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Abstract

Salient surface features play a central role in tasks re-
lated to 3D object recognition and matching. There is a
large body of psychophysical evidence demonstrating the
perceptual significance of surface features such as local
minima of principal curvatures in the decomposition of
objects into a hierarchy of parts. Many recognition strate-
gies employed in machine vision also directly use features
derived from surface properties for matching. Hence, it
1s itmportant to develop techniques that detect surface fea-
tures reliably.

Our proposed scheme consists of (a) a preprocessing
stage, (b) a feature detection stage, and (c) a feature inte-
gration stage. The preprocessing step selectively smoothes
out noise in the depth data without degrading salient sur-
face details and permits reliable local estimation of the
surface features. The feature detection stage detects both
edge-based and region-based features, of which many are
derived from curvature estimates. The third stage s re-
sponsible for integrating the information provided by the
individual feature detectors. This stage also completes the
partial boundaries provided by the individual feature detec-
tors, using prorimity and continuity principles of Gestalt.
All our algorithms use local support and, therefore, are in-
herently parallelizable.

We demonstrate the efficacy and robustness of our ap-
proach by applying it to two diwerse domains of applica-
tions: (a) Segmentation of objects into volumetric prim-
itives and (b) Detection of salient contours on free-form
surfaces. We have tested our algorithms on a number of
real range images with varying degrees of noise and miss-
g data due to self-occlusion. The preliminary results are
VETY eNCouUTaying.

1 Introduction

Conventional object recognition strategies have two
primary components: a representation scheme and a
matching technique. A good representation scheme at-
tempts to capture the essential structure of the ‘world’
which will help in discriminating among the object cat-
egories in an effective manner. The abstraction of the
world structure is formulated in terms of features of the
objects in the domain and relations among them. Re-
cent advances in surface reconstruction algorithms and
the commercially available, reliable range sensors for ob-
taining depth data have spurred an increased interest in
3D object representation and matching. An important
aspect of 3D object recognition is the extraction of sur-
face features that can be used for effective representation
and matching of objects using range data.

3D object recognition and model building tasks depend
on either the explicit recovery or indirect inference of 3D
features embodied in depth data. One of the most popular
3D object representation schemes for recognition systems
employing range data is the representation in terms of
its surface attributes. For most of the applications, 3D
objects can be adequately modeled in terms of a collec-
tion of piecewise smooth surface patches. The features
extracted from these surface patches and the spatial rela-
tionships among the surface patches capture the structure
of the 3D world (restricted to the domain of application)
and provide with the necessary constraints for matching.
The local structural information relevant to a 3D shape 1s
captured in the surface attributes such as principal cur-
vatures, normals, and principal curvature direction fields.
Features such as surface orientation, orientation disconti-
nuity, depth discontinuity, surfaces curvatures etc. have
been extensively used in machine recognition systems. In
more restricted object domains, some of the surface fea-
tures help group surface patches into higher level features,
and thus, allow for reduction in the complexity of match-
ing. For instance, minima of negative principal curvatures
have been shown to play a perceptually significant role in
‘part’ decomposition of the sensed data. Other surface
features such as the mean and the Gaussian curvatures
also aid in determining the presence of an instance of a
model object in the scene [1]. Directional properties such
as the principal curvatures can be used in grouping the
feature points into boundary contours and surface patches

[2].
2 Robust Feature Detection

In differential geometry, it has been shown that a gen-
eral smooth surface is uniquely characterized by the first
and second fundamental forms [3]. The first fundamen-
tal form is primarily related to the surface normals. The
surface curvature i1s a function of both these forms. The
curvature at any point on the surface is also viewpoint
invariant. In addition, interesting surface properties such
as (i) jump boundaries (which are surface depth discon-
tinuities), (ii) crease edges obtained from surface orienta-
tion discontinuities, and (iii) ridge lines that are smooth
local extrema of curvature can also be inferred from the
zero-crossings and extremal values of surface curvatures.
Thus there is sound basis for computing salient features
based on surface curvatures. In particular, we use in-
variant surface characteristics such as the mean and the
Gaussian curvatures derived from the principal curvatures
[3] to classify surface patches. Note that these invariants
are local surface properties which allow them to be used



in situations involving occlusion of objects.

