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Abstract
The non-invasive measurement of cerebral oxy-

(
�HbObr

2

)
and deoxy-

haemoglobin (�HHbbr) changes using near-infrared spectroscopy instruments
is often affected by the absorption in the extracerebral layer. We have exploited
the multivariate calibration (partial least squares, PLS) method to minimize
the errors for a range of blood volume, oxygen saturation and extracerebral
layer thicknesses. The changes in the mean time of flight of photons (�τ )
and attenuation (�A) on the surface of a 3D adult head model were simulated
using a finite-element method based on the diffusion equation. The PLS was
then performed to identify the optimal number of detectors, their positions and
weightings, to optimize the estimation of �HbObr

2 and �HHbbr. We define
the ‘nominal accuracy’ as the accuracy of estimating �HbObr

2 and �HHbbr

over a nominal range of extracerebral layer thicknesses and ‘robustness’ as the
accuracy beyond the nominal range. The results showed that for one or two
detectors, �τ performed better than �A while using them together gave the
best performance. When more detectors were used, the performances of using
�τ , �A or both together became comparable, showing that a larger number
of detectors can compensate for the performance of a simple �A measurement
despite this measurement having a relatively lower sensitivity to intracerebral
absorption changes.

1. Introduction

Near-infrared spectroscopy (NIRS) has been widely used in medical and physiological research
for the non-invasive assessment of oxygenation of the human brain both in adults and infants.
With continuous-wave systems, changes in oxy- and deoxy-haemoglobin (�HbO2 and �HHb)
can be calculated from the measured attenuation changes using a modified Beer–Lambert law
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(Delpy and Cope 1997). Alternatively, using time-domain (Kienle and Patterson 1997),
frequency-domain (Fantini et al 1994) or spatially resolved systems (Farrell et al 1992, Suzuki
et al 1999) the absolute tissue absorption coefficient (µa) can be derived (usually using
algorithms based on the diffusion equation and an assumed homogeneous medium). From
this, absolute HbO2 and HHb can be calculated.

The availability of �HbO2 measurement has made it possible to measure cerebral blood
flow and cerebral blood volume with �HbO2 as the tracer (Edwards et al 1993, Elwell
et al 1994, Leung et al 2003). With indocyanine green as the tracer, cerebral blood volume,
cerebral blood flow and the total circulating blood volume can also be measured by a NIRS
system with three or more wavelengths (Hopton et al 1999, Gora et al 2002, Leung et al
2004). The absolute values for these parameters are often lower than those reported using
other techniques such as positron emission tomography or magnetic resonance imaging (MRI),
and the discrepancy is usually attributed to the effect of the overlying extracerebral layers i.e.,
the skin and skull on the optical pathlength used in the calculation and/or the assumption that
the tissue is homogeneous. In reality, the head is not homogeneous. The brain is enclosed
in the skull which is overlaid by the skin, both of which are perfused with blood. Optical
measurements obtained on the surface of a head therefore measure absorptions due to the skin,
skull, cerebrospinal fluid and the brain. The effects of inhomogeneity on surface measurements
have been discussed in the literature. Hunter et al used the time-domain system and the simple
diffusion model to measure oxygen saturation (SO2) in the bottom layer of a 2-layer muscle
phantom and found errors of 5–11% depending on the thickness of the top layer and its optical
properties (Hunter et al 2002). Okada et al used Monte Carlo simulation of an adult human
head model and found that the sensitivity of the cerebral attenuation signals reduced as the
thickness of the upper layer increased (Okada and Delpy 2003a).

Analytical solutions to the diffusion equation have also been derived for simple layered
models and it has been found that the µa of the lower layer can be measured most accurately
when the thickness of the upper layer is known (Dayan et al 1992, Kienle et al 1998, Kienle
and Glanzmann 1999). The idea of the partial differential pathlength (PDP) has also been
developed to account for the mean pathlength in each tissue layer (Hiraoka et al 1993) while
its time-domain counterpart, namely the mean time sensitivity factor (MTSF), provides a
sensitivity measure for the mean time of flight to a small change in absorption in different
layers (Steinbrink et al 2001). A recent paper (Fabbri et al 2004) compared three methods of
measuring �µa in the lower layer, namely, (a) the multidistance, frequency-domain method
based on the diffusion theory, (b) the modified Beer–Lambert law based on a single distance
method and (c) the modified Beer–Lambert law based on a two distance method. They
concluded that method (c) performed best in estimating �µa in the lower layer for upper layer
thicknesses of 0.8 or 1.4 cm. However, to use method (c), the PDPs need to be estimated by the
computationally intensive Monte Carlo simulation. A multidistance time-domain system has
been developed recently to measure intracerebral and extracerebral changes in absorption with
moments of the distributions of times of flight of photons following an injection of indocyanine
green (Liebert et al 2004, 2005). The study showed that a delay in bolus transit time between
two hemispheres can be identified in patients with cerebral perfusion deficit. Apart from using
multiple detectors, it has also been suggested that a single distance, time-domain method can
be used to measure µa in the upper and lower compartments in a three-layered phantom, given
the depth of the three compartments is known (Steinbrink et al 2001).

