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Experimental Queueing Analysis with 
Long-Range Dependent Packet Traffic 
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Abstruct- Recent traffic measurement studies from a wide 
range of working packet networks have convincingly established 
the presence of significant statistical features that are character- 
istic of fractal traffic processes, in the sense that these features 
span many time scales. Of particular interest in packet traffic 
modeling is a property called long-range dependence (LRD), 
which is marked by the presence of correlations that can extend 
over many time scales. In this paper, we demonstrate empirically 
that, beyond its statistical significance in traffic measurements, 
long-range dependence has considerable impact on queueing 
performance, and is a dominant characteristic for a number 
of packet traffic engineering problems. In addition, we give 
conditions under which the use of compact and simple traffic 
models that incorporate long-range dependence in a parsimo- 
nious manner (e.g., fractional Brownian motion) is justified and 
can lead to new insights into the traffic management of high speed 
networks. 

I. INTRODUCTION 

N the past two to three years, large amounts of traffic I measurements from working packet networks [including 
Ethernet local area networks (LAN’s), wide area networks 
(WAN’S), common channel signal network CCSN/SS7, inte- 
grated services digital network (ISDN), and variable bit rate 
(VBR) video over asynchronous transfer mode (ATM)] have 
been collected and analyzed. The results reported in [l], [5], 
[7], [13], [23], [25], [26], [33], [35], [36], and [40] have been 
striking for two reasons: 1) these studies demonstrate that it is 
possible to clearly distinguish between actual packet network 
traffic and traffic generated by widely employed theoretical 
models, and 2) in sharp contrast to the traditional packet 
traffic models, aggregate packet streams are statistically sew- 
similar or fractal in nature; that is, realistic network traffic 
looks the same when measured over time scales ranging 
from milliseconds to minutes and hours. Strictly speaking, 
these results mostly concern the statistical nature of traffic 
processes, and do not address in depth issues of the relevance. 
of these features to queueing performance or practical traffic 
management. 

Moving beyond the statistical nature of the findings of 
these recent traffic studies, we demonstrate in this paper the 
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impacts of self-similarity on queueing performance. To this 
end, we concentrate on the property of long-range dependence 
(LRD), one of a number of different equivalent mathemati- 
cal manifestations of the property that the underlying traffic 
process is self-similar. A long-range dependent process is 
characterized by an autocorrelation function that decays as a 
power of the lag time, implying that the sum (over all lags) 
of the autocorrelations diverges. This divergence captures the 
intuition behind LRD, namely, that even though the high-lag 
autocorrelations are individually small and become negligible, 
their cumulative effect is of importance, giving rise to behavior 
that is drastically different (e.g., non-Markovian) from that 
of traffic processes currently considered in the teletraffic 
literature. The latter are almost exclusively Markovian in 
nature or, more generally, short-range dependent, i.e., the 
corresponding autocorrelation functions decay exponentially 
fast. 

Performing a number of queueing simulation experiments 
with actual traces of Ethemet LAN traffic and certain randomly 
“shuffled” versions thereof, we illustrate the behavior of a sim- 
ple queue as a function of the dependence structure imposed on 
the packet arrival stream. The main idea behind using shuffled 
versions of a given arrival streams is to obtain traffic traces 
with identical packet interarrival time distributions but with 
differing autocorrelation structures; in particular, we consider 
here shuffling experiments that make the packet interarrival 
times independent, retain the same short-range correlations, 
or exhibit the same long-range correlations as the original 
Ethernet traffic trace. This way, we show that LRD is not 
only relevant for queueing performance but that it is, in fact, 
a dominant characteristic for several packet traffic engineering 
issues, such as dimensioning of buffers and determining usable 
capacity. The first of this paper’s principal contributions is to 
add to the current efforts of gaining a better understanding of 
queueing performance when the input to the queue is not given 
by a traditional traffic process but is instead fractal in nature. 
For recent analytic results and simulation studies in this area, 
see, for example, 141, [7] ,  [8], [121, [13], [261, and [341. 

Given the statistical significance of the finding of self- 
similarity or LRD in measured packef traffic (e.g., in case of 
the Ethernet data see [26]) and its demonstrated significance 
for queueing performance, stochastic modeling of long-range 
phenomena becomes of crucial importance. Traditional ap- 
proaches include mimicking LRD with the help of short-range 
dependent models. This is equivalent to approximating a 
correlation function decaying as a power law by a sum of expo- 
nentials; although always possible, the number of parameters 
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required in this approach will tend to infinity as the sample size 
increases. Such approaches are pursued, for example in [22], 
[27], and [28], and can be used successfully for solving certain 
queueing performance problems numerically. However, in this 
paper we argue strongly in favor of modeling LRD based 
on the principle of parsimony, also known as Occam’s Razor 
(see, for example, [21]). The paper’s second major contribution 
consists of giving conditions under which parsimonious traffic 
models that capture LRD (e.g., fractional Brownian models) 
are appropriate and result in accurate and practically relevant 
solutions to performance problems of high speed networks that 
carry fractal-like traffic. Self-similar traffic models address the 
problem of obtaining parsimonious descriptions of complex 
traffic processes, though the complete analysis of these models 
is an area for further research. 

The idea behind parsimonious modeling is to explain facts 
in as economical a way as possible. Parsimony is essential 
in practical packet engineering: it is impossible in current 
practice to collect the large volume of operational mea- 
surements needed to fit highly parameterized models. Each 
additional measurement imposes a penalty on the capacity 
of network switching and transmission systems, as well as 
on the operational systems, which currently lack the capacity 
to collect, process, transport, and store any measurements 
beyond coarse time scale rate measurements. In practice, it 
is such considerations, and not analytical tractability, that 
limits the application of queueing models. Thus models that 
can effectively describe the behavior of the traffic in terms 
of a minimum number of parameters are of great practical 
significance. Put differently, we believe that a model that 
adequately represents the queueing behavior of the traffic 
(as we shall demonstrate in this paper) and involves only a 
few parameters is more likely to be a good representation 
of the underlying processes intrinsic to the traffic, and that its 
parameters should change less under a change in the operating 
conditions. 

The rest of the paper is organized as follows. In Section 11, 
we briefly describe the traffic measurements used in our study 
and summarize their statistical properties. Section III gives 
a description of the queueing simulation experiments that 
identify LRD as a crucial ingredient for queueing performance. 
In Section IV, we address the problem of modeling long- 
range dependent traffic processes in a parsimonious manner, 
and identify the conditions under which the model accurately 
describes bursty traffic. In Section V, we discuss the resulting 
statistical and traffic engineering implications, as well as some 
of the outstanding issues in the queueing analysis of long-range 
dependent input processes. We conclude with a summary of 
the paper in Section VI. 

11. LRD IN ACTUAL NETWORK TRAFFIC 
With the large scale deployment of ISDN and high speed 

data networks such as switched multimegabit data service 
(SMDS) and frame relay, and the emergence of broadband net- 
works, there has been renewed interest in traffic measurement 
studies. Prominent among these recent studies are the statistical 
analyses of i) Bellcore’s Ethernet LAN traffic measurements 

[ZS], [26], ii) WAN traffic traces collected at Berkeley [35],  
[36], iii) traffic measurements collected from working Com- 
mon Channel Signaling (CCS) subnetworks [5], iv) packet 
traces collected in an ISDN office automation environment 
[33], and v) VBR video traces [l], [13], [20]. Note that because 
of the use of highest quality traffic monitoring equipment and 
because of current data storage capabilities that are practically 
unlimited, the resulting sets of traffic measurements are unique 
in terms of quality and size. 

