
DIRECT-SUM DECOMPOSITIONS OVER LOCAL RINGSRoger WiegandDecember 18, 1999Abstract. Let (R;m) be a local ring (commutative and Noetherian). If R is complete (or,more generally, Henselian), one has the Krull-Schmidt uniqueness theorem for direct sums ofindecomposable �nitely generated R-modules. By passing to the m-adic completion bR, wecan get a measure of how badly the Krull-Schmidt theorem can fail for a more general localring. We assign to each �nitely generated R-module M a full submonoid �(M) of Nn, wheren is the number of distinct indecomposable direct summands of bR 
R M . This monoid isnaturally isomorphic to the monoid +(M) of isomorphism classes of modules that are directsummands of direct sums of �nitely many copies of M . The main theorem of this paper statesthat every full submonoid of Nn arises in this fashion. Moreover, the local ring R realizing agiven full submonoid can always be taken to be a two-dimensional unique factorization domain.The theorem has two non-commutative consequences: (1) a new proof of a recent theorem ofFacchini and Herbera characterizing the monoid of isomorphism classes of �nitely generatedprojective right modules over a non-commutative semilocal ring, and (2) a characterization ofthe monoids +(N), where N is an Artinian right module over an arbitrary ring.Suppose we wish to determine how badly the Krull-Schmidt uniqueness theorem fails fordirect-sum decompositions of �nitely generated modules over a given ring. One approach|the one we will follow here|is to associate to a given �nitely generated module M themonoid +(M) consisting of isomorphism classes of modules that are direct summands ofdirect sums of �nitely many copies of M . (For example, M might be the direct sum ofa bunch of indecomposable modules demonstrating failure of the Krull-Schmidt theorem.)The structure of these monoids tells us exactly how badly the Krull-Schmidt theorem canfail. Suppose, for example that we determine that +(M) �= � := f(a; b; c) 2 N3 j a +4b = 5cg, with M corresponding to (1; 1; 1). The minimal elements of �, namely, (1; 1; 1),(0; 5; 4) and (5; 0; 1) correspond to the indecomposable modules in +(M). In particular,M isindecomposable. Moreover, writing aM for the direct sum of a copies ofM , we see that 2M ,3M and 4M all have unique representations as direct sums of indecomposables. However,5M = P �Q, where P and Q are the indecomposable modules corresponding to the othertwo minimal elements of �. In this way we can completely describe the decompositions ofdirect sums of copies of M .In x1 of this paper we review basic terminology concerning monoids and describe a naturalisomorphism between +(M) and a certain full submonoid �(M) of Nn (where n is the1991 Mathematics Subject Classi�cation. Primary 13C14, 13C20; Secondary 13B35, 13J15,.Key words and phrases. Krull-Schmidt theorem, divisor class group, semilocal ring, a�ne monoid.This research was partially supported by a grant from the National Science Foundation.Typeset by AMS-TEX1



2 ROGER WIEGANDnumber of distinct indecomposable factors of the completion of M). Also in x1, we developsome machinery to use in x2 and prove that �(M) is an expanded submonoid of Nn if M isa torsion-free module over a one-dimensional analytically unrami�ed local domain.The main results of this paper characterize the submonoids of Nn that arise in thisfashion. We give two separate constructions to realize these monoids: In x2 we show thatevery expanded submonoid of Nn can be realized by a torsion-free module over a suitableone-dimensional ring, and in x3 we treat the (more general) full submonoids. The �rstconstruction is straightforward: All we need is an irreducible curve singularity with lotsof analytic branches, each of which has high multiplicity. The second construction is lessexplicit: We start with a two-dimensional complete normal domain A with large divisorclass group and then employ a remarkable theorem of Heitmann [He] to get a local uniquefactorization domain whose completion is A. Both of these constructions depend on the factthat we know exactly which torsion-free, respectively, re