To accurately measure µa of the brain (and hence HbO2 and HHb), most of these techniques
require the thickness of the extracerebral layer to be known which can be measured from
CT, MRI or ultrasound scans. However, in the absence of any structural information, we
need to know the error magnitude caused by assuming default values for the thickness of
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Table 1. Summary of modelled parameter variations: �HbT in different layers is calculated by
subtracting the reference values of HbT (see the end of section 3.1) at different layers from the
HbT in the range, e.g. �HbT at layer 1 = (30:10:70)−50 = (−20:10:20).

Layer Parameters Range (min:step:max)

Extracerebral layer: skin/skull (layer 1) Blood volume,
HbT (µM) 30:10:70
�HbT (µM) −20:10:20
Oxygen saturation, SO2 (%) 0.5:0.1:0.9
Transport scattering coefficient, µ′

s (mm−1) 1.8

Intracerebral layer: grey matter (layer 2) Blood volume,
HbT (µM) 60:10:100
�HbT (µM) −20:10:20
Oxygen saturation, SO2 (fraction) 0.5:0.1:0.9
Transport scattering coefficient, µ′

s (mm−1) 2.2

Intracerebral layer: white matter (layer 3) HbT (µM) 40
�HbT (µM) 0
Oxygen saturation, SO2 (fraction) 0.7
Transport scattering coefficient, µ′

s (mm−1) 9.1

the extracerebral layer while the real thickness, blood volume and oxygen saturation (SO2)
in different layers vary. The aim of this study was to investigate these errors and their
minimization using multiple detectors at optimal locations measuring both intensity and mean
time of flight.

In this paper, we mainly focus on the accuracy of measuring �HbO2 and �HHb in the
brain (denoted by �HbObr

2 and �HHbbr) over a range of blood volume, SO2 and thicknesses of
different layers. The frameworks of PDPs and MTSFs have been adopted which are linear and
suitable for multivariate calibration. We used light transport simulation software developed
at UCL (Arridge et al 1993) to generate intensity and mean time of flight data at different
source–detector spacings on a three-layered adult head model representing skin/skull, the
grey matter and the white matter. A range of data were simulated (table 1) corresponding to
different thicknesses and physiological conditions of each layer and these were used to produce
calibrations for �HbObr

2 and �HHbbr using partial least squares. We have investigated the
optimal number of detectors to use, the measurements made (attenuation or mean time of
flight) their positions and the relative weightings to optimize the estimation of �HbObr

2 and
�HHbbr.

2. Theory

We first briefly review the concepts of PDP and MTSF and subsequently form our basic
calibration models under this framework. We then discuss the optimization of estimating
�HbObr

2 and �HHbbr over a range of thicknesses, blood volumes and SO2 using the
multivariate calibration technique of partial least squares.

2.1. Calibration models based on the partial differential pathlength and
the mean time sensitivity factor

The PDP concept was introduced (Hiraoka et al 1993) to extend the modified Beer–Lambert
law to heterogeneous media. The PDP at layer n, i.e. PDPn is defined as a partial derivative of
the measured attenuation A versus the absorption coefficient µa of each layer, i.e. PDPn = ∂A

∂µan
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where n = 1, . . . , N and N is the number of layers. Note that A is defined here with base
of e to match that of µs. To a first approximation, the partial derivative can be linearized,
i.e. PDPn = �A/�µan which is reasonable when �µan is small, i.e.

∑
n |PDPn�µan| � 1

(Steinbrink et al 2001, Liebert et al 2004). The PDPn can also be considered as the mean
pathlength of the light in layer n. In general, for a measurement configuration with one source
and M detectors at different spacings, the total attenuation change from a heterogeneous
medium at detector m can be expressed as

�Am =
N∑

n=1

PDPm,n�µan (1)

where PDPm,n corresponds to layer n within the field of view of detector m. The MTSF is
the time-domain counterpart of the PDP. It is widely used in time-domain systems (Steinbrink
et al 2001, Kohl-Bareis et al 2002, Liebert et al 2004, 2005) to calculate �µa from changes
in the mean time of flight (�τ ):

�τm =
N∑

n=1

MTSFm,n�µan (2)

where MTSFm,n corresponds to the sensitivity of τ in response to a small change in µa in layer
n within the field of view of detector m, i.e. MTSFm,n = ∂τm/∂µan and can be calculated from
a function of the PDP and τ at different layers.

