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This paper surveys the use of geometric methods for wireless sensor networks. The
close relationship of sensor nodes with their embedded physical space imposes a unique
geometric character on such systems. The physical locations of the sensor nodes greatly
impact on system design in all aspects, from low-level networking and organization to
high-level information processing and applications. This paper reviews work in the past
10 years on topics such as network localization, geometric routing, information discovery,
data-centric routing and topology discovery.
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1. Introduction

Networked embedded sensors provide a unique opportunity for real-time, large-
scale, high-resolution environmental monitoring. Such systems are becoming
ubiquitous across many activities important to our economy and life, including:
manufacturing and industrial sensing; traffic and power grid management;
wildlife, agriculture and environmental monitoring; hospital operations and
patient observation; and all the way through to target tracking, battlefield
awareness and other military applications.

The close relationship of sensor nodes with their embedded physical space
imposes a unique geometric character on such systems. The physical locations
of the sensor nodes greatly impact on system design in all aspects, from
low-level networking and organization to high-level information processing and
applications. From a networking point of view, node placement clearly influences
network connectivity and sensing coverage, which subsequently affects basic
network organization, such as clustering and localization, as well as naming and
routing in the network. From an application point of view, sensor readings exhibit
spatial correlations that can be exploited for data compression, approximation
and validation. This review surveys algorithms that exploit geometric structures
for sensor network operation and design. It is worth noting, however, that
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classical geometric techniques assume precise geometric information (e.g. node
locations) [1], which is often lacking in sensor deployments, or operate in a heavily
centralized fashion. Their adaptation to the sensors in the sensor network context
raises many novel challenges. In particular, this review covers the following set of
research problems.

— Network localization. As wireless communications in sensor networks are
short-range, two nodes can be connected by a link only when they are
in close proximity. The problem of network localization is to discover
the sensor node positions from the graph connectivity, possibly using
additional distance or angle measurements.

— Geometric routing. In resource-constrained and highly volatile networks,
traditional routing table approaches cannot be applied. Geographical
routing and its many variations, using node locations, provide alternative
scalable solutions. A number of geometric ideas have been developed for
routing using only local information and greedy decisions, even when true
node geolocations are unavailable. We also cover recent research work for
load-balanced routing and routing using landmarks.

— Information discovery and data-centric routing. Emerging applications
of ubiquitous sensor deployments in spaces where people live and work
envision a smart environment where situations are continual assessed
and responses generated in a real-time manner. The sensors serve two
purposes: discovering/detecting the events of interest; and forming a
supporting infrastructure for distributed resources/users to be informed
about and act upon the detected events. In this setting, sensors that detect
interesting data are named as information producers. Users in the same
space who search for such sensor data are called information consumers.
Unfortunately, neither information producers nor consumers are directly
aware of each other, unless some information brokerage mechanism brings
them together. We survey various information processing, discovery and
brokerage schemes, for different application requirements (query latency,
storage, structures in the data, user query patterns), that best serve users’
requests in a resource-constrained network. We also cover distributed data
aggregation schemes.

— Network topology discovery. When a sensor network grows large in scale, it
is unrealistic to assume that nodes are placed uniformly in a regularly
shaped region. Terrain variations and obstacles often forbid sensor
placement; random sensor deployment is also likely to lead to deployment
‘holes’ or ‘voids’. The problem of network topology discovery is detecting
and representing non-trivial sensor network topology, and then using this
knowledge to improve routing and information discovery/delivery in the
network.

We note that there are a number of topics that also heavily involve geometric
techniques, such as topology control [2,3] or geometry-based communication
models, e.g. signal-to-interference-and-noise ratio [4,5]. These are not covered in
this survey owing to space constraints. Interested readers are referred to the cited
books or survey papers.
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2. Network localization

Sensor location information is indispensable for both sensor data integrity and
important network management issues such as coverage and data delivery.
Traditional approaches to obtain location information mainly rely on global
positioning systems (GPS) [6]. But GPS is not appropriate for large-scale
sensor localization owing to its high cost, large form factor and environmental
constraints. GPS requires direct line of sight to satellites and thus does not
work indoors, underground and underwater, and often has poor accuracy in
large metropolitan areas (owing to the ‘urban canyon’ problem). There has
been a lot of study on localization algorithms that derive the locations of
sensor nodes from local measurements such as distance and angle estimations
between neighbours [7–17]. The distance between two communicating nodes can
be estimated by received signal strength indicator or time-of-arrival techniques.
Angles between adjacent edges can be measured by antenna arrays, multiple
ultrasound receivers [18] or directional antennas.

Generally speaking, localization algorithms can be classified as anchor-based
and anchor-free methods. Anchor-based methods assume that a (sometimes large)
number of anchor nodes know their positions already [7–12,17]. In anchor-free
methods, no node knows its absolute coordinates; the output is the relative
positioning of the sensors, subject to a global translation and rotation.

(a) Basic trilateration and triangulation

In the basic planar trilateration scheme, a node can determine its location
with distance measurements to three anchor nodes that are not collinear [7–9].
For localization of a sensor network, we can repeat trilateration iteratively, called
iterative trilateration. Nodes that obtain their locations become new anchor
nodes and help in localizing others. Similar methods can also be performed by
angle measurements [10,11]. For these incremental methods, two issues need to
be addressed. The first is to deal with cascading error accumulation in large
networks. One can adopt optimization techniques such as mass–spring relaxation
to smooth out the error distribution, or use robust statistics to handle outliers
in input measurements [19]. The other issue is to handle an insufficient number
of initial anchor nodes. If the number of anchors is too small or the anchors are
not well distributed, then some nodes may not be able to find three neighbouring
anchor nodes to locate themselves. In this case, one can use distance estimations
to anchor nodes via multi-hop paths [9] or adopt collaborative multi-lateration
by solving a larger optimization problem [7,8].

