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ABSTRACT. Let (R,m) be a local ring (commutative and Noetherian). If R is complete (or,
more generally, Henselian), one has the Krull-Schmidt uniqueness theorem for direct sums of
indecomposable finitely generated R-modules. By passing to the m-adic completion E, we
can get a measure of how badly the Krull-Schmidt theorem can fail for a more general local
ring. We assign to each finitely generated R-module M a full submonoid A(M) of N”, where
n is the number of distinct indecomposable direct summands of R ®pr M. This monoid is
naturally isomorphic to the monoid +(M) of isomorphism classes of modules that are direct
summands of direct sums of finitely many copies of M. The main theorem of this paper states
that every full submonoid of N” arises in this fashion. Moreover, the local ring R realizing a
given full submonoid can always be taken to be a two-dimensional unique factorization domain.
The theorem has two non-commutative consequences: (1) a new proof of a recent theorem of
Facchini and Herbera characterizing the monoid of isomorphism classes of finitely generated
projective right modules over a non-commutative semilocal ring, and (2) a characterization of
the monoids +(/V), where N is an Artinian right module over an arbitrary ring.

Suppose we wish to determine how badly the Krull-Schmidt uniqueness theorem fails for
direct-sum decompositions of finitely generated modules over a given ring. One approach—
the one we will follow here—is to associate to a given finitely generated module M the
monoid +(M) consisting of isomorphism classes of modules that are direct summands of
direct sums of finitely many copies of M. (For example, M might be the direct sum of
a bunch of indecomposable modules demonstrating failure of the Krull-Schmidt theorem.)
The structure of these monoids tells us exactly how badly the Krull-Schmidt theorem can
fail. Suppose, for example that we determine that +(M) = A := {(a,b,c) € N* | a +
4b = 5e}, with M corresponding to (1,1,1). The minimal elements of A, namely, (1,1,1),
(0,5,4) and (5,0, 1) correspond to the indecomposable modules in +(M). In particular, M is
indecomposable. Moreover, writing aM for the direct sum of a copies of M, we see that 2M ,
3M and 4M all have unique representations as direct sums of indecomposables. However,
S5M = P & @, where P and @) are the indecomposable modules corresponding to the other
two minimal elements of A. In this way we can completely describe the decompositions of
direct sums of copies of M.

In §1 of this paper we review basic terminology concerning monoids and describe a natural
isomorphism between +(M) and a certain full submonoid A(M) of N” (where n is the
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number of distinct indecomposable factors of the completion of M). Also in §1, we develop
some machinery to use in §2 and prove that A(M) is an expanded submonoid of N if M is
a torsion-free module over a one-dimensional analytically unramified local domain.

The main results of this paper characterize the submonoids of N" that arise in this
fashion. We give two separate constructions to realize these monoids: In §2 we show that
every ezpanded submonoid of N" can be realized by a torsion-free module over a suitable
one-dimensional ring, and in §3 we treat the (more general) full submonoids. The first
construction is straightforward: All we need is an irreducible curve singularity with lots
of analytic branches, each of which has high multiplicity. The second construction is less
explicit: We start with a two-dimensional complete normal domain A with large divisor
class group and then employ a remarkable theorem of Heitmann [He| to get a local unique
factorization domain whose completion is A. Both of these constructions depend on the fact
that we know exactly which torsion-free, respectively, reflexive modules over the completion
R are extended from R-modules. In §4 we introduce a little non-commutativity and apply
our results to give a new proof (and somewhat stronger statement) of a recent result of
Facchini and Herbera [FH]. Also in §4, we obtain a characterization of the monoids +(N),
where N is an Artinian module over an arbitrary ring.

Except in the last section §4, all rings are commutative and Noetherian.

The one-dimensional case of this construction (which works only for expanded sub-
monoids) was reported in [W2], though details of the construction were omitted. This
construction is an outgrowth of an ad hoc construction reported in [W1]. In working out
the more general two-dimensional construction, I have discussed this work with many col-
leagues, among them Dale Cutkosky, Frank DeMeyer and Ray Heitmann. I thank them for
their input. I am grateful also to Winfried Bruns for an enlightening comment on affine
monoids, to Alberto Facchini for an extremely careful reading of an earlier version of this
manuscript, and to Dolors Herbera for pointing out the application to Artinian modules at
the end of the paper. Finally, I thank Anna Guerrieri for her hospitality at Universita di
L’Aquila, where part of this research was carried out.

