
Robust Feature Detection for 3D Object Recognition and MatchingSharath Pankanti, Chitra Dorai and Anil K. JainPattern Recognition and Image Processing LaboratoryDepartment of Computer Science, Michigan State UniversityEast Lansing, MI 48824-1027AbstractSalient surface features play a central role in tasks re-lated to 3D object recognition and matching. There is alarge body of psychophysical evidence demonstrating theperceptual signi�cance of surface features such as localminima of principal curvatures in the decomposition ofobjects into a hierarchy of parts. Many recognition strate-gies employed in machine vision also directly use featuresderived from surface properties for matching. Hence, itis important to develop techniques that detect surface fea-tures reliably.Our proposed scheme consists of (a) a preprocessingstage, (b) a feature detection stage, and (c) a feature inte-gration stage. The preprocessing step selectively smoothesout noise in the depth data without degrading salient sur-face details and permits reliable local estimation of thesurface features. The feature detection stage detects bothedge-based and region-based features, of which many arederived from curvature estimates. The third stage is re-sponsible for integrating the information provided by theindividual feature detectors. This stage also completes thepartial boundaries provided by the individual feature detec-tors, using proximity and continuity principles of Gestalt.All our algorithms use local support and, therefore, are in-herently parallelizable.We demonstrate the e�cacy and robustness of our ap-proach by applying it to two diverse domains of applica-tions: (a) Segmentation of objects into volumetric prim-itives and (b) Detection of salient contours on free-formsurfaces. We have tested our algorithms on a number ofreal range images with varying degrees of noise and miss-ing data due to self-occlusion. The preliminary results arevery encouraging.1 IntroductionConventional object recognition strategies have twoprimary components: a representation scheme and amatching technique. A good representation scheme at-tempts to capture the essential structure of the `world'which will help in discriminating among the object cat-egories in an e�ective manner. The abstraction of theworld structure is formulated in terms of features of theobjects in the domain and relations among them. Re-cent advances in surface reconstruction algorithms andthe commercially available, reliable range sensors for ob-taining depth data have spurred an increased interest in3D object representation and matching. An importantaspect of 3D object recognition is the extraction of sur-face features that can be used for e�ective representationand matching of objects using range data.

3D object recognition and model building tasks dependon either the explicit recovery or indirect inference of 3Dfeatures embodied in depth data. One of the most popular3D object representation schemes for recognition systemsemploying range data is the representation in terms ofits surface attributes. For most of the applications, 3Dobjects can be adequately modeled in terms of a collec-tion of piecewise smooth surface patches. The featuresextracted from these surface patches and the spatial rela-tionships among the surface patches capture the structureof the 3D world (restricted to the domain of application)and provide with the necessary constraints for matching.The local structural information relevant to a 3D shape iscaptured in the surface attributes such as principal cur-vatures, normals, and principal curvature direction �elds.Features such as surface orientation, orientation disconti-nuity, depth discontinuity, surfaces curvatures etc. havebeen extensively used in machine recognition systems. Inmore restricted object domains, some of the surface fea-tures help group surface patches into higher level features,and thus, allow for reduction in the complexity of match-ing. For instance, minima of negative principal curvatureshave been shown to play a perceptually signi�cant role in`part' decomposition of the sensed data. Other surfacefeatures such as the mean and the Gaussian curvaturesalso aid in determining the presence of an instance of amodel object in the scene [1]. Directional properties suchas the principal curvatures can be used in grouping thefeature points into boundary contours and surface patches[2].2 Robust Feature DetectionIn di�erential geometry, it has been shown that a gen-eral smooth surface is uniquely characterized by the �rstand second fundamental forms [3]. The �rst fundamen-tal form is primarily related to the surface normals. Thesurface curvature is a function of both these forms. Thecurvature at any point on the surface is also viewpointinvariant. In addition, interesting surface properties suchas (i) jump boundaries (which are surface depth discon-tinuities), (ii) crease edges obtained from surface orienta-tion discontinuities, and (iii) ridge lines that are smoothlocal extrema of curvature can also be inferred from thezero-crossings and extremal values of surface curvatures.Thus there is sound basis for computing salient featuresbased on surface curvatures. In particular, we use in-variant surface characteristics such as the mean and theGaussian curvatures derived from the principal curvatures[3] to classify surface patches. Note that these invariantsare local surface properties which allow them to be used1