When the sensor nodes are not uniformly distributed and the network
contains big holes, using hop counts as estimates of the Euclidean distances
may introduce large errors, as bending around hole boundaries may artificially
inflate the Euclidean distance. In order to address this problem, paths that
touch hole boundaries can be detected and then either eliminated from network
localization [20] or amended to get a better distance approximation [21].

(b) Graph rigidity and network localizability

Existing anchor-free algorithms take either the connectivity graph [12] or
the distances between neighbouring sensor nodes [13–16] as input. One major
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challenge using this approach is localization ambiguity—when there are multiple,
different localization solutions that satisfy all the distance constraints but are
far from each other. Indeed, with range information, local optimization such as
mass–spring relaxation techniques may get stuck at local minima [15,22].

The problem of whether a graph with given edge length constraints admits
a unique embedding in the plane is studied in rigidity theory [23]. A graph is
rigid in the plane if one cannot continuously deform the shape of the graph
without altering the lengths of the edges. A graph is globally rigid if it admits a
unique embedding in the plane, subject to global rotations and translations. The
theory of graph rigidity in two dimensions is relatively well understood. There
is a combinatorial condition, the Laman condition, to characterize graphs that
are generically rigid. There is also an efficient algorithm, the pebble game [24],
to test whether a graph is generically rigid in time O(nm), where n is the
number of nodes and m is the number of edges. Similarly, both a combinatorial
characterization of globally rigid graphs and polynomial algorithms for testing
such graphs are known [25,26]. It is however not trivial to apply these rigidity
results in the development of efficient localization algorithms. Given a graph with
edge lengths specified, finding a valid graph realization in R

d for a fixed dimension
d is an NP-complete problem [27–29].

The pioneering work of using rigidity theory in network localization [13–15,
30–33] focuses on identifying special graphs that do admit efficient localization
algorithms. The first idea is to use trilateration graphs [15,30–32]—intuitively, the
graphs derived by iterative trilateration methods. A trilateration graph is defined
recursively. It is either a triangle or a trilateration graph with a trilateration
extension, defined as adding an additional vertex with three edges to existing
vertices. If the network contains a trilateration graph, then one can exhaustively
search for the ‘seed’ triangle in the graph and greedily find the trilateration
extensions. Then an incremental algorithm, i.e. iterative trilateration, can be
adopted to find the realization of the network. The second idea is to examine
uniquely d-localizable graphs. A graph with known edge lengths is called uniquely
d-localizable if there is a unique realization of the graph in R

d and there is no
non-trivial realization in R

k with k > d. In other words, any realization in R
k with

k > d stays in an affine subspace of dimension d in R
k . For example, a generic

simplex of d + 1 vertices is uniquely d-localizable. For uniquely d-localizable
graphs, So & Ye [13] and Biswas & Ye [14] have shown that semi-definite
programming (SDP) can be used to find the realization. However, it is not known
whether there is a combinatorial characterization of graphs that are d-localizable.

(c) Tractability of network localization

From a theoretical point of view, one can formulate the localization problem
as embedding a unit-disc graph (UDG) in the plane, if we assume that the
communication graph follows the UDG model. In a UDG, two nodes are connected
by an edge if and only if they are within distance 1. With purely the connectivity
information, determining whether a combinatorial graph is a UDG is NP-
complete, and thus finding such an embedding in the plane is also hard [34].
In fact, even a relaxed version of the problem is still hard. Kuhn et al. [35] proved
that finding an embedding such that non-neighbouring pairs are at least 1 away
and neighbouring pairs are within

√
3/2 is NP-hard. Distance measurements of
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neighbouring nodes or angle measurements of neighbouring edges alone do not
help either [27,28,36]. Not much is known on approximation algorithms for UDG
embedding. So far the only positive result is an algorithm with an upper bound
O(log2.5 n

√
log log n) on the ratio of the longest distance between neighbouring

pairs to the shortest distance between non-neighbouring pairs [35].

(d) Global optimization methods

A number of localization methods use global optimization tools. These
algorithms in general have the best accuracy but the drawback is that they
require the global network topology and thus are centralized methods, besides
being computationally expensive.

In multi-dimensional scaling (MDS) [12,37], the input is assumed to be a
distance matrix on all pairs of nodes. By shifting to the centre, the distance
matrix is reorganized to derive the Gram matrix G = XXT, where X is the
coordinate vector on all sensor nodes. Since the Gram matrix G is symmetric and
positive semi-definite, we can perform eigen-decomposition and derive G = VAV T,
where A is the diagonal matrix of all eigenvalues and V is the matrix of the
corresponding eigenvectors. Now we can obtain the node coordinates X as VA1/2.
If we require a two- or three-dimensional embedding, then we can take only the
largest two or three eigenvalues. In practice, when it is difficult to get distance
measurements for all pairs, it is common practice to use the minimum hop count
to approximate the Euclidean distance [12]. In a network with uniform sensor
density and a regular shape, MDS typically works very well. But its performance
may deteriorate significantly when the network shape becomes complex [38].