In this paper, we mainly focus on changes in absorption in two of the layers, i.e. the
skin/skull

(
�µsk

a

)
and the brain

(
�µbr

a

)
and thus N = 2 here. Although the brain layer

is subdivided into the grey matter and the white matter later in the paper where surface
measurements of intensity and mean time of flight are simulated, we only introduce a change
of absorption in the grey matter but not the white matter. In matrix form, �µsk

a and �µbr
a

(i.e. �µa1 and �µa2) can be calculated by

µ = L−1X (3)

where

µ =
[
�µsk

a

�µbr
a

]
L =




lsk
1
...

lsk
M

lbr
1
...

lbr
M


 X =




�A1

�A2
...

�AM


 or =




�τ1

�τ2
...

�τM




and L−1 is the inverse of L. We use the symbol lbr
M to denote either PDP or MTSF in a particular

layer (brain or skin/skull) measured with detector M. When M = N, equation (3) has a unique
solution. When M > N, there are more than one solution and L−1 becomes the pseudo-inverse
of L which can be found by the least-square approach. Equation (3) shows that theoretically
when PDPs/MTSFs are known for the two layers and the number of detectors is larger than or
equal to the number of layers (M � N = 2), �µbr

a (and �µsk
a ) can be calculated from surface

measurements �Am or �τm. Unfortunately, both the PDP and MTSF cannot be measured but
can be estimated by Monte Carlo simulations (Okada and Delpy 2003a, Steinbrink et al 2001).

The oxy- and deoxy-haemoglobin concentration changes in the brain, i.e. �HbObr
2 and

�HHbbr can be calculated from �µbr
a measured at two (or more) wavelengths, usually at either

side of the isobestic point (800 nm), using the Lambert law, i.e. µ = ε C where ε is the specific
absorption coefficient (log base e) and C = [

�HHbbr�HbObr
2

]
T. In this paper, we only discuss

two wavelength measurements but the same principle can be extended to more wavelengths.
It follows that C = ε−1µ where

ε−1 =
[
εHHb(λ1) εHbO2(λ1)

εHHb(λ2) εHbO2(λ2)

]−1

=
[
k11 k12

k21 k22

]
(4)
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and kij is the element of the inverse of the matrix containing the specific absorption coefficients
of HbO2 and HHb. Subsequently, �HbObr

2 and similarly �HHbbr can be written as

�HHbbr = k11�µbr
a (λ1) + k12�µbr

a (λ2)

�HbObr
2 = k21�µbr

a (λ1) + k22�µbr
a (λ2)

(5)

or substituting equation (3) into (5),

�HHbbr =
M∑

m=1

[k11wHHb,m(λ1)�Xm(λ1) + k12wHHb,m(λ2)�Xm(λ2)]

�HbObr
2 =

M∑
m=1

[k21wHbO2,m(λ1)�Xm(λ1) + k22wHbO2,m(λ2)�Xm(λ2)]

(6)

where wm(λ) is defined as the measurement weightings which are derived from L−1 in
equation (3) and are thus a function of PDPs/MTSFs and dependent upon layers’ thicknesses
and optical properties. Equations (1)–(6) are, however, only true if photon transport follows
strictly the linear formulation suggested by equations (1) and (2). Photon transport in the
head is actually a nonlinear process requiring modelling by more sophisticated methods (see
section 3.1), therefore, we can only consider equation (3) as an approximation of a more
complicated model.

2.2. Optimizing the estimation of �HbObr
2 and �HHbbr using the partial least squares

To optimize the estimation of �HbObr
2 and �HHbbr for a range of blood volume, SO2 and

thicknesses, we can no longer express �µbr
a generally in terms of PDPs/MTSFs and �Am/�τm

as in equations (1)–(3) because different blood volume, SO2 and thicknesses result in different
PDPs/MTSFs. Rather we use the notion of measurement weightings, wm(λ) which serve
to weight surface measurements, �Xm of detector m in order to optimize the estimation of
�HbObr

2 , i.e.

�µbr
a (λ) =

M∑
m=1

wm(λ)�Xm(λ) (7)

where �Xm = �Am and/or �τm. Substituting (7) into (5) yields an expression similar to
equation (6) but wHHb,m(λ) and wHbO2,m(λ) are now measurement weightings which are
not directly related to L−1. To find the optimal wHHb,m(λ) and wHbO2,m(λ) for a range of
physiological conditions (specifically corresponding to blood volume and SO2 in different
layers) and thicknesses (corresponding to differences in anatomy), we have carried out
multivariate calibration on a set of simulated �Am and/or �τm with known �HbObr

2 and
�HHbbr. The formulation can be written in a form suitable for multivariate calibration, i.e.

y = Xw (8)

where

X =




k21�X1(λ1, t1) · · · k21�XM(λ1, t1) k22�X1(λ2, t1) · · · k22�XM(λ2, t1)
...

...
...

