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Universiẗat Ulm, Fakulẗat für Informatik, Abt. Neuroinformatik, D-89069 Ulm (e-mail:{hansen, baratoff, hneumann}@neuro.informatik.uni-ulm.de)

Ein Modell kortikaler Einfachzellen mit dominanter
opponenter Inhibition zur robusten Kontrastdetektion

Zusammenfassung. Im primären visuellen Pfad wird In-
formation in zwei getrennten, komplementären Dom̈anen
repr̈asentiert, den on- und off-Zellen. In dieser Arbeit un-
tersuchen wir die Interaktion von on- und off-Zellen zur
Generierung der Eingabe für eine kortikale Einfachzelle.
Basierend auf physiologischen Studien schlagen wir einen
Mechanismus vor, bei dem eine kortikale Einfachzelle aus
beiden Dom̈anen eine Eingabe erhält, wobei die Eingabe
aus dem opponenten Pfad stärker gewichtet wird. Mit die-
sem Mechanismus der dominanten opponenten Inhibition
können Antworten von kortikalen Einfachzellen auf Hell-
Dunkel-Balken simuliert werden, die im prim̈aren visuel-
len Kortex der Katze gemessen wurden. Bei der Verarbei-
tung synthetischer und natürlicher Bilder k̈onnen mit dem
neuen Modell scḧarfere Antworten und bessere Rauschun-
terdr̈uckung erreicht werden. Wir geben eine stochastische
Analyse der Rauschunterdrückungscharakteristika des vor-
geschlagenen
Mechanismus und präsentieren detaillierte numerische
Simulationen mit systematischen Parametervariationen. Die
Resultate zeigen, dass das Modell kortikaler Einfachzellen
mit dominanter opponenter Inhibition robuster gegenüber
verrauschten Eingaben wird, weitgehend unabhängig von der
Sẗarke des Rauschens. Diese Eigenschaft ist möglicherweise
der Grund f̈ur die physiologisch gemessene dominante In-
hibition und f̈ur die Repr̈asentation von Kontrastinformation
in zwei komplemenẗaren Dom̈anen. Basierend auf diesen Er-
gebnissen stellen wir die Hypothese auf, dass dominante op-
ponente Inhibition im visuellen System verwendet wird, um
in verrauschten Umgebungen Kontraste robust extrahieren
zu können.

Summary. In the primary visual pathway, information is re-
presented in two distinct, complementary domains, namely
“on” and “off” cells. In this work we examine how on and off
cells may interact to form the input to simple cell subfields.
On the basis of physiological evidence, we propose a me-
chanism of dominating opponent inhibition, where a simple
cell subfield is driven by both on and off domains, receiving
more heavily weighted input from the opponent pathway.

We demonstrate that the model can account for physiologi-
cal data on luminance gradient reversal recorded from sim-
ple cells in cat striate cortex. Next, we use the model for
the processing of synthetic and natural images, showing that
sharpness of response and robustness to noise can be increa-
sed by dominating opponent inhibition. Finally, we present
a stochastic analysis of the noise-suppression characteristics
of the proposed mechanism accompanied by detailed simu-
lations with systematic parameter variations. Results show
that dominating opponent inhibition makes the simple cell
responses more robust to noise, largely independently of the
amount of noise added. This property may give a rationale
for the strong inhibition measured physiologically and for the
representation of contrast information in two complementary
domains. On the basis of these findings, we hypothesize that
the visual system uses dominating opponent inhibition in
order to robustly extract features in noisy environments.

1 Introduction

Processing of visual stimuli begins in the retina, where elec-
tromagnetic radiation within a certain frequency band is
transformed into a neural code. The first major processing
stage consists of retinal ganglion cells with center-surround
receptive fields (RFs). Axons of ganglion cells form the optic
nerve, which terminates in a relay structure of the thalamus,
the lateral geniculate nucleus (LGN). LGN cells project upon
the primary visual area V1 in the occipital lobe. Here, simple
cells are found with an RF structure that is different from
that of the ganglion cells. Simple cells have elongated RFs
and respond to bars of a certain orientation and position.

