species or optically interfering

components (which can be the result of sample degrada-

tion) in biochemical assays [16�], the tendency of some

chemicals to aggregate [17��] or to turn up as frequent

hitters [18�]. Further, the selection of HTS hits to follow

up from the primary assay often remains subjective, as

the definition of a ‘HTS hit’ may depend on the avail-

able information and experience of the chemist assigned

to the project. Totally new targets and the desire to not

rule out possible hits may force chemists to select ‘hits’

at 30% inhibition, whereas well-patented areas and

decades of medicinal chemistry experience, coupled

with an established assay, will allow chemists to select

hits at 80% inhibition. Probability schemes have been

devised to assist this process [19]. Cheminformatics tools

are increasingly used to handle the vast amounts of data

from HTS [15] and to bring rigor to the process of

looking for genuine leads.

Figure 1
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average across the pharmaceutical industry, so the number of
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progress from lead identification to drug candidate. The risk of failure

increases as a molecule becomes a drug candidate because of high

costs in clinical trials. Modified from [13].
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The Virtual, Tangible, Global and Real worlds
of molecules
Virtual, Tangible, Global and Real collections

In the ideal scenario, it would seem appropriate to reliably

screen the maximum number of molecules that we can

afford against every appropriate target to find the highest

number of leads and ultimately effective drugs. While

this is the only way to ensure that we discover all possible

leads (that already physically exist) for all targets, this is

highly impractical. For instance, there is no effective limit

for the number of compounds that can be made or

acquired. It has been estimated that there are far in

excess of 1060 druglike molecules that could be made

[20]. This vast number of compounds is referred to as the

Virtual Collection of compounds because they cannot be all

made, but they are essentially a ‘resource’ that can be

mined as needed. Having appropriate informatics systems

to access these virtual compounds via 2D, 3D and other

property spaces is a key part of lead discovery strategies.

Those compounds that can be reliably made via an

appropriate chemical route can be designated as Tangibles
because they could be ‘easily’ synthesized or acquired in a

timely manner from a supplier as needed. The total

output of the pharmaceutical sector (including academic

and commercial resources) represents the Global Collection
(see below). Most pharmaceutical companies have yet

smaller collections ready for screening. These include the

compound samples that have been accumulated over

many years, as well as novel compounds acquired from

external sources or produced in-house by automated

facilities together with compounds made in lead optimi-

zation projects. These are the Reals (i.e. those discrete

entities that physically exist within a company and are

actually available for screening). The Virtual/Tangible/

Real (VTR) description of compounds provides a frame-

work for considering how we design and build screening

sets.

The magnitude of the ultimate screening experiment:

a thought experiment estimate

The issues in lead discovery are better understood by

gaining insights into the magnitude of the problem that

might need to be faced if HTS was taken to extremes. We

estimate that fewer than 120 million compounds have

been synthesized worldwide and could be available for

biological screening if everyone pooled their resources.

This is based on the fact that one of the largest collections

of commercially available structures, ChemNavigator

[21], covers ca. 12 million structures (8 million unique

molecules — the remaining 4 million are overlapping

structures made by different chemical vandors), of which

90% are RO5 compliant. The combined output from the

pharmaceutical sector world-wide, the Global Collection, is

unlikely to exceed 10 times that number, in terms of

unique chemical structures. This sets an upper limit for

the Global Collection if we had access to the contents of

everyone’s Reals.

For reasons related to inadequate storage, compound

purity and stability, and considering the compound quan-

tities, we further estimate that only 50% of the Global
Collection (i.e. 60 million structures) could become avail-

able for screening. Given the current capacity of HTS

robots (we assume 100 000 compounds/day), screening 60

million compounds on 5,000 targets at a single dose,

single experiment level would take over 8 years, using

1000 HTS robots operating at full capacity. Five thousand

targets represent ten times more targets than currently

addressed by therapeutic agents (N ¼ 483 [2]). At a few

cents per assay for reagents, the entire effort would cost

many billions of dollars (not including man-years, equip-

ment, assay/target preparation and chemical preparation

costs). The budget of this ‘global HTS’ effort would

be comparable to the entire research and development

budgets ($32 billion) of the pharmaceutical industry in

2002 [22].

It is not just the cost of this experiment in reality that is

daunting. If 8 bits are enough to store single results, and

4 bits are required to store assay conditions (i.e. 12 bits/

result), the results of screening the Global Collection would

further require more than 3352 gigabytes of storage space.