...

k21�X1(λ1, tP ) · · · k21�XM(λ1, tP ) k22�X1(λ2, tP ) · · · k22�XM(λ2, tP )




y =




�HbObr
2 (t1)

...

�HbObr
2 (tP )




wT = [
wλ1 wλ2

] = [
wHbO2,1(λ1) · · · wHbO2,M(λ1) wHbO2,1(λ2) · · · wHbO2,M(λ2)

]
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and y is the target, X a set of measurements and w the optimal measurement weightings. (In
the multivariate calibration literature, the measurement weightings are often referred to as
regression coefficients.) In our case, y is �HbObr

2 and X is a set of surface measurements,
�Xm(λ) from M detectors at two wavelengths. Each row of X contains the product of k (refer
to equation (4)) and simulated surface measurement �Xm(λ) at detector m resulting from the
pth physiological condition (signified by tp), while each row of y contains the corresponding
�HbObr

2 in the pth physiological condition. Equation (8) is also applicable for estimating
�HHbbr in which case one needs to replace �HbObr

2 with �HHbbr in y, wHbO2,m with wHHb,m

in w and k21/k22 with k11/k12 in X.
Equation (8) is a classical formulation in multivariate calibration and the literature in

this field is abundant. The aim is to find the regression vector w (termed as measurement
weightings here) using a collection of measurement X and known values y. There are a number
of ways to perform the calibration, including multiple linear regression, principal component
regression and partial least squares (Martens and Naes 1991). We mainly consider the use of
partial least squares (PLS) because it has better performance than other techniques in terms of
handling collinearity and prediction. In PLS, the optimal weighting w can be considered as
a projection of the original measurements onto a new plane with a given number of principal
components which captures the largest amount of variance in X and at the same time optimizes
the correlation between X and y. The PLS calibration has been implemented with a version
known as SIMPLS for its speed and efficiency (de Jong 1993).

3. Methods

3.1. Light transport modelling

The simulated surface measurements �Am and �τm in this paper were generated with a
software known as time-resolved optical absorption and scattering tomography (TOAST)
developed at UCL (Arridge et al 1993). It is based on solving the diffusion equation with the
finite-element method and provides fast computation which is crucial in this study because
of the need to generate thousands of datasets. The adult head has been modelled as a three-
dimensional spherical slab with three layers corresponding to the skin/skull (extracerebral
layer), grey matter and white matter. Five 3D meshes corresponding to five different
extracerebral layer thicknesses were generated using the automatic mesh generator NETGEN
(Schoberl 2001). The radius of curvature of the superficial layer was set to 90 mm. Because of
signal-to-noise ratio considerations, most NIRS instruments are typically limited to measuring
out to an optode spacing of about 50 mm (assuming a 1 Hz sampling rate) (Evans 1997, Harris
et al 1994) and this limitation has been included in the model. The dimension of the mesh,
and the locations of the source and ten detectors are shown in figure 1. The first detector is
5 mm from the source and subsequent detectors are 5 mm apart.

A wide range of absorption coefficients for each layer were simulated, based upon
physiologically reasonable values for parameters such as the total haemoglobin concentration
(HbT, in µM, representing blood volume), haemoglobin oxygen saturation (SO2, expressed as
a fraction), water content (W, in fraction), background absorption (B, in mm−1). The variations
in parameters are summarized in table 1. The absorption coefficient of each layer is calculated
as follows:

µa(λ) = εHHb(λ)HbT(1 − SO2) + εHbO2(λ)HbT · SO2 + µa,H2O(λ)W + B (9)

where µa,H2O(λ) is the absorption coefficient of 100% water and B is a wavelength independent
background absorption. The transport scattering coefficients (µ′

s) are set as 1.8, 2.2 and
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Figure 1. An adult head has been modelled by 3D spherical slabs: (a) the top view shows the
locations of the source and the ten detectors; the top surface is spherically bounded by rectangular
boundaries; (b) the front view (cross section). The thickness of the skin/skull is denoted by a
which is varied between 7, 9, 11, 13 and 15 mm. The radius of curvature of the superficial layer
was set to 90 mm.

9.1 mm−1 (λ = 780 nm) for the skin/skull, grey matter and white matter, respectively and
are the same as those in Okada and Delpy (2003a). The tissue water contents of the grey
and white matters are set to 80% (by volume) which is the value considered in Matcher and
Cooper (1994) and Hueber et al (2001). The skin/skull generally contains less water and
an estimate of 70% is used here. Previous studies showed evidence of the existence of a
wavelength-independent background absorption in the head accounting for absorbers other
than HbO2, HHb and water (Essenpreis et al 1993). The background absorption B is fixed
at 0.003 mm−1 (at all wavelengths) for all layers so that the overall µa in each layer match
the range of those given in Okada and Delpy (2003a). The wavelength dependency of µ′

s is
also taken into account based on a previous study (Matcher et al 1997) which showed that
experimentally measured µ′

s decreases approximately linearly with wavelength in the human
head, for example, when µ′

s (780 nm) is 1 mm−1, µ′
s (820 nm) is scaled to 0.9534 mm−1.