Several schemes have been proposed for the neural wi-
ring of LGN cell afferents to subfields of simple cells. In the
classical proposal of Hubel and Wiesel (1962), excitatory si-
gnals from on cells drive the on subfield, whereas excitatory
signals from off cells drive the off subfield (Fig. 1a). Another
approach assumes that simple cells are driven by one type
of ganglion cells alone Heggelund (1986). In this case, on-
cell signals excite the on subfield and inhibit the off subfield
(Fig. 1b).
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Fig. 1. Alternative combination schemes for
LGN cells to drive simple cell subfields.Ar-
rows denote excitatory input;circles at the end
of lines denote inhibitory input

An alternative scheme of opponent inhibition has been
proposed by Ferster (1989), in which the on subfield recei-
ves excitatory input from the on path and inhibitory input
from the off path. The reverse holds true for the off subfield
(Fig. 1c). This scheme is employed in a computational mo-
del of brightness perception (Pessoa et al. 1995; Neumann et
al. 1998) and is investigated regarding its signal processing
properties, in particular its scale-space behavior (Neumann
et al. 1999). Here, we extend this scheme and introduce
an imbalance of excitatory and inhibitory inputs, namely a
greater weighting of inhibitory inputs in either subfield. The
assumption of strong inhibitory input to a simple cell that can
overwhelm excitatory contributions is supported by physio-
logical evidence both from extracellular (Heggelund 1981;
Palmer and Davis 1981) and intracellular recordings (Ferster
1988; Borg-Graham et al. 1998; Hirsch et al. 1998). With
this mechanism of dominating opponent inhibition (DOI),
the model (1) reproduces physiological data of simple cell
responses to luminance gradient reversal, and (2) is more
robust to noise than a model with balanced excitation and
inhibition.

The paper is organized as follows. Section 2 gives a brief
overview of the equations defining the model and formally
introduces the mechanism of dominating opponent inhibi-
tion. In Sect. 3 we simulate a physiological study by Ham-
mond and MacKay (1983) on simple cell responses recorded
in cat striate cortex. We show that DOI is the crucial mecha-
nism in our model to reproduce the data. In Sect. 4 we apply
the same model with identical parameter settings to noisy
synthetic images and real images. We compare the results
to simulations without DOI and show that response to noise
is significantly reduced for the model with DOI. Finally,
in Sect. 5 we investigate the noise suppression properties of
the model by a stochastic analysis and by simulating the
response of the model to two synthetic test cases (a noisy
homogeneous region and a noisy edge) under systematic pa-
rameter variations. Section 6 concludes the paper.

2 The model

In this section, we give a short, formal description of the mo-
del. Further details can be found in Neumann et al. (1999).
The model consists of a hierarchical organization of two
main processing stages, namely on and off cells, followed
by a simple cell circuit. In all equations, Greek letters denote
positively valued model parameters.
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Fig. 2. Left: DoG filter mask used for modeling the on and off cells; right:
the corresponding horizontal cross-section taken at the center of the mask

2.1 LGN cells

The input luminance distribution is given by a stimulusI,
with luminance values normalized to the range [0; 1]. Re-
sponses of isotropic LGN cells are modeled by convolution
of the input stimulusI with a difference of Gaussians (DoG)
operator. LGN on and off cell activitiesXon and Xoff are
modeled as rectified positive or negative DoG responses,
respectively:

X = DoGσc,σs∗I , (1)

Xon = [X]+ , Xoff = [−X]+ , (2)

where ∗ is the spatial convolution operator and [x]+ :=
max{x, 0} denotes half-wave rectification. The DoG is given
by the difference of a center Gaussian with small standard
deviationσc = 1 and a surround Gaussian with larger stan-
dard deviationσs = 3:

DoGσc,σs = Gσc − Gσs. (3)

The Gaussians are sampled within a 3σ interval, resulting in
a filter mask of size 19× 19 (3σs × 2 + 1 = 19). Figure 2
shows the filter mask of the DoG operator together with a
horizontal cross-section.