For the queueing experiments performed in this paper, 
we rely exclusively on the Bellcore Ethernet LAN traffic 
measurements. Similar results have been obtained using some 
of the other data traffic sets mentioned above. For illustration 
purposes, our examples below are drawn from aggregate LAN 
traffic recorded during August 1989. While the nature of the 
applications that run on the LAN have changed considerably 
since 1989 (e.g., web browsing and the Mbone service on the 
Internet now make up a significant fraction of the traffic), the 
essential self-similar nature of the traffic has not changed. For 
the August 1989 data set, the internal traffic data (consisting 
of all packets on the LAN, regardless of source or destination) 
came from a network operating at a speed of 10 Mbps and 
serving a laboratory of about 120 people, most of whom had a 
Sun-3, Sun-4, or DECstation 3100 workstation on their desk; 
it also served nine file servers and a small number of high-end 
minicomputers and was connected to the rest of Bellcore via 
a router. For more details about this data collection effort and 
the subsequent data analysis, we refer to [26] and [40]. 

From a statistical analysis viewpoint (for details, see [l] 
and [40]), the most surprising finding from the aforemen- 
tioned studies concerns the ease with which it is possible 
to statistically distinguish between measured network traffic 
and traditional model-generated traffic. For example, while 
covariance-stationary traffic processes X = { X k }  currently 
considered in the teletraffic literature are exclusively short- 
range dependent, i.e., exhibit autocorrelations T X  ( k )  that de- 
cay exponentially fast 

r x ( k )  - alli’, as ~ k l  + 00, o < a < 1 (1) 

(here and henceforth, N denotes that the expressions on the. 
two sides are asymptotically proportional to each other). These 
studies demonstrate convincingly that the autocorrelation func- 
tion T X  ( k ) ,  k 2 0, of a realistic packet traffic process X does 
not decay exponentially fast but has instead the form 

where 0 < p < 1. Stochastic processes satisfying rela- 
tion (2) are said to exhibit long-range dependence or, using 
Mandelbrot’s terminology, the Joseph Effect.’ Long-range 
dependence captures the persistence phenomenon observed in 
many empirical time series that manifests itself in clusters 
(“bursts”) of consecutive large (or small) values. Long-range 
dependent processes are non-Markovian in nature and give 
rise to features that are drastically different from those of 
traditional short-range dependent processes. In particular, note 

‘A  reference to the Biblical figure who foretold of the “seven fat years and 
seven lean years” that ancient Egypt was to experience 
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Fig. 1. Variance-time plot (top) and periodogram plot (bottom) for an 
hour-long Ethernet traffic trace. The dotted reference lines in the variance-time 
and periodogram plots have slopes -1.0 and 0.0, respectively. 

that the latter give rise to a summable autocorrelation function 
0 < Ck r x ( k )  < CO, while LRD implies nonsummability 
of the correlations, i.e., XI, T X ( ~ )  = 00. In the frequency 
domain, LRD manifests itself in a spectral density S X ( W )  = 
XI, rx(k)ezkw that obeys a power-law near the origin ( l / f -  
noise phenomenon), e.g., 

S X ( W )  N IwI-7, as w -+ 0 (3) 

where 0 < y < 1;' on the other hand, short-range dependent 
processes are characterized by a spectral density that remains 
finite as w -+ 0. The Hurstparumeter H is commonly used to 
measure the degree of LRD, and is related to the parameters 
,B in (2)  and y in (3) by H = 1 - P / 2  = (1 + y)/2 (for 
short-range dependent processes, H = l/2). 

This clear statistical distinction between measured network 
traffic and traditional traffic processes is significant in a 
number of ways. On the one hand, it allows for surprisingly 
simple graphical methods for clearly distinguishing between 
measured data and traditional model-generated traffic (see, 
for example, Fig. 4 in [26]). On the other hand, it enables 
one to approach the problem of inference for data with LRD 
from a number of different angles, utilizing both time domain 
and frequency domain techniques (for details, see [l] and 
[26]). For example, Fig. 1 depicts the variance-time plot and 
periodogram plot obtained from the time series describing 
the number of Ethernet packets per 10 ms during a normal 

'From the correlation function in the frequency domain, it is clear why 
/3 < 1 for long-range dependent processes, since /3 = 1 - y and > 0. 

traffic hour from the August 1989 traffic measurements. The 
variance-time plot is obtained by plotting log {var [X( - ) ]>  
against log (m) , where for each m = 1, 2, . . . , the aggregated 
process X(" )  = {XL"') is obtained by averaging the original 
traffic process X over nonoverlapping intervals of size 10m 
milliseconds. Then for short-range dependent traffic processes 

var[x(")] N m-l, as m -+ CO (4) 

while processes with long-range dependence can be charac- 
terized by 

var [x(")] N m-0, as m -+ cx),  o < p < 1. ( 5 )  

The variance-time plot technique exploits this difference in 
the rate of the decay of var [X(")] ;  while values of the 
estimate -/? of the resulting asymptotic slope between -1 
and 0 indicate LRD, short-range dependent processes are 
characterized by an asymptotic slope of - 1 (dotted reference 
line). An estimate for the Hurst parameter H is then given 
by fi = 1 - p/2. For the Ethernet traffic data in Fig. 1, the 
asymptotic slope parameter is readily estimated to, be about 
-0.40, resulting in a Hurst parameter estimate of H M 0.80. 
In case of the periodogram plot, we rlely on the fact that for 
a given set of observations ( X I ,  X2 ,  . . . , X n )  from a long- 
range dependent process X ,  the corresponding periodogram 
I x ( w )  = (27rn)-'lC, X3ez3w12,0 I w 5 T ,  has an 
expectation value of S X ( W ) .  Using (3), we see that this 
decreases linearly (at least for the low frequencies) in log - log 
plots against w with a negative slope. In contrast, short-range 
dependent processes result in periodogram plots that are flat 
(i.e., zero slope) around the origin (dotted reference line). 
Letting -? denote the estimate of the resulting asymptotic 
slope in the periodogram plot near the origin (1 > + > 
0), an estimate of the Hurst parameter of X is given by 
fi = (1 + ?)/a. The periodogram plot in Fig. 1 resulting 
from the Ethernet data yields + M 0.60, and hence the 
same Hurst parameter estimate of about 0.80. Additional 
estimation techniques, including R/S-analysis and Whittle's 
method (e.g., see [26]), can be used to confirm and refine 
aspects related to statistical inference For data with LRD. 

Mathematically (for 1/2 < H < l), autocorrelations that 
decay hyperbolically [i.e., satisfy relation (2) ] ,  variances of 
the aggregated processes that decrease more slowly than the 
reciprocal of the sample size [see relation (5) ] ,  and spectral 
densities that exhibit the 1/ f -noise phenomenon [i.e., see 
(3)]  are different manifestations of the property that the 
underlying traffic process is statistically self-similar. Another 
characteristic that can be said to span many time scales is the 
heavy-tailed nature of the densities describing traffic processes 
such as packet interarrival times and burst lengths. We will 
refer collectively to these properties as the fractal properties 
of measured packet traffic, using the popular notion of fractals 
to describe phenomena that span many length or time scales. 
Mathematically, a covariance stationay packet traffic process 
X satisfying (5) is called asymptotically second-order self- 
similar with self-similarity parameter H = 1 - ,B/2 if for all 
sufficiently large m, r$?)(k) N r ~ ( k ) ,  as k -+ CO, where 
TP) denotes the autocorrelation function of the aggregated 
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process X(”). Exactly second-order self-similar processes 
have the asymptotic proportionality strengthened to an exact 
equality for all k and all m. An example of an exactly self- 
similar process with self-similarity parameter H is fractional 
Gaussian noise with parameter l / 2  < H C 1 [see (see [31] 
for more details); fructionalARZMA ( p ,  d ,  q)  models (see [15], 
[ 191) are examples of asymptotically self-similar processes 
with self-similarity parameter H = d + l / 2 ,  0 < d < l / 2 .  
For other approaches to characterizing the fractal properties 
of measured packet traffic that make explicit use of certain 
fractal dimension descriptors, see [7], [9], and [IO]. 

