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Researchers using latent class (LC) analysis often proceed using the following three steps: (1)

an LCmodel is built for a set of response variables, (2) subjects are assigned to LCs based on

their posterior class membership probabilities, and (3) the association between the assigned

class membership and external variables is investigated using simple cross-tabulations or

multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated

that such a three-step approach underestimates the associations between covariates and

class membership. They proposed resolving this problem by means of a specific correction

method that involves modifying the third step. In this article, I extend the correction method of

Bolck, Croon, andHagenaars by showing that it involvesmaximizing aweighted log-likelihood

function for clustered data. This conceptualization makes it possible to apply the method not

only with categorical but also with continuous explanatory variables, to obtain correct tests

using complex sampling variance estimation methods, and to implement it in standard

software for logistic regression analysis. In addition, a new maximum likelihood (ML)–based

correction method is proposed, which is more direct in the sense that it does not require

analyzing weighted data. This new three-step ML method can be easily implemented in

software for LC analysis. The reported simulation study shows that both correction methods

perform very well in the sense that their parameter estimates and their SEs can be trusted,

except for situations with very poorly separated classes. The main advantage of the ML

method compared with the Bolck, Croon, and Hagenaars approach is that it is much more

efficient and almost as efficient as one-step ML estimation.

1 Introduction

Latent class (LC) analysis (Lazarsfeld and Henry 1968; Goodman 1974a, 1974b;
McCutcheon 1987; Vermunt and Magidson 2004) and related methods such as latent pro-
file analysis (Lazarsfeld and Henry 1968) and finite mixture modeling (McLachlan and
Peel 2000) are becoming increasingly popular statistical tools in a broad range of applied
fields. Applications in political science research include Blaydes and Linzer (2008), Breen
(2000), Edlund (2006), Feick (1989), Hill and Kriesi (2001a, 2001b), Katz and Katz
(2009), Linzer (2006), McCutcheon (1985), Moors and Vermunt (2007), and Simmons
(2008). These methods are used to construct a typology or clustering based on a set of
observed variables; that is, to classify observational units into a—preferably small—set
of LCs. In most LC analysis applications, one not only wishes to build a measurement
or classification model based on a set of responses but also to relate the class membership
to explanatory variables. These latter variables are referred to as covariates, predictors,
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external variables, independent variables, or concomitant variables. In a more explanatory
study, one may wish to build a predictive or structural model for class membership,
whereas in a more descriptive study the aim would be to simply profile the LCs by inves-
tigating their association with external variables.

In the LC analysis literature, two ways for dealing with covariates have been proposed:
a one-step and a three-step approach. The former involves simultaneous estimation of the
LC (measurement) model of interest with a logistic regression (structural) model in which
the LCs are related to a set of covariates. For categorical covariates, this method was de-
scribed among others by Clogg (1981), Goodman (1974b), Haberman (1979), Hagenaars
(1990, 1993), and Vermunt (1997). LC models with continuous covariates were proposed
by Bandeen-Roche et al. (1997), Dayton and Macready (1988), Kamakura, Wedel, and
Agrawal (1994), and Yamaguchi (2000). This one-step approach, which is similar to
the multiple indicator multiple cause model developed in the context of factor analysis,
is implemented in the most software packages for LC analysis.

However, the one-step approach has certain disadvantages. The first is that it may some-
times be impractical, especially when the number of potential covariates is large, as will
typically be the case in a more exploratory study. Each time that a covariate is added or
removed not only the prediction model but also the measurement model needs to be rees-
timated. A second disadvantage is that it introduces additional model building problems,
such as whether one should decide about the number of classes in a model with or without
covariates. Third, the simultaneous approach does not fit with the logic of most applied
researchers, who view introducing covariates as a step that comes after the classification
model has been built. Fourth, it assumes that the classification model is built in the same
stage of a study as the model used to predict the class membership, which is not necessarily
the case. It can even be that the researcher who constructs the typology using an LC model
is not the same as the one who uses the typology in a next stage of the study.

What is clear is that in many applications, it is more natural to use a stepwise ap-
proach and, moreover, that sometimes it is the only reasonable way to proceed. The
typical stepwise approach includes:

1. An LC model is built for a set of response variables or items. This not only involves
decisions on which items and how many LCs to use in the classification model but also
model specification issues such as the distribution of the items within classes and the
relaxation of the local independence for certain pairs of items.

2. Subjects are assigned to LCs based on their posterior class membership probabilities
that can be obtained from their observed responses and the estimated parameters of the
step 1 LC model. Possible classification methods are modal, random, and proportional
assignment (Goodman 1974a, 1974b, 2007; McLachlan and Peel 2000; Dias and
Vermunt 2008). Modal and random assignment yield what is sometimes referred to
as a hard partitioning of the sample, whereas proportional assignment yields a soft
or crisp partitioning.

3. A standard multinomial logistic regression model is estimated using the step 2 class
assignment as the (observed) dependent variable. Rather than using a regression model,
one can also simply compute two-way tables summarizing the class membership prob-
abilities per covariate category (e.g., for males and females, for educational levels, for
age groups). When combined with proportional assignment, the latter yields Magidson
and Vermunt’s (2001) ‘‘inactive covariates’’ method (see also Van der Heijden, Gilula,
and Van der Ark 1999).
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Bolck, Croon, and Hagenaars (2004) demonstrated that irrespective of whether one uses
modal, random, or proportional assignment, three-step approaches underestimate the re-
lationships between covariates and class membership. More specifically, they showed that
the larger the amount of classification error introduced in the second step, the larger the
downward bias in the parameter estimates. Based on the same derivations, Bolck, Croon,
and Hagenaars (2004) and Croon (2002) developed a method for correcting the three-step
approach, which I will call the BCH method. Similar approaches were proposed by Croon
(2002), Lu and Thomas (2008), and Skrondal and Laake (2001) for continuous latent
variables.

The BCH three-step approach proceeds as follows: (1) the data on covariates to be in-
cluded in the structural model and class assignments are summarized in a multidimensional
frequency table, (2) via a matrix multiplication the frequencies counts of this table are
reweighted by the inverse of the matrix of classification errors, and (3) a logistic regression
model is estimated using this reweighted frequency table as if it were the observed data.
Problems associated with this approach are that (1) covariates need to be categorical so that
the data can be summarized in a frequency table; (2) cumbersome matrix multiplications
are needed in the data preparation stage and, moreover, these need to be repeated when
a new set of covariates is selected, and (3) analyzing the reweighted data using a standard
logistic routine yields severely downward biased SEs, and thus too liberal significance test
for the logistic regression coefficients.