While such space is feasible these days, it is unlikely that

current software has the capacity to effectively navigate

through the entire dataset — although each target per se
would require less than 687 MB of storage. By conserva-

tively assuming a 0.1% success rate and 40% false posi-

tives (as in Figure 1), this effort could yield 180 million

HTS actives, up to 3 million drug candidates and up to

300 000 new drugs. This thought experiment shows

without a doubt that the current lead discovery paradigm

could reach an unprecedented scale, but would require

steep changes both in terms of logistics and financial

support. Even if mergers and acquisitions world-wide

led to a single, meta-pharmaceutical entity, this would

still be an extraordinarily daunting task that would

require drastic changes in the decision-making process

and clarity in the prioritization of molecules at the che-

mical level.

The druglike and leadlike concepts
Druglikeness

Because the Global Collection is likely to remain unavail-

able for lead discovery in the next decade, medicinal and

combinatorial chemists are exploring the VTR concept in

an effort to explore in silico which Reals are sensible to

have available to ‘represent’ the larger Global and Virtual
spaces. As discussed above, chemical space is effectively

infinite. A further simple example of this is provided by

considering the simple case of substituted n-hexanes with

150 substituents [23]: Weininger estimates that all the

possibilities, from mono- to 14-substituted hexanes,

regardless of synthetic feasibility, amount to 1029 n-hex-

anes [23]. The search for ‘lost and emerging chemistry’

[24] aims at identifying molecular scaffolds that go
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beyond rings with 6, 10–13 or 17 atoms. More effective

methods are needed to decide which of these vast num-

bers of compounds to select as potential starting points

and ultimately which have any prospect of being devel-

oped into drugs.

Chemical fingerprints can serve as the basis [25,26] for a

crude computer-based discrimination between ‘drugs’,

represented by WDI (the World Drug Index) [27], or

by the MDL Drug Data Report (MDDR) [28], and ‘non-

drugs’, represented by ACD (the Available Chemicals

Directory) [28]. Although this result was reproduced by

other groups [29,30,31�], it has yet to become accepted by

the chemistry community as a decision-enabling scheme.

If it was truly effective, it could assist chemists to quickly

evaluate, for example, what other chemists have consid-

ered worthy of synthesis (and patenting) before them.

The problem is that good druglike scores do not make a

molecule a drug. It is often assumed that Lipinski’s RO5

criteria define druglike space. However we showed that

this was not the case [32], as there are more compounds in

ACD, or ‘non-drugs’, that are RO5 compliant, compared

with compounds from MDDR, or ‘drugs’. A recent study

by Vieth et al. [33�] looked at the differences in the

properties of drugs having a variety of routes of admin-

istration and confirmed that oral drugs have properties

associated with lower MW, fewer hydrogen bond acc-

eptors (HAC) and donors (HDO), and fewer rotatable

bonds (RTB) compared with drugs that have other routes

of administration (see also earlier work [11]). Despite

this extension to RO5 criteria, there remains a gulf be-

tween these crude rules of thumb and true discriminat-

ing power for specific design purposes. It is therefore

more appropriate to think of the RO5-type criteria as

necessary, but not sufficient to create an oral druglike

molecule.

Leadlikeness

Unlike the druglike scores, where large numbers of

chemical structures have been submitted to statistical

analyses, the leadlike concept [34] is based on signifi-

cantly smaller datasets [6,7,35�]. Despite this, the concept

of leadlikeness is already having a significant impact in

the design of chemical libraries [36��]. This is, in part,

because the concepts and methods related to leadlikeness

are very intuitive and fit with the current experience of

what typically happens [37�] in lead optimization. Based

on current data, it appears that, on average, effective leads

have lower molecular complexity [6] when compared with

drugs, as well as a smaller number of rings (RNG) and

rotatable bonds [7], have lower MW and are more polar

[34].

Rishton extended the leadlike concept [16�] by including

chemical properties. He suggests that leadlike structures

should bind only in a non-covalent, reversible manner,

should show chemical stability toward proteins, and

should not be ‘promiscuous inhibitors’ [17��], ‘frequent

hitters’ [18�] or ‘warhead’ compounds [16�]. Rishton’s

‘warheads’ include electrophilic ‘suicide inhibitors’, phos-

phates, phosphonates, hydroxamates and thiol ‘chelators’

(i.e. groups known to react with proteins under HTS assay

conditions).

Implications for library design
Having recognized that poor solubility and poor perme-

ability are among the main causes of failure [38] in later

stages of drug development (see also Figure 1), the

medicinal chemistry community is now rethinking

[39��] its drive to produce large, hydrophobic molecules

by limiting these properties to values smaller than those

suggested by Lipinski [11]. Our survey [8] of the chemical

structures published between 1991 and 2000 in the Jour-
nal of Medicinal Chemistry [40] shows that 25.2% of the

HAMs, or better than 10 nM, are large (MW > 425 amu),

hydrophobic (the logarithm of the octanol/water partition

coefficient [41], LogP, is above 4.25) and poorly soluble

(the logarithm of the intrinsic aqueous solubility, LogSw,

is below �4.75). This should be compared with the 1.7%

HAMs that are small (MW < 300), significantly less

hydrophobic (LogP < 1:5) and soluble (LogSw > �2).