§1. THE MONOID ASSOCIATED TO A MODULE

Conventions and notation. Throughout this section (R, m) is a commutative, Noether-
ian local ring with m-adic completion E, and M is a non-zero finitely generated R-module
with completion M=R @r M. We denote the isomorphism class of an R-module N
by [N]. The direct sum of a copies of a module N is denoted by aN. The notation
P | @ means that the module P is isomorphic to a direct summand of the module ). The
monoid of non-negative integers is denoted by N, and, as usual, Z, Q, R and C denote the
sets of integers, rationals, reals and complex numbers, respectively. We denote by +(M)
the monoid {[N] : N | tM for some t € N}, where the monoid operation is given by
[N1] 4 [N2] = [N1 @ Na].

Write M = a1 Vi@ -+ @ap,Vy, where the V; are pairwise non-isomorphic indecomposable
R-modules and the a; are positive integers. The positive integers n,a; and the modules
Vi are determined up to isomorphism and reordering. We will keep this notation and the
ordering of the indecomposables V; fixed for the rest of this section. Let A(M) denote the
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submonoid of N" consisting of those n-tuples 3 := (b1, ... b,) such that by Vi &- - - b, V,, = N
for some finitely generated R-module N. We recall the following definitions from [BH]:

1.1. Definition. Let A C N". Then A is an ezpanded submonoid of N provided A = LNN"
for some Q-subspace L of Q™. More generally, A is a full submonoid of N” provided A = GNN
for some subgroup G of the additive group Z". Note that A is expanded if and only if it is
of the form Ker(®) N N" for some m x n matrix ® with entries in Z (or Q). These monoids
are studied extensively in the first chapter of Stanley’s book [S].

Suppose now that [N] € +(M). Since N | tM for some t € N, we can write N =
byVi @ - @b, V, with b; € N. Again, the n-tuple § := (b1,...,b,) is uniquely determined
by the isomorphism class [N]. We let A\ : +(M) — A(M) be the map taking [N] to the
n-tuple 3 determined in this way. We will show that A is a monoid isomorphism from +(M)
onto A(M).

It is well known that two finitely generated R-modules with isomorphic completions are
already isomorphic over R. We need a refinement of this fact, which follows easily from the
results in [G]. A direct proof, essentially the same as that of a special case in [RR], appears

in [W1]:

1.2. Proposition. Let Ny and No be finitely generated R-modules. If ]/\7\1 | ]/\7\2, then
Ny | Ny. In particular, if Ny = Ny, then Ny = Ny. [

1.3. Propostion.

(1) The map X\ : +(M) — A(M) defined above is an isomorphism of monoids.
(2) A(M) s a full submonoid of N™.

Proof. (1) The map A is clearly a homomorphism of monoids, and it is injective by the last
sentence of (1.2). To prove that A is surjective, let 3 = (by,...,b,) € A(M). There is a
finitely generated R-module N such that N = biVi & - B b, V,. Choosing t so large that
ta > 3, we see that N | tM. Then [N] € +(M) by (1.2), and A([N]) = . (2) Let G be the
subgroup of Z" generated by A(M). Given v € GNN", write v = v3 — 1, with ~; € A(M).
Choose finitely generated modules N; such that A([N;]) = ~;. Since v > 71, ]/\7\1 | ]/\7\2,
whence Ny | N2 by (1.2). Writing N1 & Q = N3, we see that v = A\([Q]) € A(M). O

1.4. Dimension one. For the remainder of this section we concentrate on the following
special case: R is a one-dimensional local ring whose completion R is reduced, and M is
torsion-free. We will show that in this case A(M) is an expanded submonoid of N". The
machinery developed here in order to prove this will be used also in the next section. We
assume throughout that R is not a discrete valuation ring. (Without this assumption, (2)
of (1.5) below would be false.)

Let R denote the integral closure of R in its total quotient ring, and let ¢ denote the
conductor, that is, the largest ideal of R that is contained in R. Since R is reduced, R is
finitely generated as an R-module, and we have a pullback diagram

R —— R

(1.4.1) l l

R/c — RJc
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The bottom line of (1.4.1) is an Artinian pair, [CWW], that is, a module-finite extension
A — B of Artinian rings. (Our assumption that R is not a discrete valuation ring means

that R/c is not the zero ring.) We denote the Artinian pair R/c — R/¢ by Rare. A module
over the Artinian pair A — B is a pair V' — W, where W is a finitely generated projective
B-module and V is an A-submodule of W satisfying BV = W. Every finitely generated
torsion-free R-module N arises as a pullback:

N —— RN

(1.4.2) l l :

N/¢eN —— RN/cN

where RN is the free R-module (ﬁ @gr N)/torsion. (éN is free because R is a semilocal
Dedekind domain.) The bottom line of (1.4.2) is an R,,¢-module; we denote it by Ny, . We
record the following facts (see [CWW, (1.6)]):

1.5. Proposition. Let R be a one-dimensional local ring with reduced completion R.
(1) Guven two finitely generated torsion-free R-modules N1, No, we have Ny = Ny if and
only if Niare & Nagy-
(2) Assume R is an integral domain. Given an Ray-module V- — W, there exists a
finitely generated torsion-free R-module N such that Ny = (V. — W) if and only of
W is free as an R/c-module. O

1.6. Notation. Let py,...,ps be the minimal prime ideals of the completion E, and let &;
be the field Epi- If N is a finitely generated, torsion-free ﬁ—module, the rank rk(N) of N is
the s-tuple (dim,, Nyp,,...,dim,, Ny, ). We say N has constant rank r if tk(N) = (r,..., 7).
Note that if (A — B) = ﬁart and (V — W) = Nay, then N has constant rank r if and only
if W is a free B-module of rank r.

The following theorem (a very special case of [LO, (6.15)]) was shown to me by L. S.
Levy:

1.7. Proposition. Let R be a one-dimensional local ring whose completion R is reduced.

(1) If N is a finitely generated torsion-free R-module, then Nisa torsion-free R-module.
(2) Assume R is an integral domain. Let N be a finitely generated torsion-free R-module.

Then N = @ for some finitely generated torsion-free R-module Q) if and only if N
has constant rank.

Proof. (1 ) Since N is torsion-free, N can be embedded in a finitely generated free R-module
F. Then N is embedded in the free R-module F and therefore is torsion-free.

(2) We first show that the completion T of R is the mtegral closure of R. To see this, we
note that we can compute both completions (R — R and R — T) with respect to powers
of the conductor ¢. Since R is a finite birational extension of R, T is a finite birational
extension of R. Further, T is a direct product of finitely many discrete valuation rings,
being the completion of the semilocal Dedekind domain R. Therefore T is integrally closed
and is therefore the integral closure of R.
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Next note that ¢ is the conductor of R in its integral closure T'. It follows that R, = ﬁart,
and that Q. = @art for every finitely generated torsion-free R-module (since the completion
of the pullback diagram (1.4.2) for @ is the pullback diagram for the R-module @)

Now let @ be any finitely generated torsion-free R-module, and let (V. — W) = Qayt.
Since R is a domain, W is free as an R-module by (1.5). By the last sentence in (1.6), @
has constant rank. This proves the “only if” part of (2).

To prove the converse, let N be an R-module of constant rank, and let (V — W) = Ny
Then W is a free R/c-module, so by (1.5) there is a finitely generated torsion-free R-module
@ such that Q. = (V — W). Then @art =~ (V — W) = Na. By (1) of (1.5), @ ~N. O

1.8. Corollary. Let R be a one-dimensional local domain with reduced completion, and let
M be a finitely generated torsion-free R-module. Then A(M) is an expanded submonoid of
N™.

Proof. Write A(M) = G N N", where G is the subgroup of Z™ generated by A(M). Let
L = QG € Q. We have to show that LN N" = A(M). If v = (¢1,...,¢5) € LNN",
then tv € G for some positive integer t. But then tv € GNN" = A(M). Now let N =
aVi @ -+ @ ¢, V, (where the V; are as in the second paragraph of this section). Since
ty € A(M), tN has constant rank by (2) of (1.7). Then N also has constant rank, and, by
(2) of (1.7), v € A(M). O

2. REALIZATION OF EXPANDED SUBMONOIDS OF N”
The goal in this section is to prove the following companion to Corollary 1.8:

2.1. Theorem. Let n be a positive integer, and let A be an erpanded submonoid of N".
Assume that A contains an element a = (a1, ..., ayn) in which each a; is positive. Then there
exist a one-dimensional local domain R with reduced completion and a finitely generated
torsion-free. R-module M such that A(M) = A and the isomorphism A : +(M) — A(M)
takes [M] to a.

The proof depends on a technical lemma, which is based on a construction due to Drozd

and Roiter [DR].