As shown in table 1, the values of four variables were changed one by one over five
steps between the minimum and maximum values in the range making a total of 625 (≡ 54)
sets of data. Each dataset contained estimates of intensity and mean time of flight at the
ten detector positions shown in figure 1 and for two wavelengths (780 and 820 nm). The
intensity measurements (I ) were converted to change in attenuations by the conventional
formulation: �A = −loge(I/I0) where I0 is the reference intensity and generated by the head
model in which HbT in the skin/skull = 50 µM, HbT in the grey matter = 80 µM, HbT
in the white matter = 40 µM and SO2 in all layers = 0.7. The change in the mean time of
flight �τ was also calculated with respect to τ 0 generated with the same reference values.
A previous study reported mean values of 5.2% and 2.7% for blood volumes in the grey and
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white matters, respectively (Leenders et al 1990). These values were converted to HbT in µM
as specified above using the conversion equation given in Wyatt et al (1990) with a nominal
venous haemoglobin concentration of 14 g dl−1. The skin/skull normally has a µa slightly
smaller than that of the grey matter but larger than that of the white matter. Subsequently, an
estimate of HbT of 50 µM is given for the skin/skull blood volume.

3.2. Performing partial least squares calibration

In the absence of any structural information such as MRI/CT/ultrasound scans, the thicknesses
of the different layers are not known. Under this circumstance, one may adopt a methodology
which assumes certain thicknesses, blood volume and SO2 for each layer when in fact they are
variable. We investigated such errors that would arise through the calculation of �HbObr

2 and
�HHbbr based on the simulated �Am and �τm measurements at multiple detectors. Known
�HbObr

2 and �HHbbr were calibrated against simulated �Am and/or �τm for extracerebral
layer thicknesses of 9, 11 and 13 mm, and blood volume and SO2 values as described in
table 1. The PLS calibration was performed with a predefined number of principal components
(see section 4.1). The calibration resulted in the measurement weightings wHbO2,m and wHHb,m

described in equation (6) which optimized the estimation of �HbObr
2 and �HHbbr respectively.

The calibrated model was then tested with a wider range of extracerebral layer thicknesses of
7, 9, 11, 13 and 15 mm. There are a total of 1875 values of �HbObr

2

/
�HHbbr in the training

dataset and 3125 values in the testing dataset.
One aim of this work is to find the optimal combination of detectors and measurement

types from a set of K detectors placed along a straight line. For example, if three detectors
are to be chosen out of the ten detectors as shown in figure 1. The possible combinations can
include: detectors 1, 2, 3; detectors 1, 2, 4; detectors 1, 2, 5 and so on. The total possible
number of combinations is given by the binomial coefficient KCM = K!/[M! (K-M)!] in which
M elements are selected from a total of K elements, and in this example is 120. To find
the optimal combinations of detectors for a total of M detectors, we have performed PLS
calibrations on all possible combinations of detectors and worked out the root-mean-square
(RMS) errors between the predicted and real �HbObr

2 and those of �HHbbr for each possible
combination. For the cross-validation, the whole dataset was randomly split into five blocks
of subsets, each containing 125 datasets. A calibration was performed using four blocks of
subsets (500 datasets), while the remaining one (125 datasets) used for validation. Another
four calibrations were carried out similarly using a different block of subsets for validation
every time. This whole procedure was repeated five times after which the overall RMS error
was calculated. There were altogether 25 calibrations and validations for each combination
of detectors. In the above example whereby three detectors are to be selected from ten, the
total number of calibrations and validations for all possible combinations of detectors becomes
3000 (≡ 120 × 25). (In comparison, the alternative leave-one-out validation technique requires
the number of calibrations and validations equivalent to the total number of datasets for each
combination of detectors, i.e. 625. The total number of calibrations and validations would
therefore be 75 000 (≡ 120 × 625) which requires a considerably longer computation time
with only marginally improved performance.) The average of the RMS errors for �HbObr

2
and �HHbbr has been used to assess the performance. We consider �HbObr

2 and �HHbbr

together, rather than individually so that the optimal locations of detectors are applicable for
the simultaneous estimation of both �HbObr

2 and �HHbbr. The combination of detectors
which results in the smallest RMS error is considered to be the optimal one. Analyses were
carried out based on K = 10 and M = 1, 2, 3, 6 and 10.
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Table 2. Optimal combinations of detectors and the number of principal components used {curly
brackets}: (i) the measurement data, i.e. �Xm = �Am; (ii) �Xm = �τm; (iii) �Xm = [�Am ×
scaling factor 1, �τm × scaling factor 2]. Extracerebral thicknesses of 9, 11 and 13 mm were used
in the calibration.