in situations involving occlusion of objects.When the domain is restricted to objects having ade�nite part structure, the contours derived from localminima of negative principal curvature often constitute\part" boundaries [4]. These local minima of curvatureand the boundaries detected from the discontinuities inthe surface depth and surface normal �eld play a signi�-cant role in obtaining our proposed part decomposition.While the e�cacy of a recognition system dependsupon a prudent choice of the features of the surfacesand their spatial relations constituting a representationscheme, the realization of such a system crucially de-pends on the robust estimation of these features and theirrelationships. Noise in the sensed data is often a pri-mary reason for inaccurate estimates of the feature values.This necessitates smoothing of the sensed data before ex-tracting features. The surface features detected from thesmoothed data, however, are not perfect due to severalreasons: low signal to noise ratio in the sensed image,artifacts of the feature detectors themselves, etc. It isdesirable that the complementary strengths of the indi-vidual feature detectors and the contextual informationbe integrated to produce a re�ned feature map.We propose a three-stage system for extracting robustfeatures from the sensed data: (a) preprocessing, (b) fea-ture detection, and (c) feature integration. The prepro-cessing step selectively smoothes out noise in the depthdata without the loss of salient surface details and permitsreliable local estimation of the surface features. The fea-ture detection stage detects both edge-based and region-based features, of which many are derived from curvatureestimates. The third stage is responsible for integratingthe information provided by the individual feature detec-tors. This stage also completes the partial boundariesprovided by the individual feature detectors, using prox-imity and continuity principles of Gestalt.In many applications, the assumption of second ordersmoothness (C2) for each of the surface patches is notoverly restrictive. Hence, some form of smoothing impos-ing a piecewise (C2) continuity improves the accuracy ofestimated surface. The curvature consistency algorithmof [2] is one such method of adaptive smoothing.The key idea behind curvature consistency is to smooththe surface while preserving its local structure describedby surface normal orientation, principal curvatures andtheir directions at a point on a surface. It can be viewedas the second stage of processing applied to the estimatesof surface attributes from depth values using local meth-ods. It is formulated as an optimization problem in whichthe objective is to minimize a functional form embeddinga minimumvariation of curvature in a local neighborhood[2]. The three components involved in this process are:(i) a local description of the surface at a point P, (ii) atransport model that describes the change in the local de-scription as P is moved to an adjacent point Q and viceversa, and (iii) a function that prescribes how the localdescription at P can be updated in order to be compatiblewith the descriptions of its local neighbors once they havebeen moved from Q to P by the transport mechanism. Inthe implementation of this algorithm, the surface normalsand curvatures are estimated using a local neighborhoodin the �rst step, and these local estimates are smoothedbased on the consistency of curvatures in the neighbor-hood by an iterative process. The algorithm is found to

converge rapidly. See [2] for more details on this method.It should be noted that the curvature consistency algo-rithm provides the smoothed data, surface normals, andsurface curvatures for the smoothed data. From theseinitial features, the method for obtaining the desired fea-ture map, the feature integration scheme, and derivationof �nal representation will vary from application to ap-plication depending on the task at hand and the objectdomain. We present details of the application of our ro-bust feature detection technique to (i) the task of deriv-ing part-based description and (ii) the task of detectingsalient contours on free-form surfaces.All our algorithms use local support and, therefore,are inherently parallelizable. We demonstrate the e�cacyand robustness of our approach on several real images.3 Volumetric Primitives from RangeDataOur objective here is to implement a feature{based 3Dobject recognition system inspired by Biederman's RBCtheory [5]. Based on psychophysical evidence, this theoryhypothesizes that the perceptual recognition of objects isconceptualized to be a process in which an input image issegmented at regions of deep concavity into a few, simplevolumetric primitives (\parts"), called geons. An objectcan be e�ciently recognized if an arrangement of two orthree components can be recovered from the image [5, 6,7, 8].We make the following simplifying assumptions aboutthe object domain.� The objects are rigid and opaque.� The part decomposition of each of the object isunique and unambiguous. Each part of the object ispiecewise smooth and not very convoluted nor veryeccentric.� The objects are simply connected in a topologicalsense. We exclude objects like doughnuts since theirpart decomposition is not conceptually simple.� Further, we assume that all the prominent featuresof a given object can be detected by the sensor [9].We exclude origami world objects.Most of the objects around us have a de�nite part struc-ture and well within the boundaries laid down by this setof assumptions. Many complex industrial objects can bethought of as a composition of a small number of well-de�ned volumetric primitives.Problem De�nition : Given a 2:5D sensed data of anindustrial scene consisting of an unoccluded object froma non-accidental viewpoint, we desire to derive a descrip-tion of the object in terms of volumetric primitives and toobtain the most feasible interpretation [10] of the senseddata in terms of the objects stored in the model database.3.1 RepresentationOur representation scheme is based on a set of geon-likevolumetric part primitives. The original set of geons pro-posed by RBC theory is based on four geometric proper-ties involving shape of axis, shape of the cross-section, andthe variation of cross-section along the axis. Recognizing



