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Abstract—Modern large-scale infrastructure systems have typ-
ical complicated structure and dynamics, and extensive simula-
tions are required to evaluate their performance. The probabilis-
tic collocation method (PCM) has been developed to effectively
simulate a system’s performance under parametric uncertainty.
In particular, it allows reduced-order representation of the
mapping between uncertain parameters and system performance
measures/outputs, using only a limited number of simulations;
the resultant representation of the original system is provably
accurate over the likely range of parameter values. In this
paper, we extend the formal analysis of single-variable PCM to
the multivariate case, where multiple uncertain parameters may
or may not be independent. Specifically, we provide conditions
that permit multivariate PCM to precisely predict the mean of
original system output. We also explore additional capabilities
of the multivariate PCM, in terms of cross-statistics prediction,
relation to the minimum mean-square estimator, computational
feasibility for large dimensional parameter sets, and sample-
based approximation of the solution. At the end of the paper, we
demonstrate the application of multivariate PCM in evaluating
air traffic system performance under weather uncertainties.

Index Terms—Air traffic flow management, dynamical
simulation, uncertainty evaluation.

I. Introduction

THERE is a growing need to effectively and strategically
manage large-scale infrastructure systems, such as air

traffic systems, power grids, and environmental systems. These
systems are typically subject to a wide range of uncertainties,
which significantly complicate the evaluation and management
of system performance. To give some examples, flow con-
tingency management solutions are being developed for air
traffic systems, which seek to automatically generate manage-
ment plans over a 2–15 h lookahead time that are robust to
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weather uncertainties [26], [27]. In analogy, strategic resource
scheduling and real-time surveillance/control algorithms are
sought for the power grid, that are flexible to uncertainties
in renewable generation and load, and robust to complex and
uncertain fault events [12], [29]. As a step toward real-time
management, techniques are needed for accurate yet computa-
tionally efficient evaluation/prediction of system performance
over a range of parametric uncertainties. To address this need
in broad infrastructure system applications, this paper develops
a systematic method to effectively evaluate output statistics for
systems with multiple uncertain input parameters.

System uncertainty evaluation problems are typically ad-
dressed from two angles: analytical solutions and simulations.
However, because of the large scale and complicated nature
of large-scale infrastructure systems, analytical solutions for
system dynamics are typically unavailable; therefore, simula-
tions using complicated computerized models are the primary
approaches for uncertainty evaluation. Monte Carlo methods
have been widely used to evaluate system performance un-
der uncertainty by practitioners in many application domains
[34]. Broadly, Monte Carlo methods have three main steps:
1) generation of a large number of samples covering the
range of parameter uncertainties; 2) simulation of system
performance for each parameter sample; and 3) summary of
simulation outputs to obtain the system-performance statistics.
Often, Monte Carlo methods may not be suitable for large-
scale infrastructure applications, because of their inherent
computational cost. Specifically, Monte Carlo methods typi-
cally require evaluation of a large number of simulations of the
mapping of interest; since infrastructure-network simulations
are rather computationally intensive, such exhaustive simula-
tions are often impossible (especially when real-time decision-
making is needed).

Driven by this limitation, our group (as well as others) have
sought for alternative simulation methods to effectively eval-
uate parametric uncertainties. Our philosophy is that a limited
number of simulations, if appropriately chosen, can provide
adequate approximations of the mapping between uncertain
input parameters and system performance over the range of
likely parameter values. In particular, an adequate low-order
mapping allows us to obtain statistical characterizations of
system performance, and to evaluate system performance at
any particular parameter value of interest. How to smartly
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choose the values of input parameters as simulation points
and to construct the low-order mapping that allows best
characterization of system-performance statistics is the key.

The probabilistic collocation method (PCM) is a method to
evaluate the uncertainty of computationally expensive models
at a low computational cost. It suggests a smart way of
selecting simulation points to construct a low-order polyno-
mial mapping between uncertain parameters and output or
performance variable, that performs well over the likely range
of parameter values [25], [32]. The idea behind PCM is
as follows. Although system parameters are uncertain, we
typically have some statistical knowledge about the parametric
uncertainties; smartly utilizing this information allows us to
find representative simulation points, from which a reduced-
order mapping of high fidelity can be constructed. In particular,
it was proved in [12] that the low-degree polynomial mapping
generated by PCM is able to predict the mean output (per-
formance) correctly, even if the actual mapping is a much
higher degree polynomial. In [29], we further explored the
statistical performance of PCM, and the practical use of it
when data or empirical low-order statistics is available instead
of the probabilistic density function (pdf).

Several studies have detailed applications of PCM in
transportation- and power-network management [12], [16],
[17], [23]. While these efforts are promising, a limitation
is that only one uncertain input parameter is considered. In
practice, large-scale infrastructure systems typically involve
multiple (sometimes a large number of) spatially/temporally
distributed uncertain parameters. In these cases, more than
one uncertain parameter (which may be correlated) may exert
significant impact on system performance or other output
variables. Thus, we are motivated to develop smart simula-
tion techniques analogous to PCM, and to understand their
effectiveness and cost, when multiple correlated, uncertain
parameters are present. Specially in this paper, we extend the
formal analysis of the single-variable PCM to the multivariate
case, where the uncertain parameters may or may not be
independent.

The essence of our multivariate PCM approach lies in the
smart selection of simulation points. Parsimonious selection
of sampling points is needed for a range of applications, and
has been widely studied (including in the specific context of
uncertainty evaluation and mapping identification for complex
systems). Here, we provide a brief and incomplete review
of these methods, focusing primarily on differentiating our
approach from related ones. For the purpose of polynomial
interpolation, Chebyshev nodes are widely used to overcome
the Runge’s phenomenon observed in using equally-spaced
sampling [5]. For the purpose of uncertainty evaluation, be-
sides Monte Carlo methods (also called random samping),
several other techniques have been proposed. For instance,
the stratified sampling and Latin Hypercube Design (LHD)
and their variants were developed to improve the coverage
and projective properties [13], [15], [18]. Multiple steps are
involved in these methods: first the space is subdivided to en-
sure full coverage, and then random sampling is used for each
portion. These above methods are primarily designed to ensure
appropriate coverage of the sampling space and to select

sampling densities in the space, rather than to guarantee
accurate estimation of output statistics. Gaussian Quadrature
techniques also have been widely studied for uncertainty
evaluation, both under the heading of PCM and using other
terminology [14], [33], [35]. When multiple independent input
parameters are involved, [14], [32], [33] suggest different pro-
cedures to select simulation points, among which [14] involves
the most number of points. Gaussian Quadrature techniques
have also been used to solve ODE/PDEs with uncertain pa-
rameters [6], [11], [16], [19]. These works mesh finite element
decomposition in space and collocation methods on random
variables, to approximate continuous high-dimensional solu-
tions. All these works are relevant to our study, as they also
consider the utilization of Gaussian Quadrature techniques
when multiple uncertain variables are present. However, the
purpose of our investigation in this paper is different from
these studies in two aspects. First, these studies consider the
approximation of system mapping using expansions of or-
thogonal polynomials (e.g., Hermite for Gaussian distribution,
Laguerre for Gamma distribution, Jocobi for Beta distribution,
and Legendra for Uniform distribution) with small error,
instead of general polynomial system mapping and its low-
order approximation that predicts precisely the same statistics
as we do. Second, their studies are not focused on understand-
ing how correlations in parametric uncertainties may affect
expected performance while our study does consider correlated
uncertainty.

Our major contribution here is a formal investigation of the
properties of PCM for systems with multiple uncertain input
parameters (see also [37] for the brief conference version).
Specifically, we: 1) identify precise conditions on mapping
functions and distributions to permit zero-error mean predic-
tion, in both the independent and correlated cases; 2) in turn
develop algorithms that obtain the best statistical performance;
and 3) provide additional performance analyses, such as
cross-statistics prediction, relation to minimum mean square
estimation (MMSE), and computational feasibility analysis
for large dimensional data. The multivariate PCM method
that we develop overcomes the inadequacies of analytical
uncertainty evaluation methods that do not work for complex
infrastructure systems and Monte Carlo simulation methods
that are computationally costly. In addition, our theoretical
development provides a comprehensive understanding of the
precise performance of PCM in multivariate settings and in-
forms its practical use in performance evaluation and real-time
decision making in large-scale infrastructure-type applications.

The remainder of the paper is organized as follows. In
Section II, we describe and evaluate multivariate PCM when
input parameters are independent. In Section III, we discuss
further properties of the independent multivariate PCM, and
computational issues. In Section IV, we provide results of
the multivariate PCM when parameters are correlated. In
Section V, we discuss the practical use of PCM when data or
empirical low-order moments on low-order parameters, rather
than explicit distributions of these parameters, are available. In
Section VI, we present two examples to demonstrate the use
of multivariate PCM to evaluate air traffic system performance
under weather uncertainties. Section VII concludes the paper.
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Fig. 1. (a) Joint probability density function fX,Y (x, y). (b) Original map-
ping g(x, y). (c) Reduced-order multivariate PCM mapping g∗(x, y). The black
dots represent PCM points.

II. Independent Multivariate PCM

In this section, we consider a costly-to-simulate system with
multiple input parameters subject to independent uncertainties.
To effectively evaluate the dependence of system output on
these input parameters and to obtain the statistics of system
output under uncertainty, we study how to smartly select
a limited number of simulations to construct a low-order
polynomial mapping between the inputs and the output with
good statistical performance.

A. Simple Two-Variable Case
To simplify the development of multivariate PCM, we first

focus on the two-variable case. Specifically, let us consider
a system of interest, for which we wish to identify the
mapping between two variable input parameters x and y and
an output of interest that is functionally dependent on the
two parameters, say g(x, y). Unfortunately, it is costly to
compute the output for an input pair (e.g., because it requires
a time-consuming simulation or a costly experiment), and
hence we can evaluate g(x, y) for only a limited number of
pairs (x, y). With this limited ability to probe the system,
we seek to accurately identify the mapping over a useful
range of parameter values. More precisely, we model the two
input parameters, for the evaluation task of interest, as inde-
pendent random variables with known probability distribution
fX,Y (x, y) = fX(x)fY (y).

