
Applying Rewriting Techniques to theVeri�cation of Erlang ProcessesThomas Arts1 and J�urgen Giesl21 Computer Science Laboratory, Ericsson Utvecklings AB, Box 1505, 125 25 �Alvsj�o,Sweden, E-mail: thomas@cslab.ericsson.se2 Dept. of Computer Science, Darmstadt University of Technology, Alexanderstr. 10,64283 Darmstadt, Germany, E-mail: giesl@informatik.tu-darmstadt.deAbstract. Erlang is a functional programming language developed byEricsson Telecom which is particularly well suited for implementing con-current processes. In this paper we show how methods from the areaof term rewriting are presently used at Ericsson. To verify properties ofprocesses, such a property is transformed into a termination problem ofa conditional term rewriting system (CTRS). Subsequently, this termi-nation proof can be performed automatically using dependency pairs.The paper illustrates how the dependency pair technique can be appliedfor termination proofs of conditional TRSs. Secondly, we present twore�nements of this technique, viz. narrowing and rewriting dependencypairs. These re�nements are not only of use in the industrial applicationsketched in this paper, but they are generally applicable to arbitrary(C)TRSs. Thus, in this way dependency pairs can be used to prove ter-mination of even more (C)TRSs automatically.Keywords: program veri�cation, rewriting, termination, automated deduction1 IntroductionIn a patent application [HN99], Ericsson developed a new protocol for distributedtelecommunication processes. This paper originates from an attempt to verifythis protocol's implementation written in Erlang. To save resources and to in-crease reliability, the aim was to perform as much as possible of this veri�cationautomatically. Model checking techniques were not applicable, since the propertyto be proved requires the consideration of the in�nite state space of the process. Auser guided approach based on theorem proving was successful, but very labourintensive [AD99]. We describe one of the properties which had to be veri�ed inSect. 2 and show that it can be represented as a non-trivial termination problemof a CTRS. But standard techniques (see e.g. [Der87,Ste95,DH95]) and even re-cent advances like the dependency pair technique [AG97a,AG97b,AG98,AG99]could not perform the required termination proof automatically.In Sect. 3 we show that termination problems of CTRSs can be reduced totermination problems of unconditional TRSs. After recapitulating the basic no-tions of dependency pairs in Sect. 4, we present two important extensions, viz.narrowing (Sect. 5) and rewriting dependency pairs (Sect. 6) which are partic-ularly useful in the context of CTRSs. With these re�nements, the dependencypair approach could solve the process veri�cation problem automatically.

2 A Process Veri�cation ProblemWe have to prove properties of a process in a network. The process receivesmessages which consist of a list of data items and an integer M. For every itemin the list, the process computes a new list of data items. For example, the dataitems could be telephone numbers and the process could generate a list of calls tothat number on a certain date. The resulting list may have arbitrary length, in-cluding zero. The integer M in the message indicates how many items of the newlycomputed list should be sent to the next process. The restriction on the numberof items that may be sent out is imposed for practical optimization reasons.Of course, the process may have computed more than M new items and in thatcase, it stores the remaining answers in an accumulator (implemented by an extraargument Store of the process). However, whenever it has sent the �rst M items tothe next process, our process may receive a new message. To respond to the newmessage, the process �rst checks whether its store already contains at least Mitems. In this case, it sends the �rst M items from its store and depending on theincoming message, probably some new items are computed afterwards. Other-wise, if the store contains fewer than M items, then the next process has to waituntil the new items are computed. After this computation, the �rst M items fromthe newly obtained item list and the store are sent on to the next process. Again,those items that our process could not send out are stored in its accumulator.Finally, in order to empty the store, the empty list is sent to our processrepeatedly. In the end, so is the claim, this process will send the empty list aswell. This article describes how we are able to formally and automatically verifythis claim. The Erlang code is given below (because of space limitations the codefor obvious library functions like append and leq is not presented).process(NextPid,Store) ->receive fItems,Mg ->case leq(M,length(Store)) oftrue -> fToSend,ToStoreg = split(M,Store),NextPid!fToSend,Mg,process(NextPid,append(map f(self(),Items),ToStore));false ->fToSend,ToStoreg = split(M,append(map f(self(),Items),Store)),NextPid!fToSend,Mg,process(NextPid,ToStore)endend.map f(Pid,nil) -> nil;map f(Pid,cons(H,T)) -> append(f(Pid,H),map f(Pid,T)).For a list L, split(M,L) returns a pair of lists fL1,L2g where L1 contains the�rst M elements (or L if its length is shorter than M) and L2 contains the rest of L.The command `!' denotes the sending of data and NextPid!fToSend,Mg standsfor sending the items ToSend and the integer M to the process with the identi�erNextPid. A process can obtain its own identi�er by calling the function self().For every item in the list Items, the function map f(Pid,Items) computes new