2.2. Lemma. Let F be a field, and let Dy,..., Dy be finite-dimensional F-algebras. As-
sume that for each i < s there ewist elements a;,b; € D; such that {1,a;,a%,b;} is linearly
independent over F. Put D = Dy X ---x Dg,. Letry,...,rs be non-negative integers, and let
Wi = riD;, the free D;-module of rank r;. Then there exists an indecomposable (F — D)-
module V. — W, where W = Wy x --- x W,

Proof. We assume ry > --- > r, for convenience. Let L = r{F be the F-vector space of
r1 X 1 column vectors. We regard L as a subspace of W by sending the column [cy, ..., ¢ ]
to the element of W whose i*" coordinate is [c1, ..., ¢, ]t

Let a = (a1,...,as), b = (b1,...,bs); and let v be the nilpotent r; x rq matrix with 1’s on
the superdiagonal and 0’s elsewhere. Let V be the F-subspace of W consisting of elements
of the form u 4 av + bvv, where v and v range over L. Then V' — W is a (F — D)-module,
and exactly as in the proof of [CCW, (2.6)] one checks that every D-endomorphism of W
carrying V into V is actually in F[v]. Since F[v] is local, it follows that the (F — D)-module
V — W is indecomposable. O
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We will apply this lemma to the following specific ring:

2.3. The ring. Let s be a positive integer, and let F be any field with at least s distinct
elements t1,...,ts. Let S be the complement of the union of the maximal ideals (X —

t)F[X],: =1,...,s. We define R = R; by pullback diagram

R —— STIF[X]
(2.3.1) | |
F o STURX]/(X — )t (X = 1)t

where 7 is the natural map. Then R is a one-dimensional local domain with reduced
completion, and (2.3.1) is the conductor square for R. We can rewrite the bottom line R,
as F— Dy x --- x Dy where D; = F[X]/(X*). The conductor square for the completion is

— Ty x - x Ty

R
(2.3.1) l l
F

— Dy x---x Dy,

where each T; is isomorphic to F[[X]].

2.4. Proposition. For any sequence of non-negative integers ri,...,rs, the complete ring

R=R, in (2.3) has a finitely generated torsion-free module N with tk(N) = (r1,...,7s).

Proof. Let F =r{Ty x--- xrsTs, aprojective module over T :=T) X --- xTs. Let V- W
be the Rar-module supplied by (2.2). Since F//cF = W, there is a torsion-free R-module N
(unique up to isomorphism) such that Ny = (V — W). (See (3) of [CWW, (1.6)]. In fact,
N is just the pullback of F and V over W.)

Proof of Theorem 2.1. Write A = N* N Ker(®), where & : Q" — Q™ is a linear transforma-
tion. We regard ® as an m x n matrix [¢;;], and we can assume without loss of generality
that the entries of ® are in Z. Select a positive integer h such that ¢;; + h > 0 for all 7, 7.
Let R be the ring of (2.3), with s = m + 1.

For j = 1,...,n, choose, using (2.4), an indecomposable, finitely generated, torsion-free

ﬁ—module N; such that
tk(N;)=(q1j +h, ..o yqm; +h,h), j=1,....n.

Suppose now that 3 = (by,...,b,) e N*. I N =b;N1 & --- $ b, N, then

n n

rk(N) = () (g + Dby Y (g + )by, (O bi)h).
=1 =1 =1
Therefore, by (1.7), N is extended from an R-module if and only if Eyzl(qij + h)b; =
(320, bj)h for 1 <i < m, that is, if and only if 8 € N" N Ker(®) = A.

J=1
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Let M be the finitely generated R-module (unique up to isomorphism) such that M =
ayVi @S a,V, (where o = (ay,...,a,) € Ais the given element with each a; > 0). Then
A(M) = A and A([M]) = a, as desired. O

It is interesting to note that every full submonoid of N" is isomorphic (as an abstract
monoid) to A(M) for some finitely generated torsion-free module M over a one-dimensional
local ring R. Recall [BH] that a positive normal monoid is a monoid I' such that

(1) T is finitely generated.

(2) T is isomorphic to a submonoid of N” for some n, and

(3) if na € T for some positive integer n and some o € ZI' (the group universally
associated to I'), then a € T.