When the domain is restricted to objects having a
definite part structure, the contours derived from local
minima of negative principal curvature often constitute
“part” boundaries [4]. These local minima of curvature
and the boundaries detected from the discontinuities in
the surface depth and surface normal field play a signifi-
cant role in obtaining our proposed part decomposition.

While the efficacy of a recognition system depends
upon a prudent choice of the features of the surfaces
and their spatial relations constituting a representation
scheme, the realization of such a system crucially de-
pends on the robust estimation of these features and their
relationships. Noise in the sensed data is often a pri-
mary reason for inaccurate estimates of the feature values.
This necessitates smoothing of the sensed data before ex-
tracting features. The surface features detected from the
smoothed data, however, are not perfect due to several
reasons: low signal to noise ratio in the sensed image,
artifacts of the feature detectors themselves, etc. It is
desirable that the complementary strengths of the indi-
vidual feature detectors and the contextual information
be integrated to produce a refined feature map.

We propose a three-stage system for extracting robust
features from the sensed data: (a) preprocessing, (b) fea-
ture detection, and (c) feature integration. The prepro-
cessing step selectively smoothes out noise in the depth
data without the loss of salient surface details and permits
reliable local estimation of the surface features. The fea-
ture detection stage detects both edge-based and region-
based features, of which many are derived from curvature
estimates. The third stage is responsible for integrating
the information provided by the individual feature detec-
tors. This stage also completes the partial boundaries
provided by the individual feature detectors, using prox-
imity and continuity principles of Gestalt.

In many applications, the assumption of second order
smoothness (C?) for each of the surface patches is not
overly restrictive. Hence, some form of smoothing impos-
ing a piecewise (C?) continuity improves the accuracy of
estimated surface. The curvature consistency algorithm
of [2] is one such method of adaptive smoothing.

The key 1dea behind curvature consistency is to smooth
the surface while preserving its local structure described
by surface normal orientation, principal curvatures and
their directions at a point on a surface. It can be viewed
as the second stage of processing applied to the estimates
of surface attributes from depth values using local meth-
ods. It is formulated as an optimization problem in which
the objective is to minimize a functional form embedding
a minimum variation of curvature in a local neighborhood
[2]. The three components involved in this process are:
(i) a local description of the surface at a point P, (ii) a
transport model that describes the change in the local de-
scription as P is moved to an adjacent point Q and vice
versa, and (iii) a function that prescribes how the local
description at P can be updated in order to be compatible
with the descriptions of its local neighbors once they have
been moved from Q to P by the transport mechanism. In
the implementation of this algorithm, the surface normals
and curvatures are estimated using a local neighborhood
in the first step, and these local estimates are smoothed
based on the consistency of curvatures in the neighbor-
hood by an iterative process. The algorithm is found to

converge rapidly. See [2] for more details on this method.

It should be noted that the curvature consistency algo-
rithm provides the smoothed data, surface normals, and
surface curvatures for the smoothed data. From these
initial features, the method for obtaining the desired fea-
ture map, the feature integration scheme, and derivation
of final representation will vary from application to ap-
plication depending on the task at hand and the object
domain. We present details of the application of our ro-
bust feature detection technique to (i) the task of deriv-
ing part-based description and (ii) the task of detecting
salient contours on free-form surfaces.

All our algorithms use local support and, therefore,
are inherently parallelizable. We demonstrate the efficacy
and robustness of our approach on several real images.

3 Volumetric Primitives

Data

Our objective here is to implement a feature—based 3D
object recognition system inspired by Biederman’s RBC
theory [5]. Based on psychophysical evidence, this theory
hypothesizes that the perceptual recognition of objects is
conceptualized to be a process in which an input image is
segmented at regions of deep concavity into a few, simple
volumetric primitives ( “parts”), called geons. An object
can be efficiently recognized if an arrangement of two or
thre]e components can be recovered from the image [5, 6,
7, 8.

We make the following simplifying assumptions about
the object domain.

from Range

e The objects are rigid and opaque.

e The part decomposition of each of the object is
unique and unambiguous. Each part of the object 1s
piecewise smooth and not very convoluted nor very
eccentric.

e The objects are simply connected in a topological
sense. We exclude objects like doughnuts since their
part decomposition is not conceptually simple.

e Further, we assume that all the prominent features
of a given object can be detected by the sensor [9].
We exclude origam: world objects.