2.2 Simple cells

The next processing stage deals with simple cells, which are
modeled for eight discrete orientationsθ = 0◦, 22.5◦, 45◦,
. . . , 157.5◦ and for two opposite contrast polarities, namely,
light-dark and dark-light.
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Fig. 3. Left: Filter mask for a simple cell sub-
field of orientation 0◦; right: the corresponding
horizontal cross-section taken at the center of
the mask

2.2.1 Simple cell subfields with dominating opponent
inhibition

A simple cell has two adjacent subfields, an on subfield sen-
sitive to light increments and an off subfield sensitive to light
decrements. Simple cell subfields are defined by elonga-
ted, oriented weighting functionsGθ (Fig. 3). The weighting
function Gθ is modeled with five isotropic Gaussians with
σ = 2, which are properly aligned along the preferred axis
of orientationθ and spaced within a distance of two stan-
dard deviations. This results in a plateau-like RF which is
29/19 ≈ 1.5 times larger than the RF of the on and off cells.
Generally, forN Gaussians with a standard deviationσ, the
length of the filter mask is given by (N − 1)2σ + 2 · 3σ + 1.

Before integration, contrast activity of different polarity
competes at each spatial location. Input activation for both
on and off subfieldsRon andRoff with a preferred orientation
θ is computed by convolution of the weighted difference of
unoriented LGN responsesXon and Xoff with the subfield
maskGθ of the same orientation preference:

Ron,θ = [(Xon − ξXoff )∗Gθ]+ ,

Roff,θ = [(Xoff − ξXon)∗Gθ]+ . (4)

The case of equally weighted on and off inputs occurs for
ξ = 1. The newly proposed scheme of dominating opponent
inhibition (DOI) introducesξ > 1; which scales up the op-
ponent contribution. This introduces a “one against many”
situation, where, e.g., an on subfield only receives input if
the contribution of the on channelXon is ξ times larger than
the contribution of the opponent off channelXoff . DOI pro-
cessing has important effects on the behavior of the model:
it is the key feature for simulating data in a physiological
study on luminance gradient reversal (Sect. 3), and it makes
the model more robust to noise (Sects. 4 and 5).

2.2.2 Nonlinear simple cell circuit

On and off subfields interact via a disinhibition circuit that
boosts activities for spatially juxtaposed on and off contrast
configurations. Such juxtaposed on and off contrasts occur at
step edges, thus the simple cell model exhibits significantly
higher responses for this configuration than for shallow lu-
minance gradients, for example.

The circuit that defines the simple cell model comprises
three intermediate stages, namely,S(1), S(2), and S̃ (Fig. 4).
The various connections and their different computational
roles are explained in the following. A comprehensive de-
scription and a detailed motivation of the nonlinear simple
cell circuit are given by Neumann et al. (1999). The basic
circuitry is given by the excitatoryRon/off → S(2)

on/off → S̃

Fig. 4. Sketch of the simple cell circuit.Arrows denote the excitatory input,
circles at the end of lines denote inhibitory input. Indexθ is omitted to
simplify notation

connections, which define the excitatory input to the sim-
ple cell from its two subfieldsRon and Roff . A model ha-
ving only this basic circuitry results in a simple cell that
linearly sums its input. To make the model more selective
for juxtaposed on and off contrasts, additional connections
are introduced. The on-channel pathRon → S(1)

on ◦S(2)
on im-

plements a self-normalization by inhibition ofS(2)
on , which

prevents arbitrarily large activity in the cell. The same holds
true for the off channel. The key connections of the model
are the cross-channel inhibitory connectionsRon ◦S(1)

off and
Roff ◦S(1)

on . By disinhibition, i.e., inhibiting the inhibition
of S(1), the simple cell response is nonlinearly amplified if
both subfields are active simultaneously.

The first two stages are steady-state solutions of inhibi-
tory shunting interactions. The equations for the on channel
read

S(1)
on = Ron

αS+βSRoff
,

S(2)
on = Ron

γS+δSS(1)
on

.

The corresponding equations for the off channel are obtained
by interchanging on and off. Here and in the remainder of
this section, variables occur for all discrete orientations. The
index θ is omitted to simplify notation. The activity of the
third stageS̃ results from pooling the contributions of the
on and off channel

S̃ = S(2)
on + S(2)

off .