that the computation of cross-section is somewhat prob-lematic, we have de�ned a reduced set of 12 geon-like volu-metric primitives based on the following three geometricproperties of the \parts": straightness or curvedness oftheir axes, straightness or curvedness of the boundariesof their cross-section, and the variation of the area ofcross-section along their axes (constant, increasing, andincreasing-decreasing). An object can be represented asan attributed graph whose vertices represent the geonsof the object and the arcs between the vertices representadjacency relationship between the corresponding geonsof the object. Let V be a set of vertices, each represent-ing a geon in an object. Let E � V � V be the set ofarcs representing adjacency relations among the pairs ofgeons of the object such that an ordered pair (vi; vj) 2 Ei� geons vi and vj are adjacent (share a border). We alsode�ne following terms:� Distance function, d : V �V !R, maps each pairof geons to a real number representing the distanceseparating their center of masses.� Type function, t : V ! T , where T is the set oftypes of geons. Type of a geon is determined by theshape of its axis, the shape of boundaries of its cross{section, and the variation of the area of cross-sectionalong its axis.� Angularity, l : f(vi; vj; vk)g ! R de�ned overthree adjacent geons (vi; vj; vk) such that if (vi; vj),(vj ; vk) 2 V and � is the angle between the segmentsjoining center of masses of (vi; vj) and that of (vj ; vk)then l(vi; vj; vk) = �.� Attach function, a : E ! faxial; sidewaysg, de-�nes the type of attachment between neighboringgeons. Notice that a could be an asymmetric func-tion.� Size function, s : V ! R, assigns volume to eachgeon in the graph.Thus, an object is de�ned by a weighted, attributed, anddirected (WAD) graph G represented by a seven tuple(V;E; s; d; a; t; l).3.2 Feature ExtractionWe smooth the range data using the curvature consis-tency algorithm. Since the boundaries are computed fromthe depth data, we choose to call the resulting edge map3D boundaries. An initial map of the the 3D boundariescan be computed by a typical range edge detector; wehave used an MRF-based range edge detector [11]. Wealso extract the local minima of the principal curvatureof depth data which we refer to as trace points. Sincethe curvature values are noisy, we avoid their direct par-ticipation in computing the 3D boundary computation.As in the computation of intensity edge map, the depthgradient values do not accurately represent the presenceof a 3D boundary and the edge map estimated from thegradient values needs further processing. Usually an edgeis terminated prematurely due to insigni�cant gradientvalues, even though a physical edge exists at that loca-tion. We have developed a boundary completion algo-rithm which attempts to extend each edge termination
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Figure 1: The surface segmentation module.based on the curvature values and presence of other 3Dedges in its spatial neighborhood.In our algorithm, we only consider the trace pointswhose magnitude is above a certain threshold value. Theboundary completion algorithm is essentially an imple-mentation of the grouping strategy based on proximityand continuity. Each boundary termination is iterativelyextended if evidence can be gathered in the form of pres-ence of either a trace point or other boundary points inits restricted neighborhood. The decision about whichcandidate trace point to choose for the extension of thetermination is based on a cost function given by:c = j�j+ d � 90:0;where � is the angle between the trace (boundary) pointand the boundary termination in degrees and d is its dis-tance from the boundary termination. Notice that thiscost function prefers proximity grouping over continuitygrouping. We �nd the concept of extension of bound-ary terminations using support of the trace points to behighly intuitive since this single strategy is compatiblewith both the concept of transversality as well as Gestalt.A connected component analysis then determinesclosed regions from the boundaries detected by theboundary completion algorithm.We discard all bound-aries which do not participate in the formation of closedboundaries. Part segmentation of the object is then de-rived by identifying all minimal closed regions bounded byedges which either (i) are external boundaries of the ob-ject or (ii) represent crease edges due to concavities. Each