Most of the objects around us have a definite part struc-
ture and well within the boundaries laid down by this set
of assumptions. Many complex industrial objects can be
thought of as a composition of a small number of well-
defined volumetric primitives.

Problem Definition : Given a 2.5D sensed data of an
industrial scene consisting of an unoccluded object from
a non-accidental viewpoint, we desire to derive a descrip-
tion of the object in terms of volumetric primitives and to
obtain the most feasible interpretation [10] of the sensed
data in terms of the objects stored in the model database.

3.1 Representation

Our representation scheme is based on a set of geon-like
volumetric part primitives. The original set of geons pro-
posed by RBC theory is based on four geometric proper-
ties involving shape of axis, shape of the cross-section, and
the variation of cross-section along the axis. Recognizing



that the computation of cross-section i1s somewhat prob-
lematic, we have defined a reduced set of 12 geon-like volu-
metric primitives based on the following three geometric
properties of the “parts”: straightness or curvedness of
their axes, straightness or curvedness of the boundaries
of their cross-section, and the variation of the area of
cross-section along their axes (constant, increasing, and
increasing-decreasing). An object can be represented as
an attributed graph whose vertices represent the geons
of the object and the arcs between the vertices represent
adjacency relationship between the corresponding geons
of the object. Let V be a set of vertices, each represent-
ing a geon in an object. Let F C V x V be the set of
arcs representing adjacency relations among the pairs of
geons of the object such that an ordered pair (v;,v;) € E
iff geons v; and v; are adjacent (share a border). We also
define following terms:

e Distance function, d : V x V — R, maps each pair
of geons to a real number representing the distance
separating their center of masses.

e Type function, t:V — T where T is the set of
types of geons. Type of a geon is determined by the
shape of 1ts axis, the shape of boundaries of its cross—
section, and the variation of the area of cross-section
along its axis.

e Angularity, [ : {(vi,v;,vr)} — R defined over
three adjacent geons (v;,v;, vg) such that if (v;, v;),
(vj,vr) € V and 6 is the angle between the segments
joining center of masses of (v;, v;) and that of (v;, vg)
then (v, v, vp) = 6.

e Attach function, a : £ — {azial, sideways}, de-
fines the type of attachment between neighboring
geons. Notice that a could be an asymmetric func-
tion.

e Size function, s : V — R, assigns volume to each
geon in the graph.

Thus, an object is defined by a weighted, attributed, and
directed (WAD; graph G represented by a seven tuple
(V,E,s,d,a,tl).
3.2 Feature Extraction

We smooth the range data using the curvature consis-
tency algorithm. Since the boundaries are computed from
the depth data, we choose to call the resulting edge map
3D boundaries. An initial map of the the 3D boundaries
can be computed by a typical range edge detector; we
have used an MRF-based range edge detector [11]. We
also extract the local minima of the principal curvature
of depth data which we refer to as trace points. Since
the curvature values are noisy, we avoid their direct par-
ticipation in computing the 3D boundary computation.
As in the computation of intensity edge map, the depth
gradient values do not accurately represent the presence
of a 3D boundary and the edge map estimated from the
gradient values needs further processing. Usually an edge
i1s terminated prematurely due to insignificant gradient
values, even though a physical edge exists at that loca-
tion. We have developed a boundary completion algo-
rithm which attempts to extend each edge termination

Compute
Surface Properties

Depth and

Curvatures Surface Normals

Detection of
Trace Points

Detection of
3D Edges

Trace Points Initial Boundaries

Trace Point Supported
Boundary Completion

Completed Boundaries

Figure 1: The surface segmentation module.

based on the curvature values and presence of other 3D
edges in its spatial neighborhood.

In our algorithm, we only consider the trace points
whose magnitude is above a certain threshold value. The
boundary completion algorithm is essentially an imple-
mentation of the grouping strategy based on proximity
and continuity. Each boundary termination is iteratively
extended if evidence can be gathered in the form of pres-
ence of either a trace point or other boundary points in
its restricted neighborhood. The decision about which
candidate trace point to choose for the extension of the
termination is based on a cost function given by:

¢ = |0] + d +90.0,

where @ is the angle between the trace (boundary) point
and the boundary termination in degrees and d is its dis-
tance from the boundary termination. Notice that this
cost function prefers proximity grouping over continuity
grouping. We find the concept of extension of bound-
ary terminations using support of the trace points to be
highly intuitive since this single strategy i1s compatible
with both the concept of transversality as well as Gestalt.