data items by means of the function f(Pid,Item). So the actual computationthat f performs depends on the process identi�er Pid. Hence, to compute newdata items for the incoming Items, our process has to pass its own identi�er tothe function map f, i.e., it calls map f(self(),Items).Note that this process itself is not a terminating function: in fact, it has beendesigned to be non-terminating. Our aim is not to prove its termination, but toverify a certain property, which can be expressed in terms of termination. Aspart of the correctness proof of the software, we have to prove that if the processcontinuously receives the message fnil,Mg for any integer M, then eventuallythe process will send the message fnil,Mg as well. This property must holdindependent of the value of the store and of the way in which new data itemsare generated from given ones. Therefore, f has been left unspeci�ed, i.e., f maybe any terminating function which returns a list of arbitrary length.The framework of term rewriting [DJ90,BN98] is very useful for this veri�ca-tion. We prove the desired property by constructing a CTRS containing a binaryfunction process whose arguments represent the stored data items Store and theinteger M sent in the messages. In this example, we may abstract from the processcommunication. Thus, the Erlang function self() becomes a constant and wedrop the send command (!) and the argument NextPid in the CTRS. Since weassume that the process constantly receives the message fnil,Mg, we hard-codeit into the CTRS. Thus, the variable Items is replaced by nil. As we still wantto reason about the variable M, we added it to the arguments of the process. Tomodel the function split (which returns a pair of lists) in the CTRS, we useseparate functions fstsplit and sndsplit for the two components of split's result.Now the idea is to force the function process to terminate if ToSend is the emptylist nil. So we only continue the computation if application of the function emptyto the result of fstsplit yields false. Thus, if all evaluations w.r.t. this CTRSterminate, then the original process eventually outputs the demanded value.leq(m; length(store)) !� true; empty(fstsplit(m; store))!� false jprocess(store;m)! process(app(map f(self; nil); sndsplit(m; store));m) (1)leq(m; length(store))!� false; empty(fstsplit(m; app(map f(self; nil); store)))!� false jprocess(store;m)! process(sndsplit(m; app(map f(self; nil); store));m) (2)The auxiliary Erlang functions as well as the functions for empty, fstsplit, andsndsplit are straightforwardly expressed by unconditional rewrite rules.length(nil)! 0length(cons(h; t))! s(length(t))fstsplit(0; x)! nilfstsplit(s(n); nil)! nilfstsplit(s(n); cons(h; t))! cons(h; fstsplit(n; t))app(nil; x)! xapp(cons(h; t); x)! cons(h; app(t; x))map f(pid; nil)! nilmap f(pid; cons(h; t))! app(f(pid; h);map f(pid; t))
sndsplit(0; x)! xsndsplit(s(n); nil)! nilsndsplit(s(n); cons(h; t))! sndsplit(n; t)empty(nil)! trueempty(cons(h; t))! falseleq(0;m)! trueleq(s(n); 0)! falseleq(s(n); s(m))! leq(n;m)

The rules for the Erlang function f are not speci�ed, since we have to verifythe desired property for any terminating function f. However, as Erlang hasan eager (call-by-value) evaluation strategy, if a terminating Erlang functionf is straightforwardly transformed into a (C)TRS (such as the above libraryfunctions), then any evaluation w.r.t. these rules is �nite. Now to prove thedesired property of the Erlang process, we have to show that the whole CTRSwith all its extra rules for the auxiliary functions only permits �nite evaluations.The construction of the above CTRS is rather straightforward, but it pre-supposes an understanding of the program and the veri�cation problem andtherefore it can hardly be mechanized. But after obtaining the CTRS, the proofthat any evaluation w.r.t. this CTRS is �nite should be done automatically.In this paper we describe an extension of the dependency pair techniquewhich can perform such automatic proofs. Moreover, this extension is of generaluse for termination proofs of TRSs and CTRSs. Hence, our results signi�cantlyincrease the class of systems where termination can be shown mechanically.3 Termination of Conditional Term Rewriting SystemsA CTRS is a TRS where conditions s1 = t1; : : : ; sn = tn may be added to rewriterules l ! r. In this paper, we restrict ourselves to CTRSs where all variablesin the conditions si; ti also occur in l. Depending on the interpretation of theequality sign in the conditions, di�erent rewrite relations can be associated witha CTRS, cf. e.g. [Kap84,BK86,DOS88,BG89,DO90,Mid93,Gra94,SMI95,Gra96a,Gra96b]. In our veri�cation example, we transformed the problem into an ori-ented CTRS [SMI95], where the equality signs in conditions of rewrite rules areinterpreted as reachability (!�). Thus, we denote rewrite rules bys1 !� t1; : : : ; sn !� tn j l! r: (3)In fact, we even have a normal CTRS, because all ti are ground normal formsw.r.t. the TRS which results from dropping all conditions.A reduction of C[l�] to C[r�] with rule (3) is only possible if si� reduces toti� for all 1 � i � n. Formally, the rewrite relation !R of a CTRS R can bede�ned as !R= Sj�0 !Rj , where R0 = ; and Rj+1 = fl� ! r� j si� !�Rj ti�for all 1 � i � n and some rule (3) in Rg, cf. e.g. [Mid93,Gra96b].A CTRS R is terminating i� !R is well founded. But termination is notenough to ensure that every evaluation with a CTRS is �nite. For example,assume that evaluation of the condition leq(m; length(store)) in our CTRS wouldrequire the reduction of process(store;m). Then evaluation of process(store;m)would yield an in�nite computation. Nevertheless, process(store;m) could notbe rewritten further and thus, the CTRS would be terminating. But in this case,the desired property would not hold for the original Erlang process, because thiswould correspond to a deadlock situation where no messages are sent out at all.For that reason, instead of termination one is often much more interested indecreasing CTRSs [DOS88]. In this paper, we use a slightly modi�ed notion of