Optimal combinations of detectors
(no. of principal components)

No. of
detectors (M) (i) �A (ii) �τ (iii) �A & �τ

1 10 10 10
{1} {1} {2}

2 1, 10 2, 9 2, 10
{3} {3} {6}

3 8, 9, 10 1, 4, 10 1, 8, 10
{4} {4} {8}

6 5, 6, 7, 8, 9, 10 1, 2, 4, 8, 9, 10 1, 2, 7, 8, 9, 10
{6} {6} {12}

10 1–10 1–10 1–10
{6} {6} {12}

3.3. Nominal accuracy and robustness

Optimal solutions (i.e., the number of principal components and locations of detectors) have
been obtained using blocks of subsets of randomized training datasets and it is necessary to
know how well the PLS calibration performs in datasets which have not been used during the
training phase. In particular, we would like to know how robustly the measurement weightings,
which are based on the extracerebral layer thicknesses of a nominal range, say 9, 11 and 13
mm, perform in situations when the extracerebral layer thicknesses vary over a wider range,
say 7, 9, 11, 13 and 15 mm.

Two test datasets have been simulated, dataset (A): �Am and �τm from the extracerebral
layer thicknesses of 9, 11 and 13 mm (nominal), and the range of blood volume and SO2 as
shown in table 1; and dataset (B): �Am and �τm from the extracerebral layer thicknesses of 7,
9, 11, 13 and 15 mm (nominal + extremes), and the range of blood volume and SO2 as shown
in table 1.

Before discussing the use of the two datasets mentioned above, we first describe an error
term suitable for performance assessment. The errors (differences) between the real and
predicted �HbObr

2

/
�HHbbr will vary for different real �HbObr

2

/
�HHbbr. For instance, the

errors between the predicted and real �HbObr
2 which result from a calibration based on three

detectors as shown in table 2(ii) (to be discussed in more details in section 4.1) are given in
figure 2. It can be seen that the errors vary as the real �HbObr

2 changes and are also not simply
proportional to the real �HbObr

2 , e.g. the errors are ≈9.8 µM for both real �HbObr
2 = 0 µM

and real �HbObr
2 = 7 µM (circled in figure 2). This means that a simple percentage error

defined as (predicted �HbObr
2 –real �HbObr

2 )/real �HbObr
2 will be very large for small real

�HbObr
2 and in the case of real �HbObr

2 = 0 µM would be infinite. Instead, we have used the
normalized RMS error defined below to assess the accuracy of the predictions collectively:

normalized RMS error

=
√√√√∑P

i=1

[
�HbObr

2,pd(i) − �HbObr
2 (i)

]2
+

∑P
i=1

[
�HHbbr

pd(i) − �HHbbr(i)
]2

∑P
i=1

[
�HbObr

2 (i)
]2

+
∑P

i=1

[
�HHbbr(i)

]2

(10)
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Figure 2. The errors between the predicted and real �HbObr
2 as a function of real �HbObr

2 based
on a calibration with three detectors and mean time of flight data as shown in table 2(ii). The two
circles correspond to errors ≈9.8 µM for both real �HbO2 = 0 µM and 7 µM.

where �HbObr
2 (i)

/
�HHbbr(i) and �HbObr

2,pd(i)
/
�HHbbr

pd(i) are the real and predicted values
of the ith realization (a particular combination of blood volume, SO2 and extracerebral layer
thickness in each layer) and P is the total number of realizations. The normalized RMS
error can be interpreted as a fractional error with a value of 1 corresponding to an average
error deviating by 100% from the real value and the minimum value of 0 representing total
agreement. The advantage of using a fractional error term is that we can compare results
obtained from using other ranges of real �HbObr

2 and �HHbbr. The normalized RMS error is
however a collective measure and is unable to indicate the specific error for a particular value
of �HbObr

2 or �HHbbr.
We are now ready to define the ‘nominal accuracy’ and ‘robustness’: nominal accuracy =

1 − normalized RMS error resulting from using dataset (A) and robustness = 1 − normalized
RMS error resulting from using dataset (B). The ‘nominal accuracy’ and ‘robustness’ have a
maximum value of 1 corresponding to total agreement between the real and predicted �HbObr

2
and �HHbbr. A value of 0 corresponds to the average error deviating by 100% from the real
value. The calculations of the nominal accuracy and the robustness defined here only differ by
the input data being used. A high nominal accuracy corresponds to a good calibration for the
prediction of �HbObr

2 and �HHbbr with the extracerebral layer thickness within the nominal
range (defined as 9, 11 and 13 mm here), while a high robustness corresponds to a good
calibration for the prediction of �HbObr

2 and �HHbbr with the extracerebral layer thickness
varying over a wider range (defined as 7, 9, 11, 13 and 15 mm here).

