
First Steps in Programming: A Rationale for Attention
Investment Models

Alan F. Blackwell
University of Cambridge Computer Laboratory

Alan.Blackwell@cl.cam.ac.uk

Abstract

Research into the cognitive aspects of programming
originated in the study of professional programmers
(whether experts or students). Even “end-user”
programmers in previous studies have often worked in
organizations where programming is recognized to be
demanding professional work – the term “power-user”
recognizes this technical kudos. But as personal computers
become widespread, and most new domestic appliances
incorporate microprocessors, many people are engaging
in programming-like activities in domestic or non-
professional contexts. Such users often have less
motivation and more obstacles to programming, meaning
that they may be unlikely even to take the first steps. This
paper analyses the generic nature of those first steps, and
identifies the cognitive demands that characterize them.
On the basis of this analysis we propose the Attention
Investment model, a cognitive model of programming that
offers a consistent account of all programming behaviour,
from professionals to end-users.

1. What is Programming?

Goodell’s excellent website devoted to end user
programming [10] offers definitions of “end user” and
“end user programming”, but not of “programming”. This
may not seem a serious omission, as most researchers in
computer science use implicit definitions that seem quite
adequate for their professional work. Nevertheless, this
paper considers the possibility that challenging the implicit
professional definitions of programming may generate
important insights for the study of end user programming.

Programming is in fact seldom defined in modern
research publications. An earlier programming textbook
from 1959 gives a typical formulation for that time: “This
sequence [of basic operations] is called the program and
the process of preparing it is called programming” [32, p.
4]. Programming is the “spadework” of finding a precise
mathematical formulation and method of solution,
possibly notated in a “convenient problem-oriented
language” whose symbols are “more closely related to the
mathematical problem to be solved”.

The major changes since this was written are a) that
many computer users do not now consider themselves
programmers (when Weinberg wrote his early monograph
“The Psychology of Computer Programming” [30], it was
assumed that serious users of computers would be
programmers), and b) that most programming deals with
problems that we would not now consider to be
mathematical.

As programming applications have moved away from
the mathematical domain typical of early computing, the
nature of the basic operations, the symbols in
programming languages, and the formulations or methods
of solution have all evolved. An introductory chapter to
the book “Psychology of Programming” [17] notes that the
programming has changed from “describing calculations”
to “defining functions”, and then to “defining and treating
objects”. Several contributors to that book broadly
describe the cognitive challenges of programming.
Examples include “Programming is a human activity that
is a great challenge” (p. 3), or “Programming is an
exceedingly diverse activity” (p. 21). A section entitled
“what is programming?” concludes that “The crucial
dimensions in the activity of programming are processing
and representation” (p. 160). But this final definition could
refer to almost any human cognitive skill – it no longer
provides a basis for investigating the distinctive problems
of programming.

This paper asks instead what is distinctive about the
cognitive tasks involved in programming, and in particular
which distinctive cognitive tasks are shared between all
programmers, whether professional or end-users. This is
particularly challenging in the case of systems that are
described as “programming” by their users
(“programming” HTML, “programming” a VCR or a
microwave oven), but do not appear to meet the criteria
that would make them suitable as a professional
programming language.

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

cira
Pencil

cira
Note
There are links to many example implementations of end user programming. To me I think of QuicKeys, although the MacOS7-9 version of QuicKeys had a simpler - more elegantly powerful interface and fewer limitations than the OSX version. Although I have hope that the OSX version will be able to over come these initial limitations and surpass the previous versions, the new interface is exemplary of many UI design flaws in OSX in general. Glitz has often been traded for usability.

cira
Pencil

cira
Pencil

cira
Pencil

2. Three definitional questions

2.1. Who is a programmer?

The lines of professional demarcation within the
software development community have always been fluid
as a result of changing programming tools. For example,
the distinction between “analysts” and “programmers”
blurred when 4GLs enabled programming at a level of
abstraction that was comparable to the vocabulary of the
analyst. Analysts thus became analyst/programmers in the
1980s, and were simply called programmers again by the
90s. The same trends occurred in other specialist jobs.
Unit test engineers were initially programmers (who wrote
test harnesses), then simple operators of regression test
tools, then programmers again as the testing tools became
programmable.