decreasingness, because in our evaluation strategy conditions are checked fromleft to right, cf. [WG94]. Thus, the i-th condition si !� ti is only checked if allprevious conditions sj !� tj for 1 � j < i hold.De�nition 1 (Left-Right Decreasing). A CTRS R is left-right decreasingif there exists a well-founded relation > containing the rewrite relation !R andthe subterm relation � such that l� > si� holds for all rules like (3), all i 2f1; : : : ; ng, and all substitutions � where sj� !�R tj� for all j 2 f1; : : : ; i� 1g.This de�nition of left-right decreasingness exactly captures the �niteness ofrecursive evaluation of terms. (Obviously, decreasingness implies left-right de-creasingness, but not vice versa.) Hence, now our aim is to prove that the CTRScorresponding to the Erlang process is left-right decreasing.A standard approach for proving termination of a CTRS R is to verify ter-mination of the TRS R0 which results from dropping all conditions (and fordecreasingness one has to impose some additional demands). But this approachfails for CTRSs where the conditions are necessary to ensure termination. Thisalso happens in our example, because without the conditions empty(: : :)!� falsethe CTRS is no longer terminating (and thus, not left-right decreasing either).A solution for this problem is to transform CTRSs into unconditional TRSs,cf. [DP87,GM87,Mar96]. For unconditional rules, let tr(l ! r) = fl ! rg. If �is a conditional rule, i.e., � = `s1 !� t1; : : : ; sn !� tn j l! r', we de�ne tr(�) =fl ! if1;�(x; s1) g [fifi;�(x; ti)! ifi+1;�(x; si+1) j 1 � i < ng [fifn;�(x; tn)! rg;where x is the tuple of all variables in l and the if's are new function symbols.To ease readability we often just write ifn for some n 2 IN where ifn is a functionsymbol which has not been used before.Let Rtr = S�2R tr(�). For CTRSs without extra variables, Rtr is indeed an(unconditional) TRS. (An extension to deterministic CTRSs [BG89] with extravariables is also possible.) The transformation of Rule (1) results inprocess(store;m)! if1(store;m; leq(m; length(store))) (4)if1(store;m; true)! if2(store;m; empty(fstsplit(m; store))) (5)if2(store;m; false)! process(app(map f(self; nil); sndsplit(m; store));m): (6)Now we aim to prove termination of Rtr instead of R's left-right decreasingness.In [GM87], this transformation is restricted to a limited class of convergentCTRSs. However, in the following we show that for our purpose this restrictionis not necessary. In other words, termination of Rtr indeed implies left-rightdecreasingness (and thus also termination) of R. Thus, this transformation is agenerally applicable technique to reduce the termination problem of CTRSs to atermination problem of unconditional TRSs. (A similar approach was presentedin [Mar96] for decreasingness proofs (instead of left-right decreasingness) byusing a transformation where all conditions of a rule have to be checked inparallel.) We �rst prove that any reduction with R can be simulated by Rtr.Lemma 1. Let q; q0 be terms without if's. If q !+R q0, then q !+Rtr q0.

Proof. There must be a j 2 IN such that q !+Rj q0 (j is the depth of thereduction). We prove the theorem by induction on the depth and the length ofthe reduction q !+R q0 (i.e., we use a lexicographic induction relation).The reduction has the form q !R p!�R q0 and by the induction hypothesiswe know p!�Rtr q0. Thus, it su�ces to prove q !+Rtr p.If the reduction q !R p is done with an unconditional rule of R, then theconjecture is trivial. Otherwise, we must have q = C[l�], p = C[r�] for somecontext C and some rule like (3). As the depth of the reductions si� !�R ti� isless than the depth of the reduction q !+R q0, by the induction hypothesis wehave si� !�Rtr ti�. This implies q !+Rtr p. utNow the desired result is a direct consequence of Lemma 1.Corollary 1 (Left-Right Decreasing of R by Termination of Rtr). If Rtris terminating, then R is left-right decreasing (and thus, it is also terminating).Proof. If !Rtr is well founded, then !Rtr [� and hence, the transitive closure(!Rtr [�)+ are well founded, too. By Lemma 1, this relation satis�es all condi-tions imposed on the relation > in Def. 1. Hence, R is left-right decreasing. utIn our example, the conditional rule (2) is transformed into three additionalunconditional rules. But apart from the if-root symbol of the right-hand side, the�rst of these rules is identical to (4). Thus, we obtain two overlapping rules inthe transformed TRS which correspond to the overlapping conditional rules (1)and (2). However, in the CTRS this critical pair is infeasible [DOS88], i.e., theconditions of both rules exclude each other. Thus, our transformation of CTRSsinto TRSs sometimes introduces unnecessary rules and overlap.Therefore, whenever we construct a rule of the form q ! ifk(t) and therealready exists a rule q ! ifn(t), then we identify ifk and ifn. This does not a�ectthe soundness of our approach, because termination of a TRS where all occur-rences of a symbol g are substituted by a symbol f with the same arity alwaysimplies termination of the original TRS.1 Thus, we obtain the additional rules:if1(store;m; false)! if3(store;m; empty(fstsplit(m; app(map f(self; nil); store)))) (7)if3(store;m; false)! process(sndsplit(m; app(map f(self; nil); store));m) (8)If termination of a CTRS depends on its conditions, then in general termi-nation of the transformed TRS can only be shown if one examines which termsmay follow each other in a reduction. However, in the classical approaches basedon simpli�cation orderings (cf. e.g. [Der87,Ste95]), such considerations do nottake place. Hence, they fail in proving the termination of (4)-(8). For this rea-son, such transformations into unconditional TRSs have rarely been applied for1 This possibility to eliminate unnecessary overlap is an advantage of our transfor-mation compared to the one of [Mar96], where the transformed unconditional TRSsremain overlapping. In practice, proving termination of non-overlapping TRSs issigni�cantly easier, since one may use techniques speci�cally tailored to innermosttermination proofs, see below.