3.4. The selection of the number of principal components

Before the calibrated PLS model can be used for predictions, the number of principal
components (PCs) has to be specified first. The following describes the selection of the
number of PCs. The RMS errors as a function of the number of PCs for the total number of
detectors M = 1, 2, 6 and 10 are plotted in figure 3 where the measurement data �Xm = �τm.
The extracerebral layer thicknesses of 9, 11 and 13 mm have been included in the calibration.
For clarity, only four curves are plotted here as an example. Since two �τm (or �Am) at two
different wavelengths have been generated for each detector, there are 2 × M measurement
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Figure 3. The RMS errors as a function of the number of PCs used: the mean times of flight have
been used as the measurement data for the PLS calibration. Results are shown for the number of
detectors, M = 1, 2, 6 and 10.

values for one realization and thus the maximum number of PCs is also 2 × M. (When both
�Am and �τm are used as measurement data, the maximum number of PC is 4 × M.) Each
data point on figure 3 corresponds to the combination of detectors with the specified number
of PCs which result in the least RMS error of all other possible combinations. As expected,
as more PCs are used the RMS errors reduce but a point is soon reached when increasing the
number of PCs does not lower the RMS error substantially, i.e. RMS error reduces by less than
0.5 µM. The corresponding number of PCs is selected as our first criterion. For example, the
number of PCs = 6 has been chosen for M = 10 in figure 3. It is generally desirable to use
a smaller number of PCs because the resulting measurement weightings w tend to be more
robust to unknown measurement data. When all available PCs (= 2 × M or 4 × M) are used,
the PLS calibration is essentially the same as multiple linear regression which is susceptible
to collinearity and lacks robustness (Martens and Naes 1991). To avoid this, the maximum
number of PCs selected is (2 × M) − 1.

4. Results and discussion

4.1. The optimal number and locations of detectors

Using the criteria given in section 3.4, the number of PCs and the optimal combinations of
detectors were found for detector numbers M = 1–10. As will be seen later, the improvement
in estimation is small once M > 3, so data are only presented here for M = 1, 2, 3, 6 and
10 and the results are summarized in table 2. It contains the results obtained from three
measurement datasets (i) �Xm = �Am, (ii) �Xm = �τm and (iii) �Xm = [�Am × scaling
factor 1, �τm × scaling factor 2]. In dataset (iii), both �Am and �τm have been used together.
The scaling factors are the inverse of standard deviations of the corresponding dataset and
serve to normalize �Am and �τm so that their values are in the same range. As an example,
figure 4 shows the measurement weightings, wm,HbO2 (780 nm) of the optimal combinations
of detectors as shown in table 2(ii). It can be seen that the measurement weightings are
smooth or in other words do not oscillate between positive and negative which are signs of
susceptibility in unknown datasets. The smoothness of the measurement weightings shown
here are typical of a calibration performed with PLS and a small number of PCs. Although
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Figure 4. The measurement weightings, wHbO2,m (780 nm) for the optimal combinations of
detectors as shown in table 2(ii) using mean time of flight as the measurement data. Panel (a) the
number of detectors, M = 2 and 3; (b) M = 6 and 10.

not shown here, the measurement weightings resulting from using datasets (i) and (iii) have
similar smoothness.

Insights can be gained by investigating the measurement weightings shown in figure 4.
For instance, the two detector case results in a positive weighting at detector 2 (10 mm source–
detector spacing) and a negative weighting at detector 9 (45 mm spacing). It is known that
a short spacing measurement is more sensitive to extracerebral absorption changes while a
long spacing measurement is more sensitive to intracerebral absorption changes. The opposite
signs indicate that certain subtraction of the extracerebral signal has been performed.

4.2. The nominal accuracy and robustness

Having obtained the optimal combinations of detectors and the number of PCs, we now use
the nominal accuracy and robustness as defined in section 3.3 to compare the results. Figure 5
shows the nominal accuracy and robustness respectively resulting from using M = 1, 2, 3,
6 and 10. Table 2 shows that when M = 1 (a single detector system), the optimal location
of the detector is at a source–detector spacing of 50 mm (detector 10) in all cases. At this
spacing, photons measured have travelled deeper into the tissues. Yet, the nominal accuracy
and robustness are close to zero for �A, corresponding to almost 100% deviation from the
real values. This reflects a relatively high sensitivity of �A to changes in extracerebral
absorption. Although the values are still low, the nominal accuracy and robustness of �τ are
approximately four times larger than those of �A, indicating a relatively higher intracerebral
sensitivity. When both �A and �τ are used together, even higher nominal accuracy and
robustness are achieved. The availability of measurements with different depth sensitivities
makes it more possible to subtract out the extracerebral absorption changes.