exive modules over the completionbR are extended from R-modules. In x4 we introduce a little non-commutativity and applyour results to give a new proof (and somewhat stronger statement) of a recent result ofFacchini and Herbera [FH]. Also in x4, we obtain a characterization of the monoids +(N),where N is an Artinian module over an arbitrary ring.Except in the last section x4, all rings are commutative and Noetherian.The one-dimensional case of this construction (which works only for expanded sub-monoids) was reported in [W2], though details of the construction were omitted. Thisconstruction is an outgrowth of an ad hoc construction reported in [W1]. In working outthe more general two-dimensional construction, I have discussed this work with many col-leagues, among them Dale Cutkosky, Frank DeMeyer and Ray Heitmann. I thank them fortheir input. I am grateful also to Winfried Bruns for an enlightening comment on a�nemonoids, to Alberto Facchini for an extremely careful reading of an earlier version of thismanuscript, and to Dolors Herbera for pointing out the application to Artinian modules atthe end of the paper. Finally, I thank Anna Guerrieri for her hospitality at Universit�a diL'Aquila, where part of this research was carried out.x1. The monoid associated to a moduleConventions and notation. Throughout this section (R;m) is a commutative, Noether-ian local ring with m-adic completion bR, and M is a non-zero �nitely generated R-modulewith completion cM = bR 
R M . We denote the isomorphism class of an R-module Nby [N ]. The direct sum of a copies of a module N is denoted by aN . The notationP j Q means that the module P is isomorphic to a direct summand of the module Q. Themonoid of non-negative integers is denoted by N, and, as usual, Z, Q, R and C denote thesets of integers, rationals, reals and complex numbers, respectively. We denote by +(M)the monoid f[N ] : N j tM for some t 2 Ng, where the monoid operation is given by[N1] + [N2] = [N1 �N2].Write cM = a1V1� � � � � anVn, where the Vi are pairwise non-isomorphic indecomposablebR-modules and the ai are positive integers. The positive integers n; ai and the modulesVi are determined up to isomorphism and reordering. We will keep this notation and theordering of the indecomposables Vi �xed for the rest of this section. Let �(M) denote the



DIRECT-SUM DECOMPOSITIONS 3submonoid of Nn consisting of those n-tuples � := (b1; : : : bn) such that b1V1�� � ��bnVn �= bNfor some �nitely generated R-module N . We recall the following de�nitions from [BH]:1.1. De�nition. Let � � Nn. Then � is an expanded submonoid of Nn provided � = L\Nnfor someQ-subspaceL of Qn. More generally, � is a full submonoid of Nn provided � = G\Nfor some subgroup G of the additive group Zn. Note that � is expanded if and only if it isof the form Ker(�) \Nn for some m�n matrix � with entries in Z(or Q). These monoidsare studied extensively in the �rst chapter of Stanley's book [S].Suppose now that [N ] 2 +(M). Since bN j tcM for some t 2 N, we can write bN �=b1V1 � � � � � bnVn with bi 2 N. Again, the n-tuple � := (b1; : : : ; bn) is uniquely determinedby the isomorphism class [N ]. We let � : +(M) ! �(M) be the map taking [N ] to then-tuple � determined in this way. We will show that � is a monoid isomorphism from +(M)onto �(M).It is well known that two �nitely generated R-modules with isomorphic completions arealready isomorphic over R. We need a re�nement of this fact, which follows easily from theresults in [G]. A direct proof, essentially the same as that of a special case in [RR], appearsin [W1]:1.2. Proposition. Let N1 and N2 be �nitely generated R-modules. If cN1 j cN2, thenN1 j N2. In particular, if cN1 �= cN2, then N1 �= N2. �1.3. Propostion.(1) The map � : +(M)! �(M) de�ned above is an isomorphism of monoids.(2) �(M) is a full submonoid of Nn.Proof. (1) The map � is clearly a homomorphism of monoids, and it is injective by the lastsentence of (1.2). To prove that � is surjective, let � = (b1; : : : ; bn) 2 �(M). There is a�nitely generated R-module N such that bN �= b1V1 � � � � � bnVn. Choosing t so large thatt� � �, we see that bN j tcM . Then [N ] 2 +(M) by (1.2), and �([N ]) = �. (2) Let G be thesubgroup of Zn generated by �(M). Given 
