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Abstract

In the gossiping problem, each node of a network starts with a unique piece of information
and must acquire the information of all the other nodes. This is done using two-way commu-
nications between pairs of nodes. In this paper, we consider gossiping in n-node networks with
n odd, where we use a linear cost model, in which the cost of communication is proportional
to the amount of information transmitted. We also assume a synchronous model, in which
the pairwise communications are organized into rounds, and all communications in one round
start at the same time. Each communication between two vertices during a given round uses
a certain number of steps, each step being the time to exchange an indivisible piece of infor-
mation. Fertin and Peters [FP98a] have given optimal gossip algorithms in the synchronous
model for odd n when R, , the number of rounds, is minimum (R, = [log,(n)] + 1) ; that is,
they have determined the minimum number of steps Sy that are used in a synchronous gossip
algorithm with [log,(n)] + 1 rounds. As suggested in [FP94] and [FP98a], we study in this
paper the trade-offs between R, and Sy, for odd n in the linear cost model in the synchronous
case. We show several bounds on S, (resp. on R, ) when the optimality condition on R,
(resp. Sy) is relazed. We show that some of these bounds are tight for an infinite number of
cases, and discuss such results.
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1 Introduction

Gossiping is an information dissemination problem in which each node of a communication

network has a piece of information that must be acquired by all the other nodes. Information is
communicated between pairs of nodes using two-way communications or calls along the commu-
nication links of the network. Most of the papers dealing with gossiping assume a unit cost model
in which a communication takes one time unit independent of the amount of information being
transmitted. When messages are long, a linear cost model is more realistic since the length of the
messages in most gossip algorithms grows exponentially.
In this paper, we assume a store-and-forward, I1-port, full-duplex model in which each commu-
nication involves two nodes and the single communication link that connects them, each node
communicates with at most one other node at any given time, and information can flow simulta-
neously in both directions along a link. Each node starts with a message of length 1, and messages
can be concatenated and sent as a single communication.

We assume a linear cost model in which the time to send a message of length & is 3+ k7 where
[ is the start-up time to initiate a call between a pair of nodes and 7 is the propagation time of
a message of length 1 along a link. If the two nodes involved in a call send messages of different
lengths, then the time for both nodes to complete the call is determined by the length of the longer
message. A call involving messages of length k& can be thought of as a start-up period that takes
time [ followed by a sequence of k steps each of which takes time 7.



We also assume a synchronous model, in which a gossip algorithm consists of a sequence of
rounds of simultaneous pairwise communications. All calls in a round start at the same time.
Calls in a round may end at different times, depending on the lengths of the messages, but no
node can start a new call until all nodes are ready to start new calls. Note that the unit cost
model is always synchronous since each call takes one time unit.

Fraigniaud and Peters [FP94] investigated the structure of minimum-time gossip algorithms
using a linear cost model. They established lower and upper bounds on the time to gossip when
the number of nodes n is even and showed that there is a synchronous minimum-time gossip al-
gorithm for every even n.

Knddel [Kno75] showed that gossiping in the unit cost model requires [log,(n)] + 1 rounds
when n is odd. This lower bound on the number of rounds is also valid for the linear cost
model in both the synchronous and asynchronous cases. It is also immediate that at least n
steps are required because each node needs to acquire n — 1 pieces of information, and at least
one node is idle (i.e., not involved in a communication) at any given time. This gives a lower
bound of max{([log,(n)] + 1)8,n7}. Peters, Raabe, and Xu [PRX96] proved a lower bound of
([logy(n)] + 1)8 + nt for odd n for both the synchronous and asynchronous cases.

However, they proved stronger lower bounds for the synchronous case by fixing the number
of rounds to be [log,(n)] + 1 and then focussing on the required number of steps. They also
conjectured that these lower bounds are achievable for all odd n. This conjecture has been proved
to be correct by Fertin and Peters [FP98a].

In this paper, we consider the possible trade-offs between the number of rounds R,, and the
number of steps S,, for a synchronous gossip algorithm in a n-node network, n being odd (note
that since Fraigniaud and Peters [FP94] showed that both R, and S, are optimal when n is
even, studying such a trade-off in the even case does not make sense). The main question is the
following : what can we say about S, (resp. R,) when we relax the optimality condition on
R, (resp. Sp) ? We then study, for any integer r > 0, the function S, (r) corresponding to the
optimal number of steps for a gossip algorithm (in a n-node network) with Ry, +7 rounds, where

Similarly, we study, for any integer s > 0, the function R, (s), corresponding to the optimal
number of rounds for a gossip algorithm (in a n-node network) which takes exactly Sp,in + s steps,
where S, = n.