111. EXPERIMENTING WITH MEASURED 
ETHERNET TRAFFIC TRACES 

While the studies mentioned above convincingly establish 
the presence of LRD over a wide range of time scales in 
packet traffic processes (see also Fig. l), its significance to 
queueing performance and traffic engineering may not be 
clear at this point. For example, it has been argued by some 
that since queueing performance is determined by features in 
arrival processes of the time scales of a queueing system’s 
busy period, long-range dependence has no practical impact 
and need not be incorporated into performance models. In 
this section, we describe a series of simulation experiments 
that demonstrate-contrary to this argument-the practical 
significance of LRD in queueing performance. 

A. Three Simple Queueing Experiments 

We consider a queueing system with the following charac- 
teristics: infinite waiting room, deterministic service times, a 
single server, and arrivals taken from actual Ethernet traffic 
traces. The input traces consist of the measured interarrival 
times of actual Ethernet traffic; while the results shown below 
are obtained with a single 30-min long Ethernet traffic trace, 
similar results (not shown here) also hold for other Ethernet 
traffic data sets, as well as for some of the other traffic traces 
(e.g., ISDN) mentioned in Section 11. A 30-min interval is 
representative of the time scales over which traffic in packet 
networks is currently measured (15-60 mn); for example, 
traffic levels are typically reported at 30-min intervals, and rate 
and utilization measurements over these intervals are used as 
baselines in “load-service’’ curves. The underlying assump- 
tion in engineering practice is that the traffic environment 
is stationary over such time scales. While this assumption 
is not always satisfied in practice, it does appear to be a 
reasonable hypothesis for the 30-min trace used in our studies. 
In particular, the variability of a number of relevant traffic 
statistics estimated across subsets of the 30-min trace is, within 
confidence limits, consistent with the stationarity hypothesis. 
In our experiments, we also perform various transformations 
on these Ethernet traffic traces. For this purpose, we choose 
to work with interarrival time traces, primarily to preserve the 
marginal interarrival time distribution throughout the different 
queueing experiments. By keeping the packet interarrival time 
distributions of the traces used in our experiments identical, 
we are able to isolate the possible effects of the underlying 
dependence structure on queueing and separate them from 
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Fig. 2. 
(A), QNA-based approximation (B), and fully shuffled trace (C). 

Average delay (in seconds) versus utilization plot for original trace 

those due to the distributional aspects of the interarrival times. 
A similar experiment investigating the queueing impact of the 
latter by holding the former fixed would be of interest but is not 
part of the present study. To achieve different utilizations of the 
queue for a given input trace, we adjust the service time of the 
deterministic server, and consider the average waiting time, as 
well as the asymptotic form of the queue length distribution. 

Curve (A) in Fig. 2 is the average delay versus utilization 
plot obtained with the original trace. From a traffic engineering 
perspective, the “knee of the curve” is of particular interest. As 
can be seen, there is a sharp rise in the average delay around 
50% utilization. By way of a comparison, Fig. 2 also shows 
[curve (B)] the delay curve predicted by the Queueing Network 
Analyzer (QNA). QNA uses a set of GI/G/l approximations 
(based on two moment characterizations of the input traffic) 
that are widely applied in practice. In contrast to the delay 
curve obtained with the actual trace, curve (B) predicts useful 
capacities in excess of 80% utilization. To identify the features 
of the input trace that contribute to the sharp rise in delays at 
relatively low utilizations, we repeat the simulation experi- 
ments with transformations of the original traffic trace that 
preserve some aspects of statistical characteristics normally 
associated with burstiness, while eliminating others. 

In the second experiment, we repeat the simulation with 
an input trace that is obtained by shuffling the time series 
of interarrival times. Note that by randomizing the set of 
interarrival times, we preserve the marginal distribution of the 
interarrival times, while destroying all correlations between 
them. The delay curve obtained with this input is the curve 
marked (C) in Fig. 2. As can be seen, the delay performance 
obtained with this renewal process is somewhat different 
from that predicted by QNA. More significantly, the disparity 
between curves (A) and (C) indicates that the best renewal 
model will grossly underestimate queueing delays at moderate 
and high utilizations. In particular, this experiment suggests 
that the burstiness of traffic cannot simply be explained by 
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a renewal arrival process with a singular distribution. Such 
models have been considered in [38], following earlier work 
by Mandelbrot and co-workers [29] in a different context. In 
these models, the probability P(T > t )  that the interarrival 
time T is greater than t decays slowly with t when t is large 

with 1 > a > 0. Since CI: < 1, the mean interarrival 
time, dt P(T > t ) ,  diverges, so that the mean traffic 
density approaches zero when measured over a sufficiently 
long interval. On the other hand, since -dP/dt diverges at 
t = 0, most of the interarrival times will be quite small.3 
There are thus bursts of activity separated by long periods of 
inactivity; as one observes the system for longer and longer 
times, one runs into larger and larger inactive stretches, leading 
to the vanishing of the mean traffic density. Despite the fact 
that the interarrival time process is renewal-one interarrival 
time is not correlated with any other-the “heavy” tail of the 
distribution of T leads to unusual features; in particular, delays 
increase sharply at surprisingly low utilization factors. This 
effect certainly is present in the Ethernet data: P(T > t )  
for the measured Ethernet data does decay slowly at large 
t ,  as in singular renewal models, resulting in weak long- 
range dependence (in the time series of counts) in even the 
shuffled trace used to generate curve (C). We believe that this 
is responsible for the eventual intersection of the curves (B) 
and (C). However, Fig. 2 also establishes-curve (C) is much 
closer to (B) than to (A)-that any aspect of the interarrival 
time distribution (whether the residual long-range dependence 
created by it or something else) is not the main source of the 
unexpectedly high waiting times for the traffic. This is not to 
say, however, that aggregates of singular renewal models will 
not be useful in modeling packet traffic, as discussed further 
in Section V-A. 

Given that the properties of the packet interarrival time 
marginals do not determine the sharp increase in delays seen 
with the original trace, it is apparent that correlations in the 
arrival process are responsible for this behavior. We now 
wish to distinguish between one-step correlations, short-term 
correlations, and long-range dependence. The traffic traces do 
show complex short-term correlations, including striking one- 
step correlations. This is apparent by studying phase plots of 
the time series of interarrival times, i.e., q + k  versus T,. Fig. 3 
is a phase plot of TtS1 versus T,. If the interarrival times 
were independent, Fig. 3 would at most have only vertical 
and horizontal lines, and more complicated structures (like the 
diagonal lines seen) would be absent. Explaining how such 
structures arise in a packet stream is in itself an intriguing 
exercise; these features are probably not Ethernet protocol 
specific, because similar phase plots are obtained with ISDN 
packet traffic traces as well. Given that there is some degree 
of quantization in the interarrival times, the horizontal lines 
correspond to the first packet in a burst, while the vertical 
lines correspond to the last packet in a burst. The diagonal 
lines are probably caused by a superposition of two or more 

3 0 f  course, in reality (6) must be rounded off for very small t ,  but this 
will not affect our results. 
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sources which generate deterministically spaced interarrival 
times when they are on. 

To consider the performance implications of the one-step 
correlations in Fig. 3, we repeat the simulation with an input 
trace that is derived from the phase plot. For a given T,, 
interarrival time T,+l is randomly picked from the possible 
set of interarrival times indicated by the phase plot. The input 
trace thus preserves properties of the marginal distribution, as 
well as the one-step correlations. Curve (D) in Fig. 4 shows 
the resulting delay performance, and the disparity between this 
and the original trace [curve (A)] is once more considerable. 
Thus, the one-step correlations are not responsible for the sharp 
rise in the delay curve observed with the original trace, which 
must arise from the short-term and/or long-term correlations. 