 2 G \Nn, write 
 = 
2� 
1, with 
i 2 �(M).Choose �nitely generated modules Ni such that �([Ni]) = 
i. Since 
2 � 
1, cN1 j cN2,whence N1 j N2 by (1.2). Writing N1 �Q �= N2, we see that 
 = �([Q]) 2 �(M). �1.4. Dimension one. For the remainder of this section we concentrate on the followingspecial case: R is a one-dimensional local ring whose completion bR is reduced, and M istorsion-free. We will show that in this case �(M) is an expanded submonoid of Nn. Themachinery developed here in order to prove this will be used also in the next section. Weassume throughout that R is not a discrete valuation ring. (Without this assumption, (2)of (1.5) below would be false.)Let eR denote the integral closure of R in its total quotient ring, and let c denote theconductor, that is, the largest ideal of eR that is contained in R. Since bR is reduced, eR is�nitely generated as an R-module, and we have a pullback diagram(1.4.1) R ����! eR??y ??yR=c ����! eR=c



4 ROGER WIEGANDThe bottom line of (1.4.1) is an Artinian pair, [CWW], that is, a module-�nite extensionA ! B of Artinian rings. (Our assumption that R is not a discrete valuation ring meansthat R=c is not the zero ring.) We denote the Artinian pair R=c! eR=c by Rart. A moduleover the Artinian pair A! B is a pair V !W , where W is a �nitely generated projectiveB-module and V is an A-submodule of W satisfying BV = W . Every �nitely generatedtorsion-free R-module N arises as a pullback:(1.4.2) N ����! eRN??y ??yN=cN ����! eRN=cN ;where eRN is the free eR-module ( bR 
R N)=torsion. ( eRN is free because eR is a semilocalDedekind domain.) The bottom line of (1.4.2) is an Rart-module; we denote it by Nart. Werecord the following facts (see [CWW, (1.6)]):1.5. Proposition. Let R be a one-dimensional local ring with reduced completion bR.(1) Given two �nitely generated torsion-free R-modules N1;N2, we have N1 �= N2 if andonly if N1art �= N2art.(2) Assume R is an integral domain. Given an Rart-module V ! W , there exists a�nitely generated torsion-free R-module N such that Nart �= (V !W ) if and only ifW is free as an eR=c-module. �1.6. Notation. Let p1; : : : ; ps be the minimal prime ideals of the completion bR, and let �ibe the �eld bRpi . If N is a �nitely generated, torsion-free bR-module, the rank rk(N) of N isthe s-tuple (dim�1 Np1 ; : : : ;dim�s Nps). We say N has constant rank r if rk(N) = (r; : : : ; r).Note that if (A! B) = bRart and (V !W ) = Nart, then N has constant rank r if and onlyif W is a free B-module of rank r.The following theorem (a very special case of [LO, (6.15)]) was shown to me by L. S.Levy:1.7. Proposition. Let R be a one-dimensional local ring whose completion bR is reduced.(1) If N is a �nitely generated torsion-free R-module, then bN is a torsion-free bR-module.(2) Assume R is an integral domain. Let N be a �nitely generated torsion-free bR-module.Then N �= bQ for some �nitely generated torsion-free R-module Q if and only if Nhas constant rank.Proof. (1) Since N is torsion-free, N can be embedded in a �nitely generated free R-moduleF . Then bN is embedded in the free bR-module bF and therefore is torsion-free.(2) We �rst show that the completion T of eR is the integral closure of bR. To see this, wenote that we can compute both completions (R ! bR and eR ! T ) with respect to powersof the conductor c. Since eR is a �nite birational extension of R, T is a �nite birationalextension of bR. Further, T is a direct product of �nitely many discrete valuation rings,being the completion of the semilocal Dedekind domain eR. Therefore T is integrally closedand is therefore the integral closure of bR.