The aim of this article is three-fold: (1) proposing a modified BCH procedure that re-
moves several limitations of the original BCH approach, (2) presenting an alternative more
direct three-step method, and (3) reporting the results of a simulation study that show when
the various three-step methods work and when they do not.

As shown in more detail in the following, the three problems associated with the BCH
approach could be tackled by applying this method to individual observations rather than
a table of frequency counts. It then becomes straightforward to use continuous in addition
to categorical predictors and, moreover, cumbersome data preparation steps are no longer
needed. In addition, the resulting weighted likelihood function maximized for parameter
estimation has the form of a pseudo-likelihood similar to the one used with complex sam-
pling designs. This suggests that correct SEs can be obtained with the linearization (sand-
wich) variance estimator (Skinner, Holt, and Smith 1989) or alternatively with a jackknife
variance estimator (Patterson, Dayton, and Graubard 2002). As is shown in the simulation
study, use of the linearization variance estimator does remove the downward bias in the
SEs, which makes the BCH procedure preferable in practice. The modified BCH procedure
can be implemented in standard software for logistic regression analysis that allows for
(negative) sampling weights and complex sampling variance computations.

In addition, I discuss an alternative three-step method based on a logic similar to the
BCH approach, namely, that in step 3 one should take into account the classification error
introduced in step 2. This new three-step maximum likelihood (ML) procedure involves
defining an LC model in which the step 2 class assignment serves as a single response
variable with known measurement error probabilities. In this LC model, one can introduce
the relevant predictors while keeping the measurement model fixed. A similar procedure
was proposed by Van den Hout and Van der Heijden (2004) in the context of data collected
by randomized response questions, which also yields responses with known error proba-
bilities. The proposed three-step method can be easily implemented in software for LC
analysis that allows for parameter restrictions. Besides being more elegant, the new pro-
cedure is easier to use in practice, as well as easier to extend to more complex situations,
such as models with multiple latent variables constructed separately and measurement
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models that differ across groups. The simulation study reported below shows that this new
three-step MLmethod is more efficient—yields smaller SEs for the covariate effects—than
the BCH approach.

The remainder of this article is organized as follows. First, I describe the standard three-
step and one-step approaches for LC modeling with covariates. Subsequently, I discuss the
BCHmethod, including various modifications of this method, as well as the new three-step
ML method. Then, I report the results of a simulation study comparing the performance of
the various methods. Subsequently, I present an empirical application. The article ends
with a summary of the main results of the current research and a discussion of possible
directions for future research.

2 LC Modeling with Covariates

2.1 The Standard Three-Step Approach

Let us first look at the standard three-step approach, which involves (1) estimating a stan-
dard LC model without covariates, (2) assigning subjects to LCs, and (3) estimating
a logistic regression model for the LCs.

2.1.1 The standard LC model

In the following, I assume that I have an LC model for a set of K categorical responses
(items). The response of subject i on item k is denoted by Yik, and the full response vector by
Yi. The discrete LC variable is denoted by X, a particular LC by t or s, and the total number
of classes by T. An LC or mixture model for P(Yi) can be defined as follows (Goodman
1974a, 1974b; McCutcheon 1987; Hagenaars 1990; McLachlan and Peel 2000):

PðYiÞ5
XT
t5 1

PðX5 tÞPðYijX5 tÞ: ð1Þ

Typically, categorical responses are assumed to be independent given class member-
ship; that is,

PðYijX5 tÞ5
YK
k5 1

PðYikjX5 tÞ5
YK
k5 1

YRk

r5 1

hIðYik 5 rÞ
ktr ; ð2Þ

where I(Yik5 r)5 1 if subject i gives response r on item k and 0 otherwise. The parameters
to be estimated are the class proportions pt 5 P(X 5 t) and the multinomial parameters
hktr 5 P(Yik 5 rjX 5 t). ML estimation of these parameters involves maximizing the
following log-likelihood function:

log LSTEP1 5
XN
i5 1

logPðYiÞ5
XN
i5 1

log

"XT
t5 1

pt
YK
k5 1

YRk

r5 1

hIðYik 5 rÞ
ktr

#
: ð3Þ

This defines the first step of the three-step analysis.

2.1.2 Estimating class membership and classification error

In the second step, one assigns subjects to LCs on the basis of their observed responses Yi

and the parameter estimates from the first step. The assigned class membership of subject i
is denoted byWi. The key quantity for the class assignment is the probability of belonging
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to class t given the observed responses Yi, or the posterior class membership probability
P(X 5 tjYi), which can be obtained by the Bayes’s rule (Goodman 1974a, 1974b, 2007;
McLachlan and Peel 2000; Dias and Vermunt 2008); that is,

PðX5 tjYiÞ5
PðX5 tÞPðYijX5 tÞ

PðYiÞ
: ð4Þ

Note that the terms appearing at the right-hand side of this equation were defined above.
The two most widely used classification rules are modal and proportional assignment.

Modal assignment estimates Wi as the value of t for which P(X5 tjYi) is largest; that is, it
yields a hard partitioning in which individual i is treated as belonging to class twith weight
wit 5 P(Wi 5 tjYi) 5 1 if P(X 5 tjYi) is largest and with weight wit 5 0 otherwise. Pro-
portional ‘‘assignment’’ treats subjects as belonging to LC t with probability P(X 5 tjYi);
that is, it yields a soft (or crisp) partitioning with weights wit5 P(Wi5 tjYi)5 P(X5 tjYi).
Another classification rule is random assignment that yields a hard partitioning by esti-
mating Wi using a random draw from P(X 5 tjYi) (Goodman 2007). In the following,
I focus on modal and proportional assignment only.

The amount of classification error can be quantified by means of the conditional prob-
ability P(W5 sjX5 t) expressing the probability of the estimated value conditional on the
true value. Using simple probability calculus, this probability can be obtained as follows:

PðW5 sjX5 tÞ5
P
Y

PðYjX5 tÞPðW5 sjYÞ

5

X
Y

P
�
Y
�
P
�
X5 t

���Y�
P
�
W5 s

���Y�
PðX5 tÞ ;

ð5Þ

where the sum is over all possible response patterns. Note that P(W5 sjY) is either 0 or 1
with modal assignment and P(W5 sjY)5 P(X5 sjY) with proportional assignment. The
total proportion of classification errors equals

PT
t5 1 PðX5 tÞ

P
s 6¼t PðW5 sjX5 tÞ.