Combining these equations and assuming a symmetric
relation between the two channels by settingδS = βSγS
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Fig. 5. Example of stimulus used (left) and a set of stimuli for a fixed
length of the dark bar (right)

yields a more concise equation. The resulting simple cell
activity consists of a linear and a nonlinear, i.e., multiplica-
tive, term

S̃ =
αS(Ron + Roff ) + 2βS(RonRoff )

αSγS + βSγS(Ron + Roff )
. (5)

The parameters are set toαS = 1.0, βS = 10 000.0, and
γS = 0.01. Their specific choice is not critical as long as the
linear components scaled byαS andγS are small compared
to the nonlinear component scaled byβS .

Simple cells sensitive to opposite contrast polarity, i.e.,
light-dark and dark-light, finally undergo mutual inhibition,
which sharpens the activity profile:

Sld =
[
S̃ld − S̃dl

]+
,

Sdl =
[
S̃dl − S̃ld

]+
. (6)

Light-dark and dark-light simple cells are obtained by
sampling the subfield activity with different offsets±τ = 3
orthogonal to the axis of orientation of the simple cell: a
light-dark cell has an on subfield with an offset to the left
and an off subfield with an offset to the right. For a dark-light
simple cell, left and right offsets are interchanged.

To sum up, the present simple cell model comprises two
mechanisms with complementary functionality: DOI serves
to suppress undesired spurious activity to noisy inputs, while
the nonlinear simple cell circuit sharpens and amplifies de-
sired responses to edges.

3 Simulation of the Hammond and MacKay study

In order to demonstrate the physiological plausibility and
relevance of the proposed model, basic properties of simple
cells found in vivo are simulated. In particular, we simulate
a study of Hammond and MacKay (1983), who investigated
the response of simple cells in the cat to optimally oriented
bars. This study is challenging for any model of simple cells
because it shows the classical effect of linear contrast sum-
mation up to saturation as well as strong, possibly nonlinear,
suppressive effects (non-classical).

In their study, Hammond and MacKay recorded simple
cell responses to three types of bar stimuli: dark bars, dark
bars with light segments added in the middle (DLD), and
dark bars with light segments added at both ends (LDL).

Figure 5 depicts the single stimulus used and a sample of
the whole stimulus set. A main result of their work is shown
in Fig. 6. For bar stimuli, linear response up to saturation is
observed (‘length-summation curve’). When light segments
are added to the dark bars (DLD and LDL), the average
response decrement is much larger than predicted from linear
contrast summation. Linear summation would suggest that
the slopes of the length-summation curve and of the LDL
and DLD curves are the same.

Our model predicts that simple cell responses as obser-
ved by Hammond and MacKay can be generated on the ba-
sis of the proposed DOI scheme. Results are shown in Fig. 6
(right). The same model parameters as for the processing
of images in Sect. 4 are employed. The declining slopes of
the curves for both DLD and LDL stimuli are much steeper
than the ascending slope of the length-summation curve, as
reported by Hammond and MacKay. In summary, a good
qualitative fit with the physiological data is obtained. Note
that for the nondominant case, i.e., setting the DOI parame-
ter ξ = 1, no strong suppression occurs, but the responses
for LDL and DLD bar stimuli lie on the dotted line as pre-
dicted by linear contrast summation. To rule out effects of
the nonlinear simple cell, the circuit is replaced by a linear
model. For the linear model, subfield responses are simply
added:S̃ = Ron + Roff , instead of the nonlinear interaction
in Eq. 5. For the linear model with DOI, the results obtained
are qualitatively the same.

In their paper, Hammond and MacKay speculated that
nonlinear or shunting suppression might cause the observed
behavior. Considering the results mentioned here, this no-
tion cannot be rejected, but our model shows that a linear
mechanism is also sufficient to explain the data.

4 Processing of images

In this section, we show the performance of the model on
synthetic and natural images. The values of the model pa-
rameters are as described in Sect. 2 and are the same in all
simulations. In the simulations, we compare the new mecha-
nism of DOI (settingξ = 2) to a linear simple cell model
and to the nonlinear model without DOI (ξ = 1). The linear
model approximates filtering with a first order Gaussian de-
rivative (Neumann et al. 1999). The edge images shown are
obtained by summing up simple cell responses of both con-
trast polarities for all orientations.