Recent trends have been to increase the number of
people who might do programming in the course of their
work. Almost all major software applications include
scripting or macro languages of some sort, usable to
configure and customize the behaviour of the application.
Most operating systems include scripting languages. One
of the most widely used classes of software application,
the spreadsheet, is itself a declarative programming
language. Many people who are not professional
programmers use spreadsheets to create large and complex
applications, thus inheriting all the software engineering
problems of specification, design, testing and
maintenance.

End-user development, end-user customization and
end-user software engineering have all been proposed as
terms expressing the challenges faced by users
encountering these new tools. Some of those terms
apparently deemphasise the sophistication of the
programming required (“customization”), while others
emphasise the fact that large and complex design projects
are difficult whatever the tools used (“engineering”).

Some of these differing emphases in terminology can
seem more suited to software product marketing, rather
than seriously contending that “customization” means no
programming is involved. If a conventional programming
language were used to carry out the same tasks, there
would certainly be no doubt that these applications were
conventional pieces of programming work. But the one
aspect in which end-user programming tasks always differ
from conventional programming tasks is precisely that the
software tools used for development or customization have
the potential to be so unlike conventional programming
languages.

Which of the following can unambiguously be
categorised with respect to the boundary between
programming languages and other forms of software:

Scripting languages? Spreadsheets? Macro languages?
Keyboard macros? Configuration files? Java programs?
Javascript programs? Server Side Include macros?
Cascading Style Sheets? HTML pages? Microsoft Word
documents? From the perspective of a non-programmer or
end-user, the distinctions between these technologies are
not at all clear-cut. All of them are able to produce
dynamically modified text documents, and several can
potentially be used to create apparently identical results.
Yet some of them are classified in professional contexts as
being programming languages, and some are not, with the
result that when carried out by an end user, some of them
may be classified as end-user programming and some not,
even though the user may feel that he or she is doing a
single task in different ways.

This ambiguity becomes acute when the programming
is taking place in a context that is completely separate
from the workplace. An end-user programmer at work is
quite likely to realise that the things he or she are doing
could have been achieved by a professional programmer
working within the organization. Previous academic
studies have emphasized the roles these end users play on
the boundaries of professional programming activity
within an organization [21]. The term “power-user”
acknowledges the fact that these people have valuable
technical skills.

In contrast, a domestic programmer is not usually
described as a “power-user”. There may still be good
reasons why somebody would create a Word macro to
save time on a lengthy task at home. We have proposed
elsewhere a system suitable for enhancing domestic
remote controls with programming abilities [4]. And a
person learning to program a VCR certainly does not
qualify for the description “power-user”, even if he or she
does meet the criterion for an “end-user”.

In order to avoid these inconsistencies, the first
proposal of this paper is that all computer users ought to
be regarded as potential programmers, whose tools differ
only in their usability for that purpose. The social approval
accorded to such skills may increase with time, but this is
not a fundamental indicator of inherent cognitive
challenge in the task. If it is possible to find interesting
programming-like attributes in other kinds of computer
use, programming research could be universal and
inclusive in its scope, rather than restricted to the
experience of “professional” programmers. The next
section therefore considers a classification of
programming languages that takes account of these user
perspectives, rather than conventional definitions.

2.2. What is a programming language?

What aspect of programming languages makes them
different to other kinds of computer usage? Consider some
of the examples presented above. A web page generated

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

by a Javascript script or Server Side Include macro, when
seen in a browser, may appear indistinguishable from a
web page written directly in HTML. The difference
resulting from the script or macro is that a different
viewer, or the same viewer at another place or time, will
see a different web page. The author writing the page
specifies these differences by adding control information
(in the scripting or macro language) to be interpreted by
the computer rather than by the viewer.

These simple variations might be seen as conflicting
with some ideals of modern design for usability. What the
user sees when authoring the page is not necessarily what
he or she gets when viewing it – a conflict with the ideal
of WYSIWYG. What he or she is manipulating is not a
concrete instance of the desired result, but an abstract
notation defining required behavior in different
circumstances – a conflict with the ideal of direct
manipulation. Of course these departures from the “ideal”
are not a bad thing – they are necessary in order to achieve
the task. But the additional challenges to the user are
typical of the challenges that distinguish programming
activities from those activities that do allow direct
manipulation and WYSIWYG.