In Section 2.1, we give a general lower bound on S, (r) for any r and odd n. We will see that
this bound includes the ones given by Peters et al. [PRX96] in the case r = 0, which are known to
be tight (cf. [FP98a]). Section 2.2 is devoted to upper bounds for S, (r) : first, we give a general
upper bound for S, (1), and show the exact value of Syx_;(1) for any k& > 3. We also give a
conjecture on an upper bound for S, (r) for any r and odd n.

In Section 3, we study the function R,(s). We show the exact value of R,(0), and give a
general lower bound on R,(s) for any s > 1. We also show that this bound is tight for some
particular cases of s and n. Finally, we discuss in Section 5 the results and the improvements of
relaxing the optimality condition on either R, or S,,.

2 Relaxing the condition on R,

In this Section, we discuss the value of S, (r), the optimal number of steps of a gossip algorithm
among n nodes taking R, = Ry, + r rounds, where R, = [log,(n)] + 1.

2.1 A general lower bound for S, (r)

First, we recall a result from [FP98a]. Let R, be the minimum number of rounds for a gossip
algorithm among n nodes, n being odd. We know that Ry, = [logy(n)]+ 1, is the same for every



odd n between 2¥~! 4+ 1 and 2% — 1, where k = [log,(n)]. In a gossip algorithm that takes exactly
R,,in rounds, the required total number of steps and also the required numbers of steps in each of
the rounds depends on whether n is in the Bottom Half of the range, 2¥~! < n < 2871 £ 2k=2 or
the Top Half of the range, 2¢=! 4+ 2¥=2 < n < 2% (as shown in Theorem 1 below). We will often
refer to the top halves of all ranges collectively as the Top Half and similarly for the Bottom Half.

Theorem 1 ([FP98a]) For any odd n such that [log,(n)] = k, any gossip algorithm that takes
k + 1 rounds takes exactly :

o 2n — 2871 _ 1 steps if n is in the Top Half ;

e n+ L”fékizj steps if n is in the Bottom Half.

Sketch of Proof: In [PRX96], Peters et al. gave a lower bound on the number of steps when the
number of rounds is minimum (equal to k + 1). For this, they distinguished two cases : n is in the
Bottom Half, or n is in the Top Half. Fertin and Peters [FP98a] then showed gossip algorithms in
both the Bottom and Top Half which reach the lower bound on the number of steps. O

We then know what is the minimum number of steps when the number of rounds is minimum,
that is when R,, = R,,;n = k + 1. Now, we relax the condition of minimality for R,. Suppose
indeed that R, = Ryin +7 = k+ 1+ r, where r is an arbitrary positive integer, and let us study
Sn(r), the number of steps needed to gossip in a n-node network when R,, = k+ 1+ r. First, note
that S, (r +14) < S,(r) for any positive integer i, since any gossip algorithm in R,,;, + r rounds to
which we add i “empty” rounds (that is, rounds where all the vertices are idle) remains a gossip
algorithm with as many steps, and with ¢ more rounds.

The following Theorem gives a general lower bound for S, (r).

Theorem 2 For any odd n with [logy(n)] =k, let R, = k+ 1+ r for any arbitrary r. For any
a > 2, let p and q be such that n — 2"~ = (a+r—1)-p+q, with0<g<a+r —2). Then :

e Ifq=0, for alln > 2% . (a +r + 1), we have :

Sulr) > 2 4 (a4 1) p— 1

e Ifq#0, foralln>22 . (a+r+1)— ((a+r—1) —q), we have :

Sp(r) > 28t 4 (a+7) p+q

Proof : The method here is based on the same principle as the one described for proving the
lower bounds on S, (0) in [PRX96]. Here, we generalize the method, and we will show that this
includes the result of [PRX96] for the particular case r = 0.

The idea is to give a sequence o of k 4+ 1 + r sets of steps s; (1 < i < k+ 1+ ), each |s;
corresponding to the number of steps used in round i.

A necessary condition for o to be valid for gossiping is the Basic Premise defined below. The
Step Decreasing Property, also described below, implies that Zf;r“ |s;| is a lower bound for
Sp(r).

e The Basic Premise : for any round 1 <i < k + r + 1, the sum of the number of steps in all
the other rounds (that is, excluding round i) must be at least equal to n — 1. This comes
from the fact that since n is odd, there is at least one idle vertex in round 7. Hence we must,

have, for any sequence o, and for any 1 <i<k+r+1, 25211?;1 |sj| > n—1.

e The Step Decreasing Property : for any round 1 <i < k+r + 1, any decrease of 1 step in s;
implies an increase of at least one step in one or several s;, with j # 1.