A connected component analysis then determines
closed regions from the boundaries detected by the
boundary completion algorithm.We discard all bound-
aries which do not participate in the formation of closed
boundaries. Part segmentation of the object is then de-
rived by identifying all minimal closed regions bounded by
edges which either (i) are external boundaries of the ob-
ject or (ii) represent crease edges due to concavities. Fach



of these closed regions is then hypothesized to represent
a ‘part’ of the sensed object [4]. We then fit a deformable
superquadric to the depth data of each ‘part’ thus iden-
tified [12]. The features derived from each superquadric
determine the attributes of the geons and their relations
resulting in the final object representation.

3.3 Matching and Verification

The recognition scheme proposed earlier involves
matching of the geon structure (WAD) of each object
in the model database to the geon structure extracted
from the sensed data. Our approach to matching two
attributed graphs is largely inspired from the concept of
interpretation tree. Suppose that (n —1) geons have been
matched between the two attributed graphs. Then the
n'” match is found based on locally consistent geon re-
lations. The local consistency of a match between two
geons from two attributed graphs is defined based on the
attributes of the geons and the relation between the given
geons and the geons adjacent to it. At present, we use an-
gle and distance functions between the neighboring geons
to determine local consistency.

Verification is undertaken to test the hypothesis gen-
erated by the local matching scheme. Our verification
algorithm evaluates the global consistency of the hypoth-
esized match by exhaustively evaluating the angle and
distance constraints.

3.4 Experimental Results

The proposed strategy for part segmentation was im-
plemented on a Sun SPARC-2 workstation and tested on
more than a dozen range images of real objects scanned
by a Technical Art’s White scanner. Some of these input
range images are shown in figures 2(a), 3(a), 4(a), 4(b),
and 4(c). To highlight the depth information in these 1im-
ages, we have rendered the surface orientation as an in-
tensity image; darker intensities denote surfaces oriented
farther away from the direction of camera. There were
small regions in the image where the sensor detected spu-
rious depth values. These small regions were discarded
before applying the part segmentation algorithm.

e Part segmentation: Figure 2 shows representa-
tions derived at various stages of the proposed part
segmentation process. The output of MRF edge de-
tector is shown in figure 2(b). Figure 2(c) shows
the thinned trace points surviving the 90 percentile
threshold on the magnitude of curvature. Figure 2(d)
shows the boundaries completed by using the trace
point supported boundary completion algorithm. Fi-
nally, small neighboring regions were merged if their
size is less than 150 pixels. Figure 2(e) shows the set
of all boundary points detected by the segmentation
process. For the purpose of parts segmentation, we
only use the silhouette edges which are defined by
the local minima of the negative curvature, or their
extensions. We don’t permit participation of ridge
boundaries defined by convexities of the objects in
the part segmentation process. The result of the part
segmentation for pipel is shown in figure 2(f).

The segmentation obtained by the proposed method
appears reasonable even in the presence of low to
moderate laser “shadows”. While in this present im-
plementation, we have discarded some of the esti-

(e)

Figure 2: Intermediate representations for ‘pipel’ (a)
Input range image (size 240x240); (b) Output of the MRF
edge detector; (c) Trace points detected; (d) Completed
boundary edges; (e) Closed regions after merging small
regions; (f) Part segmentation.

mated boundaries, it appears that they can serve a
useful role in refining the coarse part structure.

e Fitting: In order to reliably obtain the best su-
perquadric fit determined by the global minimum of
the error function, it is necessary that we initiate
the algorithm from a reasonable neighborhood of the
global minima. The strategy of deriving a good ini-
tial estimate of the superquadrics was guided by the
following heuristic: Initial estimate of the major axis
is in the direction of one of the eigenvectors of the
data points deviating least from the mean direction
of the minimal principal curvature of the visible sur-

face [8].