We propose a technique for selecting input pairs for simula-
tion and in turn approximating the mapping of interest, which
we call the two-variable PCM. The conceptual basis for the
two-variable PCM (which is analogous to the one-variable
case) is the following. A sparse number of points (pairs)
are selected for evaluation, and these evaluations are used to
obtain a low-degree polynomial mapping between the input
parameters and the output; the points are specially selected, in
such a way that the obtained low-order polynomial mapping
can predict the mean output correctly even if the mapping
in reality is of a much higher degree (see Fig. 1 for an
illustration).

1) Main Results: In this section, we first illustrate the
algorithm of the two-variable PCM in finding the PCM simu-
lation points, the coefficients of the low-order PCM mapping,
and then the predicted output mean. We then in Theorem
1 formalize that the low-degree approximation achieves the
same mean as a higher-degree mapping of a general form,
if simulation points are selected according to the algorithm.

A simple example then follows to illustrate the use of two-
variable PCM. The rest of the paper extends this theorem in
multiple directions toward: 1) more than two input variables;
2) dependency among the input variables; 3) different general
forms of original mappings; 4) further statistical performance
analysis; and 5) input variables whose distributions are not
explicitly known but specified by sample data.
Algorithm: The following algorithm shown in Table I, based
on the distributions of random variables X and Y , fX(x) and
fY (y), constructs a low-order mapping of the form

g∗(x, y) =
n−1∑
i=0

m−1∑
j=0

Bi,jx
iyj (1)

with the statistical property suggested by Theorem 1, where
the coefficients Bi,j ∈ R.

In Theorem 1, we prove that a two-variable mapping g(x, y)
with the degrees of x up to 2n − 1 and y up to 2m − 1 can
be approximated by a low-order mapping g∗(x, y) with the
degrees of x up to n − 1 and y up to m − 1, with the same
expected values. We note that identifying the low-order PCM
mapping g∗(x, y) requires evaluating g(x, y) at the simulation
points (xi, yj), where xi and yj are the roots of the orthonormal
polynomials hn(x) and h′

m(y), respectively. Please refer to
Appendix A for the proof.

Theorem 1: Consider a two-variable mapping g(x, y) of the
form

g(x, y) =
2n−1∑
i=0

2m−1∑
j=0

Ai,jx
iyj (2)

where the coefficients Ai,j ∈ R, and n and m are integers
greater than 1. With the assumption that the two variables
x and y follow independent distributions fX(x) and fY (y),
respectively, the mapping g(x, y) can be approximated by a
low-order mapping g∗(x, y) of the form shown in (1), such
that E[g(x, y)] = E[g∗(x, y)].

2) Discussion and Example: Now let us discuss the effi-
ciency of the independent two-variable PCM. As the original
mapping g(x, y) is a polynomial with x up to the degree of
2n−1 and y up to 2m−1, a total of (2n)(2m) simulations are
required to uniquely identify the mapping. However, identify-
ing g∗(x, y) requires only nm simulations, as there are n roots
for hn(x) and m roots for h′

m(y). As such, the two-variable
PCM can reduce the number of simulations by 3 nm.

Finally we use a simple example to illustrate the procedure
and performance of the independent two-variable PCM as
shown in Fig. 1. We consider a two-variable mapping g(x, y) =
x5y5 − 2x5y4 + 3x5y3 − 4x5y2 + 5x5y − 6x5 − 2x4y5 + 4x4y4 − 6x4y3 +
8x4y2 −10x4y+12x4 +3x3y5 −6x3y4 +9x3y3 −12x3y2 +15x3y−18x3 −
4x2y5 +8x2y4−12x2y3 +16x2y2−20x2y+24x2 +5xy5−10xy4 +15xy3−
20xy2 +25xy−30x−6y5 +12y4 −18y3 +24y2 −30y+36 as shown in
Fig. 1(b). Assuming that x is normally distributed with mean
13 and variance 4.6225 and y is uniformly distributed between
5 and 20, we show that the mapping can be well approximated
by a polynomial with the degrees of x and y each up to 2.

To do that, we choose 9 simulation points based
on the pdf of x and y, according to Step 1 in
the algorithm. The locations of the simulation points
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TABLE I

Algorithm for the Independent Two-Variable PCM

are (9.2761, 6.6905), (9.2761, 12.5000), (9.2761, 18.3095),
(13, 6.6905), (13, 12.5000), (13, 18.3095), (16.7239, 6.6905),
(16.7239, 12.5000), and (16.7239, 18.3095) as shown in
Fig. 1(a). We then evaluate g(x, y) at these 9 locations ac-
cording to Step 2, and obtain the coefficients of the lower-
oder PCM mapping according to the Step 3. The resulting
PCM mapping up to the order of x2y2 is shown in Fig. 1(c).

From Fig. 1(a), we see that the 9 simulation points are
located at the range of likely parameter values, in response to
the probability distributions of x and y. Comparing Fig. 1(b)
and (c) shows that the PCM mapping g∗(x, y) approximates
g(x, y) very well over the likely domain of parameter values,
despite the significantly reduced mapping orders and number
of simulations required for the construction.

B. General Theorem and Procedure on Independent
Multivariate PCM Mapping

Theorem 1 can be easily generalized to the multivariate
PCM with more than two variables, as shown in Theorem 2.
Please refer to Appendix B for the proof.

Theorem 2: Consider a multivariate mapping g(x1, x2, ...,

xm) of the form

g(x1, x2, ..., xm) =
2n1−1∑
k1=0

2n2−1∑
k2=0

...

2nm−1∑
km=0

Ak1,...,km

m∏
i=1

x
ki

i (3)

where the coefficients Ak1,...,km
∈ R, and n1, n2, ...nm are

integers larger than 1. Assume that the variables x1, x2, ...,

xm follow independent distributions fX1 (x1), fX2 (x2), ..., and
fXm

(xm), respectively. Then, the mapping can be approximated
by a low-order mapping g∗(x1, x2, ..., xm) of the form

g∗(x1, x2, ..., xm) =
n1−1∑
k1=0

n2−1∑
k2=0

...

nm−1∑
km=0

Bk1,...,km

m∏
i=1

x
ki

i (4)

such that E[g(x1, x2, ..., xm)] = E[g∗(x1, x2, ..., xm)], where
the coefficients Bk1,...,km

∈ R.
Theorem 2 shows that the independent multivariate PCM

method can significantly reduce the number of simulations
needed to construct a low-order mapping of the same mean.
Similar to what we have argued in the two-variable case,
constructing g(x1, x2, ..., xm) as shown in (3) requires at
least 2m�m

i=1ni simulations. This is because 2ni simula-
tions are required to uniquely identify each variable up to
the degree of 2ni − 1. However, the reduced-order mapping
g∗(x1, x2, ..., xm) as shown in (4) requires only �m

i=1ni simu-
lations evaluated at the roots of each hi

ni
(xi). The independent

multivariate PCM can thus save (2m − 1)�m
i=1ni simulations

without introducing any error to the mean prediction.
To complete the presentation and facilitate the use of the

independent multivariate PCM, we briefly summarize the
procedure to find the PCM mapping in its general form
[as shown in (4)].

Step 1 (Simulation Point Selection): As a generalization
to the two-variable case, �m

i=1ni simulation points are required
to identify a m-variable PCM mapping shown in (4). Due
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to the independence of variables, we only need to identify
ni points along the dimension of each xi, for i ∈ {1, ..., m}.
Combinations of the ni points along each dimension constitute
the set of n1...nm simulation points. The ni points associated
with random variable xi are the roots of the orthonormal
polynomial hi

ni
(xi), which can be found through the recursion

illustrated in Step 1 in the algorithm in Section II-A.
Step 2 (Evaluation of System Outputs at Selected Simulation

Points): For each simulation point identified in Step 1, we
find the associated output through simulation. In total, �m

i=1ni

simulations are needed. We stress that in many applications,
this is the most time-consuming step. As the multivariate PCM
can significantly reduce the number of simulations required to
produce a mapping with correct mean prediction, this method
is of significance to find high-dimensional mappings that are
common to large-scale infrastructure applications.

Step 3 (Identification of Mapping Coefficients): Using the
simulations in Step 2, we can explicitly express the low
order mapping g∗(x1, ..., xm) by identifying the coefficients
in its orthonormal polynomial form. This result is a simple
generalization of Step 3 of the algorithm in Section II-A for
the two-variable case. In particular, the coefficients ak1,...,km

can
be calculated using the matrix operation in (5). The vector a

is arranged in a descending order of the subscripts starting
from the last bit to the first bit, and the vector g is arranged
in an increasing order of the root indices (i), again from the
rightmost entry to the leftmost entry, where 1 ≤ i ≤ nm

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an1−1,...,nm−1
...

an1−1,...,0

an1−1,...nm−1−2,nm−1
...

an1−1,...nm−1−2,0
...

a0,...,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1(1), x2(1), ..., xm(1))
...

g(x1(1), x2(1), ..., xm(nm))
g(x1(1), x2(1), ..., xm−1(2), xm(1))

...
g(x1(1), x2(1), ..., xm−1(2), xm(nm))

...
g(x1(n1), x2(n2), ..., xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)
Here, L ∈ Rn1n2...nm×n1n2...nm takes the following form:⎡
⎢⎢⎢⎣

h1
n1−1(x1(1))...hm

nm−1(xm(1)) · · · h1
0(x1(1))...hm

0 (xm(1))
h1

n1−1(x1(1))...hm
nm−1(xm(2)) · · · h1

0(x1(1))...hm
0 (xm(2))

...
. . .