When we consider other examples given above, similar
properties are apparent. The distinction between writing an
HTML document and a Word document is that the HTML
document may look different to different viewers
(depending on the size and shape of the browser window,
the browser version, platform, available fonts etc). A
single decision by the author can thus have multiple
consequences – different results each time the document is
viewed in a different situation. Once again, this range of
effects is produced in HTML by the use of an abstract
notation to define required behavior in different
circumstances (here, the markup language). As with the
use of JavaScript, even the abstractions of HTML provide
the opportunity for syntax errors, runtime errors, or bugs
in the form of unintended or exceptional behaviors.

The same is true even of a keyboard macro. Pressing a
key when composing a regular document is a fairly direct
manipulation – the character that was written on the key
appears on the screen, and can be viewed and retained or
deleted in a direct feedback process. But pressing a key
when composing a keyboard macro has other effects
beyond those that are directly visible. When the macro is
executed again in a new context, the results will be
different. The user must anticipate this, and use abstract
commands rather than direct manipulation commands (e.g.
using the “end of line” key rather than pressing the right
arrow key until the cursor reaches the end of the line,
which would fail with a bug the first time it was executed
in a line with a different number of characters).

All of these examples, although rather trivial by
comparison to the challenges of large software projects, do

share important characteristics of conventional
programming. The user must:

• Decide the intended result of executing the program
(requirements);

• Identify when it will be executed, and allow for
variation in different circumstances (specification);

• Choose from a set of technical features that may
support this behaviour (design);

• Enter abstract control commands as well as data
(coding) and anticipate; and

• Account for departures from the intended behavior
(debugging).

All of these things are intellectually challenging, and
they increasingly arise in all aspects of computer use.
Consider, for example, the definition of a document
template, or even a paragraph style in a word processor.
Even quite mundane user tasks can involve requirements
gathering, specification, design, coding and debugging.

In order to account for these experiences, the second
proposal of this paper is that almost all major software
applications could now be recognized as including
programming languages. If this were the case, research
into programming could focus on programming
experiences independent of language, especially those
which result when abstract notation replaces direct
manipulation.

2.3. What is programming activity?

The word programming is often used in common
speech to describe activities that might seem trivial by
comparison to large-scale software application
development. People do not in general say they are
“programming” their Word document when defining a
paragraph style. But many people do say (even on their
resumes, I have found), that they have been
“programming” in HTML. Furthermore, people say they
are “programming” their VCR, their microwave oven,
their car radio or their boiler controls.

Is there any value in extending our attention to these
common uses of the term when we do research into the
cognitive demands of programming? If we consider the
user experience of marginal programming technologies, as
addressed in the previous section, we see that even these
mundane activities share many of the same properties.
They all have the basic character that the user is not
directly manipulating observable things, but specifying
behaviour to occur at some future time.

In order to address these experiences, the third proposal
of this paper is that when people say they are
programming, we should not question whether this activity
is genuine programming, but instead analyse their
experience in order to understand the general nature of
programming activity.

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

3. Cognitive features of programming

What are the cognitive implications of this broader
domain of programming tasks? The common features of
the various programming tools described so far are a) loss
of the benefits of direct manipulation and b) introduction
of notational elements to represent abstraction. It is
possible to relate both of these to relevant topics in
cognitive science.

3.1. Loss of direct manipulation

The cognitive benefits of direct manipulation arise
partly from the fact that image-based representations
mitigate the “frame problem” in cognitive science [18]. If
a planning agent maintains a mental representation of the
situation in which it acts, the process of planning relies on
the agent being able to simulate updates to the situation
model, and thereby anticipate the effects of potential
courses of action.

Such planning is only possible if the scope of effects of
a given action can be constrained. In other words there
must be a defined boundary beyond which the action will
not have further effects. If there is no basis for setting such
a boundary, any action may potentially have infinite
consequences, and it will not be possible to place bounds
on the planning algorithm. This is known as the frame
problem.

In direct manipulation systems, many constraints on
causality are made directly available via the user’s
perception of the apparently physical situation. This is less
true of linguistic representations, where there is no limit
on the abstract expressive power of the representation
system [29], and hence no boundary that can be exploited
to constrain reasoning during planning.

These considerations lead to the well-known cognitive
benefits of direct manipulation [27]. In a direct
manipulation system, the current status of the system
should be continuously represented to the user, a single
action should have a single visible effect in the
representation, and restoring the state of the representation
to that before the action should restore the situation.