of these closed regions is then hypothesized to representa `part' of the sensed object [4]. We then �t a deformablesuperquadric to the depth data of each `part' thus iden-ti�ed [12]. The features derived from each superquadricdetermine the attributes of the geons and their relationsresulting in the �nal object representation.3.3 Matching and Veri�cationThe recognition scheme proposed earlier involvesmatching of the geon structure (WAD) of each objectin the model database to the geon structure extractedfrom the sensed data. Our approach to matching twoattributed graphs is largely inspired from the concept ofinterpretation tree. Suppose that (n�1) geons have beenmatched between the two attributed graphs. Then thenth match is found based on locally consistent geon re-lations. The local consistency of a match between twogeons from two attributed graphs is de�ned based on theattributes of the geons and the relation between the givengeons and the geons adjacent to it. At present, we use an-gle and distance functions between the neighboring geonsto determine local consistency.Veri�cation is undertaken to test the hypothesis gen-erated by the local matching scheme. Our veri�cationalgorithm evaluates the global consistency of the hypoth-esized match by exhaustively evaluating the angle anddistance constraints.3.4 Experimental ResultsThe proposed strategy for part segmentation was im-plemented on a Sun SPARC-2 workstation and tested onmore than a dozen range images of real objects scannedby a Technical Art's White scanner. Some of these inputrange images are shown in �gures 2(a), 3(a), 4(a), 4(b),and 4(c). To highlight the depth information in these im-ages, we have rendered the surface orientation as an in-tensity image; darker intensities denote surfaces orientedfarther away from the direction of camera. There weresmall regions in the image where the sensor detected spu-rious depth values. These small regions were discardedbefore applying the part segmentation algorithm.� Part segmentation: Figure 2 shows representa-tions derived at various stages of the proposed partsegmentation process. The output of MRF edge de-tector is shown in �gure 2(b). Figure 2(c) showsthe thinned trace points surviving the 90 percentilethreshold on the magnitude of curvature. Figure 2(d)shows the boundaries completed by using the tracepoint supported boundary completion algorithm. Fi-nally, small neighboring regions were merged if theirsize is less than 150 pixels. Figure 2(e) shows the setof all boundary points detected by the segmentationprocess. For the purpose of parts segmentation, weonly use the silhouette edges which are de�ned bythe local minima of the negative curvature, or theirextensions. We don't permit participation of ridgeboundaries de�ned by convexities of the objects inthe part segmentation process. The result of the partsegmentation for pipe1 is shown in �gure 2(f).The segmentation obtained by the proposed methodappears reasonable even in the presence of low tomoderate laser \shadows". While in this present im-plementation, we have discarded some of the esti-

(a) (b)(c) (d)(e) (f)Figure 2: Intermediate representations for `pipe1': (a)Input range image (size 240x240); (b) Output of the MRFedge detector; (c) Trace points detected; (d) Completedboundary edges; (e) Closed regions after merging smallregions; (f) Part segmentation.mated boundaries, it appears that they can serve auseful role in re�ning the coarse part structure.� Fitting: In order to reliably obtain the best su-perquadric �t determined by the global minimum ofthe error function, it is necessary that we initiatethe algorithm from a reasonable neighborhood of theglobal minima. The strategy of deriving a good ini-tial estimate of the superquadrics was guided by thefollowing heuristic: Initial estimate of the major axisis in the direction of one of the eigenvectors of thedata points deviating least from the mean directionof the minimal principal curvature of the visible sur-face [8].Figures 4(d), (e), and (f) show the wire frame di-agrams of the superquadrics �tted to each part ex-tracted by the part segmentation for the range im-ages in �gures 4(a), (b), and (c). In a few cases wherethe objects were comprised of parts with bent axes



and with a non-monotonic (increasing-decreasing)change in area of cross-section along their axes, thesuperquadratic �ts were not good. Fifteen parame-ters were extracted from each superquadric �t to de-termine the type of geon. These parameters includerelative orientation and position of each superquadric(�,  , !, cx, cy, and cz), shape parameters (�1, �2),and taper parameters (Kx and Ky) [8]. Estimationof the attributes of geons from superquadric is moti-vated by [13].Following observations could be made from the pe-rusal of the various estimated parameter values of L-pipe images. The estimated value of the �2 is consis-tently greater than 0:7, indicating that cross sectionedges of each extracted part are curved. The radiusof curvature of the superquadric axes is relativelylarge and the taper parameters (Kx and Ky) indi-cate that area of cross section of each part is constantalong its major axis. Thus without an exception, allparts extracted from these range images can be clas-si�ed as (straight axis, curved cross section area, con-stant area along the axis) type of geons. The featuresextracted for the part structure of an object includedistance, angle, type, and size functions de�ned else-where. The estimates of angle between the axes oftwo parts are consistently very accurate. Figure 3shows results of part segmentation and superquadric�tting for a range image of a doll.� Matching: To evaluate the proposed recognitionstrategy, we designed the following matching experi-ment. We obtained six range images of an L pipe cap-tured from a White scanner, four of which are shownin �gures 2(a), 4(a), 4(b), and 4(c). All images werecaptured under identical sensing conditions (positionof camera, calibration setup etc.). The only variableacross the sequence of these images was the relativeorientation of the L pipe. The extent of \shadows"cast on the surface of the sensed object in a Whitescanner setup depends upon the surface characteris-tics of the object as well as its geometry. As a result,the extent of deterioration of the sensed data is dif-ferent in each range image. For instance, the magni-tude of missing depth data shown in �gure 2(a) is lessthan those shown in 4(a), 4(b), and 4(c). We thenattempted an exhaustive pairwise matching betweenthe representations derived from each pipe image.The recognition is carried out by a simple attributedgraph matching algorithm. We have evaluated ourmatching algorithm by pairwise exhaustive matchingof the part structures estimated from the six rangeimages. Thus, in all 36 matching experiments wereperformed and in all cases no more than 8 hypotheses(out of 120 possible) were presented to the veri�ca-tion stage. The veri�cation stage always producedthe correct part correspondence and the correct 3Dtransformation required for orienting the sensed datato the model data.