...
h1

n1−1(x1(n1))...hm
nm−1(xm(nm)) · · · h1

0(x1(n1))...hm
0 (xm(nm))

⎤
⎥⎥⎥⎦ .

In each row, the subscripts of h are arranged in a descending
order from n1−1, n2−1, ..., nm−1 to 0, 0, ...0. In each column,
the indices of roots are in an increasing order from 1, 1, ..., 1
to n1, n2, ...nm. The coefficients Bk1,...,km

shown in (4) can then
be easily derived from ak1,...,km

.

III. Properties of Independent Multivariate PCM

As proved in Section II, the independent multivariate PCM
can find a low-order polynomial mapping that correctly pre-
dicts the mean of the original higher-order mapping. In this
section, we further characterize the performance of the inde-
pendent multivariate PCM mapping. In particular, we show

in Section III-A that the low-order mapping also predicts the
correct cross-statistics. We then compare its performance with
that of the MMSE. In Section III-B, we briefly discuss the
numerical capability of the independent multivariate PCM in
processing high-dimensional data.

A. Performance of Independent Multivariate PCM

In Theorem 3, we show that the low-order independent
multivariate PCM can precisely predict the cross-statistics up
to certain degree. Please refer to Appendix C for the proof.

Theorem 3: Consider the use of a multivariable
PCM mapping g∗(x1, x2, ..., xm) of the form∑n1−1

k1=0

∑n2−1
k2=0 ...

∑nm−1
km=0 Bk1,k2,...,km

∏m
i=1 xi

ki to approximate
an original polynomial mapping g(x1, x2, ..., xm) of the
form

∑n1+p1
k1=0

∑n2+p2
k2=0 ...

∑nm+pm

km=0 Ak1,k2,...,km

∏m
i=1 xi

ki , for
all pi ∈ {0, ..., ni − 1}. Assuming that all variables are
independent, the low-order PCM can correctly predict the
cross-statistics, that is

E

[(
m∏
i=1

xi
li

)
g∗(x1, x2, ..., xm)

]

= E

[(
m∏
i=1

xi
li

)
g(x1, x2, ..., xm)

]
(6)

for all li ∈ {0, ..., ni − 1 − pi}.
In Theorem 4, we discuss the relationship between the

independent multivariate PCM mapping and the MMSE
estimator. In general, a low-order PCM mapping may
not be the MMSE estimator among all polynomials of
the same degree. However, the performance of PCM is
attractive as reflected by the following two additional results:
1) the mean square error (MSE) performance of a PCM
mapping may not be improved by adding any polynomial
up to certain degree, and 2) a PCM mapping up to certain
degree is the MMSE estimator among all polynomials of
the same degree. Please refer to the Appendix D for the proof.

Theorem 4: Consider a multivariate mapping∑n1+p1
k1=0

∑n2+p2
k2=0 ...

∑nm+pm

km=0 Ak1,k2,...,km

∏m
i=1 xi

ki for some
pi ∈ {0, ..., ni − 1}. If a PCM mapping of the form

g∗(x1, x2, ..., xm) =
n1−1∑

k1=0

n2−1∑

k2=0

...

nm−1∑

km=0

ak1,...,km

m∏

i=1

hi
ki

(xi)

is used to fit the original mapping, the mean square error of
the PCM fit cannot be improved by adding any polynomial
with the degree of xi up to ni − 1 − pi. Moreover, the lower
order PCM mapping

g∗
r (x1, x2, ..., xm) =

n1−1−p1∑
k1=0

...

nm−1−pm∑
km=0

a′
k1,...,km

m∏
i=1

hi
ki

(xi)

is the MMSE mapping, among all polynomials with the degree
of each xi up to ni − 1 − pi.

B. Discussion on Numerical Issues

We note that the performance of PCM may be affected by
numerical issues. As seen from (5), finding the coefficients
an1−1,...,nm−1, and then Bn1−1,...,nm−1 in (4) (according to the
procedure discussed in Section II-B) involves solving a large
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equation array. Numerical issues (such as the loss of precision
and even failure of getting a solution) may appear especially
when the dimension of the array is large. Instead of providing
a formal proof, we discuss the feasibility of this procedure
through comparing it with an alternative procedure. We first
describe the alternative procedure and then use the example
presented in Section II-A to compare the performance of
these two.

We note that once PCM points are selected and outputs at
those points are simulated, we can find the mapping coeffi-
cients Bn1−1,...,nm−1 directly, instead of using the orthonormal
bases. In particular

L′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bn1−1,...,nm−1
...

Bn1−1,...,0

Bn1−1,...nm−1−2,nm−1
...

Bn1−1,...nm−1−2,0
...

B0,...,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1(1), x2(1), ..., xm(1))
...

g(x1(1), x2(1), ..., xm(nm))
g(x1(1), x2(1), ..., xm−1(2), xm(1))

...
g(x1(1), x2(1), ..., xm−1(2), xm(nm))

...
g(x1(n1), x2(n2), ..., xm(nm))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
where L′ ∈ Rn1n2...nm×n1n2...nm takes the following form:⎡
⎢⎢⎢⎣

x
n1−1
1 (x1(1))...xnm−1

m (xm(1)) · · · x0
1(x1(1))...x0

m(xm(1))
x

n1−1
1 (x1(1))...xnm−1

m (xm(2)) · · · x0
1(x1(1))...x0

m(xm(2))
...

. . .
...

x
n1−1
1 (x1(n1))...xnm−1

m (xm(nm)) · · · x0
1(x1(n1))...x0

m(xm(nm))

⎤
⎥⎥⎥⎦ .

In the matrix L′, xk
i (xi(j)) represents the kth power of the

variable xi evaluated at the jth simulation point of the variable
xi. The L′ matrix is arranged as follows. In each row, the
superscripts of x are arranged in a descending order from
n1 − 1, n2 − 1, ..., nm − 1 to 0, 0, ...0. In each column, the
indices of roots are in an increasing order from 1, 1, ..., 1 to
n1, n2, ...nm.

The feasibility of finding the coefficients B in (7) or a

in (5) is reflected by condition number, which describes the
accuracy of numerical solutions to linear equation arrays [7].
Condition number is defined as the ratio between the largest
and the smallest eigenvalues. We often consider the logarithm
of condition number to be the loss of accuracy, although
this estimation is not always precise. At the extreme, infinite
condition number means that the matrix is singular and the
equation array is unsolvable. We note that ill-conditioning
typically leads to a drastic failure in solving equations rather
than small numerical issues; hence, devising means for
increasing solution precision rather than possible impacts of
numerical errors may be the key concern. The possibility
for ill-conditioning is dependent on a number of factors,
including the number of variables, number of PCM points,
and probability distribution; the possibility for numerical
error arising from ill-conditioning may also depend on the
nature of the system mapping, and of course the precision
of the computing device. We here calculate and compare
the condition numbers of the two matrices L′ in (7) and L

in (5), respectively, for the example in Section II-A. The

condition number associated with L is 2.53, and associated
with L′ is 9.54 × 106 which is significantly larger. This
simple comparison clearly shows the advantage of using
orthogonal bases (5) over the x and y bases (7) to calculate
PCM coefficients, especially for high-dimensional mappings.

IV. Correlated Multivariate PCM

The development in the previous sections is based on the as-
sumption that uncertain variables are independent. In realistic
modern infrastructure applications, system variables are often
correlated. In general correlated settings, the PCM mapping
obtained using the procedure described in Section II-B does
not predict the correct mean. In this section, we explore con-
ditions on the forms of original mapping and joint distribution
to maintain the correct mean statistics.

A. Main Results

We first discuss the case when the original mapping does
not contain any cross-terms among variables, and then the
general case when cross-terms are present. In the first case, a
low-order multivariate PCM mapping can be obtained in a way
very similar to the independent case. The proof is omitted as it
is a simple variation of the independent multivariate PCM [12].

Theorem 5: Consider a multivariate mapping gn(x1,

x2, ..., xm) of the form

gn(x1, x2, ..., xm) =
m∑
i=1

2ni−1∑
ki=0

A′
i,ki

x
ki

i (8)

where the coefficients A′
i,ki

∈ R and ni is an integer larger
than 1, where i ∈ 1, 2, ..., m. Assume that the variables x1,
x2, ..., xm follow a joint distribution fX1X2...Xm

(x1, x2, ...xm).
The original mapping can be approximated by a lower-order
mapping g∗

n(x1, x2, ..., xm) of the form

g∗
n(x1, x2, ..., xm) =

m∑
i=1

ni−1∑
ki=0

B′
i,ki

x
ki

i (9)

such that E[gn(x1, x2, ..., xm)] = E[g∗
n(x1, x2, ..., xm)], where

the coefficients B′
i,ki

∈ R for i ∈ 1, 2, ..., m.
We now discuss the case when cross-terms are present. We

show that under certain assumptions on conditional moments,
a low-order PCM mapping can correctly predict the mean
of an original mapping up to certain degree. Please refer to
Appendix E for the proof.

Theorem 6: Consider a multivariate mapping gc(x1,

x2, ..., xm) of the form

gc(x1, x2, ..., xm) =
2n−1∑
k1=0

2n−1−k1∑
k2=0

2n−1−(k1+k2)∑
k3=0

... (10)

2n−1−(k1+k2+...+km−1)∑
km=0

A′
k1,...,km

m∏
i=1

x
ki

i

where the coefficients A′
k1,...,km

∈ R and n is an integer
larger than 1. Assume that the variables x1, x2,...,xm follow a
joint distribution fX1,X2,...,Xm

(x1, x2, ..., xm), and the rth order
conditional moment of xi on xi+1, ..., xm is a polynomial of
xi+1,...,xm with the total degree not greater than r. The original
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mapping can be approximated by a lower-order mapping
g∗

c (x1, x2, ..., xm) with the same mean. The degree of each
variable in g∗

c (x1, x2, ..., xm) is not greater than n − 1.
Theorem 6 shows that in the two-variable case, if the rth

conditional moment of one variable given the other is a rth
order polynomial, the low-order PCM mapping with each
variable up to the degree of n − 1 predicts the correct mean
when the total degree of the original mapping does not exceed
2n − 1. The procedure to pick PCM points here is different
from that in the independent case, in the sense that the point
locations are selected based on the marginal probability of
one variable, and the conditional probability of the other. In
particular, PCM points are selected through: 1) determining
the y-coordinates (denoted as y1, ..., yn) of the PCM points
according to the marginal probability of y and 2) finding
the PCM points’ x-coordinates according to the conditional
probability fX|Y (x|yi) for each selected yi.