In programming systems, none of these things is
necessarily true. The situation in which the program is to
be executed may not be available for inspection, because it
may be in the future, or because the program may be
applied to a greater range of data situations than are
currently visible to the programmer. Where acting on a
single situation is concrete (actions have visible effects in
the current situation), programming is abstract (effects
may occur in many different situations, not currently
visible). Multiple effects of an action will be distributed
either in space, in time or in both (if two events occur in
the same place at the same time, they are the same event).
In previous publications, we have described these

fundamental non-direct manipulations of programming as
“abstraction over time” and “abstraction over a class of
situations” [2,3].

3.2. Use of notation

The second universal characteristic of programming
situations is that the program is represented using some
notation. This is also a universal characteristic of abstract
thought. According to one perspective in the philosophy of
mind, concrete action is that in which there is a causal
relation between the action and a perceivable state of the
world [20]. Abstraction results from forming some
representation of the state of the world – either a mental
representation, a linguistic representation or some other
representational system. The correspondence between a
representation and the state of the world is one of
convention, not of causality. (This is true even in the case
of pictorial representations, which differ in their
information content rather than in any fundamental kind of
resemblance [11]).

Is there any kind of programming that does not use
notation? It would be possible to do programming using
representations not usually regarded as notational (e.g. by
speaking to a computer, or drawing a picture of the
required situation in the world), but these alternatives can
be regarded for our purpose as impoverished notational
systems. The cognitive benefits of various notational
options have been analysed at length by Green with
various collaborators in the Cognitive Dimensions of
Notations framework [14,15]. It is not necessary to review
those analyses in any depth here, other than to note the
main conclusions – that notational systems are designed
rather than being prescribed by any necessary constraints,
and that the design choices made are subject to tradeoffs
between factors that will facilitate some kinds of cognitive
task while inhibiting others. There is thus no ideal notation
for any programming situation, only designs that are more
or less well suited to the activities of the people doing the
programming.

3.3. Abstraction as a tool for complexity

Tools for processing abstractions provide a further
benefit beyond those of defining actions in the future, or in
multiple situations where the actor need not be present.
Conceptual abstractions can also be defined and combined
in order to manage complexity. This results from a further
confluence of the two primary characteristics of abstract
action, indirect effects and notation use.

In a simple programming activity such as programming
a VCR, the user is defining some abstract behaviour which
is not directly observable because it will take place in the
future. This is done with the assistance of a simple
notation – perhaps a display of start time and channel
identification. But the user manipulates this notation

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

cira
Highlight

directly – there is no higher order mechanism by which the
user can specify changes to the programme other than
those defined directly with the VCR controls.

In contrast to this very simple programming situation,
more complex situations can be approached by defining
changes to the notation itself, so that the user can extend
the vocabulary with which he or she will then express
required behaviour. An example of this in a domestic
context is a sophisticated boiler control (such as those
common in Central Europe) in which the user can define
one or more modes of operation, then specify that a
particular mode should operate at a particular time of day.
This makes programming itself more efficient by allowing
the user to refer to a new abstraction (the mode) rather
than repeating all the notational elements defining time
and temperature for every occasion on which that mode of
operation is required.

Abstraction use in which the user conceptualizes
common features of complex behaviour, then formulates
notational abstractions in which to express them,
completes the range of generic programming behaviours
for which we propose a common description of cognitive
challenges. In the domain of professional programming,
this type of abstraction use is still a very active topic of
research.

One way of answering the question “what is
programming” from a computer science context (proposed
by Tony Hoare [16]), is that programming is the process
of describing a situation, then refactoring that description
in accordance with a set of computational formalisms. The
process of refactoring is itself critical to the professional
design of software systems and to the refinement of
designs in recent system development methodologies such
as aspect-oriented programming [8].

4. A cognitive model for abstraction use

We have been working on a theoretical model called
“Attention Investment” that accounts for the cognitive
challenges arising from these essential features of
programming activity: loss of direct manipulation,
notation use, and development of abstractions. We intend
this model to be sufficiently well-defined that it can be
implemented in a cognitive simulation (thus providing a
degree of scientific rigor), while also being sufficiently
close to subjective user experience that it can be used as a
design guide by people developing new programming
tools.

This is not an easy combination to achieve. There are
other cognitive models that can be used to provide fine-
grained descriptions of relatively well defined HCI tasks
(GOMS [6] is an example). It is straightforward to use
such models for small tasks, but very difficult to model
tasks that involve complex, unconstrained user interfaces

and many possible solution styles (as is the case in
programming).