In the first experiment, we employ a synthetic image of
a dark ellipse on a lighter background, corrupted with 50%
additive Gaussian noise. Figure 7 shows the input stimulus
and the simulation results. For this stimulus, we also com-
bined the DOI interaction with a linear model. All models
show responses at the edge locations, but only the nonli-
near models have a pronounced unimodal response to an
edge. Moreover, the results show that the models with DOI
are considerably less sensitive to noise. Simulation results
for this stimulus exemplify the complementary properties
of DOI and of the nonlinear simple cell circuit: DOI ser-
ves to suppress noisy inputs, while the nonlinear interaction
sharpens the responses to edges.

A further challenge to the model is posed by processing
of natural images. We use the tree image shown in Fig. 8.
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Fig. 6. Results of physiological recordings (left, reprinted from Hammond & MacKay (1983) with permission of the publisher) and simulation (right). Both
plots show the length-summation curve (dashed) and responses to LDL and DLD bars (solid and dash-dotted, respectively). For comparison, predictions
by linear contrast summation (dotted) are shown in the simulation plot
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Fig. 7. Noisy input stimulus and simulation
results (top row) together with the corre-
sponding horizontal cross-sections taken at
the center of the images (bottom row)

For the DOI processing, responses to the lawn are largely
suppressed, while responses to the contour of the tree and to
the shadow are enhanced. We also employ an image of a 3D
laboratory scene as input stimulus Fig. 9. Here, the contours
of the cube are sharper and the spurious responses at the
floor vanish for DOI processing.

5 Noise suppression properties

In the previous section, we showed the noise suppression
properties of DOI qualitatively. In this section, we clarify
the noise suppression properties by a stochastic analysis and
by numerical simulations. The stochastic analysis shows that
DOI processing introduces an adaptive threshold, using the
noise level itself to determine the amount of suppression.
As a result, good noise suppression for various noise levels
is achieved. In the numerical simulations, we determine the
value of the DOI parameterξ to match two conflicting re-
quirements as well as possible, namely, suppression of noise
and responsiveness to edges.

5.1 Stochastic analysis

In this section, we conduct a stochastic analysis of the re-
sponse properties of DOI to noisy homogeneous regions. Let
I be an input image of homogeneous intensity, corrupted by

an additive Gaussian noise process, and letX be the result
of applying a DoG filter toI. Because DoG filtering is a
linear operation, the resultingX is a Gaussian process as
well (Papoulis 1965). At each spatial position,X can be de-
scribed by a random variablex with a densityfx(x) that is
defined by a Gaussian distributiongσ(x). The DOI interac-
tion in Eq. 4 can be written as

y = xon − ξ xoff

= [x]+ − ξ[−x]+ =

{
x if x ≥ 0
ξx if x < 0.

The densityfy(y) can be determined with the fundamental
theorem on transformations of densities (Papoulis 1965):

fy(y) =

{
fx(y) = gσ(y) if y ≥ 0
1/ξ fx(1/ξ y) = gσξ(y) if y < 0.

The next processing step is the convolution ofy with the
subfield maskGθ, which realizes a weighted average over
a limited spatial neighborhood. Under the general assump-
tion of an ergodic process (Papoulis 1965), the ensemble (or
spatial) average in homogeneous regions corresponds to the
mean of the individual units. The mean ofy is given by
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Fig. 8. Natural image of a tree and simula-
tion results

stimulus linear nonlinear nonlinear with DOI

Fig. 9. Image of a laboratory scene and simula-
tion results

E{y} =
∫ ∞

−∞
yfy(y) dy

=
∫ 0

−∞
ygσξ(y) dy +

∫ ∞

0
ygσ(y) dy

= − 1√
2π

σξ +
1√
2π

σ

= − 1√
2π

σ(ξ − 1). (7)

The result shows that the mean is (1) negative forξ > 1 and
(2) proportional to the DOI parameterξ −1 and to the noise
level σ. The expression for the mean ofy (Eq. 7) explains
the suppression of noise largely independently of the noise
level. As the noise level increases, the mean proportionally
shifts to more negative values, so that the amount of positive
activity left after the subsequent rectification (Eq. 4) remains
small. This theoretical finding is confirmed by numerical
simulations in the next section (cf. Fig. 10).