Figures 4(d), (e), and (f) show the wire frame di-
agrams of the superquadrics fitted to each part ex-
tracted by the part segmentation for the range im-
ages in figures 4(a), (b), and (¢). In a few cases where
the objects were comprised of parts with bent axes



and with a non-monotonic (increasing-decreasing)
change in area of cross-section along their axes, the
superquadratic fits were not good. Fifteen parame-
ters were extracted from each superquadric fit to de-
termine the type of geon. These parameters include
relative orientation and position of each superquadric
(¢, ¥, w, ¢z, ¢y, and ¢,), shape parameters (e, €3),
and taper parameters (K, and K,) [8]. Estimation
of the attributes of geons from superquadric is moti-

vated by [13].

Following observations could be made from the pe-
rusal of the various estimated parameter values of L-
pipe images. The estimated value of the €5 is consis-
tently greater than 0.7, indicating that cross section
edges of each extracted part are curved. The radius
of curvature of the superquadric axes is relatively
large and the taper parameters (K, and K) indi-
cate that area of cross section of each part is constant
along its major axis. Thus without an exception, all
parts extracted from these range images can be clas-
sified as (straight axis, curved cross section area, con-
stant area along the axis) type of geons. The features
extracted for the part structure of an object include
distance, angle, type, and size functions defined else-
where. The estimates of angle between the axes of
two parts are consistently very accurate. Figure 3
shows results of part segmentation and superquadric
fitting for a range image of a doll.

Matching: To evaluate the proposed recognition
strategy, we designed the following matching experi-
ment. We obtained six range images of an L pipe cap-
tured from a White scanner, four of which are shown
in figures 2(a), 4(a), 4(b), and 4(c). All images were
captured under identical sensing conditions (position
of camera, calibration setup etc.). The only variable
across the sequence of these images was the relative
orientation of the L pipe. The extent of “shadows”
cast on the surface of the sensed object in a White
scanner setup depends upon the surface characteris-
tics of the object as well as its geometry. As a result,
the extent of deterioration of the sensed data is dif-
ferent in each range image. For instance, the magni-
tude of missing depth data shown in figure 2(a) is less
than those shown in 4(a), 4(b), and 4(c). We then
attempted an exhaustive pairwise matching between
the representations derived from each pipe image.

The recognition is carried out by a simple attributed
graph matching algorithm. We have evaluated our
matching algorithm by pairwise exhaustive matching
of the part structures estimated from the six range
images. Thus, in all 36 matching experiments were
performed and in all cases no more than 8 hypotheses
(out of 120 possible) were presented to the verifica-
tion stage. The verification stage always produced
the correct part correspondence and the correct 3D
transformation required for orienting the sensed data
to the model data.

Figure 3: Intermediate representations of ‘doll’ image:
(a) Input range image of a doll (size 240x600); (b) Part
segmentation; (c) Volumetric representation.
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Figure 4: Input Range images of (a) piped (size 192x240); (b) pipeb (size 200x24
part-based volumetric representations derived from these range images are shown in



4 Salient Contours on Free-Form Sur-

faces

Free-form surface matching, often referred to as
sculpted object recognition, is gaining increasing impor-
tance in the field of computer vision. A free-form surface
is defined to be smooth such that the surface normal is
well defined and continuous almost everywhere, except
at vertices, edges, and cusps [14]. Examples of free-form
surfaces include human faces, cars, airplanes, clay models,
sculptures, terrains, etc. This increased interest has mo-
tivated current research in matching arbitrary free-form
surface shapes that cannot be modeled using volumetric
primitives and that may or may not have easily detectable
landmark features such as vertices of polyhedra, vertices
of cones and centers of spheres. Free-form surfaces may
also be too complicated to be approximated by simple
surface patches (planar, quadric, etc.). Furthermore, the
parts-based approach would not work with sculpted ob-
jects that may be essentially smooth and featureless sur-
faces such as warped metal sheets and turbine blades.

4.1 Problem Definition

The problem of free-form surface matching can be
posed as follows: Given 3D data describing a scene shape
in a sensor coordinate system, and given a model shape in
a model coordinate system, estimate the optimal rotation
and translation that registers the model shape and the
data shape. Some of the approaches for free-form surface
matching use invariant local structural descriptions that
are derived from an input scene data, and match these lo-
cal descriptions with the stored model descriptions. The
matching schemes use indexing or search methods em-
ploying heuristics to reduce the search. Some other ap-
proaches use parametric descriptions. The difficulties in
comparing a scene surface description with a model sur-
face description using parametric forms are: (i) it may
not be possible to parameterize the scene surface accu-
rately such that the derived parameters can be directly
compared with those of the model surface and (ii) the
surfaces may not be aligned in 3D space.

