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Abstract

The performance of shot detection methods in video seqsecare be im-
proved by the use of a threshold that adapts itself to theesezpustatistics.
In this paper we present some new techniques for adaptinthteshold.

We then compare the new techniques with an existing oneingol an im-

proved shot detection method.
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1 Introduction

With the rapid rise of interest in analysis of audio-visualterial, there is a correspond-
ing growth in the need for methods to reliably detect shotrisfauies within the video
sequence. There are several approaches to the problenip], 4n many of the methods,
the detection decision is based on a hard threshold of sossarilarity measure, whose
value is determined by experimentation. The optimal valejgethds on the requirements
of the application and will be a trade-off between the nundidalse positives detected
and the number of undetected true positives.

There are various possibilities for improving on the basietimds. The variety of
basic methods opens up the possibility of combining sewdthlem into a multiple expert
framework, explored in [8, 9, 13]. Also, one can use an adlagtireshold setting, by
using statistics of the dissimilarity measure within aisiggwindow [2, 11, 14]. In this
work we present some new methods for implementing an adaihtreshold and compare
them with existing ones. We also provide a thorough exanunaif the improvement
obtained over the basic techniques.

In the next section we examine the assumptions made on thiesrethe dissimilarity
measures and discuss how to improve the methods by usingagtivae thresholding
strategy. In Section 3 we present a description of our erpantal data and an outline
of our baseline shot detection algorithms. We then desthibestrategies we employ in
Section 4. Experimental results are detailed in Sectiondscamclusions in Section 6.

2 Moddling the dissimilarity measure statistics

In [12] we described a set of algorithms for detecting sha$.clin each of these methods,
a single statistien is generated for each pair of frames to quantify the degrekssimi-
larity between the two frames. We make the assumption tleaetlissimilarity measures
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{m} come from one of two distributions: one for shot boundaré&sand one for “not-a-
shot-boundary” {/). In generalS has a considerably larger mean and standard deviation
than V' (Fig. 1(a)). If, for example, we assume that the costs offalssitives and un-
detected true positives are the same, and that the distnibsitatistics are stationary, the
standard classification methods would indicate that thés@ecthresholdn should be
fixed so that the tails of the two density functignsandp,s (shown shaded in Fig. 1(a))
have an equal area. Because of the difference between thieswaitthe two distributions,

we can see that this threshold is fairly close to the megnof A/, and hence that it is
important that the position and width &f are accurately determined.
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Figure 1: Representation of dissimilarity measures.

In a previous work [13] it was implicitly assumed that thetdiutions were indeed
stationary, and thus that a single decision threshold coeldsed. To find this threshold,
we experimented with a range of thresholds until the bestevatas found. In prac-
tice however we found, not surprisingly, that the statidtyaassumption for\ does not
hold up well. In particular, we realised that, often varies gradually within a shot, and
abruptly at shot boundaries. This can be seen from Fig. iizh shows an example of
the dissimilarity measure (in this case the mean absolui gifference) as a function
of frame number, for a sequence of off-air news material.e($harp peaks correspond
to shot boundaries.) In this sequence we can see that thelewehin particular appears
to change gradually if at all within a shot, but jumps sigmifidy in value at the shot
boundaries. Furthermore, experiments demonstrated hissingle decision threshold
can be consistently grossly over- or underestimated wheheapto video material with
distinctive characteristics, such as sports events cocas.

This suggests that it may be possible to improve the detegtoformance by esti-
matingps dynamically, using the dissimilarity measures from thevmas and next few
frames, and using the result to adaptively set the detetti@shold. In practice, we es-
timate the meam, and possibly the varianeey in this way. We then set the threshold
mq to be some function of these statistics, e.g. some fixedrdistdrompxs, or some
multiple of /oA from pnr. The method therefore uses a sliding window of a predeter-
mined size where only the samples within this window are ictared for estimating .
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Since frame pairs that include a shot boundary are relgtiraeke occurrences compared
with pairs that do not, we have to assume ghats stationary (Fig. 1(a)).

Investigation of other work in this area has produced sonzmgtes which did not
fully exploit this possibility. In [14], for example, the thors used a sliding window
but a fixed threshold. In [11], the threshold is represented anultiple of the second
highest sample within the window. It is in [2] that a strugdmethod to adaptively set
the detection threshold is presented. This is describeétdduin Section 4. However, no
guantifiable results were presented in these works. Alsarethre other ways in which
the adaptive approach can be implemented. Thus we set oobtpare the performance
of adapted versus non-adapted algorithms and contrasebatgeveral methods which
we have developed for the adaptation process and that prdjnysDugackt. al in [2].