5.2 Numerical evaluation

In order to determine the optimal strength of inhibition and to
investigate the circuit’s response properties to noisy inputs,
we measure mean subfield responsesRon (Eq. 4). We vary
the noise level and the value of the DOI parameterξ. Si-
mulations are done for two basic situations, namely, noisy
homogeneous regions and a noisy step edge. In both cases,
Gaussian noise is added to the ideal stimulus.

5.2.1 Noisy homogeneous region

In the first study, a stimulus of homogeneous intensity is
corrupted by additive Gaussian noise. We measure the mean
response over all spatial positions of an on subfieldR̄on,θ.
Since noisy homogeneous regions do not have any preferred
orientation, the choice of the orientation of the subfieldθ is
irrelevant. For the simulations,θ = 90◦ is chosen.

The results are depicted in Fig. 10 (left). The curves cor-
respond to Gaussian noise of decreasing standard deviations
(top to bottom). We observe that the mean subfield response
decreases asξ gets larger and is almost zero forξ >≈2. For
a more quantitative evaluation, the value ofξ is determined
for which the mean subfield response of the respective noise
level falls below a certain threshold of 2· 10−5 (Fig. 10,
right). For the highest noise level,ξ has the value 2.25. The
curves show that suppression occurs for values ofξ that
are significantly larger than 1, a value which corresponds
to balanced excitation and inhibition. Further, suppression
is largely independent of the noise level, as only a slight
decrease ofξ with the noise level can be observed.

Insight into this adaptive behavior can be gained by ana-
lyzing Eq. 4 in more detail. Using Eq. 2 and the equality
[x]+ − [−x]+ = x, we can rewrite Eq. 4 as

Ron,θ = [(Xon − ξXoff )∗Gθ]+

= [(Xon − Xoff )∗Gθ − (ξ − 1)Xoff∗Gθ]+

= [X∗Gθ − (ξ − 1)Xoff∗Gθ︸ ︷︷ ︸
dynamic threshold

]+. (8)

This shows that DOI interaction introduces a dynamic thres-
hold that is proportional toξ and depends on the strength of
the signal in the opponent pathway. Note that in the nondo-
minating case forξ = 1, Eq. 8 reduces to

Ron,θ|ξ=1 = [X∗Gθ]+ .

To summarize, a noisy stimulus generates responses in both
on and off pathways. DOI interaction introduces a dynamic
threshold by scaling up the contribution of the opponent
pathway, which causes a decrease of response proportional
to the noise level.

The simulations suggest that any value ofξ > ≈ 2.25
would be appropriate to suppress responses to noisy homo-
geneous regions. However, the effect of largeξ to suppress
desired responses to signals like edges, for example, also
needs to be clarified.
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Fig. 10. Left: mean subfield responses̄Ron to homogeneous regions; right: minimalξ for which the mean subfield response of the respective noise level
falls below 2·10−5. For the three noise levels, the respective mean is given by 1.86, 2.09, 2.25. For both plots, three noise levels (standard deviation 0.025,
0.05, 0.08) are employed. Responses are averaged over 100 realizations of the respective noise level; error bars denote±1 standard deviation. The curves
show that for dominating opponent inhibition withξ > ≈2, noise is suppressed largely independently of the noise level

Fig. 11. Mean subfield responses to a noisy step edge, corrupted with 25%, 50%, and 80% additive Gaussian noise for various values of the DOI parameter
ξ. Responses are averaged over 100 different realizations of the respective noise level; error bars denote±1 standard deviation. Responses are normalized
to allow for better comparison. Top left: the mean response of an optimally oriented subfield; bottom left: the mean response of nonoptimally oriented
subfield; bottom right: the minimalξ for which the mean subfield response of the respective noise level is zero. For the three noise levels, the respective
means are given by 1.47, 1.80, 2.01. Results show that, forξ ≈ 2, nonoptimal responses are almost zero, while the optimal responses are still considerably
large