(a)
(b)
(c)Figure 3: Intermediate representations of `doll' image:(a) Input range image of a doll (size 240x600); (b) Partsegmentation; (c) Volumetric representation.



(a) (d)
(b) (e)
(c) (f)Figure 4: Input Range images of (a) pipe4 (size 192x240); (b) pipe5 (size 200x240); (c) pipe6 (size 167x240). Thepart-based volumetric representations derived from these range images are shown in (d), (e), and (f), respectively.



4 Salient Contours on Free-Form Sur-facesFree-form surface matching, often referred to assculpted object recognition, is gaining increasing impor-tance in the �eld of computer vision. A free-form surfaceis de�ned to be smooth such that the surface normal iswell de�ned and continuous almost everywhere, exceptat vertices, edges, and cusps [14]. Examples of free-formsurfaces include human faces, cars, airplanes, clay models,sculptures, terrains, etc. This increased interest has mo-tivated current research in matching arbitrary free-formsurface shapes that cannot be modeled using volumetricprimitives and that may or may not have easily detectablelandmark features such as vertices of polyhedra, verticesof cones and centers of spheres. Free-form surfaces mayalso be too complicated to be approximated by simplesurface patches (planar, quadric, etc.). Furthermore, theparts-based approach would not work with sculpted ob-jects that may be essentially smooth and featureless sur-faces such as warped metal sheets and turbine blades.4.1 Problem De�nitionThe problem of free-form surface matching can beposed as follows: Given 3D data describing a scene shapein a sensor coordinate system, and given a model shape ina model coordinate system, estimate the optimal rotationand translation that registers the model shape and thedata shape. Some of the approaches for free-form surfacematching use invariant local structural descriptions thatare derived from an input scene data, and match these lo-cal descriptions with the stored model descriptions. Thematching schemes use indexing or search methods em-ploying heuristics to reduce the search. Some other ap-proaches use parametric descriptions. The di�culties incomparing a scene surface description with a model sur-face description using parametric forms are: (i) it maynot be possible to parameterize the scene surface accu-rately such that the derived parameters can be directlycompared with those of the model surface and (ii) thesurfaces may not be aligned in 3D space.In our feature-based approach for free-form surfacematching, we propose to use point and curve features ifthey exist on a surface to form hypotheses about models,and also use other surface invariants to be able to han-dle relatively featureless (no distinguishing points) surfaceshapes.4.2 Feature Extraction using CurvaturesThe local geometry of surfaces can be exploited to ex-tract points or curves on the surfaces, so that these mayprovide us with features for representing free-form sur-faces. These structural descriptions are based on prop-erties that can be derived from small surface patches di-rectly without resorting to de�ning the surface using vol-umetric primitives. The features we propose are a com-bination of edge and point features. We propose to usepoint features such as the Gaussian (K) and the mean (H)curvatures, that are invariant to translations, rotationsand changes in parameterization, to derive our represen-tation.Though they themselves may not determine the surfacecompletely, we can �nd enough features in the Gaussianand mean curvature images to recognize the surface. Wepropose a new method to detect both the jump and crease

edges reliably from the depth data using the mean cur-vature values. We also integrate information present inthe labels of surface points, obtained from a coarse seg-mentation of the range image using the sign of the K-Hmap.4.2.1 Reliable Curvature Estimation using Cur-vature ConsistencyThe range data provides a grid of discrete points z(i; j)and the surface normals and curvatures are estimatedfrom this data. For each point P centered in a n � nwindow in a depth image, the surface is locally parame-terized with a parabolic quadric �t, using a least-squaretechnique. Once the parameters of the parabolic quadricform are determined, the normal direction, the principalcurvature values, and their directions are estimated fromthese parameters about P on the surface. Since curva-tures describe the local behavior of a surface, their esti-mated values depend crucially on the size of the neighbor-hood. Curvatures are also very sensitive to the e�ects ofnoise and quantization error. Reliable estimates of prin-cipal curvatures and their directions are important forour proposed curvature based representation of free-formsurfaces. The normal and curvature estimates are �rstestimated using a local approximation, and then re�nedusing the curvature consistency constraint [2] as describedin an earlier section. This constitutes our preprocessingstep.4.2.2 Edge Extraction using Mean CurvaturesIn our feature detection method, the extraction of jumpand crease edges depends on the estimates of the meanand the Gaussian curvatures. From the reliable estimatesof maximum(�MP ) and minimum(�MP ) principal curva-tures, we compute the mean curvature (H) and Gaussiancurvature (K). H = (�MP + �MP )=2K = �MP � �MPWe observe here that the curvature properties correspondto certain signi�cant physical properties of a surface. Theoccluding boundary or the jump boundary creates a zerocrossing of the curvature in a direction normal to thatof the boundary. A crease boundary where surface nor-mals are discontinuous causes a local extremum of thecurvature at that point. Furthermore, principal curva-ture extrema correspond to certain distinguished pointsor lines on smooth surfaces.Since the mean curvature at a surface point is the av-erage of the two principal curvature values at the point,it captures the underlying discontinuities in depth andsurface normals just as well as the principal curvaturesthemselves. We use the Laplacian edge detector with a4x4 mask to detect the changes in the values of meancurvatures. The output of the Laplacian edge detector isthen thresholded to retain only the upper 10 percentileof the gradient values to yield the edges. The thresholdis determined empirically. Since thick edges are formedas a result of thresholding, we apply a thinning operatoron this thresholded edge output to obtain a single pixelthick edge map.