Hence, if the Basic Premise and the Step Decreasing Property hold for the sequences ¢ which

we will give below, then S, (r) > Zfif“

il

In that case, we decide to choose a sequence o which is as follows : during a certain num-
ber of rounds (precisely, during the first £ — a + 1 rounds), we use the maximum number of steps,
that is 27! steps for each round 1 < i < k — a + 1. Then, each of the the remaining a + r rounds
will contain approximately the same number of steps. More precisely, we choose an integer a > 2,
and define p and ¢ to be such that n —2¥=%*1 = (a4+r —1)-p+¢q (with0 < g < a+r —1). That

. | p_gk—atl n72k70+17q
18, p = |— a+r—1 J - a+r—1 .
Depending on the value of a that we choose, the total number of steps of such a sequence,

as well as the range of values of n for which it is valid, may vary. But, in general, the aim is to
find, for fixed r and (odd) n, the smallest « such that the steps sequence verifies both the Basic
Premise and the Step Decreasing Property.

Now, let us distinguish two cases, depending on the value of g :

e ¢ = 0. In that case, we consider the sequence :

124...25% ppp...p
—_— —

k—a+1 Rounds o Rounds
Let us check that the Basic Premise and the Step Decreasing Property both hold.

— The Basic Premise implies that for any 0 < i < k — a, we must have 2¥—o+1 — 1 —
20+ (a+r)-p>n—1 (1), and 2= — 14+ (a+7r—1)-p > n—1 (I2). Since
(a+r—1)-p=n—2F o+ (12) always holds. Multiplying the left and right members
of (I1) by (a +r — 1) finally gives n > 2¥ "2l 4 (a+r —1) - 2i forany 0 < i < k — a.
Since we supposed n > 28~ . (a + 7 + 1), we know that (I1) is always true too, and
we conclude that the Basic Premise holds for this particular sequence of steps.

— The Step Decreasing Property : suppose that the number of steps |s;| is decreased by
1, for an arbitrary 1 < i < k + r + 1. Suppose no other s; (i’ # i) is changed. Now
look at a vertex which is idle at any round j # i among the last « + r rounds (we know
there exists such a vertex, since @ > 2). In order for this vertex to be able to gather the

information of all the other vertices, we must have Zfif“ |sil—p—1 > n—1. However,

Zfif“ Isi| —1—p=2F"2F 14 (a+r—1)-p—1. Since (a+7r—1)-p=n—2k-a+1
this gives n — 2 > n — 1. Hence the contradiction. This means that any decrease of 1

step in any s; (1 <4 < k+r + 1) implies an increase of at least one step at another
place.

Hence, Y M7 |s;| = 282+ 4 (a + ) - p — 1 is a lower bound for S, (r) when ¢ = 0.
e g # 0. In that case, consider the sequence :

q+1 Rounds

124,25 pp . p @+ 1) (p+1)...(p+1)
k—a+1 Rounds a+r Rounds

Now, let us check that the Basic Premise and the Step Decreasing Property hold.

— The Basic Premise implies that for any 0 < i < k — o, we must have 28—2+! —1 -2/ 4
(a+71)-p+(g+1)>n—-1(1),and 2*2F' — 1+ (a+r—1)-p+qg>n—1 (I2).
Since (a+7—1)-p+q=mn—2F"2+1 (12) always holds. Multiplying the left and right
members of (I1) by (a+7—1) finally gives n > 2¥=*+1 4 (a+r—1)-2 4+ (¢g—a+r—1)



for any 0 < i < k — a. Since we supposed n > 2. (a+7r+1) — ((a+r —1) — q), we
know that (I1) is always true too, and we conclude that the Basic Premise holds for
this particular sequence of steps.

— The Step Decreasing Property : suppose that the number of steps |s;| is decreased by
1, for an arbitrary 1 <i < k+r+ 1. Suppose no other s; (i’ # i) is changed. Now look
at a vertex which is idle in any round j # i among the last ¢+ 1 rounds (we know there
exists such a vertex, since ¢ + 1 > 2). In order for this vertex to be able to gather the

information of all the other vertices, we must have ZfifH |sil—p—2 > n—1. However,

Zfif“ |si|—1—p =2k 14 (a+r—1)-p+q—1. Since (a+r—1)-p+q = n—2k-+1,
this gives n — 2 > n — 1. Hence the contradiction. This means that any decrease of 1
step in any s; (1 <4 < k+r + 1) implies an increase of at least one step at another

place.
Hence, Y M7 |s;| = 282+ 4 (a + 1) - p+ ¢ is a lower bound for S, (r) when ¢ # 0.
Collectively, the results given above for ¢ = 0 and g # 0 prove the Theorem. O

Remark 1 Theorem 2 above includes the lower bounds given in [PRX96] for r = 0, for n in
the Bottom Half as well as in the Top Half. Indeed, taking a = 2 gives the lower bound (and
steps sequence) given in [PRX96] for n in the Top Half, while « = 3 applies for the whole range
281 4+ 1;2% — 1] and, in particular, gives the lower bound and steps sequence given in [PRX96]
for n in the Bottom Half.

This also proves that the general lower bound for S, (r) given in Theorem 2 is tight for every
odd n when r = 0, thanks to the results of [FP98a]. We will see in Proposition 1 that it is also
tight for the particular case r =1 and n = 2% — 1.