B. Discussion on Reduction of Computation Load

Here, let us also discuss the reduction of computational
load. In the correlated case, the effectiveness of the
multivariate PCM is generally not as good as that in the
independent case. The original high-order mapping requires
Cm

2n−1+m simulations, where Cq
p denotes the combination of

p elements taken q of them at a time without repetition.
However, the number of computations that can be reduced
is generally not easy to write in the closed-form, due to the
complicated conditional relationship. We here only discuss
the two-variable and three-variable cases.

In the two-variable case, clearly, identifying the low-order
PCM mapping g∗

c (x, y) requires n2 simulations to correctly
predict the mean output. However, as the total degree of the
original mapping is 2n − 1, 2n2 + n simulations are needed to
identify all the coefficients in the original mapping. As such,
more than half of the simulation time can be saved. Finally, we
also note that to identify the low-order mapping, we need to
directly find B′

i,j , instead of e′
l,k at the orthogonal coordinates,

as e′
l,k is a varying function of y. In the three-variable case, the

total number of simulations to identify gc(x1, x2, x3) equals
to 4

3n3+n2+ 2
3n, because gc(x1, x2, x3) has this number of

coefficients. Similarly, we can check that the low-order PCM
mapping requires n3 − C3

n simulations. Hence, the number
of simulations that can be saved is 1

3n3 + n2 + 2
3n + C3

n =
1
2n3 + 1

2n2 + n.

C. Discussion on Assumption

We note that the assumption on conditional moments is the
key to ensure correct mean prediction in the correlated case
(see Lemma 3 and Theorem 6). Here, we use the two-variable
case to understand the generality of this condition, and then
show examples to illustrate this condition.

In the two-variable case, the rth conditional moment of x

can be written as∫ β(y)

α(y)
xrfX|Yf (x|y)dx =

∫ β(y)

α(y)

fX,Y (x, y)∫ β(y)
α(y) fX,Y (x, y)dx

xrdx

=

∫ β(y)
α(y) fX,Y (x, y)xrdx∫ β(y)
α(y) fX,Y (x, y)dx

. (11)

Fig. 2. Two random variables x and y are uniformly distributed in (a)
parallelogram, (b) trapezium, and (c) irregular area. The conditional moment
condition is satisfied for cases (a) and (b), but not for (c).

If fX,Y (x, y) does not depend on x [i.e., fX,Y (x, y) is a
constant or a function of y], (11) can be further simplified
to ∫ β(y)

α(y)
xrfX|Y (x|y)dx =

1
r+1 [βr+1(y) − αr+1(y)]

β(y) − α(y)

=
1

r + 1

(
r∑

i=0

βi(y)αr−i(y)

)
(12)

for 0 ≤ i ≤ r. Clearly, if β(y) and α(y) are linear functions of
y, the conditional moment is a rth order polynomial of y.

Some examples are shown in Fig. 2. Specifically, in
Fig. 2(a), random variables x and y are uniformly distributed in
the parallelogram defined by 0 ≤ y ≤ 2 and y ≤ x ≤ y+2. As
α(y) = y and β(y) = y + 2 are linear functions of y, and more-
over fX,Y (x, y) = 0.25, the conditional moment requirement
is clearly satisfied, and hence the low-order multivariate PCM
predicts the correct mean. Similarly, in Fig. 2(b), a uniform
distribution in the trapezium (e.g., specified by the boundaries
α(y) = y and β(y) = 0.25y + 2) also satisfies the conditional
moment requirement. In Fig. 2(c), the variables x and y are
subject to a uniform distribution in the region 0 ≤ y ≤ 2,
y ≤ x ≤ √

20y + 1. As β(y) =
√

20y + 1 is nonlinear,
the conditional moment condition fails. Furthermore, we note
that the joint distribution does not have to be uniformly
distributed. As shown in Fig. 3(a), fX,Y (x, y) is 72y

25(8−3y) in
the area defined by 0 ≤ y ≤ 5

3 and y ≤ x ≤ 0.25y + 2.
As fX,Y (x, y) is only related to y, the conditional moment
condition holds. Fig. 3(b) is another example. In this case,
fX,Y (x, y) is 1

2
1

σ
√

2π
e−(y−μ)2/2σ2

in an infinite area defined by
two parallel lines (e.g., y ≤ x ≤ y+2, −∞ ≤ y ≤ ∞). The last
example is concerned with three variables x, y, z. When these
three variables are uniformly distributed in a volume [e.g.,
specified in Fig. 3(c)], the conditional moment condition also
holds.

D. Comparative Example

We use a simple example to illustrate the advantage of
the correlated multivariate PCM approach. In particular, we
consider a two-variable mapping with the original form of
g(x, y) = x3 + y3 + xy2 + x2y + xy + y + x2 + y2 + 1 as
shown in Fig. 4(a). The two random variables x and y are
uniformly distributed in the parallelogram area bounded by
0 ≤ y ≤ 2 and y ≤ x ≤ y + 2, which is marked by the
black dash lines in Fig. 4(a) with the joint pdf fX,Y (x, y) =
0.25. The independent PCM method does not work, as it
results in two simulation points outside the probability range
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Fig. 3. First two are examples when the joint distribution is not uniform.
(a) Trapezium. (b) Infinite area bounded by parallel lines. In both cases, the
conditional moment requirements are satisfied. In the third example, x, y,
and z are uniformly distributed in a (c) 3-D volume. Every surface of this
volume is described by a linear function. The conditional moment requirement
is satisfied in this case.

Fig. 4. (a) Original mapping and the four PCM points generated using the
independent PCM method. (b) Four PCM points and low-order mapping
generated using the correlated PCM approach. (c) Four simulation points and
mapping generated by the LHD approach.

[see the red spots in Fig. 4(a)]. The correlated multivariate
PCM method following Theorem 6 results in the four PCM
points and the reduced-order mapping 1.33x−29.67y+23xy+7
[shown in Fig. 4(b)] which predicts the correct mean of the
original mapping 33.67. For illustration, we have also used
the LHD method [35] to generate four simulation points. The
produced low-order mapping 34xy−47y−11.96x+27 and the
four simulation points are shown in Fig. 4(c), with a predicted
mean of 35.7, different from the original mean.

V. Empirical Data-Based Multivariate PCM

The full pdf of input parameters may not always be available
in real applications. Instead, it is more common in practice that
the distribution of input parameters is described in one of the
following two forms: 1) sample data of input parameters based
on historical records and 2) low-order moment description of
the parameters. For the completeness of our presentation, we
extend the results in [29] and discuss the use of sample-data-
based and empirical low-order moment-based multivariate
PCM.

A. Large Dataset

The procedure to use the sample-data-based multivariate
PCM is summarized as follows: 1) finding from data the
moments of xi (and conditional moments in the correlated
case); 2) calculating the (conditional) orthogonal polynomials
according to (1) in [29]; 3) finding the roots of the orthogonal
polynomials as PCM points; and 4) following Steps 2 and 3
in Section II-B to obtain the low-order PCM mapping in the
independent case, or the brief discussion after Theorem 6 in
the correlated case.

Theorem 7: Consider that each tuple in the data sets
{(x11, x21, ..., xm1), (x12, x22, ..., xm2), ..., (x1p, x2p, ..., xmp)} is

drawn from a joint distribution fX1,X2,..,Xm
(x1, x2, ..., xm). With

the assumption that x1, x2, ... and xm have finite moments, the
sample-data-based PCM mapping approaches to the pdf-based
PCM mapping with probability 1 as p → ∞.

Proof: To prove that the sample-data-based PCM matches
with the pdf-based PCM with probability 1, we only need
to show that the PCM points obtained directly using sample
data converge to those obtained using the pdf, as p → ∞.
As PCM points are the roots of orthogonal polynomials or
conditional orthogonal polynomials as shown in the proofs of
Theorems 1–6, it suffices to show that the coefficients of the
(conditional) orthogonal polynomials obtained using sample
data converge to those obtained using the pdf. This problem
is thus reduced to the convergence of sample (conditional)
moments to real (conditional) moments with increasing size
of data. The result follows naturally. Please refer to [29,
Theorem 4] for the details of the proof in a single-variable
case.

B. Small Dataset and Low-Order Moments

In the case that neither the full pdf nor large sample data
sets is available, we may find PCM mapping based on very
limited information such as small data sets, or low moments
such as the mean and variance. Please refer to [29] for a
detailed treatment of PCM with sparse data or low moments.
We summarize the key procedure for the complete presentation
here.

The best approach to find PCM mappings in these cases is to
fit these low moments/small sample datasets with typical prob-
ability distributions (i.e., those are mathematically determined
by very small number of parameters, such as the Gaussian,
uniform, Gamma, and Beta distributions). Then, we can follow
the same procedure as that of the pdf-based PCM to find
low-order PCM mappings. Please refer to standard estimation
approaches such as the maximum-likelihood estimation [20].

The probability distribution to choose is generally not easy
due to the sparsity of information. Here, we briefly discuss the
guidelines to select distribution functions. First, the selection
should be application-dependent (see [20]). For instance, noise
is typically captured by the Gaussian distribution, whereas
waiting time is captured by the Gamma distribution. Second,
hypothesis testing techniques can help to determine the best
distribution. It also helps to understand the impact of choosing
different distribution functions. One example suggests that
choosing the Gaussian distribution instead of the uniform
distribution will result in more-spread-out PCM points that
better account for parameter values further away from the
mean, but at a cost of worse estimation close to the mean.
Rigorous analysis on the impact of higher moments on the
movement of PCM points have been studied in [29].