Therefore, one can conclude that the benefits of the

leadlike concept have yet to be translated into practice

on a large scale.

As pointed out by Kuntz et al. [42] and confirmed in our

earlier work [13], higher MW does not necessarily warrant

higher activity. A close examination of the WOMBAT

database [40] reveals that increased biological activity is

not directly correlated [8] to an increase in size and

hydrophobicity (Figure 2).

This result is relevant as one of the aims of combinatorial

chemistry is ultimately to produce drugs, not leads [7].

The leadlike strategy, also proposed for virtual screening

[43], has practical consequences for energy-based ranking

of virtual hits [44], since an increase in the number of non-

hydrogen atoms is likely to yield higher scores during

virtual screening. Therefore, careful choice of virtual

screening scoring schemes needs to be done if inappro-

priately large molecules are not to be selected by in silico
screening for taking forward for real screening. We have

also argued that such molecules actually have a lower

chance of being hits because of the very high chance of

getting interactions wrong in over-functionalized (i.e.

large) molecules [6].

Placing our property-based analyses [8] in the context of

preclinical drug discovery, we have formulated computa-

tional criteria for leadlike compounds [45]: MW � 460,

�4 � LogP � 4:2, LogSw � �5, RTB � 10, RNG � 4,

HDO � 5, HAC � 9. Such criteria are expected to be

applicable to chemical libraries during lead identification.

However, the following experimental criteria, mostly
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related to in vivo properties (e.g. in rat), become more

relevant for individual compounds: bioavailability above

30%, low clearance (e.g. below 30 ml/min/kg in rat),

LogD7.4 (LogP at pH 7.4) between 0 and 3, poor (or

no) binding to drug-metabolizing cytochrome P450 iso-

zymes, plasma protein binding below 99.5%, lack of acute

and chronic toxicity at the expected therapeutic window

(e.g. assuming 500 mg/day P.O. regimen for 7 days), no

genotoxicity, teratogenicity or carcinogenicity at doses 5–

10 times higher than the therapeutic window. The experi-

mental criteria should be applied to (most) compounds

progressed from the lead identification to the lead opti-

mization stage.

Developing leadlike screening sets
These and related concepts have led us and others to

develop screening strategies that are complementary to

more traditional HTS methods. Some companies (e.g.

Astex [46], Plexxikon [47] and Vertex [48]) have gone so

far as to have the concepts of screening fragments or very

small leadlike entities (in connection with X-ray crystal-

lography or NMR) as their principle lead generation

paradigm [36��]. The general approach is to try to find

start points for lead optimization that are more ‘leadlike’

and typically less complex than those derived solely on

‘druglike’ criteria.

Another aspect of leadlikeness and reduced complexity

that we have explored [49] concerns the sampling rates

that can be achieved with Reals of a given complexity

within the vast space of Tangibles or Virtuals. This can be

explored with the aid of Figure 3, which shows the

number of carboxylic acids (of all types) registered in

the GSK registry system plotted as a molecular weight

distribution. The gray curve shows the incremental num-

ber of acids in the collection for each 25 amu. increase and

is effectively the rate of increase in the number of

compounds in a particular MW range. The steep rise

in the number of acids with MW follows an exponential

curve initially, as expected since the number of Tangibles
increases exponentially with the number of heavy (non-

hydrogen) atoms in a molecule. However, at around

150 amu, the observed MW increase of these compounds

ceases to be exponential. Why is the rise no longer

exponential after 150 amu? Our explanation is that we

significantly under-sample the potential carboxylic acids

(i.e. the Virtuals), and that this under-sampling gets worse

as MW and complexity increase.

Figure 2
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A different view is presented in Figure 4 of the same data.

This combines the actual count of carboxylic acids within

a given MW range (gray triangles, as per Figure 3), the

cumulative observed count of these carboxylic acids

(black squares) and a theoretical and truly exponential

cumulative count (black circles). The y-axis is now chan-

ged to show the cumulative number of carboxylic acids

(both real and virtual) that exist as MW increases. The

precise numbers in the estimated exponent are not

important, in fact there may be over 1010 carboxylic acids

by MW of 450. The important point is that the Real

(squares) and Virtual (circles) curves are dramatically

diverging above about a MW of 300. Thus, at lower

MWs the Reals represent a better sampling of the Virtual

world compared with that at higher MW. Provided it is

possible to find relevant biological activity associated with

a chemotype in a lower MW representation, then using

these molecules for screening purposes can provide an

effective way to represent the more complex higher

MW compounds that will ultimately result from lead

optimization. This is an important aspect of the leadlike

concept, and provides space for the process of lead

optimization, in contrast to attempts to directly probe

and find biological activity in the regions of exponentially

larger numbers of higher MW compounds.