B. Two Experiments with Shufled Data 

A modified version of the above test can be used to ascertain 
the importance of long-range and short-range correlations 
in the data. Considering the sequence of interarrival times 
corresponding to the same set of Ethernet data as above, we 
divide the sequence into blocks of size m; with N interarrival 
times, there are N/m such blocks. We then perform an 
“external shuffle,” i.e., the order of the blocks is shuffled, 
while preserving the sequence inside each block. For choices 
of m in the range 10-100, this has the effect of essentially 
preserving the short-range correlations while eliminating the 
long-range correlations. Note that for a given m, the number of 
packets in a block is fixed, while the time duration of a block 
can vary significantly. Experiments with fixed block durations 
(and variable numbers of packets) are briefly described later. 

Curve (E) in Fig. 4 is the delay curve obtained with an input 
trace resulting from an external shuffle (m = 25) .  For the 30 
min trace used in the experiments described here, m = 25 
corresponds to an average block duration of about 76 ms, with 
block durations ranging from 14-629 ms. Even though this 
trace captures the properties of the marginal distribution, as 
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Fig. 4. Average delay (in seconds) versus utilization plot for original trace 
(A), trace with identical one-step correlations (D), externally shuffled trace 
(E), and internally shuffled trace (F). 

well as short term correlations up to lags of 25, the discrepancy 
with the delay curve (A) of the original trace is considerable. 
The input trace is representative of short-range dependent 
models that do not model correlations beyond a small number 
of lags, and the results indicate that such models may not 
capture significant aspects of the queueing performance. We 
next consider an “internal shuffle” (again with m = 25) of 
the sequence, in which the sequence within each block is 
randomized, while the order of the blocks is unchanged. This 
has the effect of destroying the short-range correlations in 
the data, while preserving the long-range correlations. This 
trace is then input to the simulation, and curve (F) in Fig. 4 
is the resulting delay curve. Strikingly, this is almost exactly 
coincident with the delay characteristic of the original curve, 
even though in statistical terms, the two traces are very 
different. This demonstrates that LRD is not merely relevant 
for queueing performance; it is a dominant characteristic for 
determining several issues of traffic engineering concern, such 
as dimensioning of buffers, and determining usable capacity. 
Note that while other traffic characteristics (e.g., marginal 
distributions of time series packet counts) can be of similar 
significance for traffic engineering practice, they are not the 
focus of this study. 

Obviously, an external shuffle with sufficiently large m does 
not affect the data significantly, because the correlations across 
such large blocks will be weak. On the other hand, one would 
expect an internal shuffle with sufficiently small m to also 
leave the data unaffected, because the traffic density is more 
correlated over short time intervals, and is thus not changed 
by local rearrangements of the interarrival times. Note that the 
fully random shuffle we considered earlier is the extreme case 
of an external shuffle with m = 1 or, equivalently, an internal 
shuffle with m = N .  Fig. 5 depicts the average delay for 
the original data [curve (A)] and for three “external shuffles” 
using block sizes of m = 1 [curve (C)], m = 25 [curve 
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Fig. 5. Average delay (in seconds) versus utilization plot for original trace 
(A), fully shuffled (1 e., external shuffle with block size m = 1) trace (C), 
externally shuffled trace with block size m = 25 (E), and externally shuffled 
trace with block size m = 500 (G). 

(E)], and m = 500 [curve (G)], respectively. For the 30-min 
data set used here, a block size of m = 500 corresponds to 
block durations that are on an average about 1.5 s long, and 
ranging from a minimum of 0.5 s to a maximum of 4.2 s. It 
can be seen that even for m = 500, the delay characteristic is 
perceptibly different from that obtained for the original data, 
emphasizing the fact that correlations over extremely long time 
scales in the data have measurable and practical consequences. 
A second conclusion from these simulation experiments is that, 
for the problem at hand, the precise structure of the short-term 
correlations is relatively unimportant; thus a description in 
terms of arrival counts over a small time interval is adequate, 
even though it will not include characteristics of the traffic 
below this time scale. Equally, descriptions of the traffic 
process that are continuous in time (and assume a continuum 
of values) are valid. 

C. Discussion 

Similar results are obtained when other performance metrics 
are considered, such as delay percentiles or queue length 
distributions. Fig. 6 shows the queue length distributions ob- 
tained at a utilization of 50% in the simulation experiments 
described above. The behavior of the system at this utilization 
is of particular interest in engineering, because this is in the 
region of the “knee:’ of curve (A) in Figs. 2, 4, and 5. The 
logarithm of the complementary distribution log [P(V > x)] 
is plotted against x. For any finite Markov state model, 
this plot should be asymptotically linear (see for example 
[ 14]), indicating that the complementary distribution is of the 
form exp (-qx). The asymptotic form of the queue length 
distribution is important in itself in traffic engineering; for 
example, it forms the basis of equivalent bandwidth schemes 
as considered in [16] and [6], and is used in call admission 
controls. However, curve (A) obtained using the same Ethernet 
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Fig. 6. Complementary queue length distributions for original trace (A), 
fully shuffled trace (C), trace with identical one-step correlations (D), ex- 
ternally shuffled trace with block size m = 25 (E), externally shuffled trace 
with block size m = 500 (G), and internally shuffled trace with block size 
m = 25 (F). 

traffic trace as above is emphatically not linear. We will discuss 
the significance of this departure from linearity in more detail 
in the next section. Curves (C), (D), and (E) correspond to the 
cases of shuffled data (complete shuffle; one-step correlations 
preserved; external shuffle with m = 25, i.e., all long-term 
correlations removed). It can be seen that the queue length 
distributions decay much more rapidly than in the original 
data set. In fact, the curves obtained in these cases appear 
linear, indicating that the tails of the queue length distributions 
decay exponentially. In contrast, curve (F) which is obtained 
by an internal shuffle with m = 2 5 ,  is almost coincident with 
the distribution obtained with the original trace. Curve (G), 
the queue length distribution obtained with an external shuffle 
using m = 500 also decays slowly, but can be distinguished 
from the plot obtained with the original trace. Thus, one can 
state that tails of queue length distributions obtained with 
actual data traces appear to be much heavier than is indicated 
by exponential decay, and that this is attributable to LRD. 
Beyond the range displayed in the plot, the queue length 
distributions (A), (F), and (G) are marked by the same sharp 
drop observed at the end of curve (E). This is an artifact and 
occurs in the region where simulation-based results become 
unreliable due to insufficient observations; simulations with 
longer traces move this region further out. 

Experiments with counts are more in the spirit of the 
empirically observed LRD property of the counts processes 
considered in the traffic studies mentioned in Section 11. Nev- 
ertheless, the variance-time plots in Fig. 7 demonstrate con- 
vincingly that the “internal shuffle” and “external shuffle” 
experiments on the interarrival times have indeed the desired 
effect of preserving or destroying the LRD property of the 
corresponding time series of counts. 

It is therefore to be expected that similar results are also 
obtained if the data sets consist of time series of counts, and 
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Fig. 7. Variance-time plots for “internally shuffled” (top) and “externally 
shuffled” (bottom) Ethernet data. The dotted reference lines correspond to 
lines with slopes -1.0. 

the blocks are divided on the basis of equal time intervals, 
rather than constant numbers of packets. Fig. 8 shows results 
obtained when the data is represented by a time series of 
counts over 30 millisecond intervals with: the original trace 
[curve (A)]; complete shuffle [curve (C)]; external shuffle 
with m = 10, i.e., block duration is 300 milliseconds [curve 
(E)]; and internal shuffle with m = 10 [curve (F)]. The 
counts are randomly distributed over the 30 ms interval for 
the queueing simulations. Thus, performing the experiments 
with either blocks of interarrival times, or blocks of counts, 
yields similar results. The two approaches are equivalent when 
the high frequency structure (which is lost when the packets 
are aggregated over a time interval) is unimportant. 