DIRECT-SUM DECOMPOSITIONS 5Next note thatbc is the conductor of bR in its integral closure T . It follows that Rart = bRart,and that Qart = bQart for every �nitely generated torsion-freeR-module (since the completionof the pullback diagram (1.4.2) for Q is the pullback diagram for the bR-module bQ).Now let Q be any �nitely generated torsion-free R-module, and let (V ! W ) = Qart.Since R is a domain, W is free as an eR-module by (1.5). By the last sentence in (1.6), bQhas constant rank. This proves the \only if" part of (2).To prove the converse, let N be an bR-module of constant rank, and let (V !W ) = Nart.ThenW is a free R=c-module, so by (1.5) there is a �nitely generated torsion-free R-moduleQ such that Qart �= (V !W ). Then bQart �= (V !W ) = Nart. By (1) of (1.5), bQ �= N . �1.8. Corollary. Let R be a one-dimensional local domain with reduced completion, and letM be a �nitely generated torsion-free R-module. Then �(M) is an expanded submonoid ofNn.Proof. Write �(M) = G \ Nn, where G is the subgroup of Zn generated by �(M). LetL = QG � Qn. We have to show that L \ Nn = �(M). If 
 = (c1; : : : ; cn) 2 L \ Nn,then t
 2 G for some positive integer t. But then t
 2 G \ Nn = �(M). Now let N =c1V1 � � � � � cnVn (where the Vi are as in the second paragraph of this section). Sincet
 2 �(M), tN has constant rank by (2) of (1.7). Then N also has constant rank, and, by(2) of (1.7), 
 2 �(M). �x2. Realization of expanded submonoids of NnThe goal in this section is to prove the following companion to Corollary 1.8:2.1. Theorem. Let n be a positive integer, and let � be an expanded submonoid of Nn.Assume that � contains an element � = (a1; : : : ; an) in which each ai is positive. Then thereexist a one-dimensional local domain R with reduced completion and a �nitely generatedtorsion-free R-module M such that �(M) = � and the isomorphism � : +(M) ! �(M)takes [M ] to �.The proof depends on a technical lemma, which is based on a construction due to Drozdand Ro��ter [DR].2.2. Lemma. Let F be a �eld, and let D1; : : : ;Ds be �nite-dimensional F-algebras. As-sume that for each i � s there exist elements ai; bi 2 Di such that f1; ai; a2i ; big is linearlyindependent over F. Put D = D1� � � ��Ds. Let r1; : : : ; rs be non-negative integers, and letWi = riDi, the free Di-module of rank ri. Then there exists an indecomposable (F ! D)-module V !W , where W =W1 � � � � �Ws.Proof. We assume r1 � � � � � rs for convenience. Let L = r1F be the F-vector space ofr1� 1 column vectors. We regard L as a subspace of W by sending the column [c1; : : : ; cr1 ]tto the element of W whose ith coordinate is [c1; : : : ; cri ]t.Let a = (a1; : : : ; as), b = (b1; : : : ; bs); and let � be the nilpotent r1�r1 matrix with 1's onthe superdiagonal and 0's elsewhere. Let V be the F-subspace of W consisting of elementsof the form u+ av + b�v, where u and v range over L. Then V !W is a (F ! D)-module,and exactly as in the proof of [CCW, (2.6)] one checks that every D-endomorphism of Wcarrying V into V is actually in F[�]. Since F[�] is local, it follows that the (F ! D)-moduleV !W is indecomposable. �



6 ROGER WIEGANDWe will apply this lemma to the following speci�c ring:2.3. The ring. Let s be a positive integer, and let F be any �eld with at least s distinctelements t1; : : : ; ts. Let S be the complement of the union of the maximal ideals (X �ti)F[X]; i = 1; : : : ; s. We de�ne R = Rs by pullback diagram(2.3.1) R ����! S�1F[X]??y ??y�F ����! S�1F[X]=(X � t1)4 � : : : � (X � ts)4 ;where � is the natural map. Then R is a one-dimensional local domain with reducedcompletion, and (2.3.1) is the conductor square for R. We can rewrite the bottom line Rartas F ! D1 � � � � �Ds where Di = F[X ]=(X4). The conductor square for the completion is(2.3.1) bR ����! T1 � � � � � Ts??y ??yF ����! D1 � � � � �Ds ;where each Ti is isomorphic to F[[X]].2.4. Proposition. For any sequence of non-negative integers r1; : : : ; rs, the complete ringbR = bRs in (2.3) has a �nitely generated torsion-free module N with rk(N) = (r1; : : : ; rs).Proof. Let F = r1T1 � � � � � rsTs, a projective module over T := T1 � � � � � Ts. Let V !Wbe the bRart-module supplied by (2.2). Since F=cF �=W , there is a torsion-free bR-module N(unique up to isomorphism) such that Nart �= (V !W ). (See (3) of [CWW, (1.6)]. In fact,N is just the pullback of F and V over W .)Proof of Theorem 2.1. Write � = Nn \Ker(�), where � : Qn ! Qm is a linear transforma-tion. We regard � as an m� n matrix [qij ], and we can assume without loss of generalitythat the entries of � are in Z. Select a positive integer h such that qij + h � 0 for all i; j.Let R be the ring of (2.3), with s = m+ 1.For j = 1; : : : ; n, choose, using (2.4), an indecomposable, �nitely generated, torsion-freebR-module Nj such thatrk(Nj ) = (q1j + h; : : : ; qmj + h; h); j = 1; : : : ; n:Suppose now that � = (b1; : : : ; bn) 2 Nn. If N = b1N1 � � � � � bnNn thenrk(N) = ( nXj=1(q1j + h)bj ; : : : ; nXj=1(qmj + h)bj ; ( nXj=1 bj)h):Therefore, by (1.7), N is extended from an R-module if and only if Pnj=1(qij + h)bj =(Pnj=1 bj)h for 1 � i � m, that is, if and only if � 2 Nn \ Ker(�) = �.



DIRECT-SUM DECOMPOSITIONS 7Let M be the �nitely generated R-module (unique up to isomorphism) such that cM �=a1V1� � � �� anVn (where � = (a1; : : : ; an) 2 � is the given element with each ai > 0). Then�(M) = � and �([M ]) = a, as desired. �It is interesting to note that every full submonoid of Nn is isomorphic (as an abstractmonoid) to �(M) for some �nitely generated torsion-free moduleM over a one-dimensionallocal ring R. Recall [BH] that a positive normal monoid is a monoid � such that(1) � is �nitely generated.(2) � is isomorphic to a submonoid of Nn for some n, and(3) if n� 2 � for some positive integer n and some � 2 Z� (the group universallyassociated to �), then � 2 �.The following characterization of positive normal monoids is the subject of Exercise 6.4.16in [BH]:2.5. Proposition. These conditions on a monoid � are equivalent:(1) � is a positive normal monoid.(2) � is isomorphic to a full submonoid of Nm for some m.(3) � is isomorphic to an expanded submonoid of Nn for some n. �Obviously (3) ) (2) ) (1). The implication (2) implies (3) is due to Hochster and isthe crux of the proof. For a simple example illustrating the procedure, consider the full(but not expanded) submonoid of N2 consisting of all pairs (a; b) satisfying a � b (mod 3).This is isomorphic to the expanded submonoid of N3 consisting of all (a; b; c) satisfying theequation a + 2b = 3c.2.6. Corollary. The following conditions on a monoid � are equivalent:(1) � is a positive normal monoid.(2) � is isomorphic to +(M) for some �nitely generated module M over a local ring R.