Biswas & Ye [14] used SDP for network localization. The input is a graph
with possible anchor nodes and distance measurements on the edges. The basic
idea is to introduce the Gram matrix variables Y . Ideally, Y = XXT, where X
is the coordinate vector on all sensor nodes. This constraint is relaxed such that
Y − XXT should be a positive semi-definite matrix. Together with other distance
constraints, it can be shown that the system is a semi-definite program and can be
solved using standard interior point methods. Similarly, with angle measurements,
one can formulate a linear program that solves for the node locations [36].

(e) Cut, embed and paste

A family of practical algorithms uses a bottom-up approach by first localizing
small components and assembling them together. Moore et al. [15] proposed
the use of robust quadrilaterals as the atomic components. A quadrilateral is
a complete graph on four nodes and the smallest globally rigid graph. When the
distance measurements are noisy, the skinny quadrilaterals, when three of the
four nodes are almost collinear, can possibly have flip ambiguities. Thus only a
set of robust quadrilaterals, i.e. those that are fat, are used. The global layout is
obtained by gluing locally identified robust quadrilaterals. Similarly, with ideas
from rigidity theory to improve iterative multi-lateration on sparse networks,
Goldenberg et al. [32] proposed to record, propagate and verify multiple possible
locations of sensors to discover the true network layout. The idea of decomposing
the network into small pieces, embedding them and then gluing them together
can also be applied in a multi-resolution manner [39].
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Lederer et al. [38] considered network localization using only connectivity
information when the network shape is complex. The algorithm first selects
landmarks on network boundaries with sufficient density, then constructs the
landmark Voronoi diagram (in which all nodes closest to the same landmark
are grouped in the same Voronoi cell1) and its dual combinatorial Delaunay
complex on these landmarks (in which an edge is constructed between two
landmarks if they share common nodes). The key insight is that the combinatorial
Delaunay complex is provably globally rigid and has a unique realization in
the plane, provided that the landmarks are sampled according to the local
geometric complexity of the sensor field. Thus an embedding of the landmarks
by simply gluing the Delaunay triangles properly recovers the faithful network
layout. With the landmarks nicely localized, the rest of the nodes can easily
localize themselves using trilateration to nearby landmark nodes. This leads to
a practical and accurate localization algorithm for large networks using only
network connectivity.

3. Geometric routing

(a) Geographical routing

In geographical routing, the physical locations of the sensor nodes are used to
guide the path that a packet takes in the network. Geographical routing was
originally proposed by Bose et al. [40], and independently by Karp & Kung [41].

Geographical routing has two modes: the greedy mode and the recovery mode.

(i) Greedy mode

In this mode, the node currently holding the packet ‘advances’ it towards the
destination, based only on the location of itself, its immediate neighbours and the
destination. The advance rule may be defined in many ways. Examples are: closest
to destination [40–43], most forward within radius [42], nearest forward progress,
nearest closer [44], geographical distance routing [45] and compass routing [46].
The most popular way of defining the advance is by decreasing the Euclidean
distance to the destination. Greedy routing often suffices to deliver a packet in
a dense network, but may fail in a sparse network, where the packet may reach
a local minimum whose neighbours are all further away from the destination
than itself.

(ii) Recovery mode

The recovery mode defines how to forward the packet at a local minimum.
Some examples of the recovery methods are simple flooding [45], terminode
routing [47], breadth-first search or depth-first search [48], the face algorithm [40]
and perimeter routing [41].

Here we use a specific routing protocol, the greedy perimeter stateless
routing (GPSR) protocol [41], to explain the two modes in detail. A nice
summary of geographical routing schemes with a focus on some subtle issues is
presented in Frey & Stojmenovic [49]. In GPSR, the greedy mode uses minimum
1One node may have multiple closest landmarks and thus may stay in multiple Voronoi cells.
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distance to destination as the rule for making progress. To get out of a local
minimum, the protocol maintains a planar and connected subgraph, e.g. the
Gabriel graph or the relative neighbourhood graph, and applies routing along the
faces of the subgraph that intersect the imaginary line segment between the
source and the destination. Greedy routing, combined with perimeter routing,
guarantees the delivery of a packet to the destination if there is indeed a way
of doing so. In addition, the construction of the planar graphs, as well as the
routing decisions, is localized, requiring only information from neighbouring
nodes. This makes geographical routing very attractive for large-scale networks,
as the state information maintained in each node and in the packet is
nearly minimum.

(iii) Theoretical bounds on path stretch

The path stretch measures how much longer the routing path is compared
with the shortest path. A lower bound proved by Kuhn et al. [50] states that
any deterministic or randomized algorithm using only local information cannot
find a path of length shorter than U(k2) in the worst case, where k is the length
of the shortest path. On the other hand, it is shown by Gao et al. [51] that
greedy routing, in the case of successful delivery, uses O(k2) hops. The GOAFR+
(greedy other adaptive face routing) family protocols [50,52], or, alternatively,
using restricted flooding with doubling radii, both guarantee a worst-case path
length of O(k2).

(iv) Geographical routing in three dimensions

Durocher et al. [53] showed a negative result that it is impossible to find a
constant state routing algorithm in three-dimensional unit-ball networks. Thus
one cannot hope to directly carry the ideas to routing in three-dimensional
networks.