Our experimental results are also qualitatively consistent 
with the results obtained from the frequency-domain based 
approach considered in [27] and [28] ,  where it is noted that low 
frequencies in the power spectra dominate queueing behavior. 
Recall that the LRD manifests itself as a sharp divergence in 
the low frequency region of the power spectrum. 

IV. PARSIMONIOUS TRAFFIC MODELING 
One can conclude from the previous section that conven- 

tional short range models which do not incorporate LRD can 
be significantly in error when used in traffic engineering. This 
finding does not necessarily imply, however, that complicated 
and highly parameterized traffic models have to be employed 
to guarantee accurate and relevant solutions to practical en- 
gineering problems. In fact, it is well-known that parsimony 
in models can be achieved by abstracting out features that 
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Fig. 8. Average delay (in seconds) versus utilization plot (using time series 
of counts as opposed to time series of interarrival times) for original trace 
(A), fully shuffled trace (C), extemally shuffled trace with block size m = 10 
(E), and internally shuffled trace with block size m = 10 0. 

do not contribute significantly to queueing pedormance. For 
example, the one-step correlations in interarrival times are 
striking, but for infinite buffer systems at least, they need 
not be modeled. In this context, it is essential to know 
what statistical aspects of network traffic can be ignored 
and when. We next consider this key problem in realizing 
parsimonious models, and i) give conditions under which 
second order statistical descriptions of traffic processes are 
sufficient for traffic engineering purposes, ii) discuss Fractional 
Brownian Motion models, which parsimoniously capture long- 
range dependence, and iii) show that the modeled features are 
robust with respect to traffic shaping. 

A. Relevance of Second-Order Properties 
It is reasonable to assume in a network environment that 

traffic flows are generated by multiple users who act inde- 
pendently; any two successive packets typically come from 
different and uncorrelated users. Thus, a characterization in 
terms of interarrival times is less useful for describing traffic 
aggregated from multiple users. (The importance of descrip- 
tions based on interarrival time distributions arises from their 
widespread use in classical GIIGI. theory, which is still the 
foundation of current traffic engineering practice. The practical 
utility of modeling the features of time series of interarrival 
times is, however, limited by the need to model operations 
such as splitting and merging of traffic streams.) On the other 
hand, as we shall see, it is precisely in the case where the 
number of users is large that’a description of the traffic in terms 
of a continuous density variable, X ( t ) ,  expressed as a function 
of time, works well. The results of Section I11 demonstrate that 
the shortest time scale fluctuations in the traffic density can be 
ignored. This validates the use of a theory based on the notion 
of a continuous traffic density, which we now construct. 

For an aggregation of n independent users, the traffic density 
can be decomposed as the sum of n independent terms 

n 

z = 1  

where A, and A, are assumed to be uncorrelated for different 
users i and j. If we also assume that n is large, a form of 
the central limit theorem is obtained; since with long-range 
correlations in the data this may not seem obvious, we outline 
the derivation here. The expectation value of any moment of 
the deviation from the mean of the traffic density 

(8) S X ( t )  = A ( t )  - x 

(6A(t,)6A(t,) . . . 6 A ( t l ) )  = 

is given by 

n n 

(9) 
z 1 = 1  z i = 1  

We assume that, in the time domain, all correlation functions 
of the form ( S X z ( t l )  . . .  SA,(t,)) are finite. This is explicitly 
verified for r = 2 from the data (and is true for all T for a 
simple ON-OFF model that we discuss later).4 If the number 
of distinct elements in the set {i} is L ,  in the large n limit there 
are O ( n L )  such terms in the sum on the right hand side of (9), 
which is therefore dominated by the case when L = 1 f 2 (the 
largest value possible). Thus all moments of the distribution 
for X are given in terms of the second moment, which is the 
signature of a Gaussian distribution. If 

(10) 
1 
n (sAZ(t1)6x,(t,)) = - T ( t l  - t z )  

where r is the autocoGelation function defined earlier, then 
the probability distribution for the sum of a large number of 
such users is 

P(A) = 

(11) 

It is simpler to express this equation in the Fourier domain, 
where we obtain 

P(A) = 

where s (w)  is the spectral density. As has been seen earlier, 
for long-range dependent traffic processes, the low frequency 
behavior of s (w)  is 

s(w)  N I ~ l l - ’ ~ ,  as w -+ 0. (13) 

Notice that although s (w)  diverges for small w (for H > 
1/2), ~ ( t )  is finite for all t: the maximum value is at t = 0, 
where ~ ( t  = 0) = J d w s ( w ) ,  which is finite for H < 1. 

4Strictly speaking, the correlation function at lag zero is unbounded if the 
traffic is viewed as a sequence of delta functions. The “data smoothing” we 
carry out in constructing the traffic densities removes this singularity. 
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Thus the assumption of finiteness of moments, necessary for 
second order properties to be adequate in the large n limit, is 
not contradicted. Also note that in this analysis the singular 
form of the spectrum at small frequencies is a property of 
each source, and is not a result of the multiplexing. Recent 
studies in [41] of Ethernet traffic traces suggest that single 
sources can be represented by ON-OFF models in which the 
sojourn time distributions of the ON and OFF states decay 
as power laws. Similar conclusions were made earlier ([33]) 
regarding the ON-OFF behavior of single ISDN D-channel 
sources. Thus the low frequency form of the spectrum in (13) 
arises due to the occasional sustained ON and/or OFF activity 
indicated by the power law sojourn time distributions. 

Since in reality the number n of users on the system is 
finite, it is necessary to verify how far this n + 00 limit 
is applicable. In order to do this, we note that (12) is left 
unchanged under the transformation 

A(w) --f A(w) e x p [ i Q ( w ) ]  
and 

A(-w) + A(-w) exp [- iO(w)] (14) 

with a random phase Q(w) that is separately chosen for each 
w .  (The joint condition on A ( h )  preserves ImA(t) = 0.) 
We proceed in the following manner: from a five min subset 
of our 30 min experimentally measured data set, a smoothed 
density function is constructed, by dividing the total time into 
suitably chosen intervals, and measuring the (integer) number 
of arrivals in each such interval. The criterion for choosing 
the size of such an interval will be discussed shortly. From 
the sequence of integers X I ,  thus obtained, a discrete Fourier 
transform is constructed. This is now modified according 
to the prescription of (14), with Q ( w )  chosen independently 
for each fw, from a distribution uniform over [0, 27r). The 
resulting altered Fourier transform is inverted, and rounded to 
the nearest integer to generate a sequence of integers, XL. 
To the interval k we assign Xg arrivals, spaced randomly 
over the interval (other approaches to spacing the traffic over 
the interval, such as deterministic, uniform spacing, do not 
significantly change the outcome for such small intervals). For 
X i  < 0, the interval is left empty. The criterion for choosing 
the size of the discretization interval is that it should be as 
large as possible, in order to minimize negative values of X i ,  
without destroying the long-range variations in the density that 
are important. From the earlier tests on shuffling the data, we 
expect that an interval size of the order of ten times the mean 
interarrival time should be reasonable. 