4.2.3 Integration of Segmentation Labels andEdgesDuring the integration step, we classify the edges as jumpand crease edges based on the surface labels. We integratethe region information provided by the segmentation ofthe surface based on the sign of the Gaussian and meancurvatures, along with the raw edge map obtained above.We �rst segment the surface into regions based on thesign of the K-H map, and label each surface pixel as oneof the following eight types. The labeling is given below[15]:� H negative, K positive { peaked surface� H positive, K positive { cupped surface� H positive, K negative { saddle valley surface� H negative, K negative { saddle ridge surface� H positive, K zero { valley surface� H negative, K zero { ridge surface� H zero, K zero { plane surface� H zero, K negative { minimal surfaceIt can be seen that the crease edges which are the localextrema of surface curvatures are in fact, the boundariesbetween the peaked and saddle valley regions, where thesign of mean curvatures undergoes a change. We labeleach edge pixel based on the segmentation labels of thesurface points in a small neighborhood around the edgepixel, thus obtaining support from its local neighboringregion. If there is enough support for the presence ofsurface points belonging to the saddle valley region inthe neighborhood, then the edge pixel is labeled as creaseedge. Otherwise, it is labeled as a jump edge.We tested this edge detection method on several rangeimages of real objects. We found that signi�cant occlud-ing and crease boundaries are reliably detected irrespec-tive of the orientation of the object in the scene. Whilethe jump boundaries would be detected by any normaledge detector as well, our method detects both types ofedges in an integrated manner and guarantees the coher-ence between jump and crease edge maps.4.3 Matching and Pose EstimationWe extend the approach of [16] to compare the edgemaps containing the jump and crease edges obtained fromthe range images of di�erent objects. The key idea behindthis approach is the comparison of the model edge mapwith the scene edge map using the Hausdor� distanceto �nd the transformation specifying the best alignmentof the model in the scene. Two-dimensional geometricstructures as represented by the edge maps are comparedto measure the di�erence between the two shapes usingthe minimum Hausdor� distance under the transforma-tion group G that includes translation in x and y direc-tions. We extended this idea to include rotation aboutthe z-axis as well.Our matching scheme thus compares the edge mapsobtained from the range images. Given a shape (its edgemap) as a point set P and its transformed point set Q,under the action of some transformation group G, the

distance between P and Q is the minimum di�erence be-tween the shapes under all possible transformations of Pwith respect to Q denoted byDG(P;Q) = ming2GH(g(P ); Q)where H(g(P ); Q) is given byH(g(P ); Q) = max(h(g(P ); Q); h(Q; g(P )))and h(A;B) = maxp2A minq2B kp� qk:The Hausdor� distance, H(g(P ); Q), is a max-min dis-tance for comparing sets. It measures the degree to whicheach point of the edge map P is closer to some point ofQ and vice versa. It simply measures the proximity ofpoints in the two edge maps and does not require a cor-respondence of the points in one edge map with pointsin the other. In order for the distance DG(P;Q) to besmall, there must be a transformation in G that bringsall of one object near some part of the other and viceversa. The method is implemented as a search strategyaugmented with a heuristic to prune the transformationspace wherein a possible \match" of the model to thescene image can be found.4.4 Experimental ResultsWe have carried out several experiments with realrange images of facial masks, to test our feature detec-tion and matching schemes. The three-stage feature ex-traction method was employed to extract the edge mapscontaining jump and crease edges from these range im-ages. We found that the initial smoothing using cur-vature consistency criterion resulted in denser and con-sistent principal curvature directions and this aided inobtaining consistent edge maps for the same object indi�erent orientations.A sample result using the range image of a face maskis shown in �gure 5. Figure 5 shows all the process-ing steps of our feature extraction method. The jumpand crease edges were extracted from the mean curva-tures. The threshold required to obtain the edges usingthe Laplacian mask was set to upper 10 percentile. Thesmoothing e�ect of the curvature consistency criterion isevident from the �gure 5(d). Figure 5(i) shows thesalient features present in the image of the facial mask.We present the results of our matching scheme here.Our database consisted of range images of di�erent fa-cial masks. Two types of experiments were carried outwith the edge maps obtained from the range images ofthese masks. One set of experiments dealt with the esti-mation of the transformation parameters that would bestalign an edge map of an object with the edge map of therotated and translated object. The second set involvedthe pairwise comparison of the edge maps to obtain thebest matched edge maps in terms of minimumHausdor�distance.The edge maps used in the experiments are shownin �gure 6. Both the jump and crease edges presentin the edge map were used in matching. The allowedgroup of transformations included translations in x andy directions and rotation in the xy-plane. The forwarddistance from the model to the image h(g(P ); Q), where