There are also models for usability evaluation that
provide design advice at a heuristic level, without
attempting to derive this advice from a model of low-level
cognitive phenomena. Heuristic Evaluation [22] and
Cognitive Dimensions of Notations [13,15] are two such
methods. The Cognitive Dimensions framework is
designed specifically with this intention, described as
avoiding “death by detail”, and offering designers a
“broad-brush” description of relevant usability
characteristics.

Attention Investment is not a perfect cognitive model,
nor a design method that can be used in isolation without
support from other methods. However it does offer broad-
brush advice relevant to designers of end user
programming systems, and is also sufficiently rigorous
that it can be verified (for small tasks) by implementation
of a cognitive simulation.

A case study in which Attention Investment has been
used by a group of designers when building a new end
user programming system is described in another paper at
this conference [2]. That topic is not addressed any further
here. The rest of this paper describes the cognitive model
itself, gives an example of a small task that has been
simulated using the model, and describes the relationship
of the model to the kinds of programming activities
characterized above.

4.1. Relationship to previous work

The ideal that usability theories should both be
verifiable through cognitive simulation and provide
qualitative guidance suited to use by designers has long
been an ideal for HCI research. The recent research
program most well known as exemplifying this approach
is Pirolli and Card’s decision theoretic Information
Foraging theory [24]. Pirolli and Card have been highly
successful in demonstrating that a relatively simple model
can account for quantitative observations of human
behavior, and can also be used in a predictive capacity for
design. Of course Pirolli and Card’s theory, although
similar in approach to Attention Investment, deals with
information search, rather than abstractions or
programming.

The Attention Investment model is a decision-theoretic
account of programming behavior. It offers a cost/benefit
analysis of abstraction use that allows us to predict the
circumstances in which users will choose to engage in
programming activities, as well as helping tool designers
to facilitate users’ investment decisions and reduce the
risks associated with those decisions. As with any decision
theoretic account, this depends on the availability of some
currency - a measure according to which cost, risk, pay-off
etc can be calculated and compared.

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

Earlier papers on attention investment (Green &
Blackwell [5,14] were influenced by discussion of the
“attention economy” which argued that the scarcest
economic resource on the Internet is human attention
[9,25]. Since then the theory has been more influenced by
models of attentional mechanisms in the cognitive science
literature, especially those applied to HCI questions
[23,12].

4.2. Cost in attentional units

For the purposes of our model, it is necessary to refine
the concept of attention as it applies to programming
behavior, in distinction to browsing or other computer
activities. The effort invested in programming can be
described as a nominal amount of “concentration”,
involving an integral of attentional effort over time.
Creating a program requires some amount of
concentration - an investment that has a cost in attention
units. The payoff if the program works correctly is that it
will automate some task in the future, thereby saving
attentional cost (the user does not need to concentrate on a
task that has been successfully automated). There is,
however, a risk that the investment will not pay off
(perhaps because there are bugs in the program). The
decision to write a program can therefore be framed as an
investment equation, in which the expected payoff is
compared to the investment and risk.

Attention units provide the basis for modeling both
micro (unconscious) and macro (conscious) decisions a
user might make in attempting to minimize attention costs
over longer timeframes. To summarize these descriptive
factors at a qualitative level: Many programming activities
promise, through automation, to save attentional effort in
the future [3]. The irony of this abstract approach is that
the activity of programming may involve more effort than
the manual operation being automated [14]. Most
decisions to start programming activities are based on an
implicit cost-benefit analysis [1]. The variables involved
in this cost-benefit analysis are:

Cost: attention units to get the work done. (Presumably
the activity also has monetary costs, such as purchase of
software, but this is external to the model.)

Investment: attention units expended toward a potential
reward, where the reward can either be external to the
model (such as payment for services) or an attention
investment pay-off.

Pay-off: reduced future cost, also measured in attention
units, that will result from the way the user has chosen to
spend attention.

Risk: Probability that no pay-off will result, or even that
additional future costs will be incurred from the way the
user has chosen to spend attention.

In sophisticated decision-theoretic models, it is also
necessary to account for the cost involved in making the

decision. This is particularly relevant where there is some
“prospecting” cost – costs involved in investigating the
relative value of alternative courses of action. These costs
might involve action in their own right (as in classical
prospecting – digging a hole in the ground to find out
whether it is worth siting a gold mine there), or might
involve only mental activity while considering and
evaluating available data. In the latter case, the mental
decision process itself must be counted as a kind of action,
and it is necessary to anticipate the costs of this activity (in
cognitive science terms, “metareasoning” or “thinking as
doing” [26]). In the Attention Investment model, meta-
reasoning is also accounted for as an attentional cost.