5.2.2 Noisy step edge

In a complementary experiment, an ideal step edge is cor-
rupted with Gaussian noise of the same standard deviations
as in the case of noisy homogeneous regions in the previous
section. For a luminance difference at the edge of 0.1, this
results in 25%, 50%, and 80% Gaussian noise (i.e., noise
with a standard deviation of 25%, 50%, and 80% of the
luminance difference at the edge). Two kinds of responses
are distinguished: response of an optimally oriented sub-
field Ron,90◦ with an orientation parallel to the edge, and
responses of nonoptimally oriented subfields not parallel to
the edge. Since all the examined nonoptimal orientations

of 0◦, 45◦, and 135◦ yield comparably large responses, we
choose one representative, namely, the orthogonal orienta-
tion Ron,0◦ . For both the optimal and the nonoptimal orien-
tations, we measure the mean response ofRon,θ along a line
parallel to the edge. The horizontal position of the line is
analytically determined as the position of maximal response
of an optimal subfield to an ideal edge.

Simulation results are shown in Fig. 11. For the optimal
orientation (top left), responses are a decreasing function
of ξ, indicating thatξ cannot be chosen arbitrarily large.
For the nonoptimal orientation (bottom left), responses are
almost zero forξ > ≈2. For a more quantitative evaluation,
the value ofξ is determined for which the mean nonoptimal
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response of the respective noise level falls below a threshold
of zero (Fig. 11, bottom right). Here,ξ depends more on the
noise level than in the homogeneous case. For the highest
noise level of 80%,ξ has the value of 2.01 (Fig. 11, bottom
right). Because the optimal response is a decreasing function
for ξ and the threshold is set to zero, the respective values
of ξ also determine the maxima of the signal-to-noise ratios,
i.e., the ratios of the optimal and the nonoptimal response
R̄on,90◦/R̄on,0◦ for each noise level.

These results provide criteria for the choice ofξ. A value
of ξ ≈ 2 yields the maximal signal-to-noise ratio for the
highest noise level. Since the optimal responses decrease
more slowly for small noise levels, this value also results
in considerably large signal-to-noise ratios for small noise
levels. From the evaluation of the responses to homogeneous
noise, values ofξ lie in the range≈ [1.85; 2.25], depending
on the noise level. Since the signal-to-noise ratios for high
noise levels decrease considerably forξ > 2, a value of
ξ = 2 is chosen for the simulations (Sects. 3 and 4).

6 Discussion and conclusion

In this work, we propose a simple cell model with domina-
ting opponent inhibition. Dominating inhibition is also used
in a detailed physiological model by Troyeret al. (1998) to
explain contrast invariant orientation tuning of simple cells.
In contrast to our nonlinear model, Troyer et al. use linear
Gabor filters to model simple cells. Strong ‘antiphase’ in-
hibition occurs between Gabor filters of phase shift 180◦,
i.e., opposite contrast polarity, while we employ inhibition
between isotropic on and off responses. With the current
physiological knowledge, evidence for both models can be
found. In our model, contrast-invariant orientation tuning
can be generated to a large extent by balanced inhibition
at the subfield level (ξ = 1, Eq. 4) and by balanced inhibi-
tion between simple cells of opposite contrast polarity Eq. 6.
DOI sharpens the orientation tuning and slightly increases
the contrast invariance, but cannot be ascribed the primary
role in generating contrast-invariant orientation tuning, as in
the model of Troyer et al. Provided that intracortical recur-
rent interaction may also play a significant role in generating
contrast-invariant orientation tuning (Adorján et al. (1999),
see also Ferster and Miller (2000) for an overview) we sug-
gest a different functional role of DOI.

Having successfully employed DOI for the simulation
of physiological data on luminance gradient reversal, we
then probe the model with noisy synthetic and natural im-

ages. The results show that sharpness of response and ro-
bustness to noise can be increased compared to that of a
model with balanced excitation and inhibition. Finally, we
conduct a stochastic analysis and detailed numerical simula-
tions to clarify the role and amount of DOI. On the basis of
our findings we suggest that the visual system mainly uses
dominating opponent inhibition to robustly extract oriented
contrast features in noisy environments.

References

1. Adorján, P., Levitt, J.B., Lund, J.S., & Obermayer, K. (1999) A mo-
del for the intracortical origin of orientation tuning in macaque striate
cortex. Vis Neurosci 16, 303–318

2. Borg-Graham, L.J., Monier, C., & Frégnac, Y. (1998) Visual input evo-
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