g(P ) is the transformed model edge map and Q, the sceneedge map was computed allowing 95% of the transformedmodel points to lie near the scene edge points. The valuesof g where the forward distance is smaller than a giventhreshold were the hypothesized transformations of themodel image that would best align it with the scene im-age. These candidate transformations were then veri�edby determining whether the reverse distance h(Q; g(P ))was also smaller than the threshold. The best transfor-mation was chosen to be the one with the smallest max-imum of its forward and backward distances, among allthe candidate transformations. Table 7 shows the pair-wise minimumHausdor� distances obtained when each ofthe edge maps was matched against the other.Figure 8 shows the model image, the scene image,and the image containing the transformed model withthe best transformation aligned with the scene edge map.Here 80% of the model points were required to matchwith the image during the forward and backward distancecomputations. The best transformation obtained is givenby a translation of 8 pixels and 20 pixels in the x and ydirections respectively and a rotation of 23 degrees aboutthe z-axis in the clockwise direction.5 ConclusionsThis paper presented a three-stage approach for detect-ing the surface features in a robust manner. Our approachemphasized the preprocessing of sensor data before fea-ture detection to assist in feature detection. We appliedthis approach to obtaining parts from range data and todetect of salient contours on free-form surfaces.We have proposed a method for completing boundariesobliterated by the noise in the sensed data by integratingthe edge map with the local minima of negative princi-pal curvatures. The re�ned boundary structure facilitatesdecomposition of objects into their constituent parts. Itappears that the proposed local scheme of part segmen-tation o�ers reasonable and reliable results. Our resultsare comparable with those reported in [17]. However, ourmethod of boundary completion is less expensive since itis local in nature. Our results show that accuracy of thesensed data obtained from a White scanner and perfor-mance of curvature consistency algorithm can a�ord us touse a local boundary completion algorithm without com-promising the reliability of the segmentation. It is wellknown that for a few objects, the principal of transver-sality cannot be exploited to extract their part structurefrom the data sensed from a certain orientation [4]. Forsuch objects, our method of segmentation is an inexpen-sive method for deriving a good initial hypothesis for partsegmentation algorithms based on either feedback strat-egy [8] or catalogs derived from the multi-view represen-tations [13].Robust feature extraction methods also lend them-selves to composition of larger features from smaller fea-tures. Results of our matching method for geons showthat the large matching primitives can indeed decreasematching complexity by exploiting signi�cant global con-straints. Consequently, these matching methods are morestable and robust due to their larger degree of toleranceto the missing data.We also described a new method to extract jump andcrease edges from mean curvatures and demonstrated thee�ectiveness of the method on various range images of ar-

bitrary surfaces. Our method can detect both the jumpand crease edges in an integrated manner and it is compu-tationally inexpensive. The robust estimates of principalcurvatures using curvature consistency criterion were cru-cial in obtaining stable edge maps from the depth data.From our experiments on real range images with varyinglevels of degradation owing to noise and laser shadows, weobserve that the salient edges on the objects are detectedreliably using our method.We also extended the matching technique based on theminimumHausdor� distance to allow rotation about thez-axis, and we tested this method using the edge mapsobtained from our feature extraction method. Resultsof our experiments show that this method can be suc-cessfully used for both the estimation of transformationparameters that would best align two edge maps, and tomatch the edge maps obtained from di�erent objects to�nd the best matched edge maps. The robustness of theedge maps was found to be a vital factor in reducing thefalse matches of objects in our database. Our experi-ments show that the di�erent edge maps obtained fromthe range images of the same facial mask resulted in min-imumHausdor� distances consistently, thus reducing thenumber of mismatches between di�erent facial masks.