termination (or decreasingness) proofs of CTRSs. However, we will demonstratethat with the dependency pair approach this transformation is very useful.To verify our original goal, we now have to prove termination of the trans-formed TRS which consists of (4)-(8), the rules for all auxiliary (library) func-tions from Sect. 2, and the (unknown) rules for the unspeci�ed function f. Notethat if an Erlang function is straightforwardly transformed into a TRS, then thisTRS is non-overlapping. Thus, we assume that all possible rules for the unspec-i�ed function f are non-overlapping as well. Then it is su�cient just to proveinnermost termination of the resulting TRS, cf. e.g. [Gra95]. In order to applyveri�cation on a large scale, the aim is to perform such proofs automatically.Extending the dependency pair technique makes this possible.4 Dependency PairsDependency pairs allow the use of existing techniques like simpli�cation order-ings for automated termination and innermost termination proofs where theywere not applicable before. In this section we briey recapitulate the basic con-cepts of this approach and we present the theorems that we need for the rest ofthe paper. For further details and explanations see [AG97b,AG98,AG99].In contrast to the standard approaches for termination proofs, which compareleft and right-hand sides of rules, we only examine those subterms that areresponsible for starting new reductions. For that purpose we concentrate onthe subterms in the right-hand sides of rules that have a de�ned2 root symbol,because these are the only terms a rewrite rule can ever be applied to.More precisely, for every rule f(s1; : : : ; sn)! C[g(t1; : : : ; tm)] (where f and gare de�ned symbols), we compare the argument tuples s1; : : : ; sn and t1; : : : ; tm.To avoid the handling of tuples, for every de�ned symbol f we introduce afresh tuple symbol F . To ease readability, we assume that the original signatureconsists of lower case function symbols only, whereas the tuple symbols aredenoted by the corresponding upper case symbols. Now instead of the tupless1; : : : ; sn and t1; : : : ; tm we compare the terms F (s1; : : : ; sn) and G(t1; : : : ; tm).De�nition 2 (Dependency Pair). If f(s1; : : : ; sn) ! C[g(t1; : : : ; tm)] 2 Rand g is de�ned, then hF (s1; : : : ; sn); G(t1; : : : ; tm)i is a dependency pair of R.For the rules (4)-(8), (besides others) we obtain the following dependency pairs.hPROCESS(store;m); IF1(store;m; leq(m; length(store)))i (9)hIF1(store;m; true); IF2(store;m; empty(fstsplit(m; store)))i (10)hIF2(store;m; false);PROCESS(app(map f(self; nil); sndsplit(m; store));m)i (11)hIF1(store;m; false); IF3(store;m; empty(fstsplit(m; app(map f(self; nil); store))))i (12)hIF3(store;m; false);PROCESS(sndsplit(m; app(map f(self; nil); store));m)i (13)To trace newly introduced redexes in an innermost reduction, we considerspecial sequences of dependency pairs, so-called innermost chains.2 Root symbols of left-hand sides are de�ned and all other functions are constructors.

De�nition 3 (Innermost R-chains). Let R be a TRS. A sequence of depen-dency pairs hs1; t1i hs2; t2i : : : is called an innermost R-chain if there exists asubstitution �, such that all sj� are in normal form and tj� i!�R sj+1� holdsfor every two consecutive pairs hsj ; tji and hsj+1; tj+1i in the sequence.We always assume that di�erent (occurrences of) dependency pairs havedisjoint variables and we always regard substitutions whose domains may bein�nite. In [AG97b] we showed that the absence of in�nite innermost chains isa (su�cient and necessary) criterion for innermost termination. To improve thiscriterion we introduced the following graph which contains arcs between all thosedependency pairs which may follow each other in innermost chains.De�nition 4 (Estimated Innermost Dependency Graph). Let cap(t) re-sult from t by replacing all subterms with de�ned root symbols by di�erent freshvariables. The estimated innermost dependency graph is the directed graph whosenodes are the dependency pairs and there is an arc from hs; ti to hv; wi i� cap(t)and v are uni�able by a mgu � where s� and v� are normal forms. A non-emptyset P of dependency pairs is called a cycle i� for all hs; ti; hv; wi 2 P, there is apath from hs; ti to hv; wi in this graph, which only traverses pairs from P.In our example, (besides others) there are arcs from (9) to (10) and (12),from (10) to (11), from (12) to (13), and from both (11) and (13) to (9).Thus, the dependency pairs (9)-(13) form the cycles P1 = f(9); (10); (11)g,P2 = f(9); (12); (13)g, and P3 = f(9); (10); (11); (12); (13)g. However, (9)-(13)are not on a cycle with any other dependency pair (e.g., dependency pairs fromthe rules of the auxiliary library functions or the unspeci�ed function f, since weassume that f does not call process). This leads to the following re�ned criterion.Theorem 1 (Innermost Termination Criterion). A �nite TRS R is in-nermost terminating i� for each cycle P in the estimated innermost dependencygraph there exists no in�nite innermost R-chain of dependency pairs from P.Note that in our de�nition, a cycle is a set of dependency pairs. Thus, fora �nite TRS there only exist �nitely many cycles P . The automation of thetechnique is based on the generation of inequalities. For every cycle P we searchfor a well-founded quasi-ordering �P satisfying s �P t for all dependency pairshs; ti in P . Moreover, for at least one hs; ti in P we demand s >P t. In addition,to ensure t� �P v� whenever t� reduces to v� (for consecutive pairs hs; ti andhv; wi), we have to demand l �P r for all those rules l ! r of the TRS thatmay be used in this reduction. As we restrict ourselves to normal substitutions�, not all rules are usable in a reduction of t�. In general, if t contains a de�nedsymbol f , then all f -rules are usable and moreover, all rules that are usable forright-hand sides of f -rules are also usable for t. Now we obtain the followingtheorem for automated3 innermost termination proofs.Theorem 2 (Innermost Termination Proofs). A �nite TRS is innermostterminating if for each cycle P there is a well-founded weakly monotonic quasi-ordering �P where both �P and >P are closed under substitution, such that3 Additional re�nements for the automation can be found in [AG97b,AG99].