VI. Applications to Air Traffic Flow Management

The development of multivariate PCM in this paper was
motivated by practical needs in the field of air traffic flow
management (ATFM), which is typically concerned with
managing traffic flows at a long lookahead time frame
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(e.g., 2–15 h). As traffic flow management plans are decided
hours in advance, a wide range of weather possibilities exist.
Therefore, it is important to effectively evaluate the perfor-
mance of the air traffic system under uncertainty, so as to
design the best management strategies that are robust to such
uncertainty in real time. Here, we first provide a brief review of
the literature on the evaluation and design of ATFM strategies
at the long lookahead time, so as to make clear the contribution
of our proposed approach.

Simple models of uncertainty as scenario trees and dis-
turbances have been used to model uncertainty in ATFM;
stochastic programming and model predictive control tech-
niques have been applied on these models for decision-making
[1]–[3], [8], [9]. More complicated stochastic models such as
Bayesian networks and Markov chains have also been used
[21], [38]. As pointed out in these papers, these methods
become less effective when the scale and complexity of the
traffic system increase. As the air traffic systems have complex
nonlinear and intertwined dynamics [30], predicting their
performance may require system-wide simulations. The Monte
Carlo method has thus been studied [10], [22], [31]. The
Monte Carlo approach does not enable real-time analysis under
weather uncertainty, as the evaluation of system performance
under multiple (and even spatiotemporally correlated) weather
uncertainties requires time-consuming simulations for a large
number of weather ensembles to obtain converging perfor-
mance statistics. The multivariate PCM approach provides an
alternative effective way for such simulations.

In this section, we demonstrate the use of multivariate
PCM to evaluate the performance of air traffic systems under
weather uncertainties using two examples. As seen from these
examples, an important preliminary step for applying the mul-
tivariate PCM is to capture the range of weather uncertainties
using a number of random variables. Next, the PCM points
are selected along the dimension of each variable/parameter
and then these selected points are simulated to provide a fast
evaluation of traffic system performance. In the first simple
example, we assume that the basic properties of an uncer-
tain weather zone are captured by two independent variables
(intensity and duration) with simple distributions, and then
the total number of delayed aircraft (called backlog) for the
flow entering this single zone is evaluated. The purpose of this
example is not to precisely model uncertain weather, but to:
1) provide some background on air traffic flow management,
including the performance metric and the simulation model
and 2) show the practical use of PCM in the independent
case. The second more realistic example is concerned with
the evaluation of backlogs in two spatiotemporally-correlated
weather zones.

A. Simple Single Region Example

In this simple example, we consider a single region (e.g.,
a sector) in the airspace subject to severe weather prediction.
We aim to evaluate the impact of uncertain weather on the
congestion in the region. Let us first describe the simple
queuing model for our study. We note that realistic air traffic
system is much more complicated. However, the abstracted
model is justified based on the uncertainty present in the

data at this time frame and the computational requirements
of real-time systems [28], [30], [38].

In particular, severe weather events reduce the capacity N[k]
(i.e., the maximum number of aircraft allowed to enter at time
k) of the region. The aircraft that are not allowed to pass due to
the reduced capacity can be modeled as waiting in the queue
at the boundary of the region [28], [30], [38]. The length of the
queue, named backlog B[k], is a natural performance metric
to capture the congestion of the region. The dynamics of the
queuing simulation model is shown below (see more details
at [38])

B[k] = max(B[k − 1] + x[k] − N[k], 0) (13)

where x[k] is the incoming flow. The equation suggests that
at each time step, a maximum number of N[k] aircraft can
enter the region; the remaining flow will wait to enter at the
next time step, together with the new incoming flow. We note
that the capacity N[k] varies with time k; in particular, the
presence of convective weather at time k reduces the capacity
N[k].

As weather duration and intensity may not be precisely
predicted at a long lookahead time, weather-induced capacity
reduction and the accumulated transient backlog become un-
certain. It is of practical value to predict the backlog statistics
under uncertain weather duration and intensity.

Assuming that no information about the two uncertain ran-
dom variables is available other than the ranges, we model both
variables as uniformly distributed for simplicity. In particular,
we assume that the severe weather starts at the current time,
but with uncertain intensity and end time. When the severe
weather is present, it reduces the number of aircraft to cross
the region in a unit time (20 min) N[k] from 6 to a, where a is
captured by a random variable uniformly distributed between
1 and 2.67. Moreover, we assume that the duration of severe
weather is a random variable uniformly distributed between
2 and 6 h. When the severe weather completes, the capacity
raises back to 6. For simplicity, we assume that the incoming
flow (demand) x[k] to the region is a deterministic sequence
sampled from a Poisson process with the mean arrival rate of
3 per 20 min.

It is worthwhile to notice that the actual relationship be-
tween the output (total backlog for a span of 30 h from
the current time) and inputs (weather intensity and duration)
is nonlinear [28], [38]. We show here that based on the
distributions of weather intensity and duration, we can smartly
choose only a limited number of simulations to construct a
low-order multivariate PCM mapping that matches well with
the original nonlinear mapping obtained using Monte Carlo
simulations. Fig. 5(a) and (b) show the original mapping
and the 2 × 2-order PCM mapping using the algorithm in
Section II-A1. The two mappings match very well with a mean
square error of 2.4 within the probability range. The mean
total backlog obtained using the two mappings are 163.91 and
163.42, respectively. It is also interesting to notice that the
performance of mean predictor improves significantly when
the order of the PCM mapping increases from 1 × 1 (with
the mean backlog of 165.52) to 2 × 2, but not much when
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Fig. 5. (a) Original mapping between the input set including weather dura-
tion and weather intensity, and the output (30-h total backlog) obtained using
the Monte Carlo simulation. (b) Reduced-order multivariate PCM mapping is
based on the 9 sample points marked as red spots on the plot. (c) Comparison
of the number of simulation runs needed to predict the correct mean total
backlog over a 30-h span. The blue curve shows the means predicted by the
accumulative Monte Carlo runs with the number specified on the x-axis. The
red thin line shows the true mean estimated by the value that the Monte Carlo
simulation (of two random variables) converges to. The red spot corresponds
to the nine simulation runs required for the PCM method to predict the true
mean.

the order is further increased to 3 × 3 (with the mean backlog
of 163.64). Finally, Fig. 5(c) demonstrates the computational
load that can be saved using the low-order 2×2 PCM. Monte
Carlo simulation typically requires a large number of runs to
converge (in this case 676 runs to estimate with an error less
than 2%), while the 2 × 2-order PCM mapping only needs
nine simulations to achieve a similar performance.

B. Spatiotemporally Correlated Two-Region Example

In the second example, we apply empirical data-based
multivariate PCM to effectively evaluate the impact of spa-
tiotemporally correlated uncertain weather events on transient
traffic backlogs. In particular, we consider two scheduled
streams of flows entering two neighboring regions A and
B. Furthermore, a cold front (indicating of weather front
associated with convective weather) passes Region A and
then Region B, producing capacity reductions [see Fig. 6(a)
and (b)]. Predicting transient backlog statistics caused by the
uncertain progress of cold front is critical to design effective
flow-management initiatives to reduce traffic delay.

Here, we used six random parameters to capture the stochas-
tic weather propagation: SA, NA, DA, SB, NB, and DB. In
particular, the cold front hits Region A from time SA with a
reduced capacity NA. We assume that the capacity reduction
remains constant for a span of DA before the weather leaves
the region. After that, its capacity returns to its regular value
NRA. Similarly, Region B undergoes weather-induced capacity
reduction from time SB, with capacity reduced from the normal
value NRB to NB, for a span of DB.

Fig. 6. (a) Illustration of a spatiotemporal correlated two-region example.
(b) Development of cold font causes capacity reduction.

Different from the previous example, the full pdf of the
aforementioned weather parameters is not directly available.
We utilized the weather simulator [24] to generate a large
set of weather ensembles covering the range of weather
uncertainty. In particular, the simulated airspace is decom-
posed into small grids, with white color representing normal
capacity and black color denoting capacity reduction caused
by convective weather (see Fig. 6). The stochastic propagation
of convective weather is governed by the influence model [4],
with parameters estimated from hourly probabilistic weather
forecasts.1 The estimated weather simulator runs at a finer
resolution of 15 min [24].

For each generated weather ensemble, we then found the
six weather parameters (SA, NA, DA, SB, NB, and DB). Here,
weather start times SA and SB are marked by the first time
the region has at least two black grids. Durations DA and
DB are similarly defined by the differences between the first
time the region has at most two black grids afterward and
SA and SB. Average capacities NA and NB during the span
of weather are calculated as the normal capacity scaled by
the average fraction of white grids during this span. Due to
the spatiotemporal correlation of weather propagation, these
parameters are subject to interdependency. In particular, as
the weather front passes Region A and then region B, due
to the spatial weather propagation delay, we expect the start
time SB is closely related to the end time of region A (which
is expressed as SA + DA), and therefore both SA and DA.
Similarly, due to the correlation of propagation speeds for
weather in these two regions, we expect that the duration DB is
dependent on DA. Moreover, due to the correlation of weather
intensities across time, we assume that the capacity NB is
dependent upon NA. In this example, the normal capacity
NRA and NRB of the two regions are both 10 per unit time
(defined as �t = 15 min). The simulator generates a large
number of ensembles (one million in this case to guarantee
the convergence of probability distributions).

We then applied the empirical data-based multivariate PCM
approach to find the PCM points. To do that, we first found
the sample moments of DA, SA, and NA, as they serve as
the parameters that DB, SB, NB are conditioned upon. From
these sample moments, the PCM points along each of the

1A majority of weather forecasts are deterministic. The Very Short Range
Ensemble Forecast System (VSREF) provides hourly probabilistic weather
forecasts [36].
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Fig. 7. Probability density functions of six weather parameters.