Often, it is practical to replace the sum over all possible response patterns appearing
in equation (5) by a sum over all observations in the data set used to estimate the LC model
of interest, which implies that P(Y) is replaced by its empirical distribution. This yields,

PðW5 sjX5 tÞ5
PN

i5 1 PðX5 tjYiÞPðWi 5 sjYiÞ
PðX5 tÞ

5

PN
i5 1 PðX5 tjYiÞwis

PðX5 tÞ :

ð6Þ

The results obtained with equations (5) and (6) can be expected to be very similar as
long as the model fits the data well and the sample size is large enough. This is investigated
in more detail in the simulation study reported below.

Note that the major LC analysis software packages report classification information closely
relatedtoP(W5 sjX5 t) formodal assignment.Forexample, theclassification tableprovided
by Latent GOLD (Vermunt and Magidson 2005, 2008) equals P(X 5 t, W 5 s) times the
sample size, from which P(W 5 sjX 5 t) is easily obtained by rescaling the rows to sum
to 1. Mplus (Muthén and Muthén 2007) reports P(X 5 tjW 5 s) as well as the number of
persons assigned to each of the LCs, from which P(W5 sjX5 t) can also be obtained. Both
programsget this informationusingequation (6); that is, using theempiricaldistributionofY.
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2.1.3 Regressing the estimated class membership on covariates

Let Ziq be one of Q covariates and Zi the covariate vector for subject i. The third step of the
analysis involves estimating the effect of these covariates on the estimated class member-
ship W using a multinomial logistic regression model; that is,

PðW5 tjZiÞ5
expðc0t1

PQ
q5 1 cqt ZiqÞ

PT
s5 1 expðc0s1

PQ
q5 1

cqs ZiqÞ
: ð7Þ

The parameters of interest are the cqt, for 0< q<Q. These are obtained by maximizing
the following weighted log-likelihood function:

log LSTEP3 5
XN
i5 1

XT
t5 1

wit logPðW5 tjZiÞ; ð8Þ

where wit 5 P(W5 tjYi) was defined above. Note that this involves performing a standard
multinomial logistic regression analysis using an expanded data set with T records per
observation and the wit as weights. However, with modal assignment, there is no
need to construct such an expanded data file because wit 5 1 for the assigned class
and 0 otherwise.

2.2 The One-Step ML Approach

It is also possible to define an LCmodel with covariates, which makes it unnecessary to use
the above three-step approach. The covariate effects are then estimated simultaneously
with the parameters defining the class-specific item distributions. Models with categorical
covariates were used earlier by Goodman (1974a), Clogg (1981), and Hagenaars (1990);
models with continuous covariates have been developed by Dayton and Macready (1988),
Bandeen-Roche et al. (1997), and Yamaguchi (2000).

When covariates are included in the LC model, one has a model for P(YijZi) rather than
for P(Yi). More specifically, the one-step (or full-information ML [FIML] estimation)
approach to LC analysis with covariates involves using a model of the form

PðYijZiÞ5
XT
t5 1

PðX5 tjZiÞPðYijX5 tÞ; ð9Þ

where again local independence across the Yi variables may be assumed restricting
P(YijX 5 t) as shown in equation (2). Note that it is also assumed that Yi is independent
of Zi conditional on X. The probability P(X 5 tjZi) will typically be parameterized by
means of a multinomial logistic regression model:

PðX5 tjZiÞ5
expðc0t1

PQ
q5 1

cqt ziqÞ

PT
s5 1 expðc0t#1

PQ
q5 1

cqs ziqÞ
: ð10Þ
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FIML estimates of the c parameters and themultinomial parameters definingP(YijX5 t)
are obtained by maximizing a log-likelihood function based on P(YijZ); that is,

log LFIML 5
XN
i5 1

logPðYijZiÞ5
XN
i5 1

log
XT
t5 1

PðX5 tjZiÞPðYijX5 tÞ: ð11Þ

This is what software for LC analysis with covariates will do.

3 The BCH Approach and Some Improvements

Bolck, Croon, and Hagenaars (2004) and Croon (2002) demonstrated that the estimated c
parameters from the three-step approach are biased toward 0 and indicated how this bias
can be corrected by modifying the third step of the three-step approach. The key of their
contribution is the demonstration of the relationship between P(W5 sjZi) and P(X5 tjZi);
that is, between the probability that is modeled in the third step of the three-step approach
and the probability that one intends to model.

The starting point is the joint probability P(X 5 t, Y, W 5 sjZi) and its decomposition:

PðX5 t;Y;W5 sjZiÞ5PðX5 tjZiÞPðYjX5 tÞPðW5 sjYÞ; ð12Þ

which is based on the assumptions made in the LC model with covariates—P(X 5 t,
YjZi) 5 P(X 5 tjZi)P(YjX 5 t)—and in the step 2 classification procedure—P(W 5

sjX 5 t, Y, Zi) 5 P(W 5 sjY). As always, P(W 5 sjZi) can be obtained from P(X 5

t, Y, W 5 sjZi) by summation over all LCs X and all response patterns Y; that is:

PðW5 sjZiÞ5
PT
t5 1

P
Y

PðX5 tjZiÞPðYjX5 tÞPðW5 sjYÞ

5
PT
t5 1

PðX5 tjZiÞ
P
Y

PðYjX5 tÞPðW5 sjYÞ

5
PT
t5 1

PðX5 tjZiÞPðW5 sjX5 tÞ: ð13Þ

The last equation shows that P(W5 sjZi) is a linear combination of P(X5 tjZi), where
the classification errors serve as ‘‘regression’’ weights. Note that P(W 5 sjX 5 t) was
defined in equations (5) and (6)

Bolck, Croon, and Hagenaars (2004) used the linear relationship in equation (13) for
two purposes:

1. To show that the (population) log odds ratios computed using P(W5 sjZi) are always
smaller (closer to 0) than those obtained from P(X 5 tjZi), and

2. To show how to obtain P(X 5 tjZi) by a linear transformation of P(W 5 sjZi).

In order to illustrate the second point, which is of primary interest here, let eis5P(W 5

sjZi), ait 5 P(X 5 tjZi), and dts 5 P(W 5 sjX 5 t) be elements of matrices E, A, and D,
respectively. Equation (13) can be expressed in matrix notation as follows:

E5AD: ð14Þ

Using simple matrix calculus, it can be shown that A can be obtained as follows:
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A 5 E D21; ð15Þ

which can be solved as long as D is nonsingular. The latter requires that the condition
P(W 5 sjX 5 t) 5 P(W 5 sjX 5 t#) for all s does not hold for any t 6¼ t#.