� l �P r for all rules l! r that are usable for some t with hs; ti 2 P,� s �P t for all dependency pairs hs; ti from P, and� s >P t for at least one dependency pair hs; ti from P.Note that for Thm. 1 and 2 it is crucial to consider all cycles P , not just theminimal ones (which contain no other cycles as proper subsets).In Sect. 2 we presented the rules for the auxiliary functions in our example.Proving absence of in�nite innermost chains for the cycles of their dependencypairs is very straightforward using Thm. 2. (So all library functions of our TRSare innermost terminating.) Moreover, as we assumed f to be a terminatingfunction, its cycles do not lead to in�nite innermost chains either.Recall that (9)-(13) are not on cycles together with the remaining depen-dency pairs. Thus, what is left for verifying the desired property is provingabsence of in�nite innermost chains for the cycles P1;P2;P3, where all rules ofthe whole TRS are possible candidates for being usable rules (also the rules forthe unspeci�ed function f).Thm. 2 demands s �P t resp. s >P t for dependency pairs hs; ti on cy-cles. However for (9)-(13), these inequalities are not satis�ed by any quasi-simpli�cation ordering.4 Thus, the automated proof fails here. Moreover, it isunclear which inequalities we have to add for the usable rules, since the rules forf are not given. Therefore, we have to extend the dependency pair technique.5 Narrowing Dependency PairsTo prove the absence of in�nite innermost chains, for a dependency pair hv; wi itwould be su�cient to demand v� �P w� resp. v� >P w� just for those instanti-ations � where an instantiated right component t� of a previous dependency pairhs; ti reduces to v�. For example, (11) only has to be regarded for instantiations �where the instantiated right component IF2(store;m; empty(fstsplit(m; store)))�of (10) reduces to the instantiated left component IF2(store;m; false)� of (11).In fact, this can only happen if store is not empty, i.e., if store reduces to theform cons(h; t). However, this observation has not been used in the inequalitiesof Thm. 2 and hence, we could not �nd an ordering for them. Thus, the idea isto perform the computation of empty on the level of the dependency pair. Forthat purpose the well-known concept of narrowing is extended to pairs of terms.De�nition 5 (Narrowing Pairs). If a term t narrows to a term t0 via thesubstitution �, then the pair of terms hs; ti narrows to the pair hs�; t0i.For example, the narrowings of the dependency pair (10) arehIF1(x; 0; true); IF2(x; 0; empty(nil))i (10a)hIF1(nil; s(n); true); IF2(nil; s(n); empty(nil))i (10b)hIF1(cons(h; t); s(n); true); IF2(cons(h; t); s(n); empty(cons(h; fstsplit(n; t))))i: (10c)4 Essentially, the reason is that the left-hand side of dependency pair (9) is embeddedin the right-hand sides of the pairs (11) and (13).

Thus, if a dependency pair hs; ti is followed by some dependency pairs hv; wiin an innermost chain and if t is not already uni�able with v (i.e., at least onerule is needed to reduce t� to v�), then in order to `approximate' the possiblereductions of t� we may replace hs; ti by all its narrowings. Hence, we can replacethe dependency pair (10) by the new pairs (10a)-(10c).This enables us to extract necessary information from the last arguments ofif's, i.e., from the former conditions of the CTRS. Thus, the narrowing re�nementis the main reason why the transformation of CTRSs into TRSs is useful whenanalyzing the termination behaviour with dependency pairs. The number ofnarrowings for a pair is �nite (up to variable renaming) and it can easily becomputed automatically. The soundness of this technique is proved in [AG99].Theorem 3 (Narrowing Re�nement). Let P be a set of pairs of terms andlet hs; ti 2 P such that Var(t) � Var(s) and such that for all (renamings of)hv; wi 2 P, the terms t and v are not uni�able. Let P 0 result from P by replacinghs; ti by all its narrowings. If there exists no in�nite innermost chain of pairsfrom P 0, then there exists no in�nite innermost chain of pairs from P either.So we may always replace a dependency pair by all its narrowings. However,while this re�nement is sound, in general it destroys the necessity of our in-nermost termination criterion in Thm. 1. For example, the TRS with the rulesf(s(x)) ! f(g(h(x))), g(h(x)) ! g(x), g(0) ! s(0), h(0)! 1 is innermost termi-nating. But if the dependency pair hF(s(x));F(g(h(x)))i is replaced by its nar-rowings hF(s(0));F(g(1))i and hF(s(x));F(g(x))i, then hF(s(x));F(g(x))i forms anin�nite innermost chain (using the instantiation fx=0g).Nevertheless, in the application domain of process veri�cation, we can re-strict ourselves to non-overlapping TRSs. The following theorem shows that forthese TRSs, narrowing dependency pairs indeed is a completeness preservingtechnique. More precisely, whenever innermost termination can be proved withthe pairs P , then it can also be proved with the pairs P 0.Theorem 4 (Narrowing Dependency Pairs Preserves Completeness).Let R be an innermost terminating non-overlapping TRS and let P, P 0 be asin Thm. 3. If there exists no in�nite innermost R-chain of pairs from P, thenthere exists no in�nite innermost R-chain of pairs from P 0 either.Proof. We show that every innermostR-chain : : : hv1; w1i hs0; t0i hv2; w2i : : : fromP 0 can be transformed into an innermost chain from P of same length. Theremust be a substitution � such that for all pairs the instantiated left-hand side isa normal form and the instantiated right-hand side reduces to the instantiatedleft-hand side of the next pair in the innermost chain. So in particular we havew1� i!�R s0� and t0� i!�R v2�:We know that hs; ti narrows to hs0; t0i via a substitution �. As the variables inhs; ti are disjoint from all other variables, we may extend � to `behave' like �� onthe variables of s and t. Then we have s� = s�� = s0� and hence, w1� i!�R s�.