3 Theexperimental data and baseline algorithms

In our main data set, which consists of several off air segesimonsisting of news pro-
grams, documentaries, children’s shows, daytime soaps,wé aimed at capturing a
broad variety of material. We also used two other sequerecesllection of various car-
toons, and a rugby league match. These two sequences nmeprgsalifferent extremes
in terms of content, with different statistical propertfemm the main set. Table 1 details
the composition of our test data.

Table 1: Video Sequences used in the experiments.

Format QCIF -176 x 144 pixels

YUV 4:2:0
Frame rate 25fps
Name No. of frames| Time (mins) | No. of shot cuts
GENERAL | 161928 108 1160
CARTOON | 41750 27.8 256
RUGBY 40490 27 257

In this work, four separate algorithms are used to detedt shanges. These algo-
rithms calculate different features of the video data, amd lose used by themselves as
stand-alone shot boundary detection systems. These nsadined

1. Average Intensity Measurement (AIM) [3]

The algorithm computes the average of the intensity valoegéch component
(YUV, RGB, etc.) in the current frame and compares it witht hoa the following
frame.

2. Histogram Comparison (HC) [7, 15, 6]

Histogram comparison methods are quite popular becaugatbdast and motion-
insensitive. Our implementation is similar to that detdile [15]. However, we
extended it by including colour components as well.

3. Likelihood Ratio (LH) [5]
Each region is represented by second order statistics tinel@ssumption that this

property remains constant over the region. We divide thenésiinto blocks, and
carry out the likelihood ratio calculation over the blocks.
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4. Motion Estimation / Prediction Error (ME)

We estimate the next frame in a video sequence based on ti@nrirdormation in
the current frame and reconstruct the next frame using the@mueectors. We used
the block-based-step search algorithm for &2" search window as described
in [10]. To obtain the dissimilarity measure, the mean alsotlifference between
the reconstructed frame and the original frame is calcdlate

4 The adaptive thresholding scheme

In [11], the authors applied a local thresholding methodmshyg the frame differences of
successiven frames is examined. They then declare a shot change whenomditions
are simultaneously satisfied:

1. the difference is the maximum within a symmetric slidinigeélows of size2m — 1

2. the difference is times the second largest maximum in the sliding window.

Expanding from this work, a method was proposed in which tleams and standard
deviations from either side of the middle sample in the wimds calculated [2]. The
middle sample represents a shot change if the conditiomsvtarie simultaneously satis-
fied:

1. The middle sample is the maximum in the window

2. The middle sample is greater than @xs: + Ta\/Ticrts Mright + Tav/Tright)

whereTy is given a value of 5.

In our work, we experimented with three different methodsstimating the decision
threshold. However they all follow the same principle. Weatée the overall scheme
next, and then describe the individual thresholding methin&ection 4.2.

4.1 The general method

The general method is as follows. We estimate the mean(and variancer s if re-
quired) of /' dynamically, from the similarity measures of M neighbouring frames.
The decision thresholdi 7 is recalculated for each new frame, using one of the methods
discussed in Section 4.2, and a decision made. However,aaffeot cut is detected, no
new decisions are made uni /2 frames have elapsed.

4.2 Computing the decision threshold
We next describe the three different models for setting hinesthold.

Constant variance model Here we assume that:

(a) the distributions are unimodal,

(b) ua varies over a small enough range ands sufficiently broad that changes in the
value ofps in the region of the intersection of the density functions ba ignored,

(c) apart fromu,/, the distributions are stationary.

These assumptions suggest that the threshold could be setat fixed positive offset
from pp:

mrp = uUN + T, (1)
ThusT, reflects the width of\" in some way. The best value @f is determined by
experimenting with a range of values on a training set of @ighaterial for which ground
truth information is available.
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Proportional variancemodel  If on the other hand the variancgy, is assumed to vary
with z72, we should set the threshold at some multiplegf:

mp = Tpun (2)

In this case, the width alV" is reflected in the value df), 1. The value ofT}, is also
determined from experimentation.

The Dugad model As we described earlier, this is an implementation of the ehod
proposed by Dugad. al [2], as given below:

mp = un + Tq\/on (3)

As explained earlier, the authors calculate the means amdiatd deviations on the left
and right of the centre sample and use the maximum of the they &pplied this method
on a histogram comparison algorithm and their experim@ntagave them an optimum
value for7; as 5. Since we have four base methods, and our histogram cisopa
methods may not be exactly equivalent, we carried out ouexgnts, as with the other
models, over a range of values to get an optinityn

5 Experimental Results

5.1 Organisation
The three models we have from Section 4.2 are:

1. Constant Variance Model — the threshold is Added to themoéthe samples. We
label this as A.

2. Proportional Variance Model — the threshold is Multigligy the mean of the sam-
ples. We label this M.

3. TheDugad, et. al Model — the threshold is multiplied by the standard Deviatd
the samples and added to the mean. We label this D.