2.2 Upper bounds for S, (r)
2.2.1 Thecaser =1

We have the following general upper bound for S, (1).

Theorem 3 For all odd n, let bot(n) = 1 if n is in the Bottom Half, and bot(n) = 0 otherwise.
We have : S,,(1) <5- 4]+ 4+ bot(n).

Proof : Let us consider an odd integer n in the range [2¥~! +1;2% — 1]. We know that n is either
of the form n = 4m + 1, or of the form n = 4m + 3. Moreover, if n is in the Top Half (resp. the
Bottom Half), so is m. Let us distinguish those two cases, and suppose first that n is in the Top
Half.

When n is in the Top Half, we consider the following steps sequence :

124...28% 20 (m+1) (m+1) (m+1) (m+1)
————
k—3 Rounds

where 7 = m + 1 — 283,

Note that the number of rounds used is k + 2, that is r = 1. Moreover, one can see that for
this sequence, the Basic Premise holds. Now let us prove that we can find a gossip algorithm in
k + 2 rounds which respects this steps sequence.

The idea here is to split the set V' of vertices in four subsets V; (1 <i < 4). If n =4m + 3
(resp. n = 4m + 1), three of them will be of cardinality m + 1 (resp. of cardinality m), and one
will be of cardinality m (resp. of cardinality m + 1). Four cases then arise, depending of the form
of n (n =4m+1or n = 4m + 3) and the parity of m. For each of these cases, the idea is to gossip
independently in each V; during the first ¥ — 2 rounds when |V;| is even, or the first £k — 1 rounds
when |V;| is odd. Then, we use the remaining rounds to exchange information between the V;.



In order to show that this is feasible, it is necessary to detail the four possible cases ; for each
of them, we need to show that the 3 following conditions are fulfilled :

e Every V; such that |V;| is even can achieve gossiping in k£ — 2 rounds with the steps sequence
124...254 27 (C1) ;

e Every V; such that |V;| is odd can achieve gossiping in k — 1 rounds with the steps sequence
124...2 %27 (m+1) (C2);

e During the last four rounds, each of which taking (m+1) steps, it is possible to communicate
between the V; in such a way that gossiping is achieved after the (k + 2)-th round (C3) .

We are going to prove here that conditions (C1) and (C2) always hold. The proof of Condi-
tion (C3) consists in giving, in each of the four cases, an ad hoc algorithm fulfilling the require-
ment ; it is omitted in this paper.

First, note that [log,(m)] = k — 2, and that when |V| is even (resp. odd), we have |V;]| =
m + odd(m) (resp. |Vi| = m + 1 — odd(m)), where odd(m) = 1 if m is odd, and 0 other-
wise. Moreover, we know that m is in the Top Half. To prove (C1), it suffices to show that
273 — 14+ 24 > (m + odd(m)) — 1. Since zr = m + 1 — 2873 we see that this is always true. In
order to prove that (C2) always holds, we need to show that the steps sequence corresponding to
the first £ — 1 rounds allows to achieve gossiping within the m + 1 — odd(m) vertices. We know
by [FP98a] that the sequence 124...28% 2 2, where z = (m+1—odd(m)) —2F=3, works in that
case, since m is in the Top Half. Hence, it suffices to prove here that zp > z and m +1 > x in all
the cases. By definition of z7, we see that © = 7 — odd(m), and z = (m + 1) — (odd(m) + 2*~3).
This proves that (C2) always holds too.

Hence, we show that there exists a gossip algorithm taking k£ + 2 rounds and which follows the

steps sequence above for any n in the Top Half. This proves that S,(1) < Zfif |s;|. Since
Zfif 18i| = 5m 44 and m = | %], the result is proved for any n in the Top Half.

When n is in the Bottom Half, we consider the following steps sequence :

124...2"7° yp (yg +odd(m)) (m+1) (m+1) (m+1) (m+1)
k—4 Rounds

2—odd(m)—2%"*
where yp = 24220 z(m)

Note that the number of rounds in the above sequence is k + 2, that is r = 1. Moreover, the

Basic Premise holds as well. Now let us prove that we can find a gossip algorithm taking k + 2
rounds and respecting the steps sequence above.
For this, we will use the Proof for n in the Top Half. Indeed, the above steps sequence differs from
the one in the Top Half only for two of them, namely yp and yp + odd(m), which, in the Top
Half, were respectively 2% and zr. Hence, if we prove that such a steps sequence allows each V;
to achieve gossiping independently in k — 2 rounds (when |V;| is even) or k — 1 rounds (when |Vj|
is odd), the Theorem is proved ; indeed the gossip algorithms which apply in the Top Half would
remain valid, concerning the last 4 rounds, in the Bottom Half, and this would show the result.