In our feature-based approach for free-form surface
matching, we propose to use point and curve features if
they exist on a surface to form hypotheses about models,
and also use other surface invariants to be able to han-
dle relatively featureless (no distinguishing points) surface
shapes.

4.2 Feature Extraction using Curvatures

The local geometry of surfaces can be exploited to ex-
tract points or curves on the surfaces, so that these may
provide us with features for representing free-form sur-
faces. These structural descriptions are based on prop-
erties that can be derived from small surface patches di-
rectly without resorting to defining the surface using vol-
umetric primitives. The features we propose are a com-
bination of edge and point features. We propose to use
point features such as the Gaussian (K) and the mean (H)
curvatures, that are invariant to translations, rotations
and changes in parameterization, to derive our represen-
tation.

Though they themselves may not determine the surface
completely, we can find enough features in the Gaussian
and mean curvature images to recognize the surface. We
propose a new method to detect both the jump and crease

edges reliably from the depth data using the mean cur-
vature values. We also integrate information present in
the labels of surface points, obtained from a coarse seg-
mentation of the range image using the sign of the K-H
map.

4.2.1 Reliable Curvature Estimation using Cur-
vature Consistency

The range data provides a grid of discrete points z(4, j)
and the surface normals and curvatures are estimated
from this data. For each point P centered in a n x n
window in a depth image, the surface is locally parame-
terized with a parabolic quadric fit, using a least-square
technique. Once the parameters of the parabolic quadric
form are determined, the normal direction, the principal
curvature values, and their directions are estimated from
these parameters about P on the surface. Since curva-
tures describe the local behavior of a surface, their esti-
mated values depend crucially on the size of the neighbor-
hood. Curvatures are also very sensitive to the effects of
noise and quantization error. Reliable estimates of prin-
cipal curvatures and their directions are important for
our proposed curvature based representation of free-form
surfaces. The normal and curvature estimates are first
estimated using a local approximation, and then refined
using the curvature consistency constraint [2] as described
in an earlier section. This constitutes our preprocessing
step.

4.2.2 Edge Extraction using Mean Curvatures

In our feature detection method, the extraction of jump
and crease edges depends on the estimates of the mean
and the Gaussian curvatures. From the reliable estimates
of maximum (k37,) and minimum (x4, ) principal curva-
tures, we compute the mean curvature (H) and Gaussian
curvature (K).

H
K

(KMP + KMP)/Q
KMp X KMp

We observe here that the curvature properties correspond
to certain significant physical properties of a surface. The
occluding boundary or the jump boundary creates a zero
crossing of the curvature in a direction normal to that
of the boundary. A crease boundary where surface nor-
mals are discontinuous causes a local extremum of the
curvature at that point. Furthermore, principal curva-
ture extrema correspond to certain distinguished points
or lines on smooth surfaces.

Since the mean curvature at a surface point is the av-
erage of the two principal curvature values at the point,
it captures the underlying discontinuities in depth and
surface normals just as well as the principal curvatures
themselves. We use the Laplacian edge detector with a
4x4 mask to detect the changes in the values of mean
curvatures. The output of the Laplacian edge detector is
then thresholded to retain only the upper 10 percentile
of the gradient values to yield the edges. The threshold
is determined empirically. Since thick edges are formed
as a result of thresholding, we apply a thinning operator
on this thresholded edge output to obtain a single pixel
thick edge map.