(3) � is isomorphic to +(M) for some �nitely generated torsion-free module over a one-dimensional local domain with reduced completion.Proof. Obviously (3) implies (2), and (2) implies (1) by (1.3) and (2.5). To prove that(1) implies (3), we may assume, by (2.5), that � = L \ Nn for some Q-subspace L of Qn.The problem is that L might not contain a strictly positive element. Among all elementsof �, choose an element � = (b1; : : : ; bn) with the greatest number of positive entries. Byrenumbering, we may assume that bi > 0 for i = 1; : : : ; t and bt+1 = � � � = bn = 0. Thenfor every element � = (a1; : : : ; an) 2 � we have at+1 = � � � = an = 0 (else � + � wouldhave more positive entries than b). Therefore the projection � : Qn � Qt (onto the �rstt coordinates) carries � isomorphically onto � := Nt \ �(L). Since � contains the strictlypositive element �(�), we can use (2.1) to get a suitable ring and a module M such that�(M) = �. Since +(M) �= �(M) and � �= �, we are done. �x3. Realization of full monoids of NnHere we prove an re�nement of (2.6), where we realize a given full submonoid of Nnexactly, rather than just up to isomorphism.



8 ROGER WIEGAND3.1. Main Theorem. Let � be a full submonoid of Nn containing an element � =(a1; : : : ; an) with each ai > 0. Then there exist a two-dimensional local unique factor-ization domain R and a �nitely generated re
exive R-module M such that �(M) = � and�([M ]) = �.Proof. Let G = Zn=Z�, and write G as a direct sum of cyclic groups: G �= C1 � � � � � Ct.Choose a positive integer d such that (d � 1)(d � 2) � t, and let V be a smooth planeprojective curve of degree d over C . Let A be the homogeneous coordinate ring of V forsome embedding of V in P2C . Our �rst task is to compute the divisor class group Cl(A).(Note that A is a two-dimensional normal domain by [H, Chap. II, Exer. 8.4 (b)].)By [H, Appendix B, x5], Pic0(V ) �= D := 2g(R=Z), where g = 12 (d�1)(d�2) is the genus ofV . Now Pic0(V ) is the kernel of the degree map Pic(V )�Z, so Cl(V ) = Pic(V ) �= D�Z�,where � is the class of a divisor of degree 1. There is a short exact sequence0!Z! Cl(V )! Cl(A)! 0;in which 1 2 Zmaps to the divisor class � = [H:V ], where H is a line in P2C . (See [H, Chap.II, Exer. 6.3]. Thus Cl(A) �= Cl(V )=Z� . Since � has degree d, � � d� 2 D. Since D is adivisible group there is an element � 2 D such that d� = ��d�. We de�ne a homomorphismCl(V )� D�Z=dZby x 7! (x; 0) if x 2 D and � 7! (��; �1). It is easy to see that the kernelof this map is Z� . This shows that Cl(A) �= D �Z=dZ.Let p be the irrelevant maximal ideal of A. By [H, Chap. II, Exer. 6.3 (d)], Cl(Ap) �=D �Z=dZ. Let B be the p-adic completion of A. Since Cl(Ap) ! Cl(B) is injective (byfaithfully 
at descent), Cl(B) contains a copy of D = (d � 1)(d � 2)R=Z, which in turncontains a copy of G. Therefore there is a homomorphism � : Zn ! Cl(B) such thatKer(�) =Z�.Now B is a complete local normal domain [ZS, Chap. VIII, x13]. By Heitmann's theorem[He], there is a local unique factorization domain R such that bR = B.Let fe1; : : : ; eng be the standard basis for Zn (row vectors), and choose, for each i, adivisorial ideal Ji of bR such that �(ei) = [Ji]. If (b1; : : : ; bn) 2 Nn, the divisor class of the bR-module b1J1� � � �� bnJn is b1[J1] + : : : bn[Jn] = �(b1; : : : ; bn). (See [B, Chap.VII, x4.7].) By[We, (1.5)] or [RWW, Prop. 3], the module b1J1� � � �� bnJn is extended from an R-moduleif and only if its divisor class is trivial, that is, if and only if (b1; : : : ; bn) 2 Z�\ Nn = �.We let M be the �nitely generated R-module such that cM �= a1J1 � � � � � anJn, and theproof is complete. 