For this, we note the following :

e When |V;| is even (that is |V;| = m + odd(m)), we must show that the sum of the number of
steps over the first k — 2 rounds is at least equal to |V;| — 1. This leads to yg + y5 + odd(m) +
2k=4 1 > |V;| — 1. However, standard calculations give yg +yp5 +odd(m)+2F* -1 =m+1,
and |V;| < m + 1 by definition.

e When |V;| is odd, that is |V;| = m + 1 — odd(m), we know that m + 1 — odd(m) is in the
Bottom Half and [log,(m + 1 — odd(m))] = k — 2. In that case, we know by [FP98a] that
gossiping can be achieved in k — 1 rounds following the steps sequence 1 2...2%7% ~; ~y 73,

— — k—4 . . .
(m+1 Ddd(;n))H 2 and where the remaining ; is equal

where 2 of the ; are equal to z =



to z — 1. Hence, we need to show that min{yg,ys + odd(m),m + 1} > z. However, it is
easy to see that yp = z and m + 1 > z for any m.

Since the two conditions above are fulfilled, we can use the last 4 rounds of the gossip algorithm
from the Top Half to achieve gossiping in k£ + 2 rounds, and with the required sequence of steps.
This proves the Theorem for any n in the Bottom Half as well : indeed, S, (1) < Y5%2|s;], and

i=1
we have Zf:lz |si| = d5m + 5 with m = [ ].

We have seen that the result also holds for any n in the Top Half, hence we conclude that
Sn(1) <5- %]+ 4+ bot(n) for any odd n, where bot(n) is equal to 1 if n is in the Bottom Half,
and equal to 0 otherwise. O

Proposition 1 For anyn = 2% — 1 with k > 3, S,,(1) =522 -2,

Proof : First, note that Theorems 2 and 3 give the following bounds for Sox_(1) : 5-2F72 -2 <
Sor_1(1) < 5-2F"2 — 1. We are going to prove here that it is possible to meet the lower bound,
thanks to the following steps sequence o :

124...2F3 (2h=2 1) k2 gk—2 gk—2

Note that this sequence is very similar to the one given in Proof of Theorem 3, where n is in
the Top Half, of the form n = 4m + 3 with odd m = 2¥~2 — 1. In that case, we have z7 = 2¥~3,
and the only difference between the two steps sequences lie in the (k — 1)-th round, where we use
here m = 282 — 1 steps, instead of (m + 1). One can see that the Basic Premise holds for such
a sequence. Moreover, the gossip scheme given in Figure 1 shows that it is possible to achieve
gossiping in (k + 2) rounds, with respect to the above steps sequence.

Indeed, let us split the set V of n = 2¥ — 1 vertices in 4 subsets V; (1 < i < 4), where
Vi| = |Va| = |V3| = m+1 = 2%"2 and where |V4| = m = 2¥~2 — 1. During the first (k — 2) rounds,
let each block V;, with 1 < ¢ < 3, gossip independently. Since each of the first (k — 2) rounds
has a maximum number of steps, and since |V;| = 2¥=2, we know that, after round (k — 2), each
vertex of V; (1 <14 < 3) is expert of V; (we say that a node is expert of a set V if it knows the
information of every node in V). V, will need one more round in order for all its vertices to be
experts of V4. We know that after round k — 1, all vertices of V; will be experts of V}, since the
needed steps sequence for any vertex of Vj is 12 4...2k~4 (2k=3 — 1) (2¥-3 — 1) [PRX96], and
since m = 272 — 1 > 2¥=3 — 1. Hence, following this steps sequence, any vertex of V; will be
expert of V, after (k — 1) rounds. Finally, note that since |V4]| is odd, there is at least one vertex
w idle in Vj during round (k — 1). This vertex is necessarily expert of Vj after round k£ — 2. The
idea here is to make v communicate with a vertex v of V3 during round (k — 1), while the other
vertices of V;, communicate within their own subset, and while the vertices of Vi communicate
with the vertices of V5.

The algorithm is illustrated in Figure 1. The column of 4 boxes with bold outlines on the left
shows the situation after k — 2 rounds, each of which having the maximum number of steps (that
is 2171 steps for any round 1 < i < k —2). Rounds k — 1 to k + 2 are shown in detail and the box
on the right shows the situation after round k + 2.

This shows that the steps sequence above allows to achieve gossiping in (k + 2) rounds. Hence
Sox_1(1) <5-2%2 — 2 which, combined with the results of Theorem 2, gives the result. |

Remark 2 This proves that the upper bound of 5- |%| + 4 + bot(n) given in Theorem 3 is not
tight for an infinity of values of n (namely, n = 2% — 1 with k > 3) when r = 1. However, we see
that the lower bound given in Theorem 2 is tight for the same values of r and n.