(v) Geographical routing in practice

The recovery scheme with face routing or perimeter routing works nicely
in theory but encounters a few problems in practice. The correct construction
of a planar subgraph assumes accurate location information, which is hard to
obtain, and that the communication graph is modelled by a UDG, which does
not hold in practice. Experimental evaluations of the communication model on
sensor nodes reveal various spatial and temporal radio irregularities [54,55]. In
practice, the planar subgraph extracted may become disconnected or still contain
crossing edges, as shown in earlier studies [56,57]. This subsequently causes the
delivery rate to drop to about 68 per cent on a real testbed [57]. Later, a
number of repair mechanisms have been proposed to remove crossing links by
probing [57–59]. These mechanisms improve the delivery rate at the cost of higher
processing overhead.

Another problem of face routing, especially in a sensor field with big holes, is
that the routes are likely to ‘hug’ the hole boundaries. Thus the nodes on the
hole boundaries deliver higher traffic than the average. The load imbalance may
cause the boundary nodes to run out of battery earlier than the others, enlarging
the size of the holes and disconnecting the network.
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These two issues motivated researchers to go beyond geographical routing and
design virtual coordinates that still retain the good properties of geographical
routing but are more robust to radio models, topological changes and
node failures.

(b) Greedy routing with virtual coordinates

(i) NoGeo: using rubber-band representations

NoGeo [60] is one of the earliest proposals for efficient geometric routing
with virtual coordinates. The virtual coordinates are defined by the rubber-band
representation of a graph [61]. In short, suppose that some nodes (preferably on
the network perimeter) are given fixed locations; the rubber-band representation
is obtained by each node (that is not fixed) running an iterative algorithm of
putting itself at the centre of mass of the neighbours’ current locations (also
known as Laplacian smoothing). This algorithm is known to reduce the total
energy of the system, if all the edges are considered as rubber bands whose rest
length is zero, and converge to the rubber-band representation. NoGeo has no
guarantee on delivery by greedy routing on the virtual coordinates but works
well in simulations. To understand that, one can see that any node (other
than those with fixed locations) cannot be a reflex vertex, i.e. it cannot have
all neighbours on the same half-plane. As a reflex vertex is bad for greedy
routing, this observation intuitively explains the good performance of routing
on rubber-band representations in practice.

(ii) Greedy embeddings

Motivated by NoGeo, researchers asked whether one can find an embedding of
a given graph in the plane such that greedy routing always works [62]. Such an
embedding is called a greedy embedding or a greedy drawing. It is known that not
every graph admits a greedy embedding, such as a star with seven leaves [62].
Some graphs are known to have a greedy embedding—for example, graphs that
contain a Hamiltonian path, complete graphs, 4-connected planar graphs (as they
are Hamiltonian [63]), power diagrams [64] and Delaunay triangulations [65,66].
But it still remains open to fully characterize the class of graphs that admit a
greedy embedding.

Papadimitriou & Ratajczak [62] showed that any planar 3-connected graph (a
graph is 3-connected if it remains connected after the removal of any two nodes)
has an embedding in three dimensions such that, with a special distance function,
greedy routing always works. This is due to a famous graph theory result that
a 3-connected planar graph is actually the edge graph of a three-dimensional
convex polytope [67]. They also conjectured that a planar 3-connected graph has
a greedy embedding in the plane. Dhandapani [68] discovered that, for any planar
triangulation, there exists a greedy embedding in the plane using Schnyder’s
realizer concept. The conjecture was proved to be true in 2008 by Leighton &
Moitra [69], and independently by Angelini et al. [70].

A tricky and important issue, as pointed out by Eppstein & Goodrich [71], is
that the greedy embedding as proposed earlier (e.g. in the study of Leighton
& Moitra [69]) may require U(n log n)-bit size coordinates. This makes such
greedy drawing methods impracticable, as the space requirement is the same
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as for the standard routing table approach. Ideally, we would like succinct greedy
drawing in the plane, in which the virtual coordinates are represented by O(log n)
bits. Angelina and co-workers [72] proved that this is not possible. They show
that there are infinitely many trees whose greedy embeddings need exponential
size grids. Recently, Goodrich & Strash [73] used the embedding presented by
Leighton & Moitra [69] and developed succinct O(log n)-bit coordinates (not
Euclidean though) that support greedy routing using a different metric function.
In a similar way, He & Zhang [74] showed that the classical Schnyder drawing
admits greedy routing with succinct coordinates under a special metric function.

Sarkar et al. [75] considered a triangulated domain with holes and produced an
embedding such that all the holes are mapped to circular discs, using conformal
mappings and discrete Ricci flows. Thus greedy routing never gets stuck at hole
boundaries. One other good property is that the mapping can be computed with
a distributed gossip-style algorithm.

Most of the embeddings are in low-dimensional (two- or three-dimensional)
Euclidean spaces. Flury et al. [76] considered embedding a graph in an O(log n)-
dimensional space and the routing stretch is bounded by 1 + 3 for any 3.

(iii) Embedding in hyperbolic spaces

Kleinberg [77] showed that greedy routing in hyperbolic space is easy, as
any tree has a greedy embedding in the hyperbolic plane. Unfortunately, the
hyperbolic embedding in the study of Kleinberg [77] does not provide succinct
coordinates either. Maymounkov [78] provides a greedy drawing method for
three-dimensional hyperbolic space using vertices that can be represented with
O(log2 n) bits. Eppstein & Goodrich [71] proposed a method to embed a tree in a
‘balanced’ manner and therefore showed that any n-vertex connected graph can
be embedded in two-dimensional hyperbolic space with succinct coordinates that
support greedy routing.