Moreover, by the de�nition of narrowing, t�!R t0. This implies t��!R t0�and as t� = t��, we have t�!R t0� i!�R v2� where v2� is a normal form. AsR is innermost terminating and non-overlapping, it is convergent. Thus, everyterm has a unique normal form and hence, repeated application of innermostreduction steps to t� also yields the normal form v2�, i.e., t� i!�R v2�.Thus, : : : hv1; w1i hs; ti hv2; w2i : : : is also an innermost R-chain. utHence, independent of the technique used to check the absence of in�niteinnermost chains, narrowing dependency pairs can never destroy the success ofthe innermost termination proof. Moreover, narrowing can of course be repeatedan arbitrary number of times. Thus, after replacing (10) by (10a)-(10c), we maysubsequently replace (10a) and (10b) by their respective narrowings.hIF1(x; 0; true); IF2(x; 0; true)i (10aa)hIF1(nil; s(n); true); IF2(nil; s(n); true)i (10ba)This excludes them from being on a cycle in the estimated innermost depen-dency graph. Thus, now instead of the dependency pairs (9)-(13) we consider(9), (10c), (11), (12), and (13). A further narrowing of (10c) is not necessaryfor our purposes (but according to Thm. 4 it would not harm either). The rightcomponent of the dependency pair (11) uni�es with the left component of (9)and therefore, (11) must not be narrowed. Instead we narrow (9).hPROCESS(nil;m); IF1(nil;m; leq(m; 0))i (9a)hPROCESS(cons(h; t);m); IF1(cons(h; t);m; leq(m; s(length(t))))i (9b)hPROCESS(store; 0); IF1(store; 0; true)i (9c)By narrowing (10) to (10c), we determined that we only have to regard instanti-ations where store has the form cons(h; t) and m has the form s(n). Thus, (9a)and (9c) do not occur on a cycle and therefore, (9) can be replaced by (9b) only.As (11)'s right component does not unify with left components any longer,we may now narrow (11) as well. By repeated narrowing steps and by droppingthose pairs which do not occur on cycles, (11) can be replaced byhIF2(cons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11aac)hIF2(cons(h; t); s(n); false);PROCESS(app(nil; sndsplit(n; t)); s(n))i (11ad)hIF2(cons(h; t); s(n); false);PROCESS(app(map f(self; nil); sndsplit(n; t)); s(n))i (11d)Now for the cycle P1, it is (for example) su�cient to demand that (11aac),(11ad), and (11d) are strictly decreasing and that (9b), (10c), and all usablerules are weakly decreasing. Similar narrowings can also be applied for the pairs(12) and (13) which results in analogous inequalities for the cycles P2 and P3.Most standard orderings amenable to automation are strongly monotonicpath orderings (cf. e.g. [Der87,Ste95]), whereas here we only need weak mono-tonicity. Hence, before synthesizing a suitable ordering, some of the argumentsof function symbols may be eliminated, cf. [AG99]. For example, in our inequal-ities one may eliminate the third argument of IF2. Then every term IF2(t1; t2; t3)in the inequalities is replaced by IF02(t1; t2) (where IF02 is a new binary function

symbol). By comparing the terms resulting from this replacement instead of theoriginal terms, we can take advantage of the fact that IF2 does not have to bestrongly monotonic in its third argument. Similarly, in our example we will alsoeliminate the third arguments of IF1 and IF3 and the �rst argument of sndsplit.Note that there are only �nitely many (and only few) possibilities to eliminatearguments of function symbols. Therefore all these possibilities can be checkedautomatically. In this way, the recursive path ordering (rpo) satis�es the inequal-ities for (11aac), (9b), (10c), for the dependency pairs resulting from (12) and(13), and for all (known) usable rules. However, the inequalities resulting from(11ad) and (11d)IF02(cons(h; t); s(n)) > PROCESS(app(nil; sndsplit0(t)); s(n))IF02(cons(h; t); s(n)) > PROCESS(app(map f(self; nil); sndsplit0(t)); s(n))are not satis�ed because of the app-terms on the right-hand sides (as the app-rule forces app to be greater than cons in the precedence of the rpo). Moreover,the map f-term in the inequalities requires us to consider the usable rules corre-sponding to the (unspeci�ed) Erlang function f as well.To get rid of these terms, one would like to perform narrowing on map f andapp. However, in general narrowing only some subterms of right components isunsound.5 Instead, we always have to replace a pair by all its narrowings. Butthen narrowing (11ad) and (11d) provides no solution here, since narrowing thesndsplit-subterm results in pairs containing problematic app- and map f-termsagain. In the next section we describe a technique which solves the above prob-lem.6 Rewriting Dependency PairsWhile performing only some narrowing steps is unsound, for non-overlappingTRSs it is at least sound to perform only one of the possible rewrite steps.6 So ift! r, then we may replace a dependency pair hs; ti by hs; ri. Note that this tech-nique is only applicable to dependency pairs, but not to rules of the TRS. Indeed,by reducing the right-hand side of a rule, a non (innermost) terminating TRScan be transformed into a terminating one, even if the TRS is non-overlapping.As an example regard the TRS with the rules 0! f(0), f(x)! 1 which is clearlynot innermost terminating. However, if the right-hand side of the �rst rule isrewritten to 1, then the resulting TRS is terminating. The following theoremproves that our re�nement of the dependency pair approach is sound.5 As an example regard the TRS f(0; 1) ! s(1), f(x; 0) ! 1, a ! 0, and g(s(y)) !g(f(a; y)). If we would replace the dependency pair hG(s(y));G(f(a; y))i by only oneof its narrowings, viz. hG(s(0));G(1)i, then one could falsely prove innermost termi-nation, although the term g(s(1)) starts an in�nite innermost reduction.6 Combining narrowing and rewriting is common in normal narrowing strategies tosolve E-uni�cation problems [Fay79,Han94]. However, in contrast to our approach,normal narrowing is only used for convergent TRSs and instead of performing one(or arbitrary) many rewrite steps, there one rewrites terms to normal forms.