2.2.2 Thecaser =2% —d —1

Conjecture 1 Letr be a fized positive integer. Let d be the greatest integer such thatr > 29—d—1.
Then, for any odd n, S,(r) < (r+d+2)- |75 |+ (r + d+ 1) + bot(n), where bot(n) is equal to
1 when n is in the Bottom Half, and 0 otherwise.
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Figure 1: Gossip Scheme following the Steps Sequence o for n = 2¥ — 1 and r = 1

The idea here is to divide the set V of n vertices into 2¢ subsets of approximately the same
size. Let us decompose n as follows : n = m - 2% 4+ ¢, where 0 < ¢ < 29 — 1. Hence we have ¢
subsets of (m + 1) vertices, and 2? — ¢ subsets of m vertices. Then, depending on the value of n,
we use one of the two following steps sequence.

e n is in the Top Half. In that case, we use the steps sequence o1 below :

124,272 g0 (m+1) (m+1) (m+1)...(m+1)

~ v
~~

r4+d+1=24 Rounds

k—d Rounds
where 7 =m + 1 — 2k—d-1,

e 7 is in the Bottom Half. In that case, we use the steps sequence op below :

124,293 yp (yg +odd(m)) (m+1) (m+1) (m+1)...(m+1)

k—d Rounds

r+d+1=24 Rounds



m+2—odd(m)—2%"42

where yg = 5

In every case, the total number of steps is equal to (2¢ + 1) - m + 2 + bot(n), with m = L 3]

One can see that the Basic Premise holds in both o1 and o0 g. The missing part here to complete
the proof is the algorithm which would show that it is possible to achieve gossiping within £+ 1+r
rounds, and respecting the corresponding steps sequence.

Remark 3

e We note that the Conjecture above is a generalization of Theorem 3, since the particular case
r =1 derives from the case d =2 ;

o This general upper bound not only works for r = 24 —d —1, but also for any 2? —d—1<r <
209+1 — (d+ 1) — 1. For this, it suffices to add “empty” rounds to the first Ry, +2¢ —d —1
ones.

3 Relaxing the condition on S,

In this Section, we study the function R, (s) (for any positive integer s), corresponding to the
optimal number of rounds for a gossip algorithm in a n-node network which uses S, = Syin + s
steps, where S,,;, = n.

Property 1 R,(0) =n.

Proof: We have seen in Section 2.1 that for any steps sequence, the Basic Premise must necessarily
hold. That is, for any round 1 < i < R, (0), we must have Zf;"f(]]);ei |sj| > n — 1, where |s;| is
the number of steps used in round j (with 1 < j < R,(0)). But we also know by definition

that Zf’z"l(o) |sj| = Sn. Since we suppose S, = Spmin = n, we have Zf’z"l(o) |sj| = n. Combining

this equality with the previous inequality, we get |s;| = 1 for any 1 < j < R, (0). Hence S, =
R.(0

S5 Jsj| = Ra(0) = n, O

Remark 4 Note that this proves that the lower bound given in Theorem 2 with r =n — (k—1) is
tight. Indeed, in that case, choosing a = k gives us Sp(n — (k — 1)) > n for all odd n.

Note also that Fraigniaud and Peters have provided in [FP94] a gossip algorithm among n nodes
where gossiping can be achieved in n rounds and n steps ; they proved that this gossip algorithm
could be achieved in the cycle Cy, for any (odd) n. This shows that the minimum number of edges
for a graph in which a gossip algorithm among n nodes, with n rounds and n steps, can be achieved,
s equal to n.

Theorem 4 For any s > 1, let p= |logy(s +1)] and m = n + s — 2P*' + 1. Then we have :
m
R > 1
a(5) > (o 1)+ [

Proof : The proof relies on the same argument as Proof of Property 1 above. Indeed, the Basic
Premise must hold for any chosen steps sequence. Here, we are going to give the “best” steps
sequence in order to minimize the number of rounds, such that this steps sequence o satisfies the
Basic Premise.

First, for any steps sequence with R, (s) rounds, we must have Zﬁ‘l(fi)# |si] > n —1 for

any 1 < j < R,(s). Since we suppose S, = n +s = Zf’z"l(s) |sj|, we conclude that for any

1 <j < Ry(s),]|sj| <s+1. Hence we will choose a steps sequence ¢ with a maximum number of
s; such that |s;| = s + 1. However, we know that for any 1 < j < R,(0), |s;| < 2/~! (because the
number of informed vertices can at most double at each round). Hence, the first p + 1 rounds in
o will be 1 2 4...2P, where p is such that 27 < s + 1 < 2P*! that is p = [log,(s + 1)].