Figure 9 shows the effect of such a transformation on 
the queueing performance. As a function of the processor 
utilization, we plot the average delays for the original data 
[curve (A)] as well as the transformed data [curve (H)]. We 
see that there is a discernible difference between the two 
cases; this is to be expected, in view of the fact that the 
transformed data set is equivalent to the original only in 
the n + 00 limit. Such discrepancies (within 5% on the 
utilization axis in this case) may be acceptable in practical 
traffic engineering, though additional safety margins have to be 
incorporated into capacity estimates, given that this error may 
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Fig. 10. Average delay (in seconds) versus utilization plot for 10 multiplexed 
original traces (a) and the corresponding transformed trace (h). 

be on the optimistic side. These discrepancies arise because the 
transformed data differs from the original data set in a number 
of ways, including in distribution, higher order statistics, as 
well as the random interpolation scheme used to assign arrivals 
within an interval. The effects of the distribution and higher 
order statistics are expected to decrease as the number of 
independent users becomes larger. Indeed, Fig. 10 shows the 
average delay versus utilization curve obtained by aggregating 
I O  traces, derived from a five min Ethemet trace using different 
initial offsets chosen randomly. For a carefully chosen set of 
initial offsets, this has the effect of increasing n, and as can be 
seen, the discrepancy is reduced. This provides some empirical 
justification for representing the arrival process by first and 
second order statistics. 
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B. Fractional Brownian Motion Models 

In principle, one can also use a high-order Markov model to 
approximate the power spectrum by using a rational function to 
match it, as suggested in [28]. As we have emphasized before, 
it is essential in practice for the description to be parsimonious. 
Parsimony is achieved by using the power law representation 
in (13) of the spectrum, which is the form indicated by all the 
data sets we have analyzed. Thus traffic can be characterized 
by the Hurst parameter H ,  a magnitude term representing the 
strength of the fluctuations SA, and the average rate 3. 

This is the approach effectively adopted by Norros [34], 
using a Fractional Brownian Motion (FBM) model of the 
arrival process. FBM can be viewed as an extension of the 
standard Brownian Motion models that have been used with 
some success in heavy traffic analysis. In standard Brownian 
Motion models, the cumulative arrival process A(t) is modeled 
by random fluctuations about a mean rate 

(15) A(t) = nt + J a n Z ( t )  

where the process Z ( t )  has independent Gaussian increments, 
and a is a peakedness term that describes the magnitude of 
fluctuations. (We are using units of time in which x(t) = n, 
so that each source has, on the average, 1, = 1.) In FBM, the 
increments of Z ( t )  are taken to be long-range dependent. Z ( t )  
satisfies the conditions Z ( t  = 0) = 0 and ( Z ( t ) )  = 0, and 

The distribution of Z(crt) is identical to that of CrHZ(t). From 
(16), one can obtain the correlation structure of the increments 
of Z ( t ) :  for tl < t z  < t 3  < t 4 ,  with tl M t z  and t 3  M t 4 ,  

we have 

([z(t4) - z(k)][z(tz) - z(ti)]) 
H(2H - l ) ( t 4  - t~ ) ' " -~ ( t z  - t l ) ( t 4  - t 3 )  (17) 

which decays as a power-law in terms of t q  - tz. By setting 
the Hurst parameter H to 0.5, (16) reduces to the form for 
standard Brownian motion, and the right hand side of (17) is 
zero. Note that FBM is an exactly self-similar model, with the 
above scaling relation applicable for all choices of {t l ,  t z } .  
In practice, data traffic shows this scaling behavior over a 
wide range of time scales, though there are lower cutoffs (for 
example, about 10 milliseconds for Ethernet traffic) below 
which short range correlations dominate. The FBM model is 
expected to be valid under the following conditions: i) the time 
scales of interest in the queueing processes coincide with the 
scaling region, ii) the traffic is aggregated from a large number 
of independent users, and iii) the effect of flow controls on 
any one user is negligible. In such a setting, our analysis 
has shown that the complex short-range correlations can be 
ignored from a traffic engineering perspective. The long-range 
correlations, or equivalently, the low-frequency structure of 
the power spectrum, which is relevant for many aspects of 
practical traffic engineering, can be parsimoniously modeled 
using the three parameter FBM model. 

Norros has derived several results for the queueing behavior 
obtained by driving a deterministic service time queue with an 

FBM process, including the following asymptotic lower bound 
for the probability P(V > x) that the queue-length V exceeds x 

(18) P(V > x) N exp [ - c I c ~ - ~ ~ ]  

with 

c =  
2a 

Here p is the utilization, or ratio of to the processor speed. 
It is expected that the full expression for P(V > z) will 
differ from (18) by at most a power-law prefactor. In fact, 
Duffield and O'Connell [4] have shown that the Norros bound 
is asymptotically tight. 

Figure 11 shows a plot of log P(V > I C )  versus x, using 
trace-driven simulations [i.e., curve (A) from Fig. 61. Here 
we have considered a utilization of 0.5, corresponding to the 
knee of curve (A) in Fig. 2. The dashed curve (I) is the 
asymptotic form from (18) and (19). The values of H and 
a used to obtain the fit are within the confidence limits of the 
parameters estimated from Fig. 1. The two curves should be 
asymptotically the same; although for small IC we expect in 
general corrections to the asymptotic form, it seems to work 
surprisingly well even in this regime. At very large x, beyond 
5 = 100, the measured queue length distribution falls offfaster 
than the dashed curve, due to limitations of the length of the 
simulation. In any finite set of data it is inevitable that the 
queue length distribution will eventually fall-off faster than 
the predicted form for large x. Note that it is always possible 
to find a range of queue lengths where an exponential form 
(i.e., linear on the semi-log plot), with an appropriately chosen 
small decay constant, provides a good fit to the queue length 
distribution. While the effects of the long-range dependence, 
whose importance we have demonstrated in this paper (as 
in Fig. 6), can thus be modeled over a limited range of z 
values by exponential decays with small decay constants, with 
longer data traces, discrepancies become increasingly apparent 
(in addition, the range and decay constant depend on the 
length of the data trace). Due to the substantial weight at large 
x in the distribution, these discrepancies will have practical 
implications. 

Heavy-tailed queueing behavior is also reported in [9], based 
on numerical and analytical studies of models that formulate 
ON-OFF source and queueing behavior in terms of chaotic 
maps. Thus, there is considerable support to the simulation 
results indicating that the tails of the queue length distri&tions 
decay much more slowly than the exponential rate predicted 
by Markov models. 

This property can be expected to have considerable impact 
in engineering. For example, buffers sized on the basis of 
conventional model may result in underprovisioning. Early 
experiences in data services over ATM indicate heavier than 
expected losses [ 3 ] .  A combination of vastly increased buffer 
sizes and reduced utilizations may be necessary to achieve 
acceptable loss rates. The heavy-tailed nature of the queue 
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Fig. 11. Complementary queue length distributions for original trace (A), 
asymptotic form given in (18) (I), and finite buffer simulation with original 
trace (J). 

length distributions may introduce additional errors in ad- 
mission strategies that are based on equivalent bandwidth 
schemes. 

Hwang and Li [17] report a phenomenon called “buffer 
ineffectiveness,” in which increasing buffer sizes beyond a 
certain value results in only a slight decrease in loss rates. 
This is, in fact, a consequence of the “stretched exponential” 
nature of (18) [34]. 

The FBM model also provides insights into the sharp rise 
in average waiting times observed with actual traffic traces 
[curve (A) in Figs. 2, 4, and 51. Using (18) to estimate the 
average queue length 2, it is readily shown that ?E diverges 
as (1 - p ) - H / ( l - H )  as p approaches one. When H = 0.5, ?E 
behaves as (1 - p ) - l ,  which is familiar from standard queueing 
models with constant or exponential service times. For H = 
0.8, Z increases much more rapidly [as (1 - P ) - ~ ]  which 
explains the sharp rise in delays observed in the simulations. 
Once again, this behavior is unprecedented in short-range 
dependent models with constant or exponential service times, 
and shows that the use of standard queueing approximations to 
set network operating points may lead to gross performance 
problems. 