In order to understand how Bolck, Croon, and Hagenaars (2004) used equation (15) to
modify the last step of the three-step approach, it is important to realize that they assumed
all covariates are categorical, which implies the data can be summarized in a frequency
table. Let Z�

j denote one of the J covariate patterns, njs the number of observations with
covariate pattern j assigned to LC s, and N the frequency table with entries njs. Note that N
contains the data used to estimate E in the standard implementation of the third step. The
correction proposed by Bolck, Croon, and Hagenaars (2004) involves using the reweighted
observed frequency table N* 5 N D21 as data matrix to obtain consistent estimates of A.
Although they do not provide the function they are maximizing for parameter estimation,
they are, in fact, using a kind of pseudo-ML estimation. With D* 5 D21 and d�st being an
element of D*, the pseudo log-likelihood function that is maximized is

logLBCH 5
P
j

PT
s5 1

njt
PT
t5 1

d�stlogPðX5 tjZ�
j Þ

5
P
j

PT
t5 1

n�jt logPðX5 tjZ�
j Þ;

ð16Þ

where n�jt 5
PT

s5 1 njs d
�
st. This shows that the application of the BCH procedure requires

constructing a data set with J � T rows where the n�jt serve as weights and subsequently

performing a logistic regression analysis in the usual way. Three limitations of this ap-
proach are that it can only be used with categorical predictors, that a new data matrix
should be created each time that the set of covariates is changed, and, most importantly,
that the procedure does not yield correct SEs.

It can easily be seen how to solve these three problems bywriting the pseudo log-likelihood
in terms of individual observations rather than weighted covariate patterns. This yields

logLBCH 5
PN
i5 1

PT
s5 1

wis

PT
t5 1

d�stlogPðX5 tjZiÞ;

5
PN
i5 1

PT
t5 1

w�
itlogPðX5 tjZiÞ

ð17Þ

where wis was defined above, and w�
it 5

PT
s5 1 wis d

�
st. Closer inspection of this log-

likelihood shows that it involves creating an expanded data matrix with T records per
individual with responses t 5 1, . . . , T and weights w�

it. The log-likelihood can then
be maximized by estimating the logistic regression model of interest using this expanded
data matrix. Variances can be estimated using the sandwich estimator for clustered and
weighted observations, which is also used with complex samples (Skinner, Holt, and Smith
1989). This is the correct way to take into account that each individual provides T obser-
vations weighted by w�

it.
An important difference with standard pseudo-likelihood estimation is that the w�

itare
not all positive. More specifically, w�

it will typically be negative for s 6¼ t. For parameter
estimation, this means that a procedure is needed that allows for negative weights. More-
over, it should be investigated whether the sandwich estimator yields the correct SEs for the
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parameter estimates when weights are negative. Another issue related to the estimation of
the SEs is that the weights w�

it are estimates (from steps 1 and 2) themselves, which is not
taken into account by the sandwich estimator. However, the fact that weights are estimates
is typical for situations in which complex survey estimators are applied. One of the pur-
poses of the simulation study described below is to determine the quality of the proposed
variance estimator; that is, to check whether it works with negative weights and whether
ignoring the sampling fluctuation in the w�

it is harmful.
It should be noted that while Bolck, Croon, and Hagenaars (2004) indicated that SEs

were underestimated in their procedure, they attributed this to the fact that the sampling
fluctuation in the class assignments and the D matrix is neglected. In fact, the primary
reason for the underestimation of the SEs is that their procedure involves maximizing
a weighted log-likelihood for clustered observations.

4 A Three-Step ML Method

As shown in equation (13), the key contribution of Bolck, Croon, and Hagenaars (2004)
was showing how P(W 5 sjZi) is related to P(X 5 tjZi):

PðW5 sjZiÞ5
XT
t5 1

PðX5 tjZiÞPðW5 sjX5 tÞ: ð18Þ

Closer inspection of this equation shows that it is very similar to the LC model with
covariates defined in equation (9). Two differences are that W replaces the observed item
responses Yi and that the error probabilities P(W 5 sjX 5 t) are assumed to be known (in
step 3 they need not to be estimated anymore). The model described in equation (18) is, in
fact, an LC model with a single indicator with known error probabilities, which is a well-
known type of LC model. The same type of model can, for example, be used for the anal-
ysis of randomized response data, where the response variable is measured with known
random error induced by the researcher to protect the respondent (Van den Hout and
Van der Heijden 2001).

The above results suggest an alternative implementation of a corrected third step of the
three-step analysis with covariates. More specifically, correct estimates of the covariate
effects can be obtain by including the covariates of interest in an LC model in which
the assigned class membership serves as the single (nominal) indicator and in which
the step 2 P(W 5 sjX 5 t) are treated as known error probabilities. This involves max-
imizing the following log-likelihood function:

logLML 5
XN
i5 1

log
XT
t5 1

PðX5 tjZiÞPðW5 sjX5 tÞ: ð19Þ

Note that this procedure yields ML estimates for not only P(X5 tjZi) but also for the c
coefficients. It can be implemented in any software for LC modeling that allows defining
fixed-value constraints on the model parameters.

As in the extended BCH pseudo-likelihood procedure discussed previously, SEs may be
slightly underestimated because the classification error probabilities P(W 5 sjX 5 t) are
treated as known, whereas in fact they are obtained with the estimated parameters of the LC
model without covariates. The simulation study reported below investigates how serious
this problem is.
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5 A Simulation Study

5.1 Design

A simulation study was conducted to assess the performance of various methods for es-
timating covariate effects and their SEs in LC analysis. The procedures that are compared
are the one-step ML approach, the standard three-step approach, the BCH approach, the
BCH approach with robust SEs, and the new three-step ML approach, where the latter four
methods were applied with both modal and proportional assignment.

The quality of the investigated procedures can be expected to depend on two key factors:
(1) the amount of measurement error and (2) the sample size. Our situation is limited to
these two key factors since (1) the necessity for the correction depends on the size of the
measurement error or the uncertainty about the classification from step 2 (on the rows of
matrix D) and (2) the certainty about the estimate of the measurement error introduced in
the second step depends on the sample size.