Fig. 8. (a) Distribution of DB conditioned upon two selected PCM coor-
dinates of DA. (b) Distribution of NB conditioned upon two selected PCM
coordinates of NA.

dimensions DA, SA, and NA were obtained. We note that
SA plays a more important role in the uncertainty evaluation
and needs to be sampled with more number of points for
the following reasons: 1) due to the growth of uncertainty
over time (which can be seen from the distributions plotted in
Fig. 7), the information closest to the initial simulation time is
the most trustworthy and 2) this trustworthy early information
is important to be estimated correctly as its error will affect
the estimation performance of other parameters capturing later
time characteristics. We therefore chose 5 points along SA as
0.75 h, 1 h, 1.25 h, 1.75 h, and 2.5 h. We also selected 2 PCM
points along the dimension of DA as 1 h and 1.75 h, and 2
points for NA as 4.0602, and 5.6358, respectively. Next, we
identified PCM points along the dimensions of DB, SB and NB.
Due to the spatiotemporal correlation of weather parameters in
Region A and Region B, each 3-tuple PCM point (DA, SA, and
NA) resulted in different conditional distributions of weather
parameters for Region B (see examples shown in Fig. 8), and
thus different set of PCM points. Specifically, the PCM points
along the dimensions of DB, SB were then selected based
on the conditional sample moments of DB and SB for each
combination of the PCM points for DA and SA. Similarly, the
PCM points along the dimension of NB were selected from the
conditional sample moments of NB on each of the PCM points
for NA. A total of 25 × 5 = 160 PCM points were selected.

We next evaluated the total backlog
∑

B[k] during a span
of 24 h at each of the 6-tuple PCM points. We assumed
that two streams of deterministic flows sampled from a
Poisson process (with mean 5 per 15 min) enter the two
regions. Using (13), the total backlogs at all PCM points were
then used to obtain the low-order polynomial PCM mapping
f (DA, SA, NA, DB, SB, NB) (with 160 terms) between weather

TABLE II

Performance Comparison Among the Monte Carlo and PCM

Approaches With Two Different Expressions

parameters and the total backlog, from which the mean back-
log can be obtained. Furthermore, we noted that as the total
backlog of the two regions is the summation of backlogs at
each region, the mapping f (DA, SA, NA, DB, SB, NB) can be
expressed as fA(DA, SA, NA)+fB(DB, SB, NB), where fA and
fB are functions of weather parameters in individual regions.
This expression significantly reduced the coefficients/terms in
the polynomial mapping function from 160 to 5×22 +23 = 28,
by ignoring the cross terms that involve weather parameters
of both regions. Least square mean estimation was then used
to identify the 28 coefficients in the reduced order mapping.

We compared the performance of the PCM mappings with
that of the Monte Carlo simulation. As shown in Table II,
both PCM mappings predicted the total mean backlogs well
with errors less than 2%. We also evaluated the efficiency
of the PCM approaches. As seen in Fig. 9, the Monte Carlo
method requires 11716 simulations (marked as the black spot)
for the mean prediction to fall within a threshold marked
by the black dashed lines. However, the PCM method only
needs 160 simulations (marked as the red spot) to reach
the same threshold. We also note that selecting PCM points
based on conditional distributions improves the performance
of the mean prediction. To display the results intuitively, we
demonstrate the mappings generated by the aforementioned
empirical data-based multivariate PCM approaches, when four
out of the six weather parameters are fixed: SA = 1.25 h,
DA = 1 h, DB = 1.75 h, and NA = 5.6358. As shown in Fig. 10,
the 160-term PCM mapping and the 28-term PCM mapping
generated by selecting four PCM points along the dimensions
of SB and NB match well with the mapping generated by the
Monte Carlo method.

VII. Conclusion

Motivated by effective uncertainty evaluation needs in
large-scale infrastructure systems, we develop in this paper the
multivariate PCM approach which allows using a few smartly
selected simulation points to construct a low-order mapping
between multiple uncertain input parameters and system
output, which predicts the correct mean output of the original
system of a higher-order. Besides describing the algorithm of
the multivariate PCM, we develop mathematical conditions
to permit correct mean output prediction in terms of the
probability distributions of the input parameters and forms of
original system mappings. Both independent and correlated
cases are discussed. We also provide additional performance
analysis of the multivariate PCM in terms of predicting other
important statistics, and the practical use of the method when
data or low-order moments are available instead of probability
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Fig. 9. Comparison of simulation time between the Monte Carlo and PCM
approaches. The mean backlog estimated by the Monte Carlo method is shown
in blue. The mean backlog estimated using the PCM approach is marked as
the red spot. The dashed lines show a neighborhood around the true mean
defined by the estimated mean using the PCM approach, marked by the red
spot. The black spot denotes the number of simulations for the Monte Carlo
method to reach and stay within the neighborhood.

Fig. 10. Mappings with fixed SA, DA, DB, and NA generated by (a) Monte
Carlo simulation (b) PCM mapping with 160 terms, and (c) PCM mapping
with 28 terms.

distribution. In terms of numerical issues, we note that in the
independent PCM case, using orthonormal bases to calculate
PCM mapping coefficients reduces the ill-conditioning of the
calculation; this advantage does not exist for the correlated
PCM. The final example at the end of the paper demonstrates
the use of this method to evaluate the impact of multiple
dependent weather uncertain parameters on the statistics of air
traffic system performance. Future works include applying this
method for large-scale traffic examples, exploring capabilities
of the reduced-order mapping such as optimization and
sensitivity analysis, and selecting a subset of the PCM points
when further knowledge of the original system mapping is
available.

Appendix A

Proof of Theorem 1

Proof: In order to prove E[g(x, y)] = E[g∗(x, y)], we start
with computing E[g(x, y)], then construct g∗(x, y) along this
process, and finally show that the means of both g(x, y) and
g∗(x, y) can be reduced to the same value.

As x and y are independent random variables, we find

E[g(x, y)] =
∫∫ 2n−1∑

i=0

2m−1∑
j=0

Ai,jx
iyjfX(x)fY (y)dxdy

=
∫ 2m−1∑

j=0

yjfY (y)
∫ 2n−1∑

i=0

Ai,jx
ifX(x)dxdy. (14)

The terms inside the internal integral
∑2n−1

i=0 Ai,jx
i (for any

j) can be expressed in terms of the series of orthonormal
polynomials hn(x), ..., h0(x) of degrees n, ..., 0 [12]

2n−1∑
i=0

Ai,jx
i = hn(x)

(
n−1∑
i=0

ai+n,jhi(x)

)
+

n−1∑
i=0

ai,jhi(x) (15)

where the coefficients a ∈ R, the first subscript of a represents
the degree of x, and the second subscript stands for the degree
of y. The orthonormal polynomials hi(x) satisfy

〈
hi (x) , hj (x)

〉
=
∫

hi(x)hj(x)fX(x) dx=

{
1, if i=j

0, if i	=j
h0(x)=1.

(16)

A particular note is that the above definition leads to∫
hi(x)h0(x)fX(x)dx =

∫
hi(x)fX(x)dx = 0 (17)

for all i ≥ 1, which we will frequently use later. We denote
the roots of hn(x) as x1, x2, ..., xn. In a single-variable PCM,
these roots are the PCM points selected for computationally
intensive simulations [29].

Due to the orthonormal properties of the variable x (16),∫ ∑2n−1
i=0 Ai,jx

ifX(x)dx shown in the form of (15) can be
reduced to

∫ ∑n−1
i=0 ai,jhi(x)fX(x)dx. As such, (14) becomes

E[g(x, y)]=
∫ 2m−1∑

j=0

yjfY (y)
∫ (

n−1∑
i=0

ai,jhi(x)

)
fX(x)dxdy.

(18)

We now follow the same procedure to reduce the order of
y. By rearranging the terms in (18) in a descending degree of
hi(x) for all i ∈ {0, ..., n − 1}, we obtain

E[g(x, y)] =
∫ n−1∑

i=0

hi(x)fX(x)
∫ ⎛
⎝2m−1∑

j=0

ai,jy
j

⎞
⎠ fY (y)dydx.

(19)
Introducing the jth-degree orthonormal polynomials h′

j(y)
with respect to the probability distribution fY (y), and denoting
the roots of h′

m(y) as y1, y2, ..., ym, we can express any
polynomial of y up to the order of 2m − 1 in terms of
h′

0(y), ..., h′
m(y). In particular

2m−1∑
j=0

ai,jy
j = h′

m(y)

⎛
⎝m−1∑

j=0

bi,j+mh′
j(y)

⎞
⎠ +

m−1∑
j=0

bi,jh
′
j(y) (20)

where b ∈ R are the coefficients. Again, the first subscript of
b represents the degree of x, and the second stands for the
total degree of y. Applying orthonormal properties again, (19)
is further reduced to

E[g(x, y)] =
∫ ∫ n−1∑

i=0

m−1∑
j=0

bi,jhi(x)h′
j(y)fX(x)fY (y)dxdy.

(21)

Note that the expression inside the above double integrals
is g∗(x, y). As hi(x) is an ith-order polynomial and h′

j(y) is a
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jth-order polynomial, we can easily find the parameters Bi,j

from bi,j and express (21) in terms of x and y as

g∗(x, y) =
n−1∑
i=0

m−1∑
j=0

bi,jhi(x)h′
j(y) =

n−1∑
i=0

m−1∑
j=0

Bi,jx
iyj. (22)

Observation of (15) and (20) clearly suggests that g(x, y)
and g∗(x, y) pass through the same set of points defined by
(xi, yj) for all i ∈ {1, ..., n} and j ∈ {1, ..., m}, as hn(xi) = 0
and h′

m(yi) = 0. Finally, we also notice that both E[g(x, y)]
and E[g∗(x, y)] can be reduced to b0,0 through applying (17)
to variable x first and then variable y.