(a) (b) (c)
(d) (e) (f)
(g) (h) (i)Figure 5: (a) Range image; (b) Depth as pseudo intensity; (c) Scaled mean curvature values before smoothing usingcurvature consistency; (d) Scaled mean curvature values after smoothing; (e) Output of an edge detector using theLaplacian mask; (f) Thresholded and thinned edge map; (g) Surface segmentation map using K-H sign; (h) Edge mapand saddle valley regions; (i) The jump and crease edges, with crease edges shown as thick lines.



6 AcknowledgmentsWe thank Prof. Frank Ferrie, Gilbert Soucy, andShailendra Mathur at McGill University for sharing theircurvature consistency software with us. We are also grate-ful to Prof. Ruzena Bajcsy, Alok Gupta, Helen Ander-son, Arup Mukherjee, and Luca Bogoni for access to su-perquadric estimation software developed at the Univer-sity of Pennsylvania. This work was supported by theNSF research grants IRI-9103143 and CDA-8806599.References[1] M. Brady, J. Ponce, A. Yuille, and H. Asada,\Describing surfaces," Computer Vision, Graphicsand Image Processing:Image understanding, vol. 32,pp. 1{28, 1985.[2] F. Ferrie, S. Mathur, and G. Soucy, \Feature extrac-tion for 3-D model building and object recognition,"in Handbook of Pattern Recognition and Image Pro-cessing (T. Y. Young, Ed.), New York: AcademicPress, 1993. To Appear.[3] D. Cormo, Di�erential geometry of curves and sur-faces. Prentice-Hall Inc., Englewood Cli�s, New Jer-sey, 1976.[4] D. Ho�man and W. Richards, \Parts of recognition,"Cognition, vol. 18, pp. 65{96, 1985.[5] I. Biederman, \Human image understanding: Recentresearch and a theory," Computer Vision, Graphics,and Image Processing, vol. 32, pp. 29{73, 1985.[6] N. S. Raja, Obtaining Generic Parts From RangeImages Using A Multi-View Representation. PhDthesis, Michigan State University, E. Lansing, Michi-gan, 1992.[7] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld,\3D shape recovery using distributed aspect match-ing," IEEE Transactions on Pattern Analysis andMachine Intelligence, vol. 14, pp. 174{198, February1992.[8] A. Gupta and R. Bazcsy, \Surface and volumet-ric segmentation of range images using biquadricsand superquadrics," in The 11th IAPR InternationalConference on Pattern Recognition, (The Hague),pp. 158{162, 1992.[9] G. Stockman, G. Lee, and S. W. Chen, \Recon-structing line drawings from wings: The polygo-nal case," in Proceedings of the Third IEEE Inter-national Conference On Computer Vision, (Osaka,Japan), pp. 526{529, 1990.[10] W. E. L. Grimson, Object Recognition by Computer:The Role of Geometric Constraints. Cambridge:MIT Press, 1990.[11] A. K. Jain and S. G. Nadabar, \MRF Model-BasedSegmentation of Range Images," in Third IEEE In-ternational Conference on Computer Vision, vol. 3,(Osaka, Japan), pp. 667{671, 1990.

[12] F. Solina and R. Bajcsy, \Recovery of paramet-ric models from range images: The case for su-perquadrics with global deformations," IEEE Trans-actions on Pattern Analysis and Machine Intelli-gence, vol. 12, pp. 131{147, February 1990.[13] N. S. Raja and A. K. Jain, \Recognizing geons fromsuperquadrics �tted to range data," Int. J. Imageand Vision Computing, special issue on Range ImageUnderstanding, vol. 10, no. 3, pp. 179{190, 1992.[14] P. J. Besl, \The free-form surface matching prob-lem," inMachine vision for three-dimensional scenes(H. Freeman, Ed.), New York: Academic Press, Inc.,1990.[15] A. Jain and P. Flynn, Eds., 3D Object Recognition.New York: Elsevier, 1993.[16] D. P. Huttenlocher and W. J. Rucklidge, \A multi-resolution technique for comparing images using theHausdor� distance," tech. rep., Department of Com-puter Science, Cornell University, December 1992.[17] F. Ferrie, J. Lagarde, and P. Whaite, \Darbouxframes, snakes, and super-quadrics: Geometry fromthe bottom-up," in IEEE Workshop on Interpreta-tion of 3-D scenes, (Austin, Texas), pp. 170{176,IEEE, 1989.



(a)
(b)
(c)
(d)Figure 6: Test Images: (a) Image1; (b) Image2; (c) Im-age3; (d) Image4.
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- - -Figure 7: Minimum Hausdor� distance between images.
(a)
(b)
(c)Figure 8: (a) Model edge map; (b) Scene edge map; (c)The aligned model edge map with the scene.