C. ESfect of Traffic Shaping 

Network elements can interact with traffic flows in a variety 
of passive and active ways. The characteristics of traffic flows 
can be shaped by the buffering action of a queue (which 
is an example of passive interactions) or in a more active 
fashion by rate controls that limit each source to a prescribed 
set of peak and mean rates. In both cases, excess traffic is 
buffered and/or dropped. It has been suggested that “traffic 
shaping” by passive or active means can reduce or eliminate 
LRD in network traffic. We show in the following that shaping 
traffic sources to the extent of eliminating LRD will require 
substantial buffering at the edge of the network, with attendant 

prohibitive delay penalties; also see [28] for an analysis on the 
limitations of rate controls in shaping low frequencies. 

Let V ( t )  be the length of the queue or backlog at a passive 
network element or a shaper that enforces a prescribed set of 
peak and mean rates, at a given time instant t. Further, let X, ( t )  
and Xo(t) be the input and output traffic rates, respectively. 
Then it follows from flow balance that 

Transforming into the Fourier domain and taking the square 
of the magnitude of the result, one obtains 

- 2Im[w(V(w)Xr(-w))] (21) 

where we have used the fact that V( t )  and X, ( t )  are real 
functions and Im [z] denotes the imaginary part of z .  

Examining the third term we have 

- A h  [w(V(w)X~(-w))] < Im [w(V(w)Xr(-w))] 
< Abs [ w ( V ( w ) X r ( - w ) ) ]  (22) 

where Abs denotes absolute value. By Schwarz’s inequality, 
the RHS of this inequality is bounded above by 

Iw I (Abs [V(w)lAbs [Xr(-w)l) 
< IwlJ(Abs IV(w)I2)(Abs P1(-(JJ)I2) 

Given that the probability distribution of V is dominated by 
a stretched exponential (18), (V( t )V( t ) )  is finite. In particular, 
if (V(w)V(-w)) diverges at low frequency, it must diverge 
slower than 1/1w1. Thus, the expression in (21) is dominated 
at low frequencies by the divergence of the first term, and the 
output of the queue or traffic shaper has essentially the same 
low frequency structure as the input traffic. Conversely, if we 
require the output from the shaper to have less singular long- 
range dependence than the input, we see that this can only be 
achieved if mean square queue length, (V( t )V( t ) ) ,  diverges. 

Note that this result does not depend on the mechanism 
by which the shaping is achieved, which will only affect 
the functional dependence of Xo(t) on X l ( t )  and V(t) (and, 
perhaps, other parameters). All it requires is that flow balance 
should be satisfied. For a finite buffer, finiteness of (V( t )V( t ) )  
is achieved at the expense of dropping some of the packets; 
by arguments similar to those above it can be shown that the 
dropped data must have the same long-range dependence as 
the input stream, which we expect to lead unacceptably 
high losses. 

Two conclusions can be drawn from this analysis. First, the 
FBM description is robust and is not qualitatively altered as 
the traffic flows through the network under normal operation. 
Secondly, traffic shaping will not eliminate LRD. At best, 
controlling LRD by traffic shaping will have the effect of 
transferring buffer requirements from within the network to the 
edge of the network, without an improvement in performance. 
In fact, given that there is potential for considerable statistical 
multiplexing within the network, the net effect may be to vastly 
increase buffer requirements at the edge of the network. We 
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stress that this is not meant to detract from the importance of 
network controls such as traffic shaping, which are essential 
to monitor atypically heavy sources, and to prevent them from 
monopolizing network resources. Note that LRD is a typical 
characteristic of generic traffic sources. 

V. ADDITIONAL ISSUES 

In the following, we will discuss miscellaneous problems, 
from engineering implications of LRD to the impact of various 
factors on the conclusions we have drawn so far. A detailed 
discussion of these issues is beyond the scope of this paper, 
and we mention them in part to stimulate a more in-depth 
investigation of these issues. 

A. Effect of Finite Buffers 

While all the experiments described so far in this paper 
assume infinite buffer systems, in Fig. 11 we also present 
the results of a finite buffer simulation (same Ethemet trace 
as above, 50% utilization). Clearly, the functional form (i.e., 
Weibull) of the queue length distributions corresponding to 
the finite [curve (J)] and infinite [curve (A)] buffer systems is 
the same, with an initial offset that results in the well-known 
dominance of the infinite buffer queue length distribution 
over its finite buffer counterpart. Intuitively, the effect of 
finite buffers is in some sense to limit the time scales of 
queueing interest in the correlation structure. Thus, it is to be 
expected that queues with finite buffers will not show the sharp 
degradation in delay performance observed with infinite buffer 
systems, but analytical results in support of this argument are 
presently nonexistent. This comes at the expense, however, of 
increased packet losses. In this context, one can keep packet 
losses acceptable by operating network resources at such low 
utilizations that the queueing system never enters the regime 
in which correlations impact performance, but this may not 
be economical. Because of the way transport protocols such 
as TCPLP respond to packet losses, many data applications 
are tolerant of delays, but highly sensitive to losses (see, for 
example, [32]). Current ATM switches designed to support 
data traffic are incorporating much larger buffers than switches 
used in early trials. Thus, it is expected that the infinite buffer 
regime is of interest in practice. 

B. Physical Basis for LRD 
While there are clearly long-range correlations in the traffic, 

with demonstrated impacts on performance and engineering, it 
is also important to understand how they arise in data traffic. 
Recent analysis in [41] of single sources from the Ethemet 
data sets provide insights into this issue. In terms of the 
familiar ON-OFF source abstraction, real sources differ from 
existing models in that the sojoum times in these states are 
characterized by power-law or Pareto distributions. Similar 
findings of highly variable periods of activity and idleness at 
the application level form the basis for the self-similar features 
observed in the WAN traffic traces collected at Berkeley [35], 
[36]. It is the (occasional) sustained inactivity, or activity 
implied by power law distributions, that manifests itself as the 
l/f noise spectra or LRD. Extending the results in [30] and 

IEEWACM TRANSACTIONS ON NETWORKING, VOL 4, NO 2, APRIL 1996 

[37], it can be shown (see [41]) that aggregating a large number 
of such independent ON-OFF sources [with ON-OFF periods 
characterized by P(T > t) N t-”1 will in fact generate FBM 
of index H = (3 - a)/2. (Thus for 1 > H > 1/2, we 
have 2 > a > 1, so that the distribution has a$nite mean, 
but infinite variance.) These models are different from the 
singular renewal models discussed in Section 111-A, where the 
aggregated traffic is viewed as an ON-OFF source (with each 
ON period consisting of only one data packet). By shuffling 
the interarrival times, we saw that the queueing implications 
of such models for the aggregate traffic would be relatively 
minor. In addition, since the aggregated traffic is modeled 
rather than individual sources, it would be very difficult to 
obtain the dominance of second-order properties that exists in 
real traffic. Note that, with a traffic density XI in the ON state 
and Xo in the OFF state (XI > XO), all cumulants of the traffic 
density, witb different time spacings, are finite, as mentioned 
in Section IV-A. When the ON-OFF distributions of different 
sources are distinct, the sources with heavier tail behavior may 
be expected to dominate. Though there are no formal results 
in this case, an analysis similar to that in the next subsection 
should be possible. 