Theorem 5 (Rewriting Dependency Pairs). Let R be non-overlapping andlet P be a set of pairs of terms. Let hs; ti 2 P, let t!R r and let P 0 result fromP by replacing hs; ti by hs; ri. If there exists no in�nite innermost chain of pairsfrom P 0, then there exists no in�nite innermost chain from P either.Proof. By replacing all (renamed) occurrences of hs; ti with the correspondingrenamed occurrences of hs; ri, every innermost chain : : : hs; ti hv; wi : : : from Pcan be translated into an innermost chain from P 0 of same length. The reasonis that there must be a substitution � with t� i!�R v� where v� is a normalform. So t� is weakly innermost normalizing and thus, by [Gra96a, Thm. 3.2.11(1a) and (4a)], t� is conuent and strongly normalizing. With t!R r, we obtaint�!R r�. Hence, r� is strongly normalizing as well and thus, it also reduces in-nermost to some normal form q. Now conuence of t� implies q = v�. Therefore,: : : hs; ri hv; wi : : : is an innermost chain, too. utThe converse of Thm. 5 holds as well if P is obtained from the dependencypairs by repeated narrowing and rewriting steps. So similar to narrowing, rewrit-ing dependency pairs does not destroy the necessity of our criterion either.Theorem 6 (Rewriting Dependency Pairs Preserves Completeness).Let R be an innermost terminating non-overlapping TRS and let P, P 0 be asin Thm. 5. If there exists no in�nite innermost R-chain of pairs from P, thenthere exists no in�nite innermost R-chain of pairs from P 0 either.Proof. In an innermost chain : : : hs; ri hv; wi : : : from P 0 , replacing all (renamed)occurrences of hs; ri by corresponding renamings of hs; ti yields an innermostchain from P of same length. The reason is that there must be a � with r� i!�Rv�. Thus, t�!R r� i!�R v� implies t� i!�R v� by the convergence of R. utIn our example we may now eliminate app and map f by rewriting the pairs(11ad) and (11d). Even better, before narrowing, we could �rst rewrite (11),(12), and (13). Moreover, we could simplify (10c) by rewriting it as well. Thus,the resulting pairs on the cycles we are interested in are:hPROCESS(cons(h; t);m); IF1(cons(h; t);m; leq(m; s(length(t))))i (9b)hIF1(cons(h; t); s(n); true); IF2(cons(h; t); s(n); false)i (10c0)hIF2(store;m; false);PROCESS(sndsplit(m; store);m)i (110)hIF1(store;m; false); IF3(store;m; empty(fstsplit(m; store)))i (120)hIF3(store;m; false);PROCESS(sndsplit(m; store);m)i (130)Analogous to Sect. 5, now we narrow (110), (120), (130), perform a rewrite stepfor one of (120)'s narrowings, and delete those resulting pairs which are not onany cycle. In this way, (110), (120), (130) are replaced byhIF2(cons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (1100)hIF1(cons(h; t); s(n); false); IF3(cons(h; t); s(n); false)i (1200)hIF3(cons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (1300)

By eliminating the �rst argument of sndsplit and the third arguments of IF1, IF2,and IF3 (cf. Sect. 5), we obtain the following inequalities. Note that accordingto Thm. 2, these inequalities prove the absence of in�nite innermost chains forall three cycles built from (9b), (10c0), and (1100)-(1300), since for each of thesecycles (at least) one of its dependency pairs is strictly decreasing.PROCESS(cons(h; t);m) � IF01(cons(h; t);m)IF01(cons(h; t); s(n)) � IF02(cons(h; t); s(n))IF01(cons(h; t); s(n)) � IF03(cons(h; t); s(n))IF02(cons(h; t); s(n)) > PROCESS(sndsplit0(t); s(n))IF03(cons(h; t); s(n)) > PROCESS(sndsplit0(t); s(n)) sndsplit0(x) � xsndsplit0(nil) � nilsndsplit0(cons(h; t)) � sndsplit0(t)l � r for all rules l ! rwith root(l) 2 fleq; lengthgNow these inequalities are satis�ed by the rpo. The right column contains allinequalities corresponding to the usable rules, since the rules for map f and f areno longer usable. Hence, the TRS of Sect. 3 is innermost terminating. In this way,left-right decreasingness of the CTRS from Sect. 2 could be proved automatically.Therefore, the desired property holds for the original Erlang process.7 ConclusionWe have shown that rewriting techniques (and in particular, the dependencypair approach) can be successfully applied for process veri�cation tasks in in-dustry. While our work was motivated by a speci�c process veri�cation problem,in this paper we developed several new techniques which are of general use interm rewriting. First of all, we showed how dependency pairs can be utilizedto prove that conditional term rewriting systems are decreasing and terminat-ing. Moreover, we presented two re�nements which considerably increase theclass of systems where dependency pairs are successful. The �rst re�nement ofnarrowing dependency pairs was already introduced in [AG99], but complete-ness of the technique for non-overlapping TRSs is a new result. It ensures thatapplication of the narrowing technique can never destroy the success of suchan innermost termination proof. In fact, our narrowing re�nement is the mainreason why the approach of handling CTRSs by transforming them into TRSsis successful in combination with the dependency pair approach (whereas thistransformation is usually not of much use for the standard termination provingtechniques). Finally, to strengthen the power of dependency pairs we introducedthe novel technique of rewriting dependency pairs and proved its soundness andcompleteness for innermost termination of non-overlapping TRSs.Acknowledgements. We thank the anonymous referees for their helpful comments.References[AD99] T. Arts & M. Dam, Verifying a distributed database lookup manager writtenin Erlang. In Proc. FM '99, Toulouse, France, 1999.[AG97a] T. Arts & J. Giesl, Automatically proving termination where simpli�cationorderings fail. TAPSOFT '97, LNCS 1214, pp. 261{273, Lille, France, 1997.