(c) Load-balanced routing

In large-scale sensor networks, it is critical to balance workload on different
sensors, to prevent some nodes from running out of battery prematurely. For
load-balanced routing, one formulation of the problem is to select routes such that
the maximum load is minimized. Unfortunately, solving this problem is NP-hard
(modelled as unsplittable flow problem) even in very simple networks (such as a
grid). Approximation algorithms [79,80] have been developed for the problem. But
they all require global coordination, and are thus inappropriate for low-resource
sensor networks. In this section, we focus on the load-balancing issue of greedy
routing solutions.

(i) Routing in a narrow band

Gao & Zhang [81] proposed a greedy routing scheme that achieves a routing
stretch factor of 4 (compared with shortest-path routing) and a load-balancing
ratio of 3 (compared with the optimal load-balanced routing), for wireless nodes
distributed in a narrow strip of width

√
3/2, when the communication graph

follows the UDG model. Even for this restricted scenario, it is still NP-hard to
compute the most balanced routes.
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(ii) Routing in a disc

In a simple network with sensors uniformly spread in a disc, shortest-path
routing (or geographical greedy routing) will incur higher traffic load on the
nodes near the centre. Popa et al. [82] proposed the curve-ball method to
use stereographic projection to map the network to a hemisphere. Routing is
performed by greedy routing using the spherical distance instead of the Euclidean
distance. Intuitively, the paths now move away from the centre. The same idea is
used by Li & Wang [83] to resolve routing congestion at the network centre.

In a recent work [84], the load-balancing property is studied using the
projection of a 3-connected planar graph to a convex three-dimensional
polyhedron as described in the Koebe–Andreev–Thurston embedding [67].
When the network is dense and with a proper embedding, the polyhedron is
approximately a sphere. Thus greedy routing on the polyhedron also avoids the
problem of causing a dense centre. Different from the curve-ball method, greedy
routing on the convex polytope guarantees delivery [62].

(iii) Routing in a square

Mei & Stefa [85] studied load balancing for a square-shaped sensor network.
The network is quadrupled by successive reflections in the X and Y axes and
the network is now four times as big and has the topology of a torus. Each node
is mapped to an image in each of the four copies. For routing, each of the four
copies of the destination is chosen with equal probability. Routing is executed
using greedy geographical routing on the torus, which is equal to reflecting back
from the boundary in the original network. This method has good load-balancing
properties and the centre is not overloaded, but at the cost of increasing the
average traffic load, as the routing path may now be much longer.

(iv) Routing in the covering space

For a general network with possibly big holes, none of the previous methods
work very well. In particular, most greedy routing methods, using geographical
locations or other virtual coordinates, tend to follow the hole boundaries and
heavily overload these nodes. Sarkar et al. [86] proposed to use the notion of
covering space to deal with the problem. This builds on top of the virtual
embedding [75] in which all boundaries are circular. Now we have a network with
k circular holes. For each interior hole, one can take a Möbius transformation that
essentially ‘reflects’ the network inwards with respect to the hole. This partially
fills up the hole, except that there are k smaller circular holes. Now we can
continue such transformations with respect to the remaining holes so that all
the holes are eventually filled up, with infinitely many transformed copies of the
original sensor field. In practice, we stop after a number of rounds when the holes
left are sufficiently small. For routing in the covering space, a message can ‘enter’
the hole to route in another copy of the network, effectively reflecting on the hole
boundary. The nodes on the boundary are now treated in the same way as the
other nodes with respect to routing and the problem of them being overloaded is
substantially alleviated.
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(d) Landmark-based routing

A family of routing algorithms use landmark schemes [87–90]. The idea of
using landmarks for generating naming and routing schemes in large networks
was initially proposed two decades ago, such as the landmark hierarchy by
Tsuchiya [91]. The landmark-based routing schemes described shortly are all
two-level hierarchy.

In the sensor network setting, a small subset of the nodes are selected as
landmarks. The landmarks flood the network and every node records its hop
count distances to these landmarks. The landmark distances are then used to
generate virtual coordinates for the nodes. Routing is typically guided in a greedy
way by a potential function on the landmark-based distances. Landmark-based
schemes are favoured for their simplicity and independence of the dimensionality
of the network.

(i) Gradient landmark-based routing

Gradient landmark-based routing [87] is concerned with routing in a sensor
network with holes or with an irregular shape. A number of landmarks are
selected, and the network is partitioned into Voronoi tiles such that nodes inside
the same tile are closest to the same landmark. Two Voronoi tiles are adjacent
if there are two neighbouring nodes in different Voronoi tiles. The tile adjacency
graph, denoted by the combinatorial Delaunay graph, is abstracted and known
to all the nodes, for global routing across tiles. The landmarks are selected to
capture the global topology of the sensor field. Thus the number of landmarks
is likely to be dependent on the topological complexity, such as the number of
holes, typically much fewer than the number of sensors [92].

Each node p is given virtual coordinates, defined by the distance to its closest
landmark u and the distance to u’s neighbouring landmarks in the Voronoi
diagram. To route to the destination node, the source node will first consult
with the combinatorial Delaunay graph to find a sequence of tiles to visit. The
actual route will be composed of inter-tile routing (routing to an adjacent tile)
and intra-tile routing (routing within a tile), both using greedy, local routing
schemes based on landmark distances.

The same combinatorial Delaunay structure is used by Funke & Milosavljević
[93,94] to account for inaccurate location information and small network holes
and irregularities.