C. Statistical Multiplexing Gains 

The Hurst parameter H is preserved under multiplexing of 
identical sources. When heterogeneous sources, with identical 
mean traffic rate Xz and “burstiness” a,, but with a distribution 
of possible values of H ,  are multiplexed, the largest H will 
dominate. The interpretation of the Hurst parameter as a 
measure of burstiness, along with this nondecreasing property, 
have led some to conclude that multiplexing does not i) reduce 
the burstiness of traffic, and ii) as such multiplexing gains axe 
not feasible with long-range dependent traffic. On the contrary, 
the FBM model does predict significant multiplexing gains 
when a large number of independent sources are multiplexed. 
This is because burstiness is characterized not just by the 
correlations in the fluctuations parameterized by E l ,  but also 
by their relative magnitude characterized by m, When n 
independent sources are multiplexed, the relative magnitude 
is reduced by 6, and therefore environments in which the 
capacity of a server is significantly greater than that of the 
magnitude of fluctuations of a single source should realize 
substantial multiplexing gains. In particular, the lower bound 
on the queue length distribution, (IS), explicitly decreases with 
increasing n (provided that the processor speed is increased 
proportionately, so that p is fixed). 

A conservative approach to the problem of which H to 
choose when the sources are heterogeneous is to use the largest 
H value of all the sources. Given that the form for the queue- 
length distribution obtained in (18) depends sensitively on the 
Hurst parameter, H ,  this may prove to be too conservative. 
While taking the largest H value is indeed correct for the 
strictly asymptotic behavior, in practice a small number of 
users with unusually high values of H will only affect the 
distribution for extremely large z. With n1 users with H = W1 

and 722 << nl users with H = HZ > H I ,  an estimate of 
the crossover from one form to the other can be obtained 
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Fig. 12. Variance-time plot (top) and periodogram plot (bottom)for a 
1/2-hour VBR video traffic trace. The dotted reference lines in the 
variance-time and periodogram plots have slopes -1.0 and 0.0, respectively. 

by considering either nl + n2 users with H = H I ,  or only 
n2 users with H = H2, and obtaining from (18) the value 
of x for which the two cases yield the same P(V > x ) .  
This is clearly an issue of practical importance, and there is 
considerable scope for further work. 

D. VBR Video Trafic 

As demonstrated in [ 11, VBR video traces also demonstrate 
LRD, though there are some fundamental differences in the 
correlation structures of data and video traffic. A full discus- 
sion of these differences and their impact is beyond the scope 
of this paper, and we mention them in passing. Fig. 12 shows 
the variance-time plot and periodogram plot of a VBR video 
trace, representing a video-conferencing scene. It can be seen 
that for a range of intermediate time scales, the variance-time 
plot shows very little decay before entering the asymptotic 
regime that shows the slowly decaying variances indicative 
of LRD. This feature of a variance-time plot suggests the 
presence of strong short-term correlations in the data, which 
makes VBR traffic only “asymptotically” self-similar (see [2]). 
In contrast, data traffic shows essentially the same structure of 
the variance-time plot over all but the shortest time scales, 
and can be modeled over time scales of engineering interest 
by exactly self-similar processes. 

The strong short-term correlations in VBR video data are 
modeled by means of both Markovian and non-Markovian 
models (see for example [18], which reports that this satis- 
factorily reproduces queueing behavior of the original traffic 
traces). The impacts of LRD in this context are still under 
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investigation. Parsimony is a primary consideration here as 
well, motivating the study of models that capture both the 
short-range as well as long-range correlation structures. Possi- 
ble alternatives are Fractional ARIMA models, and extensions 
of the FBM model that incorporate lag dependent correlations. 
In any event, the effect of the additional strong short term 
correlations can be expected to aggravate the heavy queue- 
ing behavior predicted by LRD models. This can be seen 
specifically using extended FBM models for a large number 
of multiplexed video sources: if we approximate the variance- 
time plot in Fig. 12 as 

m < mo 

we obtain the same asymptotic form for the queue length 
distribution as with FBM models with no cutoff, with the 
parameter c in (19) inversely proportional to Thus, 
a large flat section in Fig. 12 implies (for the same ao) a small 
prefactor in the exponent of (18), leading to a heavier weight 
in the tail of the distribution. In fact, it is in principle possible 
to obtain the entire queue length distribution for this multiple 
source case, by performing numerical simulations with the 
f i l l  form of the variance-time plot, using an (appropriately 
modified) FBM model. 

E. Estimating Model Parameters 

As discussed earlier, one of the basic problems limiting the 
application of many theoretical traffic models in practice is 
the difficulty of assigning model parameters, especially when 
parsimony has not been a major concern at the modeling 
stage. Beyond statistical considerations, parsimonious models 
are clearly preferred over highly parameterized models when 
faced with the task of assigning model parameters in practice. 
For example, the FBM description of packet traffic considered 
in Section IV requires only three parameters: the mean rate m, 
the peakedness parameter a,  and the Hurst parameter H ,  all of 
which can be estimated from high time-resolution traffic mea- 
surements. Regarding the availability of estimation procedures 
(especially for a and H ) ,  however, some words of caution 
are in place. To illustrate, there exist numerous methods for 
estimating H from a time series of packet counts (see for 
example, [40], and the references therein); while the statistical 
properties of some estimates (e.g., Whittle’s estimate) are well 
understood within a Gaussian framework, much less is known 
when the Gaussian assumption is violated. Other estimates for 
H (e.g., based on variance-time analysis) are mostly heuristic 
in nature, and their distributional properties and statistical 
features are typically unknown. Similar comments hold with 
respect to the estimation of the peakedness parameter a: 
while it can be directly obtained from a variance-time plot its 
statistical properties are largely unknown, which makes this 
approach again mostly heuristic. Clearly, there is considerable 
scope for improvements and a pressing need for innovative 
statistical approaches. 

While high time-resolution traffic traces were used in this 
paper, it is prohibitive in practice to collect such measurements 
on an operational basis. In principle, the empirically observed 
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self-similarity of our measured traffic can be exploited to 
reduce such measurement overhead by noting that the value 
of H for a time series of counts over coarse time scales is the 
same as that obtained from high resolution traces (the value 
of a can also be inferred). Currently, some switching systems 
have the capability to report traffic counts over one second 
intervals during an engineering period; in principle, H can be 
estimated from such counts. For a more detailed description 
of these traffic measurement problems, see [l l] .  

VI. CONCLUSIONS 
Recent studies involving large sets of actual traffic measure- 

ments from working packet networks (e.g., LAN’s, ISDN’s, 
and CCSN’ s) have illustrated that these high time-resolution 
data sets are consistent with the assumption of long-range 
dependence in packet traffic. In this paper, we use these 
traffic measurements to demonstrate (via trace-driven simula- 
tion experiments) that, beyond its omnipresence and statistical 
significance in our measured data, long-range dependence is 
a traffic characteristic that i) has measurable and practical 
impact on queueing behavior, ii) is of crucial importance for 
a number of packet traffic engineering problems (e.g., buffer 
sizing, admission control, and rate control), and iii) if ignored, 
typically results in overly optimistic performance predictions 
and inadequate network resource allocations. 

From a modeling viewpoint, our work shows that finding 
long-range dependence in traffic measurements from mod- 
em high speed networks does not necessitate complicated 
and highly parameterized traffic models. In fact, we provide 
conditions under which compact and parsimonious Fractional 
Brownian motion-based models can be expected to describe 
packet traffic in tomorrow’s networks realistically and pre- 
dict their performance accurately. In the presence of traffic 
measurements from modern high speed networks, we strongly 
argue in favor of and illustrate parsimonious modeling ap- 
proaches that focus on essential traffic characteristics, i.e., 
properties that i) have a dominant and practical impact on 
network design and performance, ii) have a meaningful physi- 
cal basis in the network context, and iii) have been uncovered 
by detailed statistical analyses of measured network traffic and 
can be efficiently quantified (that is, estimated from the data). 
A prime example of such a traffic characteristic is long-range 
dependence which we have demonstrated in this paper to be 
of practical relevance. An area of considerable future research 
is assessing its full impact on network design, management, 
and operations. 
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