Starting points with lower MW are likely to have less

potency and are not always clearly identifiable via HTS, if

the screening concentration is typically of the order of

10 mM or less. The obvious solution is to screen com-

pounds at higher concentrations (e.g. 500 mM), but this

introduces problems related to solubility, purity and

interference with readout (e.g. by fluorescence quench-

ing). Nevertheless, with careful selection of compounds

and robust screens we have been able at GSK to screen

several targets (mainly enzymes) at up to 1 mM concen-

tration and still extract useful information.

The so-called ‘reduced complexity’ screening set that we

have used for this purpose was assembled using several

computational criteria (e.g. average values for MW < 350,

RTB � 6, heavy atoms � 22, HDO � 3, HAC � 8,

ClogP � 2:2), and matching certain 3D pharmacophoric

patterns based on the GaP approach [50]. These criteria

are similar to the ‘Rule of Three’ (MW < 300, ClogP < 3,

HDO < 3, RTB < 3) proposed by Astex [51] for frag-

ment libraries in lead discovery. The GSK selection

criteria also require the presence of a ‘synthetic handle’

(i.e. chemical moieties that allow rapid synthesis of

further analogues). Typical generic structures considered

for the ‘reduced complexity’ screening set are shown in

Figure 5. The choice of fragments for such a ‘Reduced

Complexity’ library is best considered in the context of

molecular recognition and the combinatorial chemists’

Figure 4
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desire to work within a familiar chemistry space where

robust reactions can be rapidly exploited. This needs to

be balanced against the intrinsic and unique properties

that such small fragments may have for exploring more

space with less [52�]. Often, though, similarity searching

for related compounds in the world of Reals (GSK com-

pound collection and external suppliers) may provide an

alternative and sometimes quicker follow-up procedure.

Wherever possible we also aim to obtain experimental

data on the binding mode of the compounds to the

protein by X-ray or NMR methods.

Conclusions
In our opinion, the concept of leadlikeness will help

refine the processes by which interesting starting points

for medicinal chemistry can be found in a cost effective

manner. We believe that leadlikeness is an integral part

of the continual enhancement of the processes of HTS.

It illustrates the use of conceptual and computational

tools that are needed to avoid resorting to the heroics that

would be needed if our ‘all against all’ thought experi-

ment was literally followed to exhaustion. In looking for

leadlikeness, one needs to exercise caution. Unlike the

Planck constant, the cut-off values attributed to leadlike-

ness are context-specific: Should the absorption change

from oral to inhaled these values would have to be ad-

justed to fit a different profile [53�]. Furthermore, the

history of drug discovery abounds with counterexamples

to the leadlike concept: tetrahydrofolate (MW ¼ 574:5)

served as lead for Methotrexate (MW ¼ 454:4), and

Tubocurarine (MW ¼ 610:7) was the lead for Gallamine

(MW ¼ 510:8). As Rishton points out [16�], ‘most drugs

found in the compiled databases were classically discov-

ered and developed using biological assays, selective cyt-

otoxicity assays and animal models of disease, not using

biochemical (e.g. HTS) assays.’ In other words, these

leads were optimized at a time where chemists could

modify 1–10 molecules, have them screened and inter-

pret the results before another design/make/test cycle

would start. Today, there is a risk that high-throughput

experiments reduce the opportunity for innovative and

iterative thinking, as millions of molecules are screened

simultaneously without the possibility of interpretation

and analysis between the traditional rounds of experi-

ments for this number of datapoints. We have to face the

fact that the design/make/test cycle sometimes occurs

only in the late stages of lead identification (secondary

and follow-up screening), and mostly in lead optimiza-

tion. The critical decision in preclinical discovery remains

the choice of the lead compounds, which ultimately

derive from what is in screening collections [13]. There-

fore, the careful incorporation of the leadlike concept into

screening collections becomes even more important.

Update
A new mathematical model for the design of a screening

collection for HTS has recently been published by

colleagues at GSK [54]. This model relates chemical

structural similarity and cluster to biological activity,

and hence to the probability of finding active lead series

of compounds in high-throughput assays. The optimal

screening collection content for a given fixed size of

screening collection can then be derived and the com-

peting demands of focussed and diverse sets explored.

This is a good example of how mathematical modelling

can be applied to bring further rigor and objectivity to

understanding what should be in a screening collection

and hence further improve our success rates in drug

discovery.
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