Appendix B

Proof of Theorem 2

Proof: As this theorem is a straightforward generalization
of the two-variable case, we only sketch the outline of the
proof.

Through recursively expressing x1, x2,... xm in terms
of orthonormal polynomials, and applying the orthonor-
mal properties (16), we obtain the reduced-order mapping
g∗(x1, x2, ..., xm) of the form

g∗(x1, x2..., xm) =
n1−1∑
k1=0

n2−1∑
k2=0

...

nm−1∑
km=0

ak1,...,km

m∏
i=1

hi
ki

(xi) (23)

where the function hi
ki

(xi) denotes the kith degree orthonormal
polynomial with respect to the parameter xi, and ak1,...,km

are
the coefficients. Furthermore

E
[
g(x1, x2, ..., xm)

]
= E

[
g∗(x1, x2, ..., xm)

]
= a0,...,0. (24)

Rearranging the terms in 23 in terms of x1, x2, ..., xm,
we can easily find the coefficients Bk1,...,km

such that
g∗(x1, x2, ..., xm) is in the form of (4).

Appendix C

Proof of Theorem 3

We prove the two-variable case for the clarity of presen-
tation. In this case, the theorem is reduced to the following
Lemma. The general case follows naturally.

Lemma 1: Consider the use of a two-variable PCM map-
ping g∗(x, y) of the form

∑n−1
i=0

∑m−1
j=0 Bi,jx

iyj to approxi-
mate an original polynomial mapping g(x, y) of the form∑n+n1

i=0

∑m+m1
j=0 Ai,jx

iyj , for some n1 ∈ {0, ..., n − 1} and
m1 ∈ {0, ..., m − 1}. Assuming that the two variables are
independent, the low-order PCM can correctly predict the
cross-statistics up to certain degree. In particular

E
[
xlykg∗(x, y)

]
= E

[
xlykg(x, y)

]
(25)

for all l ∈ {0, ..., n − 1 − n1} and k ∈ {0, ..., m − 1 − m1}.

Proof: The cross-statistics can be expressed in the following
due to the independence of variables:

E
[
xlykg(x, y)

]
=
∫∫

xlyk

n+n1∑
i=0

m+m1∑
j=0

Ai,jx
iyjfX(x)fY (y)dxdy

=
∫

yk

m+m1∑
j=0

yjfY (y)
∫

xl

n+n1∑
i=0

Ai,jx
ifX(x)dxdy.

(26)

For any fixed j,
∑n+n1

i=0 Ai,jx
i can be represented in terms

of orthonormal polynomials [similar to (15)]

n+n1∑
i=0

Ai,jx
i = hn(x)

(
n1∑

i1=0

an+i1,jhi1 (x)

)
+

n−1∑
i=0

ai,jhi(x) (27)

where the first subscript in the coefficient a represents the
total degree of this term with respect to x, and the second
represents the degree with respect to y inside the summation
operator in (26). As xl

(∑n1
i1=0 an+i1,jhi1 (x)

)
is a polynomial

with the degree of x less than or equal to n − 1, where j ∈
{0, ..., m + m1}, the orthogonality naturally leads to

E
[
xlykg(x, y)

]
=
∫

yk

m+m1∑
j=0

yjfY (y)
∫

xl

n−1∑
i=0

ai,jhi(x)fX(x)dxdy

=
∫

xl

n−1∑
i=0

hi(x)fX(x)
∫

ykai,j

m+m1∑
j=0

yjfY (y)dydx.

(28)

Next, we reduce the order of y to m − 1 similar to the above
process. It is then not difficult to obtain

E
[
xlykg(x, y)

]
=
∫

xl

n−1∑
i=0

hi(x)fX(x)
∫

ykbi,j

m−1∑
j=0

h′
j(y)fY (y)dydx

=
∫∫

xlyk

n−1∑
i=0

m−1∑
j=0

bi,jhi(x)h′
j(y)fX(x)fY (y)dxdy

=E
[
xlykg∗(x, y)

]
. (29)

Appendix D

Proof of Theorem 4

Again, we prove the two-variable case shown in the follow-
ing lemma. The proof of the general case follows naturally.

Lemma 2: Consider a mapping g(x, y) =∑n+n1
i=0

∑m+m1
j=0 Ai,jx

iyj for some n1 ∈ {0, ..., n − 1} and
m1 ∈ {0, ..., m − 1}. If a PCM mapping of the form
g∗(x, y) =

∑n−1
i=0

∑m−1
j=0 bi,jhi(x)h′

j(y) is used to fit the original
mapping, the MSE of the PCM fit cannot be improved by
adding any polynomial with the degree of x up to n − 1 − n1,
and the degree of y up to m − 1 − m1. Moreover, the lower
order mapping g∗

r (x, y) =
∑n−1−n1

i=0

∑m−1−m1
j=0 b′

i,jhi(x)h′
j(y) is

the MMSE mapping, among all polynomials with the degree
of x up to n − 1 − n1 and the degree of y up to m − 1 − m1.

Proof: To prove the first part of the theorem, we construct
ḡ(x, y) = g∗(x, y) +

∑n−1−n1
i=0

∑m−1−m1
j=0 Ci,jx

iyj , and show that
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E
[(

g(x, y) − g∗(x, y)
)2
]

≤ E
[(

g(x, y) − ḡ(x, y)
)2
]
. Here,

the coefficients Ci,j ∈ R. The mean square error between
g(x, y) and ḡ(x, y) can be expressed as

E
[(

g(x, y) − ḡ(x, y)
)2
]

= E
[(

g(x, y) − g∗(x, y)
)2
]

+2E
[(

g(x, y) − g∗(x, y)
)

(
g∗(x, y) − ḡ(x, y)

)]
+E

[(
g∗(x, y) − ḡ(x, y)

)2
]
.(30)

We note that E
[(

g∗(x, y) − ḡ(x, y)
)2
]

is always nonnega-
tive. Therefore, it is sufficient to show
E
[(

g(x, y)−g∗(x, y)
)(

g∗(x, y)− ḡ(x, y)
)]

= 0. To do that, we
first notice

g∗(x, y) − ḡ(x, y) = −
⎛
⎝n−1−n1∑

i=0

m−1−m1∑
j=0

Ci,jx
iyj

⎞
⎠ . (31)

Moreover, g(x, y) − g∗(x, y) is the sum of three
terms:

∑n1
i=0

∑m1
j=0 bn+i,m+jhn(x)hi(x)h′

m(y)h′
j(y),

∑n1
i=0

∑m−1
j=0

bn+i,jhn(x)hi(x)h′
j(y), and

∑n−1
i=0

∑m1
j=0 bi,m+jhi(x)h′

m(y)h′
j(y).

As each hi(x) in the first two terms is a polynomial of degree at
most n1, −hi(x)

(∑n−1−n1
i=0

∑m−1−m1
j=0 Ci,jx

iyj
)

is a polynomial
of degree at most n − 1 of variable x. Applying orthogonality
with respect to the variable x, it is straightforward to find
E
[(

g(x, y) − g∗(x, y)
)(

g∗(x, y) − ḡ(x, y)
)]

equals to zero for
the first two terms of g(x, y) − g∗(x, y). Using the same argu-
ment for the third term and apply orthogonality to the variable
y, we can find that E

[(
g(x, y) − g∗(x, y)

)(
g∗(x, y) − ḡ(x, y)

)]
also equals to 0 for the third term.

We next prove the second part of the theorem. This is
sufficient to show that E

[
xlyk(g(x, y) − g∗

r (x, y))
]

equals to
zero, for l ∈ {0, ..., n − 1 − n1} and k ∈ {0, ..., m − 1 − m1}.
Notice that

E
[
xlyk

(
g(x, y) − g∗

r (x, y)
)]

= E
[
xlyk

(
g(x, y) − g∗(x, y)

)]
+E

[
xlyk

(
g∗(x, y) − g∗

r (x, y)
)]

.

(32)

The first term is zero according to Theorem 3. The second
term is also zero according to a proof similar to that of the
first part of this theorem. In particular, each term in g∗(x, y)−
g∗

r (x, y) contains hi(x)h′
j(y) with degrees either i ≥ n − n1 or

j ≥ m−m1. Invoking orthogonality, the second part is proved
as well.

Appendix E

Proof of Theorem 6

To ease understanding, we first investigate the correlated
two-variable PCM in Lemma 3.

Lemma 3: Consider a two-variable mapping gc(x, y) of the
form

gc(x, y) =
2n−1∑
j=0

2n−1−j∑
i=0

A′
i,jx

iyj (33)

where the coefficients A′
i,j ∈ R, and n is an integer greater

than 1. Assume that the two variables x and y follow a joint
distribution fX,Y (x, y) and the rth conditional moment of one
variable given the other is at most a rth degree polynomial
of the other variable. Then the mapping gc(x, y) can be
approximated by a lower-order PCM mapping g∗

c (x, y) of the
form

g∗
c (x, y) =

n−1∑
j=0

n−1∑
i=0

B′
i,jx

iyj (34)

such that E
[
gc(x, y)

]
= E

[
g∗

c (x, y)
]
, where the coefficients

B′
i,j ∈ R.
Proof: Without loss of generality, we assume that∫
xrfX|Y (x|y)dx is a rth degree polynomial of y. We first

construct the expression of g∗
c (x, y) from gc(x, y) without

changing its mean. We then verify that gc(x, y) and the
constructed g∗

c (x, y) have the same values at the set of PCM
points selected from the marginal and conditional probabilities.
We can thus use these PCM points to uniquely identify
g∗

c (x, y).
To calculate the mean of the original mapping gc(x, y),

we note that because E
[
gc(x, y)

]
can be expressed as∑2n−1

j=0

∑2n−1−j
i=0 E

[
A′

i,jx
iyj
]
, we can focus on the calculation

of each term E
[
A′

i,jx
iyj
]

first. To simplify E
[
A′

i,jx
iyj
]
, we

consider three cases with different ranges of i and j: Case 1
(0 ≤ i < n, n − 1 < j ≤ 2n − 1), Case 2 (n − 1 < i ≤ 2n − 1,
0 ≤ j < n), and Case 3 (0 ≤ i < n, 0 ≤ j < n). As in
Case 3, the polynomial is already in the form of g∗

c (x, y), we
only focus on the first two cases. We show the calculation
of E

[
A′

i,jx
iyj
]

for Case 1 only, as Case 2 follows a similar
procedure.