[AG97b] T. Arts & J. Giesl, Proving innermost normalisation automatically. In Proc.RTA-97, LNCS 1232, pp. 157{172, Sitges, Spain, 1997.[AG98] T. Arts & J. Giesl, Modularity of termination using dependency pairs. InProc. RTA-98, LNCS 1232, pp. 226{240, Tsukuba, Japan, 1998.[AG99] T. Arts & J. Giesl, Termination of term rewriting using dependency pairs.TCS. To appear. Preliminary version under http://www.inferenzsysteme.informatik.tu-darmstadt.de/~reports/notes/ibn-97-46.ps[BN98] F. Baader & T. Nipkow, Term Rewriting and All That. Cambridge UniversityPress, 1998.[BK86] J. A. Bergstra & J. W. Klop, Conditional rewrite rules: conuence and ter-mination. JCSS, 32:323{362, 1986.[BG89] H. Bertling & H. Ganzinger, Completion-time optimization of rewrite-timegoal solving. Proc. RTA-89, LNCS 355, pp. 45{58, Chapel Hill, USA, 1989.[DP87] N. Dershowitz & D. A. Plaisted, Equational programming. Machine Intelli-gence, 11:21{56, Oxford University Press, 1987.[Der87] N. Dershowitz, Termination of rewriting. JSC, 3:69{116, 1987.[DOS88] N. Dershowitz, M. Okada, & G. Sivakumar, Canonical conditional rewritesystems. In Proc. CADE-9, LNCS 310, pp. 538{549, Argonne, USA, 1988.[DO90] N. Dershowitz & M. Okada, A rationale for conditional equational program-ming. TCS, 75:111{138, 1990.[DJ90] N. Dershowitz & J.-P. Jouannaud, Rewrite Systems. In Handbook of Theo-retical Computer Science, Vol. B, pp. 243-320, Elsevier, 1990.[DH95] N. Dershowitz & C. Hoot, Natural termination. TCS, 142(2):179{207, 1995.[Fay79] M. J. Fay, First-order uni�cation in an equational theory. Proc. 4th Workshopon Automated Deduction, pp. 161-167, Austin, TX, Academic Press, 1979.[GM87] E. Giovanetti & C. Moiso, Notes on the eliminations of conditions. In Proc.CTRS '87, LNCS 308, pp. 91{97, Orsay, France, 1987.[Gra94] B. Gramlich, On termination and conuence of conditional rewrite systems.In Proc. CTRS '94, LNCS 968, pp. 166{185, Jerusalem, Israel, 1994.[Gra95] B. Gramlich, Abstract relations between restricted termination and conu-ence properties of rewrite systems. Fundamenta Informaticae, 24:3{23, 1995.[Gra96a] B. Gramlich, Termination and conuence properties of structured rewrite sys-tems. PhD Thesis, Universit�at Kaiserslautern, Germany, 1996.[Gra96b] B. Gramlich, On termination and conuence properties of disjoint andconstructor-sharing conditional rewrite systems. TCS, 165:97{131, 1996.[Han94] M. Hanus, The integration of functions into logic programming: From theoryto practice. Journal of Logic Programming, 19,20:583-628, 1994.[HN99] Patent pending, Ericsson Telecom AB, 1999.[Kap84] S. Kaplan, Conditional rewrite rules. TCS, 33:175{193, 1984.[Mar96] M. Marchiori, Unravelings and Ultra-properties, Proc. ALP '96, LNCS 1139,pp. 107-121, Aachen, Germany, 1996.[Mid93] A. Middeldorp, Modular properties of conditional term rewriting systems.Information and Computation, 104:110{158, 1993.[Ste95] J. Steinbach, Simpli�cation orderings: history of results. Fundamenta Infor-maticae, 24:47{87, 1995.[SMI95] T. Suzuki, A. Middeldorp, & T. Ida, Level-conuence of conditional rewritesystems with extra variables in right-hand sides. Proc. RTA-95, LNCS 914,pp. 179{193, Kaiserslautern, Germany, 1995.[WG94] C.-P. Wirth & B. Gramlich, A constructor-based approach for positive/nega-tive conditional equational speci�cations. JSC, 17:51{90, 1994.