4.3. Architecture of the model

The cognitive model we have developed simulates
these phenomena using an agent architecture [28], in
which all possible courses of action are represented by
agents competing to be scheduled on a single processing
agenda. Only one agent can be activated at a time, thereby
simulating a unitary locus of human attention – we can
only attend to a single location (usually by visual fixation)
at any time. The agent that gets activated is selected
according to a decision criterion that estimates the best
cost-benefit return, subject to the quality of the
information (observed or from previous experience) on
which that estimate is based.

All “internal” cognitive activities are also represented
by agents – these activities include decomposition of
actions into component tasks, re-evaluation of the agenda,
and deciding between either further prospecting or further
goal-reduction. There is a single attention resource that
must be allocated either to these activities or to external
perception [7].

When the system is initialized, it has no knowledge
about the current situation, so immediately acts to reduce
uncertainty (and thereby risk) by allocating attention
resources to the gathering of information. Once enough
information has been gathered to evaluate alternative
potential courses of action, the system starts to act.

The transition between prospecting and acting is
determined purely by a change in the expected utility of
the agents responsible for each. The decision to proceed
either with direct manipulation or programming actions is
made on the same basis. This balance may change as the
result of information gathered while acting – the model
may start with a direct manipulation strategy, realise that it
will be too costly, and change to a programming strategy.
Similarly it may abandon a programming strategy if it
appears too risky.

The model can also allocate attention units to re-
evaluating its own agenda, in order to monitor and
possibly change the current course of action. All actions
occur when the agenda control processing decides that the

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

expected utility of further consideration has fallen below
the expected utility of acting. This means that the model is
able to reason about situations where there is an infinite
number of future actions or consequences of action: it is
still able to act efficiently based on available information
and estimates from past experience. This makes it well
suited to modeling the programming situation, in which
end-users may decide to act in a way that appears
“irrational” to experienced programmers, yet may be
rational based on that user’s past experience or expected
future utility.

4.4. Example Simulated Task

The task on which the model has been tested is a
simple one, when compared to most programming tasks.
However it does incorporate all the decision criteria of the
Attention Investment model as described above. This
simple task thus offers theoretical continuity with those
more complex programming activities that would be too
expensive to simulate, but can still benefit from the
qualitative design perspectives offered by the Attention
Investment model.

The sample task simulates a course of action in which
the user has a choice between a “programming” strategy
and a “direct manipulation” strategy. Direct manipulation
tends to involve moderate attentional cost, relatively low
payoff and low risk because results can be monitored as
the user acts. Programming tends to involve higher
attentional cost (particularly in development of a
specification, which involves additional prospecting),
potentially high payoffs, but also high risks.

Figure 1. Snapshot of cognitive simulation based on the
Attention Investment model

The task here is to correct spelling errors in a document
(figure 1). The “direct manipulation” alternative is
manually to step through the document correcting each
error. The cost of doing this is uncertain, because the user
does not know how many times the error occurs. The

“programming” alternative is to specify a search and
replace operation, which may have unexpected results
(such as replacing text that was not intended, or missing
some misspellings due to capitalization, different word
endings etc.)

The simulation therefore starts by reading some of the
document in order to gather evidence with regard to the
best investment. It may scan over the text, look at the
scrollbar to see how long the text is, and so on. This
scanning phase is also driven by the agent architecture, so
that multiple agents may propose that the reader directs
attention to different locations on the screen in order to
acquire information that will improve risk or payoff
estimates. The proposed attention point with the best
expected payoff rises to the top of the agenda, and once
the payoff is higher than any possible benefit of further
agenda reordering, attention is directed to that point.

This is illustrated in figure 1, which shows a screenshot
of the simulation running. The clouds indicate points on
the screen which are being proposed by agents as attention
fixation points. The agenda icon indicates the fixation
point proposed by the currently preferred agenda item. At
the moment when the currently preferred item is a
programming action (raising a search and replace dialog),
the equilibrium of the agenda will change from attention
fixations contributing to the reading task to attention
fixations contributing to raising the search and replace
dialog.