4.2.3 Integration of Segmentation Labels and
Edges

During the integration step, we classify the edges as jump
and crease edges based on the surface labels. We integrate
the region information provided by the segmentation of
the surface based on the sign of the Gaussian and mean
curvatures, along with the raw edge map obtained above.
We first segment the surface into regions based on the
sign of the K-H map, and label each surface pixel as one
([)f ﬁhe following eight types. The labeling i1s given below
15]:

e H negative, K positive — peaked surface

e H positive, K positive — cupped surface

e H positive, K negative — saddle valley surface
e H negative, K negative — saddle ridge surface
e H positive, K zero — valley surface

e H negative, K zero — ridge surface

e H zero, K zero — plane surface

e H zero, K negative — minimal surface

It can be seen that the crease edges which are the local
extrema of surface curvatures are in fact, the boundaries
between the peaked and saddle valley regions, where the
sign of mean curvatures undergoes a change. We label
each edge pixel based on the segmentation labels of the
surface points in a small neighborhood around the edge
pixel, thus obtaining support from its local neighboring
region. If there is enough support for the presence of
surface points belonging to the saddle valley region in
the neighborhood, then the edge pixel is labeled as crease
edge. Otherwise, it is labeled as a jump edge.

We tested this edge detection method on several range
images of real objects. We found that significant occlud-
ing and crease boundaries are reliably detected irrespec-
tive of the orientation of the object in the scene. While
the jump boundaries would be detected by any normal
edge detector as well, our method detects both types of
edges in an integrated manner and guarantees the coher-
ence between jump and crease edge maps.

4.3 Matching and Pose Estimation

We extend the approach of [16] to compare the edge
maps containing the jump and crease edges obtained from
the range images of different objects. The key idea behind
this approach is the comparison of the model edge map
with the scene edge map using the Hausdorff distance
to find the transformation specifying the best alignment
of the model in the scene. Two-dimensional geometric
structures as represented by the edge maps are compared
to measure the difference between the two shapes using
the minimum Hausdorff distance under the transforma-
tion group G that includes translation in x and y direc-
tions. We extended this idea to include rotation about
the z-axis as well.

Our matching scheme thus compares the edge maps
obtained from the range images. Given a shape (its edge
map) as a point set P and its transformed point set Q,
under the action of some transformation group G, the

distance between P and Q is the minimum difference be-
tween the shapes under all possible transformations of P
with respect to Q denoted by

De(P, Q) = minH(g(P), Q)

where H(g(P), Q) is given by

H(g(P),Q) = max(h(g(P),Q), h(Q, g(P)))

and

h(A, B) = -
(4, B) = maxmin ||p — q|

The Hausdorff distance, H(g(P), Q), is a max-min dis-
tance for comparing sets. It measures the degree to which
each point of the edge map P is closer to some point of
Q and vice versa. It simply measures the proximity of
points in the two edge maps and does not require a cor-
respondence of the points in one edge map with points
in the other. In order for the distance Dg(P, Q@) to be
small, there must be a transformation in G that brings
all of one object near some part of the other and vice
versa. The method is implemented as a search strategy
augmented with a heuristic to prune the transformation
space wherein a possible “match” of the model to the
scene image can be found.

4.4 Experimental Results

We have carried out several experiments with real
range images of facial masks, to test our feature detec-
tion and matching schemes. The three-stage feature ex-
traction method was employed to extract the edge maps
containing jump and crease edges from these range im-
ages. We found that the initial smoothing using cur-
vature consistency criterion resulted in denser and con-
sistent principal curvature directions and this aided in
obtaining consistent edge maps for the same object in
different orientations.

A sample result using the range image of a face mask
is shown in figure 5. Figure b shows all the process-
ing steps of our feature extraction method. The jump
and crease edges were extracted from the mean curva-
tures. The threshold required to obtain the edges using
the Laplacian mask was set to upper 10 percentile. The
smoothing effect of the curvature consistency criterion is
evident from the figure 5(d). Figure b5(i) shows the
salient features present in the image of the facial mask.

We present the results of our matching scheme here.
Our database consisted of range images of different fa-
cial masks. Two types of experiments were carried out
with the edge maps obtained from the range images of
these masks. One set of experiments dealt with the esti-
mation of the transformation parameters that would best
align an edge map of an object with the edge map of the
rotated and translated object. The second set involved
the pairwise comparison of the edge maps to obtain the
best matched edge maps in terms of minimum Hausdorff
distance.