In Case 1, when n − 1 < j ≤ 2n − 1, we can express
yj using the orthogonal polynomials of y. In particular,
yj = hn(y)

(∑j−n

k=0 b′
j,k+nhk(y)

)
+
∑n−1

k=0 b′
j,khk(y), where the

coefficients b′ ∈ R, the first subscript of b′ stands for
the total degree of y, and the second represents the degree
of y in each term. Moreover, as 0 ≤ i < n, for each
particular y, we can write xi in terms of the conditional
orthogonal polynomials of x given y, denoted as h′

k(x|y),
where k ∈ {0, ..., i} represents the degree of the orthogonal
polynomial. In particular, A′

i,jx
i =

∑i
l=0(a′

i,l|y)h′
l(x|y), where

(a′
i,l|y) is a parameter dependent upon y, and the format of the

subscripts is the same as that of b′, but for the variable x. The
conditional orthogonal polynomial h′

l(x|y) is associated with
the conditional pdf fX|Y (x|y). As such, at different y, h′

l(x|y)
may have different expressions. Now, we are ready to calculate
E
[
A′

i,jx
iyj
]

as

E
[
A′

i,jx
iyj
]

=
∫∫

A′
i,jx

iyjfX|Y (x|y)fY (y)dxdy =
∫∫ i∑

l=0

(a′
i,l|y)h′

l(x|y)

(
hn(y)

( j−n∑
k=0

b′
j,k+nhk(y)

)
+

n−1∑
k=0

b′
j,khk(y)

)
fX|Y (x|y)fY (y)dxdy

=
∫∫ i∑

l=0

(a′
i,l|y)h′

l(x|y)

(
hn(y)

( j−n∑
k=0

b′
j,k+nhk(y)

))
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fX|Y (x|y)fY (y)dxdy +
∫∫ i∑

l=0

(a′
i,l|y)h′

l(x|y)

(
n−1∑
k=0

b′
j,khk(y)

)

fX|Y (x|y)fY (y)dxdy =
∫

hn(y)

(
j−n∑
k=0

b′
j,k+nhk(y)

)
(∫ i∑

l=0

(a′
i,l|y)h′

l(x|y)fX|Y (x|y)dx

)
fY (y)dy

+
∫∫ i∑

l=0

(a′
i,l|y)h′

l(x|y)

(
n−1∑
k=0

b′
j,khk(y)

)
fX|Y (x|y)fY (y)dxdy.

(35)

Now let us show that the first double integration in the last
equation equals 0. Note that for each y,

∑i
l=0(a′

i,l|y)h′
l(x|y)

is a polynomial of x with the degree up to i. Furthermore,
according to the assumption that

∫
xifX|Y (x|y)dx is at most an

ith degree polynomial of y, we find that
(∑j−n

k=0 b′
j,k+nhk(y)

)
( ∫ ∑i

l=0(a′
i,l|y)h′

l(x|y)fX|Y (x|y)dx
)

is a polynomial of y with
the degree up to i + j − n ≤ 2n − 1 − n = n − 1. Applying
orthogonality with respect to variable y, we can simplify (35)
to

E[A′
i,jx

iyj] =
∫∫ i∑

l=0

(a′
i,l|y)h′

l(x|y)

(
n−1∑
k=0

b′
j,khk(y)

)

fX|Y (x|y)fY (y)dxdy

=
∫∫ i∑

l=0

n−1∑
k=0

(c′
l,k|y)h′

l(x|y)hk(y)fX,Y (x, y)dxdy

(36)

for 0 ≤ i < n, n − 1 < j ≤ 2n − 1. Here, (c′
l,k|y) is some

parameter dependent upon y.
Following a similar procedure, we can show that in Case 2

E[A′
i,jx

iyj] =
∫∫ (

h′
n(x|y)

( i−n∑
l=0

(a′
i,l+n|y)h′

l(x|y)
)

+
n−1∑
l=0

(a′
i,l|y)h′

l(x|y)
)( j∑

k=0

b′
j,khk(y)

)
fX,Y (x, y)dxdy

=
∫∫ n−1∑

l=0

j∑
k=0

(d ′
l,k|y)h′

l(x|y)hk(y)fX,Y (x, y)dxdy

(37)

where (d ′
l,k|y) is some parameter dependent upon y. As for

both cases, E[A′
i,jx

iyj] can be expressed using orthogonal and
conditional orthogonal polynomials with the degree up to n−1,
we can write

E[gc(x, y)] =
2n−1∑
j=0

2n−1−j∑
i=0

E[A′
i,jx

iyj]

=
∫∫ n−1∑

l=0

n−1∑
k=0

(e′
l,k|y)h′

l(x|y)hk(y)fX,Y (x, y)dxdy

(38)

where (e′
l,k|y) is some parameter dependent upon y. Noticing

that
∑n−1

l=0

∑n−1
k=0 (e′

l,k|y)h′
l(x|y)hk(y) is a polynomial with the

degree of each variable up to n − 1, we can write

E[gc(x, y)] =
∫∫ n−1∑

i=0

n−1∑
j=0

B′
i,jx

iyjfX,Y (x, y)dxdy = E[g∗
c (x, y)].

(39)
It is clear that g∗

c (x, y) and gc(x, y) have the same mean.
Finally, let us verify that both g∗

c (x, y) and gc(x, y) pass
through the same set of selected PCM points. Let us denote
the roots of hn(y) as y1, y2, ..., yn and the roots of h′

n(x|yj)
as xij for 1 ≤ i ≤ n, 1 ≤ j ≤ n. The n2 pairs of inputs
(xij, yj) are the selected PCM points. By expressing gc(x, y)
and g∗

c (x, y) in orthogonal forms, and from observing (35),
(36) and (37), it is clear to see that gc(x, y) and g∗

c (x, y) are
identical at each pair of the PCM points. The proof is now
complete.

We now generalize to more than two variables, and sketch
the key steps to prove Theorem 6.

Proof: First of all, note that there is only one variable in the
original mapping with degree greater than n − 1, as the total
degree of A′

k1,k2,...,km

∏m
i=1 x

ki

i is at most 2n−1. Without loss of
generality, let us denote this variable as xt , where 1 ≤ t ≤ m.
As such, we only need to find a low-order mapping with the
degree of this variable xt reduced to n − 1.

To do that, we express xt in terms of orthogonal
polynomials defined upon the conditional pdf
fXt |Xt+1,Xt+2,...,Xm

(xt|xt+1, xt+2, ..., xm). Let us denote these
orthonormal polynomials as
ht

i(xt|xt+1, ..., xm), where i is the degree of this polynomial.
It is then easy to see that any term in gc(x1, x2, ..., xm)
that includes xt , denoted as A′

k1,k2,...,kt ,...,km

∏m
i=1 x

ki

i , can be
expressed as

A′
k1,k2,...,kt ,...,km

m∏
i=1

x
ki

i =

(
t−1∏
i=1

x
ki

i

)(
ht

n(xt|xt+1, ..., xm)

(
kt−n∑
l=0

(
a

′t
kt ,l+n|xt+1, ..., xm

)

ht
l(xt|xt+1, ..., xm)

)

+
n−1∑
l=0

(
a

′t
kt ,l

|xt+1, ..., xm

)

ht
l(xt|xt+1, ..., xm)

)(
m∏

i=t+1

x
ki

i

)
(40)

where a
′t ∈ R are the corresponding coefficients. Again, the

first subscript of a
′t stands for the total degree of xt , and the

second represents the degree of xt in each term.
In order to show that the degree of xt can be reduced

to a value smaller than n, we only need to show that in
E[gc(x1, x2, ..., xm)], any term involved with ht

l(xt|xt+1, ..., xm)
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and with total degree greater than n equals 0. It is sufficient
to show that∫∫

...

∫ (
t−1∏
i=1

x
ki

i

)
ht

n(xt|xt+1, ..., xm)

(
kt−n∑
l=0

(
a

′t
kt ,l+n|xt+1, ..., xm

)
ht

l(xt|xt+1, ..., xm)

)
(

t∏
i=1

fXi|Xi+1,...,Xm
(xi|xi+1, ..., xm)

)
dx1dx2...dxt = 0. (41)

Recall the assumption that each conditional moment of xi

(i.e.,
∫

x
ki

i fXi|Xi+1,Xi+2,...,Xm
(xi|xi+1, xi+2, ..., xm)dxi) is a polyno-

mial of xi+1, xi+2, ..., xm with total degree ki, 1 ≤ i ≤ t − 1.
We could then find that the conditional moment of

∏t−1
i=1 x

ki

i

expressed as∫∫
...

∫ (t−1∏
i=1

x
ki

i

)(
t−1∏
i=1

fXi|Xi+1,...,Xm
(xi|xi+1, ..., xm)

)
dx1...dxt−1

is a polynomial of xt, xt+1, ..., xm with the total degree not
exceeding

∑t−1
i=1 ki. When multiplying this polynomial with s∑kt−n

l=0

(
a

′t
kt ,l+n|xt+1, ..., xm

)
ht

l(xt|xt+1, ..., xm), we find that the
maximum degree of xt is

∑t−1
i=1 ki+kt−n =

∑t
i=1 ki−n ≤ n−1.

Equation (41) is proved according to the orthogonality.
The rest of the proof on selecting PCM points and con-

structing g∗
c (x1, x2, ..., xm) follows directly from the proof of

Theorem 6, and is thus omitted here.
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