This model architecture produces macro-level
behaviour that emerges from micro-level processes based
on the same decision factors. From the user’s perspective,
the micro-level decisions may not be accessible to
introspection, but this model means that system designers
are able to anticipate even unconscious factors leading to
the choice of programming strategies.

This simulation starts with a single goal – to correct the
spelling errors. It does not initially have a fixed strategy
for achieving this. Decomposition of the top-level goal
into subgoals and then specific actions is controlled, as
with other agenda manipulations, by the meta-reasoning
strategy. This means that some alternative actions may
never be decomposed if they initially appear to have very
high cost or very high risk. This aspect of the model
simulates users who would never consider programming
solutions to a task on the basis of their previous
experience.

In most cases, the first results of goal decomposition
will lead to activities that collect evidence to help refine
risk and cost estimates. This will continue until the
simulated user can make the decision to take a first step
toward programming. This may not always happen, even
where previous experience favours programming solutions
– a short document can be corrected manually without any
need to invest in more abstract alternatives. This is

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

consistent with programming situations in the home,
where it is generally possible to carry out an operation
manually rather than programming. An example is staying
up late to press the “record” button on the VCR, because
you are not sure that programming will work (high degree
of risk) or because you cannot be bothered learning how to
operate it (high cost).

For this simple task, the Attention Investment model
successfully simulates a range of observed user actions,
accounting for them on the basis of previous experience,
rather than assuming that different classes of user are
either capable or incapable of programming because of
their intellectual abilities. Removing this apparent
discontinuity in the user population provides the
opportunity to apply a single cognitive model of
programming processes that can apply both to end-users
and to everyday decisions made by professional
programmers.

5. Conclusions

This paper has proposed that programming might be
redefined to take in a wider range of computer usage
contexts, all sharing certain cognitive features. According
to this proposed definition:

• Programming involves loss of direct manipulation as
a result of abstraction over time, entities or situations.

• Interaction with abstractions is mediated by some
representational notation, and there are common
properties of notations that determine the quality of
that interaction.

• Management of complexity as a cognitive task
involves linguistic and representational strategies that
can in themselves be viewed as notational, and subject
either to direct manipulation of the notation or more
abstract interaction.

Although these issues are highly generic, it is still
possible to formulate useful research models that address
them. The Attention Investment model is quantitative, and
can be implemented in a decision theoretic simulation. It is
generic, in the sense that it offers a partial explanation of
cognitive considerations for many users in many
situations. It offers consistency between micro-level and
macro-level cognitive mechanisms, making them
accessible to designers as a basis for usability evaluation.
Finally, it describes many situations that would not
normally considered as varieties of programming, in a
manner that clarifies the deep connections between
programming and other kinds of human interaction with
technology.

This model provides both a potentially rigorous
description of constrained tasks, verifiable through
cognitive simulation, and a qualitative design model that
can be used to anticipate the consequences of certain types

of interaction with design features without the need to do
simulation. These features of the Attention Investment
model include awareness of attention costs, assessment of
pay-off that may result from abstract interaction, risk of
failure, and the need to gather sufficient information to
make appropriate investment decisions based on bounded
reasoning assumptions. The results offer a description of
first steps toward end-user programming in many
situations, but in terms that are consistent with the
cognitive demands in professional programming,
providing a uniform basis for design of end-user
programming systems.

6. Acknowledgments

Many people have contributed to the ideas in this
paper. Margaret Burnett, Tony Hoare, Hugh Mellor, and
Thomas Green have all given specific advice that has led
to new perspectives.

7. References

[1] Blackwell, A.F. (2001). See What You Need: Helping end
users to build abstractions. Journal of Visual Languages and
Computing, 12(5), 475-499.

[2] Blackwell, A.F. & Burnett, M. (2002). Applying Attention
Investment to end-user programming. In Proceedings
HCC’02.

[3] Blackwell, A.F. and Green, T.R.G. (1999). Investment of
Attention as an Analytic Approach to Cognitive
Dimensions. In T. Green, R. Abdullah & P. Brna (Eds.)
Collected Papers of the 11th Annual Workshop of the
Psychology of Programming Interest Group (PPIG-11), pp.
24-35.

[4] Blackwell, A.F. and Hague, R. (2001). AutoHAN: An
Architecture for Programming the Home. In Proceedings of
the IEEE Symposia on Human-Centric Computing
Languages and Environments, pp. 150-157.