(ii) Beacon vector routing

Beacon vector routing (BVR) [88] uses a potential function that depends on
the distances to the k landmarks closest to the destination, where k is a system
parameter. Out of the k landmarks, the ones that are closer to the destination
than to the source impose a ‘pulling’ force while the rest impose a ‘pushing’
force. The potential function is a combination of the two. BVR has received
significant attention and has been selected in a number of cases as a comparison
benchmark [90,95].
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(iii) Gradient landmark descent routing

None of the previous methods guarantee routing stretch. Nguyen et al. [90]
proposed a method with bounded stretch in the continuous domain. The
landmarks are selected to be an r-sampling: any node is within hop count r
from a landmark and no two landmarks are within distance r of each other. An
r-sampling has better uniformity than random sampling and can also improve
the performance of other methods such as BVR. Routing is repeated by greedy
forwarding towards the landmark that maximizes the ratio of the distances to
source and destination.

(iv) Small state, small stretch routing

Mao et al. [95] adopted the idea of compact routing schemes (proposed by
Thorup & Zwick [96,97]). When the destination is far away, it is a reasonable
approach to route towards the landmark closest to the destination. Only when a
message gets close to the destination, when all landmarks are equally far away,
do we need a separate scheme to deliver the message to the destination. In small
state, small stretch (S4) routing, a local routing table is constructed for the last
phase. The routing scheme guarantees worst-case stretch of 3 and routing table
size of roughly O(

√
n) for a uniform regular network of n nodes.

To conclude, we remark that a few other protocols, whose ideas are similar
to one of these, were not covered in detail here [89,98]. The landmarks in these
schemes are mainly used as points of reference, and do not serve the functionalities
of gateway nodes (which attract traffic). The schemes described here differ in how
routing to a distant or a nearby destination is designed and integrated.

(e) Information discovery and data-centric routing

In data-centric routing, a node poses a query for data of certain types, and
a routing algorithm must route the query to retrieve the relevant data in the
sensor network. Data-centric routing is fundamentally different from traditional
routing paradigms, as the problem also involves the discovery of the destination,
the nodes that have the required data. A dual version is also possible, in which
data are routed, looking for relevant queries. Both versions can be formulated
as the problem of information brokerage, which matches and carries information
between information producers (also known as sources), the nodes that perform
data acquisition and event detection, and information consumers (also known as
sinks), the nodes that search for or need this information.

This problem in sensor networks was initiated in the directed diffusion work
of Intanagonwiwat et al. [99]. The sensor nodes locally process their data
and organize them by attribute-value pairs. A query (called an interest) is
disseminated to the entire network and matched data will be routed back, possibly
along multiple paths. Reinforcement learning is used to prune the bad paths.
A similar routing paradigm is also adopted in TinyDB [100] to support Structured
Query Language (SQL) style aggregation queries on information distributed in
the network. These two approaches aim at infrequent queries for streaming data
type so that the cost of flooding can be justified and amortized over the following
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long-term data delivery. In the following, we describe a number of schemes that
exploit the geometric properties of the network for more efficient information
discovery and brokerage.

(i) Geographical hash tables

A parallel approach to data-centric routing is to adopt data-centric storage,
which is aimed at large-scale networks with many simultaneously detected
events that are not necessarily desirable for all users [101,102]. The idea is
similar to distributed hash tables on the Internet [103–106]. A producer leaves
data on rendezvous nodes for consumers to retrieve. Thus data across space
and time can be aggregated at rendezvous nodes. In geographical hash tables
(GHTs) [102], data are hashed by their data type to geographical locations. The
nodes close to the hashed location serve as rendezvous nodes. Data and query
delivery to the rendezvous nodes is implemented by geographical routing such
as GPSR [41].

GHTs have greatly reduced the communication cost and energy consumption
by avoiding network-wide flooding for information discovery. Their simplicity is
also very appealing. However, the basic GHT scheme does not have distance
sensitivity. In particular, if the producer is actually close to the data producer
(although neither has knowledge of the other), we would like the data consumer
to discover the data producer quickly. This is an attractive property in many
applications, as information will be most useful, thus queried more frequently, in
the spatiotemporal locale where it was collected.

In the study of Funke et al. [107], a discrete centre hierarchy [108] is built
for distance-sensitive retrieval. The hierarchy is composed of clusters with a
parent cluster, including all children clusters. A data item is hashed and stored
at certain other nodes, called the data servers, chosen from nearby clusters and
fewer servers in far-away but large clusters. The retrieval scheme starts to search
in the local neighbourhood until it discovers a nearby data server. The total cost
is proportional to the distance to the producer.

(ii) Double rulings

As data delivery from data source to a rendezvous node is implemented by
multi-hop routing, it is natural to leave information hints along the trail that the
data travel on, at no extra communication cost. A basic double-rulings scheme
works as follows: data or data pointers are stored at nodes that follow a replication
curve, while a data request travels along a retrieval curve. The crucial property
is that any retrieval curve intersects the replication curve for the desired data.
Thus successful retrieval can be guaranteed.