The edge maps used in the experiments are shown
in figure 6. Both the jump and crease edges present
in the edge map were used in matching. The allowed
group of transformations included translations in x and
y directions and rotation in the xy-plane. The forward
distance from the model to the image h(g(P), @), where



¢(P) is the transformed model edge map and Q, the scene
edge map was computed allowing 95% of the transformed
model points to lie near the scene edge points. The values
of g where the forward distance is smaller than a given
threshold were the hypothesized transformations of the
model image that would best align it with the scene im-
age. These candidate transformations were then verified
by determining whether the reverse distance h(@, g(P))
was also smaller than the threshold. The best transfor-
mation was chosen to be the one with the smallest max-
imum of its forward and backward distances, among all
the candidate transformations. Table 7 shows the pair-
wise minimum Hausdorff distances obtained when each of
the edge maps was matched against the other.

Figure 8 shows the model image, the scene image,
and the image containing the transformed model with
the best transformation aligned with the scene edge map.
Here 80% of the model points were required to match
with the image during the forward and backward distance
computations. The best transformation obtained is given
by a translation of 8 pixels and 20 pixels in the x and y
directions respectively and a rotation of 23 degrees about
the z-axis in the clockwise direction.

5 Conclusions

This paper presented a three-stage approach for detect-
ing the surface features in a robust manner. Qur approach
emphasized the preprocessing of sensor data before fea-
ture detection to assist in feature detection. We applied
this approach to obtaining parts from range data and to
detect of salient contours on free-form surfaces.

We have proposed a method for completing boundaries
obliterated by the noise in the sensed data by integrating
the edge map with the local minima of negative princi-
pal curvatures. The refined boundary structure facilitates
decomposition of objects into their constituent parts. It
appears that the proposed local scheme of part segmen-
tation offers reasonable and reliable results. Our results
are comparable with those reported in [17]. However, our
method of boundary completion is less expensive since it
is local in nature. Our results show that accuracy of the
sensed data obtained from a White scanner and perfor-
mance of curvature consistency algorithm can afford us to
use a local boundary completion algorithm without com-
promising the reliability of the segmentation. It is well
known that for a few objects, the principal of transver-
sality cannot be exploited to extract their part structure
from the data sensed from a certain orientation [4]. For
such objects, our method of segmentation is an inexpen-
sive method for deriving a good initial hypothesis for part
segmentation algorithms based on either feedback strat-
egy [8] or catalogs derived from the multi-view represen-
tations [13].

Robust feature extraction methods also lend them-
selves to composition of larger features from smaller fea-
tures. Results of our matching method for geons show
that the large matching primitives can indeed decrease
matching complexity by exploiting significant global con-
straints. Consequently, these matching methods are more
stable and robust due to their larger degree of tolerance
to the missing data.

We also described a new method to extract jump and
crease edges from mean curvatures and demonstrated the
effectiveness of the method on various range images of ar-

bitrary surfaces. Our method can detect both the jump
and crease edges in an integrated manner and 1t is compu-
tationally inexpensive. The robust estimates of principal
curvatures using curvature consistency criterion were cru-
cial in obtaining stable edge maps from the depth data.
From our experiments on real range images with varying
levels of degradation owing to noise and laser shadows, we
observe that the salient edges on the objects are detected
reliably using our method.

We also extended the matching technique based on the
minimum Hausdorff distance to allow rotation about the
z-axis, and we tested this method using the edge maps
obtained from our feature extraction method. Results
of our experiments show that this method can be suc-
cessfully used for both the estimation of transformation
parameters that would best align two edge maps, and to
match the edge maps obtained from different objects to
find the best matched edge maps. The robustness of the
edge maps was found to be a vital factor in reducing the
false matches of objects in our database. Our experi-
ments show that the different edge maps obtained from
the range images of the same facial mask resulted in min-
imum Hausdorff distances consistently, thus reducing the
number of mismatches between different facial masks.



Figure 5: (a) Range image; (b) Depth as pseudo intensity; (c¢) Scaled mean curvature values before smoothing using
curvature consistency; (d) Scaled mean curvature values after smoothing; (e) Output of an edge detector using the
Laplacian mask; (f) Thresholded and thinned edge map; (g) Surface segmentation map using K-H sign; (h) Edge map
and saddle valley regions; (i) The jump and crease edges, with crease edges shown as thick lines.
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Figure 7: Minimum Hausdorff distance between images.

(d)
Figure 8: (a) Model edge map; (b) Scene edge map; (¢)

Figure 6: Test Images: (a) Imagel; (b) Image2; (¢) Im- The aligned model edge map with the scene.
age3d; (d) Imaged.