[5] Blackwell, A.F., Robinson, P., Roast, C, and Green, T.R.G.
(2002). Cognitive models of programming-like activity.
Proceedings of CHI'02, 910-911.

[6] Card, S.K., Moran, T.P. & Newell, A. (1983). The
Psychology of Human-Computer Interaction. Hillsdale, NJ:
Lawrence Erlbaum.

[7] Carlson, R.A., Wenger, J.L. & Sullivan, M.A. (1993).
Coordinating information from perception and working
memory. Journal of Experimental Psychology: Human
Perception and Performance, 19(3), 531-548.

[8] Diaz Pace, J.A. & Campo, M.R. (2001). Analyzing the role
of aspects in software design. Communications of the ACM,
44(10), 67-73.

[9] Goldhaber, M.H. (1992). The attention society. In E. Dyson
(ed.) Release 1.0 number 3, New York, EDventure
Holdings, pp. 1-20.

[10] Goodell, H. (1999). End-User Programming website. On-
line proceedings and material from workshop at CHI 99
(Pittsburgh, PA May 17 1999)
http://www.cs.uml.edu/~hgoodell/EndUser/

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

cira
Underline

cira
Underline

[11] Goodman, N. (1969). Languages of art: An approach to a
theory of symbols. London: Oxford University Press.

[12] Gray, W.D. & Fu, W.-T. (2001). Ignoring perfect
knowledge-in-the-world for imperfect knowledge-in-the-
head: Implications of rational analysis for interface design.
CHI Letters 3, 112-119.

[13] Green, T.R.G. and Blackwell, A.F. (1998). Design for
usability using Cognitive Dimensions. Tutorial session at
British Computer Society conference on Human Computer
Interaction HCI'98.

[14] Green, T.R.G. and Blackwell, A.F. (1996). Ironies of
Abstraction. In Proceedings 3rd International Conference
on Thinking. British Psychological Society.

[15] Green, T.R.G. and Petre, M. (1996). Usability analysis of
visual programming environments: a 'cognitive dimensions'
approach. Journal of Visual Languages and Computing,
7,131-174.

[16] Hoare, A.J.P. Personal communication, 30 October 2001.
[17] Hoc, J.-M., Green, T.R.G., Samurcay, R. and Gilmore, D.J.

(Eds) (1990). Psychology of programming. Academic
Press..

[18] Lindsay, R.K. (1988). Images and inference. Cognition,
29(3), 229-250.

[19] McCracken, D.D. (1957). Digital computer programming.
Wiley.

[20] Mellor, D.H. (1988). 'How much of the mind is a computer?
In P Slezak and W. R. Albury (Eds). Computers, Brains and
Minds. Dordrecht: Kluwer, 47-69.

[21] Nardi, B.A. (1993). A small matter of programming:
Perspectives on end user computing. MIT Press.

[22] Nielsen, J. & Molich, R. (1990). Heuristic evaluation of user
interfaces, Proceedings of ACM CHI’90 Conf. (Seattle,
WA, 1-5 April), 249-256.

[23] O’Hara, K.P. & Payne, S.J. (1998). The effects of operator
implementation cost on planfulness of problem solving and
learning. Cognitive Psychology, 35, 34-70.

[24] Pirolli, P. & Card, S.K. (1999). Information foraging.
Psychological Review, 106, 643-675.

[25] Portante, T. & Tarro, R. (1997). Paying attention. Wired
5.09, 114-116.

[26] Russell, S. & Wefald, E. (1991) Do the right thing: Studies
in limited rationality. MIT Press. (Book)

[27] Shneiderman, B. (1983). Direct manipulation: A step
beyond programming languages. IEEE Computer, August,
pp. 57-69.

[28] Staton, S. (2002). An agent architecture. Paper presented at
CHI 2002 workshop on Cognitive Models of Programming-
Like Processes.

[29] Stenning, K. & Oberlander, J. (1995). A cognitive theory of
graphical and linguistic reasoning: Logic and
implementation. Cognitive Science, 19(1), 97-140.

[30] Weinberg, G. The psychology of computer programming.
New York: Van Nostrand Reinhold. From (1971)

[31] Wrubel, M.H. (1959). A primer of programming for digital
computers. McGraw Hill.

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments (HCC’02)
0-7695-1644-0/02 $17.00 © 2002 IEEE

cira
Pencil

cira
Pencil

cira
Underline

cira
Underline

cira
Underline

cira
Underline

cira
Underline

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