As the population model, I used a three-class LC model with six dichotomous (low/
high) responses and three numeric covariates with five categories scored 22, 21, 0, 1,
and 2 (all 125 covariate combinations are assumed to be equally likely to occur). Class
1 is most likely to give high response on all six items, class 3 scores low on all items,
and class 2 scores high on the first three items and low on the last three. Using the first
class as the reference category, the logit parameters for the covariate effects are set to 2 and
2 for Z1, 21 and 0 for Z2, and 0 and 0 for Z3, representing large, moderate, and no effect
conditions. The two intercepts are such that overall the three classes are equally likely.

The classification error (or separation between the classes) was manipulated by means
of the size of the response probabilities for the most likely response. The three levels I used
are. 70, .80, and .90, respectively, which correspond to misclassification proportions of .31,
.15, and .04, respectively.1 These low, moderate, and high separation conditions can also be
expressed using pseudo R2 measures for nominal variables (see, e.g., Magidson 1981):
a qualitative variance-based measure (Goodman and Kruskal’s tau b) yields values of
.33, .63, and .88, and an entropy-based measure yields values of .36, .65, and .90. I will
use the latter three values to refer to the three conditions. Note that the low-separation
condition in indeed very bad, the moderate condition is what can be seen as a rather typical
situation in (exploratory) LC analysis, and the high condition corresponds to a strong mea-
surement model. Although here I manipulate the size of the classification error using the
response probabilities, one can also manipulate these using factors such as the number of
items, the number of classes, the class sizes, and the number of item categories.

For the sample size, I used three levels: 500, 1000, and 10,000. Here, 500 is a kind of
minimal sample size for LC analysis, especially in the low-separation condition, 1000 is
a typical sample size in survey research, and 10,000 is a very large sample size in which
sampling fluctuation can be expected to be almost negligible.

I will compare the various methods with respect to (1) bias in the estimates of the
covariate effects, (2) bias in the SE estimates, and (3) relative efficiency.

5.2 Results

Table 1 presents the average results across the nine conditions investigated (3 separation
levels � 3 sample sizes) obtained using equation (6) to estimate the classification error.

1Note that these classification error proportions pertain to models without covariates. Including the covariates in
the model reduces the errors to .19, .10, and .03, respectively.
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These are based on 100 replications per condition. Before discussing these results, I would
like to mention that almost indistinguishable results were obtained with equation (5),
which confirms our expectation that averaging the errors over the empirical distribution
is not a problem when the model is correct. Because these results are so similar, I will focus
on the results obtained with the more practical equation (6) only.

As can be seen from Table 1,2 the standard three-step procedures based on modal and
proportional assignment perform poorly; that is, these methods yield severe downward
biases in the parameter estimates. Both the BCH and the ML three-step methods reduce
the parameter bias substantially but still show a slight downward bias. The one-step ML
parameter estimates are slightly upward biased.

Comparison of the average estimated SE with the SD of the parameter estimates across
simulation replications shows that the standard BCH method yields severe downward
biases in the SEs. The sandwich variance estimator very much improves the SE estimates
with the BCH method, although they are still slightly (15%) underestimated. As can be
seen from the much lower SDs, the new ML method is much more efficient than the BCH
method and, moreover, almost as efficient as the one-step ML estimation. Its SE estimates
are somewhat underestimated with modal assignment and slightly overestimated with
proportional assignment.

Thus far I looked only at the results averaged over the nine conditions. However, the
results turn out to vary considerably across conditions. Table 2 reports the average esti-
mated value for the first covariate effect (with a population value of 2) as obtained with the
seven estimation methods under the nine investigated conditions. It can easily be observed
that the corrected three-step methods perform better with higher separation between clas-
ses and larger sample sizes. Problematic are the conditions combining the lowest separa-
tion level (R2

entr5 .36) and the two smallest sample sizes (n5 500 and n5 1000), showing
that neither the BCH nor the ML three-step method performs well when separation be-
tween classes is poor, except for extremely large sample sizes (n 5 10,000).

But how can this result be explained? The explanation is that, as observed among others
by Galindo-Garre and Vermunt (2006), ML estimation of LC models tends to yield

Table 1 Average estimate of three of the six c parameters, their average SE, and their SD aggregated
over the nine investigated conditions

Method

c21 5 2 c22 5 –1 c32 5 0

Estimate SE SD Estimate SE SD Estimate SE SD

One-step ML 2.06 0.21 0.22 –1.03 0.13 0.14 0.00 0.10 0.11
Modal standard 1.14 0.08 0.10 –0.67 0.07 0.08 0.00 0.06 0.07
Modal BCH 1.89 0.12 0.37 –0.97 0.09 0.16 0.01 0.07 0.11
Modal BCH and sandwich 1.89 0.32 0.37 –0.97 0.15 0.16 0.01 0.11 0.11
Modal ML 1.84 0.19 0.25 –0.96 0.12 0.14 0.01 0.10 0.10
Proportional standard 0.94 0.07 0.07 –0.59 0.07 0.06 0.00 0.06 0.05
Proportional BCH 1.91 0.12 0.36 –0.98 0.09 0.15 0.00 0.07 0.11
Proportional BCH and
sandwich

1.91 0.31 0.36 –0.98 0.14 0.15 0.00 0.10 0.11

Proportional ML 1.86 0.24 0.23 –0.97 0.15 0.13 0.00 0.12 0.12

2Note that results are reported for three of the six covariate effect parameters; that is, the parameters for class 2.
The results for the other three parameters are very similar.
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solutions where differences between classes are larger than the true differences, which is
also an explanation for the commonly occurring boundary estimates. This is especially true
when classes are weakly separated and the sample size is small.3 When differences be-
tween classes are overestimated, the amount of classification error used in both correction
methods (see equations (5) and (6)) will be underestimated. To demonstrate this, Table 3
reports the true and estimated proportions of misclassification for each of the nine con-
ditions. As can be seen, under the R2

entr5 .36 and n5 500 or 1000 conditions, this number
is substantially underestimated, which is why the correction methods do not work well; that
is, they are too optimistic and as a result the covariate effects remain downwardly biased. In
such situations, FIML of the covariates effects is clearly preferred. Note that covariates
yield additional information on class membership and thus increase the separation between
classes. It should, however, be noted that the low-separation condition was chosen to be
rather extreme. In empirical applications, often separation levels that correspond to our
moderate condition (R2

entr5 .65) or somewhat higher are encountered (e.g., also in the
application presented in the following).