4. A non-commutative excursionSupposeE is a not necessarily commutative semilocal ring, that is, E=J is Artinian (whereJ is the Jacobson radical of E). Then E=J , being semisimple Artinian, has only �nitelymany non-isomorphic simple right modules, say X1; : : : ;Xn, and every �nitely generatedright E=J-module is uniquely a direct sum of copies of these. Given a �nitely generatedprojective right E-module P , write P=PJ �= a1X1 � � � � � anXn. The map � : [P ] 7!(a1; : : : ; an) is an isomorphism between the monoid PE of isomorphism classes of �nitelygenerated projective right E-modules (with � as the operation) and its image �(E), a fullsubmonoid of Nn. (This depends on the fact|a consequence of Nakayama's lemma|that



DIRECT-SUM DECOMPOSITIONS 9P j Q if and only if P=PJ j Q=QJ , for �nitely generated projective right E-modules P andQ. See [FS].)Since every simple right E=J-module is a direct summand of E=J , �(E) contains anelement (namely �([E])) all of whose coordinates are positive. Facchini and Herbera [FH]show conversely that every full submonoid � of Nn containing such an element actually arisesin this fashion. We will give a new proof of this fact using our Main Theorem 3.1. The newtwist is that the semilocal ring realizing a given monoid can be taken to be module-�niteover its center. In the following result, only the last statement is new; the rest is due toFacchini and Herbera [FH]:4.1. Theorem. Let � be a full submonoid of Nn, and assume � contains an element� = (a1; : : : ; an) with each ai > 0. Then there exists a semilocal ring E such that E=J hasexactly n simple modules, �(E) = �, and �([E]) = �. Moreover, E can be taken to be theendomorphism ring of a �nitely generated re
exive module over a commutative Noetherianlocal unique factorization domain of dimension 2.Proof. Choose, by (3.1), a two-dimensional local unique factorization domain R and a�nitely generated re
exive module M such that �(M) = � and �([M ]) = �. Let E bethe endomorphism ring of M . There is an isomorphism � : +(M) ! PE taking the iso-morphism class [N ] to [HomR(M;N)]. The inverse map takes [P ] to [P 
E M ]. (AndreasDress used this isomorphism in a 1969 paper [D].) Let bE = bR 
R E = EndbR(cM ). ThenbJ := bR
R J is the Jacobson radical of bE, and since E=J has �nite length as an R-modulethe natural map E=J ! bE= bJ is an isomorphism. Since bE is module-�nite over the Henselianlocal ring bR, the natural map P bE ! P bE= bJ is an isomorphism.Let V1; : : : ; Vn be the distinct indecomposable summands of cM (as in x1), and let Pi =Hom bR(cM;Vi). The Pi are the distinct indecomposables in P bE. If we let Qi 2 PE=J corre-spond to Pi via the natural isomorphisms PE=J �=�! P bE= bJ �= � P bE , we see that Q1; : : : ; Qnare the distinct simple modules in PE=J . The following commutative diagram completes theproof: +(M) �����!