Then, we have to make sure that Zf’z"l(s) |sj| = n+s. Indeed, we need the following sequence
o:

124...2° z (s+1) (s+1)...(s+1)

where z is the rest of the division between m = (n+s)— (2P —1) and s+ 1, that is 0 < x < s+ 1.
However, if z = 0, then we can save one round by not including it in ¢. In both cases (that is
z =0 as well as z > 0), we see that o is the shortest sequence, in terms of rounds, that we could
get. Now let us distinguish the two cases :

e 7 = 0. In that case, this means that the smallest number of rounds we could get, say R/,
satisfies : 2P — 1+ (R'—(p+1))-(s+1) = n+s. From this, since R, (s) > R', we conclude

Ry(s) > (p+1) + 75

e z > 0. In that case, R’ satisfies : 2?7 —1+z+ (R — (p+2))-(s+1) = n+s. Since

R,(s) > R', we conclude Ry(s) > (p+ 1) + [575].

Collectively, the two cases x = 0 and z > 0 imply the result. O

Remark 5 The case s =1 gives R,(1) > ”TH by Theorem 4. We can see that this bound is tight
in the cases n =5, n =7 and n = 9, thanks to Figures 2 and 8 below. (In these Figures, each
horizontal line represents one node and the numbers in the boxes indicate the information received
during the communication immediately to the left. For example, take Figure 2 (left) : in round 4,
node 5 sends items 1 and 5 to node 3 and receives item 3. Shading indicates that a node was idle
during the round). These optimality results lead to the following Conjecture.

(5]
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Figure 2: Gossiping among 5 vertices in 4 rounds and 6 steps (left) among 7 verices in 5 rounds
and 8 steps

Conjecture 2 For all odd n > 5, R, (1) = 22,

The above Conjecture is motivated by the fact that it is true for any n € {5,7,9}, but also
the following : we have seen that Theorem 4 applied to the case s = 1 implies that any gossip
algorithm that takes n + 1 steps takes at least 22 rounds. But we also see, thanks to Theorem 2,
that if we suppose we allow 22 rounds (that is r = ”T+3 — (k4 1)), then the upper bound on

2
Sn(r) given by Theorem 2 is the following ; S, (r) > n + 1. It suffices for this to take o = k — 1.

We also note that the lower bound for R,,(s) given in Theorem 4 is tight for an infinite number
of cases. This is the purpose of Propositions 2 and 3 below.

Proposition 2 Let n be an odd integer such that [log,(n)] = k.
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o —{ }t{s} 34 12 57
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Figure 3: Gossiping among 9 vertices in 6 rounds and 10 steps

o For alln in the Bottom Half and s = L%HJ , the lower bound on R, (s) given by Theorem /

18 tight.

e For alln in the Top Half and s = n—2*=1 —1, the lower bound on R, (s) given by Theorem 4

18 tight.

Proof : Thanks to the results of [FP98a], we know that (cf. Theorem 1) :

e For all n in the Bottom Half, Rn(L”*Q’ﬁzJ) =k+1

2

e For all n in the Top Half, R,(n —2*~' — 1) =k + 1.

If we consider the general lower bound given by Theorem 4, we can see that it is tight in both

cases.

e If n is in the Bottom Half, then let us compute R, (s) with s = LMJ In that case, we

2

see that 28=3 < 5 < 2k¥=2 1. Hence, we have to distinguish two cases :

— s+ 1 =22 that isn = 3-2"2 — 1. In that case, p = k — 2, and Theorem 4
yields R,(s) > k— 1+ |—s+l1—| where m = 281 — 1 and s + 1 = 2¥~2. Hence we have

R, (s) > k+ 1, and the bound is tight.

— 541 # 282 In that case, we have p = k — 3, and S% =3 - #,QH that is
111 = 3. Hence R, (s) > k + 1, and the bound is also tight.

e If nn is in the Top Half and if we consider s = n — 2¥~! — 1, we have 2872 < s < 2F=1 _ 2.
k
In that case, p = k — 2, and [-2] = [22-2.7] = 2. Hence, R,,(s) > k + 1, and the lower

s+1 n—2k—1

bound appears to be tight as well.

O

Proposition 3 For alln = 2% — 1 and s = 2¥=2 — 1 with k > 3, the lower bound on R, (s) given

by Theorem 4 is tight.

Proof : When n = 28 — 1 and R, = Ryn + 1 = k + 2, we know by Proposition 1 that
S,(1) = 5-2%2 — 2. Now suppose we fix S,, to be S,, = Syin + (2872 — 1), that is S,, = S,,(1).
In that case, we know that R,(2"2 — 1) = k + 2. Now, let us show that the lower bound on

R, (2¥=2 — 1) given by Theorem 4 is tight.

Indeed, in that case s = 28=2 — 1, and we get p = [logy(s + 1)] = k — 2. Moreover, m =
n+s—20t —1=3.2"2 1. This means that [[%] = [3 — 75]. Since k > 3, we have

s+1
this show that the bound is tight.

11

] = 3. Hence, the lower bound on R,,(s) given by Theorem 4 yields R,,(s) > (k—2)+1+3;

O



4 Summary of the Results for the Synchronous Case

A summary of the results in the synchronous case is given in Tables 2 and 1 below. In each
row, for the values of r (resp. s) and n which are given respectively in the first and second column,
we give the known lower and upper bound on S, (r) (resp. R,(s)). We assume in these tables that
k = [logy(n)]. The “Optimality” column indicates the optimality, and gives the corresponding
reference.