A similar pattern as for the parameters can be seen for the estimated SEs. The correction
methods do perform poorly with R2

entr5 .36 but work very well with R2
entr5 .90. In the latter

condition, the sandwich SEs for the BCHmethod are almost unbiased and the same applies
for the SEs of the ML method. Table 4 provides more details for the R2

entr5 .65 condition

Table 2 Average of the estimate of c21 for each of the nine conditions

Method

n 5 500 n 5 1000 n 5 10,000

R2
emtr 5 .36 R2

emtr 5 .65 R2
entr 5 .90 R2

entr5 .36 R2
entr5 .65 R2

entr5 .90 R2
entr5 .36 R2

entr5 .65 R2
entr5 .90

One-step ML 2.19 2.10 2.08 2.05 2.02 2.06 2.00 2.01 2.00

Modal
standard

0.57 1.09 1.75 0.60 1.10 1.70 0.64 1.11 1.67

Modal BCH 1.24 2.08 2.10 1.50 2.07 2.05 1.96 2.01 1.99

Modal ML 1.17 1.94 2.06 1.43 1.96 2.06 1.93 2.01 1.99

Proportional
standard

0.45 0.87 1.56 0.43 0.85 1.52 0.40 0.85 1.50

Proportional
BCH

1.40 2.02 2.09 1.69 2.00 2.04 1.94 2.01 1.99

Proportional
ML

1.25 1.97 2.06 1.52 1.96 2.06 1.95 2.01 2.00

Table 3 True and estimated proportion of classification errors for all nine conditions

R2
entr5 .36 R2

entr5 .65 R2
entr5 .90

True 0.31 0.15 0.04
n 5 500 0.22 0.14 0.04
n 5 1000 0.26 0.15 0.04
n 5 10,000 0.31 0.15 0.04

3It should be noted that this is also an explanation for why the covariate effects are slightly overestimated by the
one-step ML approach when classes are weakly separated and the sample size is small.
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combined with each of the three sample sizes. These confirm the overall results reported in
Table 1. The sandwich SEs for the BCHmethod are still somewhat biased downwards. The
ML method is much more efficient than the BCH estimator, but its SEs may be overesti-
mated when combined with proportional allocation, which makes significance tests for
covariate effects somewhat conservative.

6 An Application: Citizenship Types

I illustrate the various methods for using covariates in LC analysis with data from the 2005
U.S. Citizenship, Involvement, and Democracy (CID) survey (Howard, Gibson, and Stolle
2005). The CID has 1001 respondents, and I selected nine response variables and three
covariates. The nine response variables were used by Dalton (2006, 2008) to measure cit-
izen norms or, more specifically, to illustrate his claim that citizenship norms are shifting
from a pattern of duty-based citizenship to engaged citizenship, which in turn alters and
expands the patterns of political participation in America. The citizenship norms question-
naire items in the CID were worded as follows: ‘‘To be a good citizen, how important is it
for a person to be . . . [list items]. 0 is extremely unimportant and 10 is extremely impor-
tant.’’ The nine items could be grouped into four categories: items related to participation
(vote in elections, be active in voluntary organizations, be active in politics), autonomy
(form his or her opinion independently of others), social order (serve on a jury if called,
always obey laws and regulations, for men to serve in the military when the country is at
war, report a crime that he or she may have witnessed), and solidarity (support people who
are worse off than themselves).

Dalton (2006, 2008) presented a varimax-rotated two-factor principal component anal-
ysis (PCA) solution for these nine response variables. The first component represented
duty-based citizenship and was strongly related to ‘‘report a crime,’’ ‘‘always obey the
law,’’ ‘‘serve in the military,’’ and ‘‘serve on a jury.’’ The second component represented
engaged citizenship with large loadings for ‘‘form own opinion,’’ ‘‘support worse off,’’ ‘‘be
active in politics,’’ and ‘‘active in voluntary groups.’’ The item ‘‘vote in elections’’ loaded
on both dimensions. As far as the relationship with explanatory variables is concerned,
Dalton (2006, 2008) stated that seniors and Republicans emphasize a duty-based definition
of citizenship and that younger Americans, Democrats, and minorities stressed engaged
citizenship.

I am not claiming there is something wrong with Dalton’s data analysis but what is clear
is that LC analysis is a suitable method to investigate the research question of interest; that
is, whether there are different types of citizenship, and if so whether age, ethnicity, and
political preference is related to the typology. I will use three covariates in the LC analysis
to check whether similar conclusions are obtained as Dalton obtained with his PCA. These

Table 4 Average of the estimated SE of c21 and SD of c21 for the three conditions with R2
entr5.65

Method

n 5 500 n 5 1000 n 5 10,000

SE SD SE SD SE SD

One-step ML 0.29 0.32 0.19 0.19 0.06 0.06
Modal BCH and sandwich 0.61 0.67 0.38 0.47 0.10 0.10
Modal ML 0.31 0.36 0.22 0.22 0.07 0.08
Proportional BCH and sandwich 0.45 0.47 0.30 0.35 0.09 0.09
Proportional ML 0.39 0.34 0.27 0.20 0.09 0.07
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are party preference (1 5 Republican; 2 5 Democrat; 3 5 other), age (1 5 younger than
50; 2 5 50 or older), and ethnicity (1 5 white; 2 5 nonwhite).

Although an LC analysis could have been performed on the original 11-category items,
for simplicity of exposition, I will present an analysis of dichotomized items. More spe-
cifically, I combined the scores from 0 to 6 and from 7 to 10. It should be noted that the
responses are rather skewed in the sense that many respondent used scores of 7 and higher,
and scores lower than 3 are seldom used. On average across the nine items, 72% of the
respondents gave a score of 7 or higher. I checked whether dichotomizing at 8 or 9 yielded
similar results, and this turned out to be the case. Also, an LC analysis treating the original
11-point scale items as ordinal or continuous yielded very similar LCs.

A four-class model fitted the CID data well. This model was selected by Bayesian in-
formation criterion and the residuals in all two-way tables were small. Table 5 reports the
parameters of the four-class model; that is, the class proportions and the class-specific
probabilities of given the higher (important) response for all items. Inspection of these
estimates shows that the LC solution is similar to Dalton’s PCA solution in the sense that
it seems to capture the two-dimensional structure in the data. Class 1 (42% of respondents)
scores high on all items, class 2 (39%) scores high (higher than classes 3 and 4) on the duty-
based items, class 3 (11%) scores high (higher than classes 2 and 4) on the engaged citizen-
ship items, and class (7%) scores low on all items. Based on this, it can concluded that four
citizenship types were identified: both duty-based and engaged, duty-based, engaged, and
neither duty-based nor engaged.