For an easy case, assume that the network is a two-dimensional grid.
The information storage curves follow the horizontal lines. The information
retrieval curves follow the vertical lines. We name this scheme rectilinear double
rulings [109–111]. The spherical double-rulings scheme [112] has both GHTs and
rectilinear double rulings as special cases. It considers the sensor field as the
stereographic projection of a sphere, and the producer curve is a circle through the
producer and the hashed location, which—in a stereographic projection—maps to
the great circle of a sphere. Both double-rulings schemes are distance-sensitive—
if the producer and consumer are distance d apart, the producer can find the
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data with cost O(d). The spherical double-rulings scheme also has many good
properties as it allows natural data aggregates, supports range queries and is
robust to node failures.

Double-rulings schemes can also be defined in the virtual coordinates
space [113] or in a probabilistic manner (as in rumour routing [114]).

(f ) Data collection and aggregation

Many applications of sensor networks require that data be collected from all
nodes of the network or a subset thereof. Most common approaches for data
collection in a network are tree-based. In this subsection, we introduce a few
geometric ideas that take a flat, non-tree approach and use sweeps or sensor-
initiated probes for data collection and aggregation.

(i) Sweeps over sensor networks

The network sweep, proposed by Skraba et al. [115], is implemented by a narrow
band of active nodes that ‘moves’ over the network by issuing invitations to new
nodes to join the band, and dropping nodes that have already been processed
and serve no other essential purpose.

Using simple local diffusion algorithms, one can pre-compute a certain potential
at each node, essentially obtained by solving a simple partial differential equation,
a Laplace equation with Dirichlet boundary conditions, over the network. The
algorithm, in its simplest form, is just the familiar Gauss–Seidel iteration (each
node sets its value to the average values of its neighbours). The construction
guarantees that no local extrema where the sweep could get stuck are present in
the field. In general, such potentials and their gradients are rather resilient to link
connectivity changes in the network because their values integrate information
from large areas of the network. They also smooth out local variations in node
density. They are used by the sweep protocol to provide global guidance so that
the wavefront propagates in an orderly way without self-collision while allowing
the sweep control to remain completely local.

Such diffusion-based gradients have also been used for information routing
and discovery [116]. In particular, the linear space algebraic structure of these
gradients allows certain elegant optimizations on load balancing, Boolean query
routing and more sophisticated aggregations.

(ii) Sparse aggregations

Most of the extant work assumes that the goal of aggregation is to accumulate
data from all the network nodes, while in certain situations only a relatively
small subset of the nodes have useful data to report, or want to participate in an
aggregation. Clearly, for rare events, frequent polling is inefficient, as the query
needs to reach all nodes, although most of them will not participate. A purely
event-driven approach, where each node with a detection independently transmits
a record of the event to a base station, may also not be optimal—consider a group
of nearby source nodes each sending a message to the base station.

In Gao et al. [117], the problem is named sparse aggregation and the nodes with
data are named hot nodes, which are unaware of each other. Key to the solution
is a probe protocol that can be initiated independently by a node and involves
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emitting a few packets out of the node that follow certain paths in the network
while leaving a trail behind, until the probes are terminated. These paths are
chosen as the double-rulings paths (say horizontal and vertical rays) such that
they support distance-sensitive discovery. As the probes encounter each other,
the data from the nodes are aggregated. The two nodes can be considered as
competing in a tournament and the winner of the tournament is decided based
on the data carried or left behind by the probe packets. The losing node then
has its probes recalled/terminated, while the probes of the winner continue to
propagate. Eventually the champion probe, together with the final aggregated
data, propagates to the network boundary, where a high-speed network is assumed
to be available. The probes also implicitly build an aggregation tree on the hot
nodes, in a bottom-up fashion. In the end, it can be shown that the weight of the
aggregation tree, as well as the total message cost, is O(T log n), where T is the
weight of the minimum spanning tree of the hot nodes and n is the network size.

(g) Range queries

For a typical range query, we are given a query region plus possibly a range of
the sensor data, and then for all the sensors in the query region ask whether any
sensor data are within the data range. This is a problem that has been studied a
lot in computational geometry. Various distributed schemes have been proposed.
In the case of a scalar field, one solution is to partition the information about
large geographical regions into subsets according to smaller ranges of the field
value, and store these subsets in different nodes. This is the approach taken in
the Distributed Index for Features in Sensor networks (DIFS) system [118]. In
the Distributed Index for Multi-dimensional data (DIM) system [119], a locality-
preserving hash function is used to map portions of a multi-dimensional attribute
space to sensors so that all data needed to answer a range searching query can be
located conveniently. In the fractional cascading approach [120], information is
stored so that more detailed information is available about data obtained in the
spatio-temporal locality of the sensor where the query is injected—but without
sacrificing the ability to query distant regions or times as well.

All of these schemes are designed to support range queries for static sensor
data and essentially use a quadtree-type hierarchical space decomposition. For
mobile data, constant updates to a fixed space partitioning make these schemes
too costly—small movement of a target may lead to updates up to a high level
of the quadtree and possibly updates on all sensors, if the mobile target happens
to cross a high-level boundary.

For range queries of mobile targets, a naive solution is to do a geocast to the
query region, flood the nodes in the query range and collect the target counts.
Only the sensors that detect the target keep information about the target. This
has an update cost proportional to the target movement distance, but a query
cost proportional to the area of the range. Sarkar & Gao [121] recently proposed
to store target movements implicitly using the differential 1-form such that the
range queries have cost proportional to the perimeter of range R. Consider a
planar graph embedded in the plane, and one target that lies within a face f0
and has a weight of w. The differential 1-form is represented by a function x on
directed edges. That is, the value for x(ab) is the negation of the value for x(ba).
The differential 1-form maintains the property that, for the face f0, the summation
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of all the values of the edges on its boundary, in clockwise order, is w. It is easy
to see that, for a query range that contains multiple faces, and if one sums up the
edge weights in clockwise order for all the faces in the range, the edges that are
completely within the range will be counted twice in opposite directions—so their
weights cancel out. Thus a range query can simply ignore the edges that are in the
interior of R and take the clockwise integration along the range boundary only.
The differential 1-form provides great flexibility that allows low maintenance cost
under both network dynamics and target movements. Network dynamics such as
link addition and removal, or node insertion and removal, can be handled in
constant time as well.