I Sn(r) |
|| s || n || Lower Bound | Upper Bound || Optimality ||
0 V n in the
Bottom Half || n+ L%HJ n+ L%MJ Yes (Rem. 1)
0 V n in the
Top Half 2n — 21 1 | 2n—2F1 1 || Yes (Rem. 1)
1 V n in the Formulae of 5-[41+4
Bottom Half Theorem 2 (Theorem 3)
1 V n in the Formulae of 5-[41+5
Top Half Theorem 2 (Theorem 3)
1 n=2F 1 5-2F 22 5-272-2 | Yes (Prop. 1)
s Vn Formulae of
Theorem 2
[n=(k+1) | Vn I n | n | Yes (Rem. 4) ||
Table 1: Summary of the results for Sy(r)
I Ry.(s) |
|| s || n || Lower Bound | Upper Bound || Optimality ||
0 vVn n n Yes (Prop. 1)
1 Vn ”TH
s Vn p+1+ f%ﬂ““]
where p = |log, (s + 1) ]
(Theorem 4)
22 1 n=2F-1 k+2 k+2 Yes (Prop. 3)
V n in the
L”722k72j Bottom Half k+1 kE+1 Yes (Prop. 2)
V n in the
n—2k1 1 Top Half k+1 k+1 Yes (Prop. 2)

Table 2: Summary of the results for R, (s)

5 Discussion of the Results and Conclusion

Thanks to the results above, we can give some quantitative results, especially concerning S, (r).

Indeed, since we have seen that S, (1) < 5[ 7| + 4 + bot(n), and since we know Sy, = 1, we

can see that the ratio Qﬁmm = 9"7(1) is, asymptotically, of order % + o(1). That is, using only one

round more than the optimal ensures us to use at most 25% more steps than the optimal.
Note also that when n = 2% — 1, we see, thanks to Theorem 2, that S,,(2) > 19-2%¥=% —2. Since

12



we have S,,(2) < S, (1) =5-2F2 -2 =20-2""* — 2, we see that the ratio Q2S,1 = g"gf; satisfies
asymptotically : .95 < Q;l < 1, that is we do not gain more than 5% (in terms of steps) in the

case n = 2% — 1 when increasing the number of rounds from 1 to 2.

In this paper, we have provided a collection of results concerning the trade-offs between the
number of steps and the number of rounds for a gossip algorithm among n nodes, n being
odd. However, there remains many unsolved and interesting problems concerning these trade-
offs. Among these open problems, we would like to point out the following one : we strongly
believe that the general lower bound given on S,,(r) in Theorem 2 (resp. on R, (s) in Theorem 4)
is, in fact, optimal for all r (resp. s) and odd n. Indeed, we have seen that it is tight in many
cases (cf. Tables 1 and 2), and there are also several particular cases for which the bound is tight.
However, proving the tightness of this lower bound seems to be a very difficult problem.
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6 Annex for the Referees : Proof of Theorem 3

We recall that we suppose n in the Top Half, r = 1, and we want to prove that it is possible
to gossip among n nodes using the following steps sequence :

124,25 20 (m+1) (m+1) (m+1) (m+1)
k—3 Rounds
where z7 = m + 1 — 283,

We prove that Condition (C38) of Proof of Theorem 3 always holds in the Top Half. For
this, we use the following argument : each V; of even (resp. odd) cardinality gossips within its
own subset during the first £ — 2 (resp. k — 1) rounds, respecting the above sequence of steps.
We know that, in each of the set(s) of odd cardinality, there exists at least a vertex u; € V; which
is idle at round k£ — 1. Hence, u; is expert of V; after round k£ — 2, and it can communicate with
a vertex of another subset V. This is also true for the set(s) of even cardinality : each vertex of
such a set is expert of its own subset after round k£ — 2. Hence, during round k£ — 1 it is possible
for each of them to communicate with vertices of other subsets.

For each of the four cases (n = 4m + 1 or n = 4m + 3, even m or odd m), Figures 4 to 7
show an ad hoc gossip algorithm which achieves gossiping in k& 4+ 2 rounds, and with the required
sequence of steps. In each of the Figures, the column of 4 boxes with bold outlines on the left
shows the situation after k£ — 2 rounds. Rounds k& — 1 to k + 2 are shown in detail and the box on
the right shows the situation after round k + 2. The gray shading is used to indicate nodes that
are idle during a round.
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Figure 4: n = 4m + 1 in the Top Half with even m
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Figure 5: n = 4m + 1 in the Top Half with odd m
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Figure 6: n = 4m + 3 in the Top Half with even m
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Figure 7: n = 4m + 3 in the Top Half with odd m
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