The following characterization of positive normal monoids is the subject of Exercise 6.4.16

in [BH]:

2.5. Proposition. These conditions on a monoid I' are equivalent:

(1) T is a positive normal monoid.
(2) T is isomorphic to a full submonoid of N™ for some m.
(3) T is isomorphic to an expanded submonoid of N* for some n. O

Obviously (3) = (2) = (1). The implication (2) implies (3) is due to Hochster and is
the crux of the proof. For a simple example illustrating the procedure, consider the full
(but not expanded) submonoid of N? consisting of all pairs (a,b) satisfying a = b (mod 3).
This is isomorphic to the expanded submonoid of N* consisting of all (a,b, ¢) satisfying the
equation a + 2b = 3c.

2.6. Corollary. The following conditions on a monoid I' are equivalent:

(1) T is a positive normal monoid.

(2) T 4s wsomorphic to +(M) for some finitely generated module M over a local ring R.

(3) T s isomorphic to +(M) for some finitely generated torsion-free module over a one-
dimensional local domain with reduced completion.

Proof. Obviously (3) implies (2), and (2) implies (1) by (1.3) and (2.5). To prove that
(1) implies (3), we may assume, by (2.5), that I' = L N N” for some Q-subspace L of Q™.
The problem is that L might not contain a strictly positive element. Among all elements

of T', choose an element 3 = (b1,...,b,) with the greatest number of positive entries. By
renumbering, we may assume that b; > 0 for : = 1,...,¢t and by = --- = b, = 0. Then
for every element o = (ay,...,a,) € I' we have a;41 = -+ = a,, = 0 (else o + [ would

have more positive entries than b). Therefore the projection 7 : Q" —» Q' (onto the first
t coordinates) carries I' isomorphically onto A := N N 7(L). Since A contains the strictly
positive element w(/3), we can use (2.1) to get a suitable ring and a module M such that

A(M) = A. Since +(M) = A(M) and A =T, we are done. [0
§3. REALIZATION OF FULL MONOIDS OF N"

Here we prove an refinement of (2.6), where we realize a given full submonoid of N”
exactly, rather than just up to isomorphism.
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3.1. Main Theorem. Let A be a full submonoid of N containing an element o =
(a1,...,an) with each a; > 0. Then there exist a two-dimensional local unique factor-
ization domain R and a finitely generated reflezive R-module M such that A(M) = A and
A[M]) = o

Proof. Let G = Z"/ZA, and write G as a direct sum of cyclic groups: G 2 Cy & --- @ C4.
Choose a positive integer d such that (d — 1)(d —2) > ¢, and let V be a smooth plane
projective curve of degree d over C. Let A be the homogeneous coordinate ring of V' for
some embedding of V in PZ. Our first task is to compute the divisor class group CI(A).
(Note that A is a two-dimensional normal domain by [H, Chap. II, Exer. 8.4 (b)].)

By [H, Appendix B, §5], Pic’(V) & D := 2¢(R/Z), where g = %(d—l)(d—Z) is the genus of
V. Now Pic?(V) is the kernel of the degree map Pic(V) — Z, so CI(V) = Pic(V) = D & Zo,

where o is the class of a divisor of degree 1. There is a short exact sequence
0—2Z—CLV)—ClA) =0,

in which 1 € Z maps to the divisor class 7 = [H.V], where H is a line in PZ. (See [H, Chap.
II, Exer. 6.3]. Thus Cl(A) =2 Cl(V)/Zr. Since 7 has degree d, 7 — do € D. Since D is a
divisible group there is an element § € D such that dd = 7—do. We define a homomorphism
C(V) » D®Z/dZ by x + (2,0) if € D and o + (—6,1). It is easy to see that the kernel
of this map is Z7. This shows that Cl(A) = D & Z/dZ.

Let p be the irrelevant maximal ideal of A. By [H, Chap. II, Exer. 6.3 (d)], Cl(4,) =
D ¢ Z/dZ. Let B be the p-adic completion of A. Since Cl(Ay) — Cl(B) is injective (by
faithfully flat descent), Cl(B) contains a copy of D = (d — 1)(d — 2)R/Z, which in turn
contains a copy of G. Therefore there is a homomorphism ¢ : Z" — Cl(B) such that
Ker(¢) = ZA.

Now B is a complete local normal domain [ZS, Chap. VIII, §13]. By Heitmann’s theorem
[He], there is a local unique factorization domain R such that R=B.

Let {e1,...,en} be the standard basis for Z" (row vectors), and choose, for each i, a
divisorial ideal .J; of R such that ole;) = [Ji]. It (by,...,by) € N the divisor class of the R-
module by J; @ -+ - B bp gy is by [J1] + ... bn[Jn] = ¢(b1,...,by). (See [B, Chap.VII, §4.7].) By
[We, (1.5)] or [RWW, Prop. 3], the module by .J; & - - - § by, J,, is extended from an R-module
if and only if its divisor class is trivial, that is, if and only if (by,...,b,) € ZANN" = A.
We let M be the finitely generated R-module such that M = arJy @ -+ @ anpJy, and the

proof is complete.