4. Network topology discovery

Large-scale sensor networks are unlikely to be uniform and regular owing to
obstacles and terrain variations. A sensor network is regarded as a discrete
sampling of an underlying geometric environment or space. Thus, the holes of
the sensor field can be intrinsic features indicating important structures of the
underlying environment such as inaccessible terrain or obstacles (buildings, lakes,
etc.), as may be indicated on a building floor plan, a map of a transportation
network, etc. Holes may also map to events that are being monitored by the
sensor network. If we consider sensors with readings above a threshold to be
‘invalid’, then the hole boundaries are basically isocontours of the landscape of
the attribute of interest. Holes are also important indicators of the general health
of a sensor network, indicating, for example, traffic hot spots or sensors with low
battery levels.

In order to discover the nodes on the ‘hole boundaries’ of the sensor
field, various approaches with different assumptions have been investigated,
including geometric methods that use the node locations [122], statistical
methods [123,124], graph methods [125–127] and topological methods [128–131].
In this section, we describe some representative ideas to extract and represent
the network hole structure.

(a) Geometric and statistical methods

Geometric methods for boundary detection use geographical location
information. The first paper on this topic, by Fang et al. [122], assumed that
the nodes know their geographical locations and that the communication graph
follows the UDG assumption. The definition of holes in Fang et al. [122] is
intimately associated with geographical forwarding such that a packet can only
get stuck at a node on hole boundaries. Fang et al. also proposed a simple
algorithm that greedily sweeps along hole boundaries and eventually discovers
boundary cycles.

Statistical methods for boundary detection make assumptions about the
probability distribution of sensor deployment. One can detect boundary nodes
as those with relatively low degree [123] or with relatively low ‘restricted stress
centrality’ (the number of shortest paths going through) [124], in a network
with uniform random sensor distributions. The major limitation of these two
algorithms is the requirement on sensor distribution and typically very high
node density.
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(b) Graph methods

Funke and Klein [126,127] developed a simple algorithm using only network
connectivity information. The basic idea is to construct isocontours based on
hop count from a root node and identify where the contours are broken.
Kröller et al. [125] presented an algorithm searching for combinatorial structures
called flowers and augmented cycles, in a quasi-UDG. A flower would ensure that
the node in the centre of the flower is not on the boundary. Saukh et al. [132]
considered the embedding together with the graph structure and defined a node
to be on the boundary if there is a quasi-UDG embedding in which the node
stays on the geometric boundary. Then they considered subgraph patterns that
ensure a certain subset of the nodes to be always in the interior of any quasi-UDG
embedding. Only the nodes that are certified to be in the interior will not be on
the boundary. The patterns can be considered as generalizations of the flower
structure in Kröller et al. [125].

(c) Topological methods

Ghrist and co-workers [128–130] took an algebraic topology approach to study
the sensor coverage problem: check whether the domain is entirely covered by
the union of the sensing ranges of all the sensors, assuming each node has a
disc sensing range. They abstracted the coverage problem by forming the C̆ech
complex C (r), in which the k-simplices correspond to non-empty intersections
of the sensing ranges of k + 1 distinct sensors, with r as the radius of the
sensing range. Now, by the nerve theorem, when the sensing ranges and all their
non-empty finite intersections are contractible, the union of the sensing ranges
has the homotopy type of the covered domain. Thus the detection of sensing
holes is directly solved by checking whether the domain boundary cycle is null-
homologous in the C̆ech complex. However, the computation of a C̆ech complex
requires the location of the sensor nodes and expensive computations for the
common intersection of discs. Instead, they showed that one can use two Vietoris–
Rips complexes to sandwich the C̆ech complex. A Rips complex R(r) contains
a k-simplex if the k + 1 vertices are pairwise within distance r . In particular,
the following inclusion relationship holds: R(r ′) ⊂ C (r) ⊂ R(r), for r/r ′ ≥ 2/

√
3.

Therefore, the homology of the Rips complex gives sufficient but not necessary
conditions for the coverage holes in the C̆ech complex—if there is a non-trivial
cycle in R(r), then there must be a cycle in C (r); if there are no non-trivial cycles
in R(r ′), then R(r) provides full coverage.

In a different approach [128], the structure of the homotopy classes of the
shortest paths from a single node is used to detect holes. Holes in a sensor
field create irregularities in hop count distances. This phenomenon gives rise in
the continuous setting to the cut locus [19], defined as the collection of points
with distinct shortest paths of different homotopy type—paths that cannot be
‘continuously deformed’ into one another but get around the hole(s) in different
ways and terminate by touching each other, trapping the hole(s) between them.
The nodes in a cut can be easily identified, as they have the property that their
common ancestor in the shortest-path tree is fairly far away, at the other side
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of the hole. One nice property of the cut detection is that the operations can
be performed independently and locally at each pair of adjacent nodes, allowing
natural parallelism.
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