Table 6 presents the information on the classification errors that is used by the three-step
correction methods; that is, theDmatrix with entries P(W5 sjX5 t) and the inverse of this
matrix (D21). As can be seen, the classifications errors are somewhat larger with propor-
tional than with modal assignment. The BCH method uses the D21 entries as weights in an
expanded data set with four records per respondent. With modal assignment, a respondent
assigned to class 2 (W 5 2) gets weights 20.0787, 1.1271, 20.0354, and 20.0130 for its
records corresponding to X 5 1, X 5 2, X 5 3, and X 5 4, respectively. Note that these
weights are larger than 1 for X 5 W, may be negative when X 6¼ W, and sum to 1 across
values of X. For comparison with the simulation results, it is important to report that under
modal assignment the total proportion of classification errors equals .11 and R2

entr5 .73.

Table 5 Parameters of four-class model estimated with the 2005 CID survey data set: class
proportions and class-specific probabilities of finding the item concerned important

Class

1 5 both 2 5 duty-based 3 5 engaged 4 5 neither

Class proportion 0.42 0.39 0.11 0.07
Report a crime 0.99 0.99 0.51 0.32
Always obey the law 1.00 0.93 0.68 0.51
Serve in the military 0.85 0.66 0.38 0.08
Serve on a jury 0.96 0.83 0.50 0.19
Vote in elections 0.98 0.80 0.68 0.11
Form own opinion 0.97 0.79 0.86 0.32
Support worse off 0.88 0.49 0.89 0.10
Be active in politics 0.75 0.07 0.43 0.00
Active in voluntary
groups

0.90 0.09 0.53 0.04
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This indicates that in terms of separation between the classes, our application is between
the moderate- and high-separation conditions of the simulation study.

The D entries are used as fixed-parameter values in the three-step ML approach. In
Latent GOLD (Vermunt and Magidson 2008) this can be achieved as follows:

variables

dependent W nominal;

independent party nominal coding=1, age nominal coding=1,

ethnicity nominal coding=2;

latent X nominal 4 coding=1;

equations

X <2 1 1 party 1 age 1 ethnicity;

W <2 (D�wei) 1 j X;
D 5 {0.9426 0.0471 0.0104 0.0000

0.0704 0.8968 0.0220 0.0108

0.1469 0.1560 0.6675 0.0296

0.0000 0.1169 0.0258 0.8573};

As can be seen, a regression model is defined for X, and the entries of matrix D are used
as ‘‘cell weights.’’ It is also possible to use the nonrescaled classification table as cell
weights.

Table 7 reports the estimates for the covariate effects on the class membership and their
SEs found with the investigated methods. Class 1 (class showing both forms of citizenship)
serves as the baseline, and moreover, Republican, young, and nonwhite are the reference
categories for party preference, age, and ethnicity, respectively. Table 8 reports the Wald
tests for the covariates effects, again for all investigated methods. Note that these test the
significance of all parameters corresponding to a covariate simultaneously.

Table 6 Matrix with classification errors D and its inverse D21 for modal and proportional
assignment

D modal assignment D proportional assignment
W W

X 1 2 3 4 X 1 2 3 4
1 0.9426 0.0471 0.0104 0.0000 1 0.8818 0.0826 0.0356 0.0000
2 0.0704 0.8968 0.0220 0.0108 2 0.0890 0.8334 0.0557 0.0220
3 0.1469 0.1560 0.6675 0.0296 3 0.1340 0.1949 0.6337 0.0374
4 0.0000 0.1169 0.0258 0.8573 4 0.0002 0.1228 0.0598 0.8172

D21 modal assignment D21 proportional assignment
X X

W 1 2 3 4 W 1 2 3 4
1 1.0672 –0.0536 –0.0148 0.0012 1 1.1529 –0.1019 –0.0562 0.0053
2 –0.0787 1.1271 –0.0354 –0.0130 2 –0.1097 1.2384 –0.1000 –0.0287
3 –0.2172 –0.2451 1.5115 –0.0492 3 –0.2119 –0.3499 1.6268 –0.0651
4 0.0172 –0.1463 –0.0407 1.1698 4 0.0317 –0.1605 –0.1039 1.2327
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The parameter estimates in Table 7 show that the three-step methods without corrections
yield estimates that are smaller than the ones of the one-step ML approach, though in this
application the attenuation is not very extreme. To give an impression of the amount of
attenuation, I computed the difference in estimated class membership probabilities be-
tween old and young among white Republicans. These are 0.057, 20.013, 20.021,

Table 7 Covariate effects and their SEs obtained with the 2005 CID survey data set, where class 1
(5both) is the reference category

Method

Class 2 5 duty-based Class 3 5 engaged Class 4 5 neither

Dem. Other Old White Dem. Other Old White Dem. Other Old White

Parameter estimates
One-step ML 0.12 0.24 –0.21 0.26 0.85 0.75 –0.54 –0.28 –0.11 0.61 –0.50 –0.70
Modal standard 0.07 0.23 –0.20 0.26 0.68 0.54 –0.48 –0.05 –0.01 0.61 –0.47 –0.59
Modal ML 0.08 0.26 –0.22 0.34 0.87 0.66 –0.59 –0.02 –0.09 0.64 –0.52 –0.69
Modal BCH 0.08 0.25 –0.22 0.35 0.87 0.67 –0.59 –0.06 –0.02 0.67 –0.52 –0.66
Proportional
standard

0.11 0.21 –0.17 0.17 0.51 0.48 –0.35 –0.15 –0.04 0.53 –0.48 –0.54

Proportional ML 0.14 0.25 –0.20 0.26 0.88 0.75 –0.52 –0.14 –0.19 0.56 –0.57 –0.72
Proportional BCH 0.12 0.24 –0.20 0.26 0.89 0.79 –0.53 –0.24 –0.09 0.61 –0.58 –0.66

SEs
One-step ML 0.20 0.21 0.17 0.20 0.37 0.39 0.32 0.31 0.40 0.36 0.33 0.32
Modal standard 0.17 0.18 0.15 0.17 0.31 0.33 0.26 0.26 0.36 0.34 0.30 0.28
Modal BCH 0.17 0.18 0.15 0.17 0.29 0.31 0.24 0.24 0.36 0.33 0.30 0.28
Modal BCH
and sandwich

0.21 0.21 0.18 0.20 0.43 0.45 0.34 0.34 0.43 0.38 0.33 0.33

Modal ML 0.21 0.21 0.18 0.20 0.41 0.43 0.33 0.33 0.42 0.38 0.35 0.32
Proportional
standard

0.17 0.18 0.15 0.17 0.28 0.29 0.24 0.24 0.35 0.33 0.30 0.28

Proportional BCH 0.17 0.18 0.15 0.17 0.30 0.31 0.24 0.23 0.35 0.33 0.31 0.28
Proportional BCH
and sandwich

0.20 0.21 0.17 0.19 0.43 0.44 0.32 0.31 0.41 0.36 0.33 0.32

Proportional ML 0.23 0.23 0.20 0.23 0.54 0.55 0.40 0.40 0.45 0.40 0.38 0.35

Note. Dem, Democrat.