4. A NON-COMMUTATIVE EXCURSION

Suppose E is a not necessarily commutative semilocal ring, that is, F'/.J is Artinian (where
J is the Jacobson radical of E). Then E/J, being semisimple Artinian, has only finitely
many non-isomorphic simple right modules, say Xi,...,X,, and every finitely generated
right E/J-module is uniquely a direct sum of copies of these. Given a finitely generated
projective right E-module P, write P/PJ = a1 X; @ -+ @ a,X,. The map ¢ : [P] —
(a1,...,a,) is an isomorphism between the monoid Pg of isomorphism classes of finitely
generated projective right E-modules (with & as the operation) and its image =(F), a full
submonoid of N”. (This depends on the fact—a consequence of Nakayama’s lemma—that
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P | Qifand only if P/PJ | Q/QJ, for finitely generated projective right E-modules P and
Q. See [FS].)

Since every simple right E/J-module is a direct summand of E/.J, Z(F) contains an
element (namely £([E])) all of whose coordinates are positive. Facchini and Herbera [FH]
show conversely that every full submonoid = of N” containing such an element actually arises
in this fashion. We will give a new proof of this fact using our Main Theorem 3.1. The new
twist is that the semilocal ring realizing a given monoid can be taken to be module-finite
over its center. In the following result, only the last statement is new; the rest is due to

Facchini and Herbera [FH]:

4.1. Theorem. Let = be a full submonoid of N", and assume = contains an element
a=(ay,...,a,) with each a; > 0. Then there exists a semilocal ring E such that E/J has
ezactly n simple modules, =(E) = =, and £([E]) = a. Moreover, E can be taken to be the
endomorphism ring of a finitely generated reflexive module over a commutative Noetherian
local unique factorization domain of dimension 2.

Proof. Choose, by (3.1), a two-dimensional local unique factorization domain R and a
finitely generated reflexive module M such that A(M) = = and \([M]) = a. Let E be
the endomorphism ring of M. There is an isomorphism n : +(M) — Pg taking the iso-
morphism class [N] to [Hompg (M, N)]. The inverse map takes [P] to [P @g M]. (Andreas

Dress used this isomorphism in a 1969 paper [D].) Let E=RoprE = Endﬁ(l\/f\). Then
j:: ﬁ ®pg J 1s the Jacobson radical of E, and since E/J has finite length as an R-module
the natural map E/.J — E/.J is an isomorphism. Since E is module-finite over the Henselian

local ring E, the natural map Pz — PE/JA is an isomorphism.

Let Vi,...,V, be the distinct indecomposable summands of M (as in §1), and let P; =
Hom (M, V;). The P; are the distinct indecomposables in Pp. If we let Q; € Pg,y corre-

spond to P; via the natural isomorphisms Pr, s = PE/JA & Pg, we see that Q1,...,Qy
are the distinct simple modules in Pg, ;. The following commutative diagram completes the

proof:

>

+(M) —— A(M)

=

Pr

J/m 1%
/[_IJ
H

Artinian modules. Suppose now that M is an Artinian right R-module, where R is an
arbitrary ring (not necessarily commutative). We can define the monoid +(M) exactly as in
the beginning of this paper. A result of Camps and Dicks [CD] says that £ := Endg(M) is
semilocal. As in the proof of (4.1), +(M) = Pg, which is a positive normal monoid, by the
first paragraph of this section. In fact, every positive normal monoid arises in this way. The
key result is due to Facchini, Herbera, Levy and Vamos [FHLV, Corollary 1.3]: Given any
module-finite algebra A over a commutative semilocal ring R, there exists a cyclic Artinian
module N over some ring with End(N) = A. Letting A be the endomorphism ring of the
module M constructed in the proof of the Main Theorem (3.1), we obtain the following
extension of Corollary 2.6 and Theorem 4.1:
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4.2. Corollary. The following conditions on a monoid I' are equivalent:

(1)
(2)
(3)
(4)

I' is a positive normal monoid.

' 2 +(N) for some (cyclic) Artinian module N over some ring.
I' 2 Py for some semilocal ring E.

>+

cal ring. O

(M) for some finitely generated module over a commutative Noetherian semilo-
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