As M is increased to 2, the performance increases in all cases although that using both
�A and �τ together is still the best, followed by that using �τ and then �A. When M is
increased to 3 and beyond, the performances of all cases become comparable although using
both measurements still often provides marginally better results.
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Figure 5. (a) Nominal accuracy and (b) robustness as the number of detectors increases (results
are shown for M = 1, 2, 6 and 10). Three measurement datasets were used: (i) �A, (ii) �τ and
(iii) both �A and �τ together.

5. Conclusions

Based on the PDP/MTSF frameworks, we have shown how the PLS can be exploited to
calibrate for �HbObr

2 and �HHbbr over a range of blood volume, SO2 and extracerebral layer
thicknesses. The ‘nominal accuracy’ is used to assess the accuracy of estimating �HbObr

2
and �HHbbr within a nominal range of extracerebral layer thicknesses, while the ‘robustness’
indicates the accuracy of the estimation for extracerebral layer thicknesses that can extend
beyond the nominal range used to derive the calibration. We have shown that PLS is a suitable
calibration technique to obtain reasonably high nominal accuracy and robustness. By using
a larger number of PCs in the PLS prediction, one can increase the nominal accuracy at the
expense of robustness.

Our results show that in NIRS instruments using only one or two detectors, �τ performs
better than �A in terms of nominal accuracy and robustness, and the best performance was
achieved when both �τ and �A were used together. Our findings are consistent with the
literatures which showed the depth sensitivity of �τ to be higher than that of �A (Steinbrink
et al 2001, Kohl-Baries et al 2002, Liebert et al 2004, 2005). An interesting extension of
the current work would be to carry out PLS calibration using changes in the variance of the
distribution of times of flight of photons which has been shown to have an even higher depth
sensitivity than �τ (Liebert et al 2004, 2005).

When three or more detectors are used, the performances of the three measurement datasets
become comparable. This suggests that despite having a relatively low depth sensitivity, the
performance of instruments that only measure �A can be compensated by using more detectors.
This is a useful finding because continuous-wave systems used to make �A measurements
are simpler and less expensive than the time or frequency-domain systems required for �τ

measurements.
We have not examined the performance of the other multi-layered methods as described in

the introduction but we suspect that they may have robustness problem because most of these
models were not designed to handle any uncertainty in the thicknesses of the layers. They also
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often require computationally demanding Monte Carlo simulation for parameter estimation.
Instead of relying on a physical model, the PLS calibrates itself based on the correlation
between measurement and target data. One potential use for the technique discussed in
this paper would be to use the PLS calibration to approximate the results for measurements
on a particular multi-layered method over a range of different structural and physiological
conditions. (Indeed, the PLS calibration presented here can be considered as the linear
approximation of the photon transport software TOAST.) The measurement data in the PLS
calibration would be the experimental measurements such as �A and/or �τ and the target
data would be the calculated results from the chosen multi-layered model such as �µa or
�HbObr

2

/
�HHbbr in the appropriate tissue component. The calibrated PLS model can then

provide fast approximated results from new experimental measurements. This approach is
expected to be most suited for linear models such as the PDP and MTSF based methods.
Alternatively, one could perform a PLS calibration using �A and/or �τ measured optically
against �HbObr

2 and �HHbbr measured with other imaging techniques such as MRI/PET. The
calibrated PLS model can potentially provide a linear approximation to the MRI/PET results
using optical measurements.

The applicability of the results presented here relies on how accurately the measurement
data (�A and �τ ) are modelled. Since the photon transport modelling (the TOAST software
package) used here is a simplification of the human head, the results given here are meant to
be guidelines only. The aim of the paper is to outline the PLS method as a way to perform
calibration with optical measurements. Several issues have not been considered in this study
and can be investigated in the future. The cerebrospinal fluid (CSF), which acts as a light
channel (Firbank et al 1996), has not been included in our head model. The boundaries of all
layers are also assumed to be smooth which is far from the reality. The thickness of the grey
matter has also not been altered. The CSF, uneven structures such as the sulci and variations
in the thickness of the grey matter are all expected to change the light distribution (Okada
et al 1995, Okada and Delpy 2003b). If these factors were included in the model, a similar
analysis could be applied to determine the new optimal number, positions and measurement
weightings of the detectors. The simulated data considered here were also noise free, although
by limiting the furthest source–detector spacing to 50 mm we know from previous experimental
evidence that a reasonable signal-to-noise ratio can be obtained with NIRS instrumentation
at a sample rate of ≈1 Hz. The PLS calibration is less susceptible to low level noise and
in such cases we would expect the results obtained here (measurement weightings, optimal
number and positions of detectors) to be similar to those obtained if noise were included.
With high levels of noise, however, one would expect the analysis performed here to work less
favourably if detectors further away from the source were included in the determination of the
optimal positions of detectors. The number of detectors required may also have to increase to
compensate for uncertainties in the measurements.
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