Table 8 Wald test for the covariate effects for the 2005 CID survey example

Method

Party preference Age Ethnicity

Wald df p value Wald df p value Wald df p value

One-step ML 11.15 6 0.084 5.08 3 0.166 9.40 3 0.024
Modal standard 10.67 6 0.099 5.50 3 0.138 9.69 3 0.021
Modal BCH 16.65 6 0.011 8.11 3 0.044 14.01 3 0.003
Modal BCH and sandwich 10.06 6 0.122 5.59 3 0.133 8.81 3 0.032
Modal ML 10.48 6 0.106 5.43 3 0.143 9.64 3 0.022
Proportional standard 8.04 6 0.235 4.38 3 0.224 7.07 3 0.070
Proportional BCH 15.77 6 0.015 7.46 3 0.059 12.72 3 0.005
Proportional BCH and sandwich 9.89 6 0.129 5.71 3 0.126 8.49 3 0.037
Proportional ML 7.58 6 0.270 4.25 3 0.236 7.01 3 0.072
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and20.023 for the standard three-step proportional approach, and 0.081,20.014,20.035,
and 20.033 for the one-step ML approach.

The parameter estimates in Table 7 show that the three-step approaches with corrections
yield estimates that are close to those obtained with one-step ML estimation. Overall, it
seems that proportional assignment is closer to one-stepML than modal assignment. These
results are in agreement with what was found in the simulation study.

The SE estimates are also in agreement with what could be expected based on the sim-
ulation results. The standard and BCH three-step methods yield SE estimates that are too
small (smaller than of the one-step approach). The sandwich SE for the BCH method and
the SE of the three-step modal ML approach are close to the ones of the one-step approach.
The three-step proportional ML approach yields somewhat larger SEs.

The Wald tests show that only the effect of ethnicity is significant. The BCH methods
with sandwich variance estimates and the modal ML approach yield p values that are close
to the ones of the one-step approach. The proportional ML approach yields somewhat
larger p values and is thus somewhat too conservative. It can also be seen that the
BCH three-step methods without corrected variances yield p values that are much too
small, which in this application would lead to wrong conclusions regarding the statistical
significance of the party preference and age effects.

Having a closer look at the estimated covariates effects, as well as the ratio between the
parameter estimates and their SEs, shows that compared with Republicans, Democrats are
more likely to be in class 3 instead of 1, and others are more likely to be in classes 3 and 4
instead of 1. Moreover, compared with the young, the old are less likely to be in classes 3
and 4 instead of class 1, and compared with nonwhites, whites are less likely to be in class 4
instead of class 1.

7 Discussion

This article proposed two improvements of the three-step method of Bolck, Croon, and
Hagenaars (2004). First, it was demonstrated how it can be used with nongrouped data,
which makes it possible to use the method also with continuous explanatory variables.
Second, because parameter estimation involves maximizing a weighted log-likelihood
for clustered data, it was proposed to estimate the SEs using complex sampling methods.
In addition, a new ML-based correction method was proposed, which is based on the same
logic but which is more direct in the sense that it does not require analyzing weighted data.
This three-step ML method can be easily implemented in software for LC analysis.

The reported simulation study showed that both correction methods perform very well
in the sense that their parameter estimates and their SEs can be trusted, except for situations
with very poorly separated classes. Before applying the correction methods, it is therefore
important to check whether class separation is not too low. The main advantage of the ML
method compared with the BCH approach is that it is much more efficient and almost as
efficient as the one-step ML approach. A minor disadvantage of the new method is that
software for LC analysis is needed for step 3, whereas with the BCH approach, standard
software for multinomial logistic regression with complex sampling features (and allowing
for negative weights) suffices. However, given that step 1 also requires LC analysis
software, this does not seem to be a big issue.

Whereas in this article I focused on simple LC models for discrete responses, the two
correction methods can also be applied with other types of mixture models, for example,
with mixture models for continuous variables, factor mixture models, and mixture growth
models. These are all models in which it may be attractive to introduce covariates in a next
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step after the mixture model itself was constructed. It can be expected that similar types of
conditions will determine the performance of the three-step methods, but of course this
needs to investigated.

Other possible applications of the proposed three-step methods are in LC analysis for
longitudinal or multilevel data; that is, as an alternative to one-step approaches such as
latent Markov modeling (Van de Pol and Langeheine 1990; Collins and Wugalter
1992; Vermunt, Langeheine, and Böckenholt 1999) and multilevel LC modeling (Vermunt
2003, 2008). An LC model could first be built without taking into account the longitudinal
or multilevel data structure, and the classifications with known errors could subsequently
be used in step 3. In a multilevel context, the model estimated in step 3 could have the form
of a random-effect logistic regression model, which could serve as an alternative to the
(one-step) model proposed by Vermunt (2005).

Another issue that deserves further investigation is the effect of violations of the
assumptions underlying the correction methods as well as one-step LC models with cova-
riates. The most important of these is the assumption that covariates have no direct effects
on the responses after controlling for a person’s class membership (Hagenaars 1990, 1993).
It could very well be that three-step methods are more robust for violations of this assump-
tion than one-step methods.

Recently, Bayesian estimation procedures for LC models have been proposed (Garrett
and Zeger 2000; Garrett, Eaton, and Zeger 2002; Chung, Flaherty, and Schafer 2006). It
would be worthwhile investigating how to apply the three-step methods proposed in this
article with Bayesian estimation. For example, in step 3 one could estimate the covariate
effects using the random class assignments and the corresponding measurement error es-
timates from a Markov chain Monte Carlo sampler. This could be repeated several times,
yielding a procedure similar to multiple imputation (Rubin 1987; Schafer 1997). Such
a procedure would make it possible to take into account the uncertainty about the class
assignments and the classification errors. It may be that such a Bayesian three-step pro-
cedure performs better than the three-step procedures discussed here, especially with small
sample sizes and badly separated classes.
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