�= �(M)�??y�= ??y=PE �����! �(E)Artinian modules. Suppose now that M is an Artinian right R-module, where R is anarbitrary ring (not necessarily commutative). We can de�ne the monoid +(M) exactly as inthe beginning of this paper. A result of Camps and Dicks [CD] says that E := EndR(M) issemilocal. As in the proof of (4.1), +(M) �= PE, which is a positive normal monoid, by the�rst paragraph of this section. In fact, every positive normal monoid arises in this way. Thekey result is due to Facchini, Herbera, Levy and V�amos [FHLV, Corollary 1.3]: Given anymodule-�nite algebra A over a commutative semilocal ring R, there exists a cyclic Artinianmodule N over some ring with End(N) �= A. Letting A be the endomorphism ring of themodule M constructed in the proof of the Main Theorem (3.1), we obtain the followingextension of Corollary 2.6 and Theorem 4.1:



10 ROGER WIEGAND4.2. Corollary. The following conditions on a monoid � are equivalent:(1) � is a positive normal monoid.(2) � �= +(N) for some (cyclic) Artinian module N over some ring.(3) � �= PE for some semilocal ring E.(4) � �= +(M) for some �nitely generated module over a commutative Noetherian semilo-cal ring. � References[B] N. Bourbaki, Commutative Algebra, Springer Verlag, New York, 1983.[BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Math., vol. 39,Cambridge University Press, Cambridge, 1993.[CD] R. Camps and W. Dicks, On semilocal rings, Israel J. Math. 81 (1993), 203{211.[CWW] N. Cimen, R. Wiegand and S. Wiegand, One-dimensional rings of �nite representation type,Abelian Groups and Modules (A. Facchini and C. Menini, eds.), Kluwer, 1995, pp. 95{121.[D] A. Dress, On the decomposition of modules, Bull. Amer. Math. Soc. 75 (1969), 984{986.[DR] Ju. A. Drozd and A. V. Ro��ter, Commutative rings with a �nite number of indecomposable integralrepresentations, (Russian), Izv. Akad. Nauk. SSSR, Ser. Mat. 31 (1967), 783{798.[FH] A. Facchini and D. Herbera, K0 of a semilocal ring, J. Algebra (to appear).[FHLV] A. Facchini, D. Herbera, L. S. Levy and P. V�amos, Krull-Schmidt fails for Artinian modules, Proc.Amer. Math. Soc. 123 (1995), 3587{3600.[FS] K. R. Fuller and W. A. Shutters, Projective modules over non-commutative semilocal rings, TôhokuMath. J. 27 (1975), 303{311.[G] R. Guralnick, Lifting homomorphisms of modules, Illinois J. Math. 29 (1985), 153{156.[H] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.[He] R. Heitmann,Characterizations of completions of unique factoriztion domains, Trans. Amer.Math.Soc. 337 (1993), 379{387.[LO] L. S. Levy and C. J. Odenthal, Package deal theorems and splitting orders in dimension 1, Trans.Amer. Math. Soc. 348 (1996), 3457 { 3503.[RR] I. Reiner and K. W. Roggenkamp, Integral Representations, Lecture Notes in Mathematics, vol. 744,Springer-Verlag, Berlin, 1979.[RWW] C. Rotthaus, D. Weston and R. Wiegand, Indecomposable Gorenstein modules of odd rank, J.Algebra 214 (1999), 122{127.[S] R. Stanley, Combinatorics and Commutative Algebra, Birkh�auser, Boston, 1983.[We] D. Weston, On descent in dimension two and non-split Gorenstein modules, J. Algebra 118 (1988),263{275.[W1] R. Wiegand, Failure of Krull-Schmidt for direct sums of copies of a module, Advances in Com-mutative Ring Theory (D. Dobbs, M. Fontana and S.-E. Kabbaj, eds.), Marcel Dekker, 1999,pp. 541{547.[W2] , Singularities and direct-sum decompositions, preprint.[ZS] O. Zariski and P. Samuel, Commutative Algebra vol II, Van Nostrand, Princeton, NJ, 1960.Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0323E-mail address: rwiegand@math.unl.edu