Also, for each model, we adopted two different strategiefolisws, leading to six
different methods:

1. Inthe method shown in [2], the window is split into two hedwon either side of the
centre sample. This method is prefixed with the letter D (Duadows). Thus a
split window using the Dugad model would be label2D.

2. Another strategy is to include all the samples, includimg centre sample, into
the calculation. This method is prefixed with the letter Si¢f window). Thus a
single window strategy using the Multiplicative method Wbhbe labelledSM.

Table 2 indicates the optimal window sizes for each method far each of the algo-
rithms described in Section 3, as explained in Section 5.3.

We then apply a range of thresholds for each of the models anstiuict a Receiver
Operating Curve (ROC). In the ROC grappgs,denotes the proportion of false positives,
andp; denotes the proportion of undetected true positives. Forpasison purposes,
we consider the equal error rate as our performance critdRiegardless of this, some
applications may have different requirements such as tingnmai number of undetected
true positives, at the expense of a higher false positieifaieed be.
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Table 2: Optimal window sizes
[ Method | SA[DA [ SM[ DM | SD | DD |
AIM 25 | 25 15 15 21 | 21
HC 17 9 9 17 21 | 21
LH 9 9 9 11 9 21
ME 21 | 15 19 21 21 | 21

5.2 Comparison with non-adaptive results

We have discovered that the adaptive thresholding methags$hown significantly bet-
ter results for all the algorithms concerned. This is evidenall the methods that we
employed. This is demonstrated in Fig. 2 where the resutt¢hi® AIM and ME algo-
rithms and a selection of the methods are shown.

General Sequence General Sequence

M —

AIMDD21 |
\ AIMDM15 -----

Undetected True Positives, Pu
Undetected True Positives, Pu

0 ol i
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
False Positives, Pf False Positives, Pf

() AIM (b) ME

Figure 2: Comparison of non-adaptive measures and a selasftadaptive methods.

5.3 Effectsof varying the window size

We initially used window sizes of 9, 11, 15, 21, 25 and 29. # thsults show a simple
trend, we test all of the window sizes between the two bedbpaing ones and take the
best of these as the optimum. Otherwise, we test all of theevirsizes in the range 3 to
31.

Initially, increasing the window size tends to increaseaheuracy of the shot detec-
tion, and eventually it decreases. This is not a univershbbeur, however. The LH
and HC algorithms are generally best with a small window,gie¢ting worse as the size
increases. For the LH algorithm using the DD method, theltgawe fairly constant until
the window size is large, where it gets worse. On the othed hta® ME algorithm using
DD or SF shows erratic behaviour, improving for larger windsizes.

5.4 Determining the best performing adaptive thresholding method

First, we plot the 6 adaptive methods for each algorithm aelcs the best one. Fig. 3
shows examples for HC and ME. Then we plot these “best of naétiesults against each
other to come up with the best overall (Fig. 4).
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Figure 3: ROC curves of the adaptive thresholding methodls their optimum window
sizes.
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Figure 4: ROC curves of best performing algorithm and adagtiresholding methods

For an equal error rate, the best performing methods are MESWd HCSM9, with
MESAZ21 being marginally better (Fig. 4) due to a lower falsgedtion rate. However,
if we want to minimise the undetected true positive ratentiiCSM9 would be better.
MESAZ21 is best with a large window size, which causes it tasraigts which are within
the window. Our experiments have shown that there are a fehesk cuts in our experi-
mental data, mainly during commercials.

In Fig. 5, we give an example of an instance where a true pesitas detected by
HCSM9 and not by MESA21. Note that there is some blurring duexcessive camera
zoom on the shot left of the cut. This gave a high error ratefarmotion prediction as
shown in Fig. 6(a). For comparison, we show the dissimilanieasure for the HCSM9
case in Fig. 6(b).

5.5 Sequencesthat cause problems

We tested our baseline methods (Section 3) on the animatiguesice and the sports
program and discovered that the results were very poor asrsiroFig. 7. It was then
interesting to see if the performance of the adaptive ttolelihg models would be as good



British Machine Vision Conference

@ (b) (© (d)
Figure 5: MESA21 Undetected True Positive
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(a) MESA21, using the model of Eq 1 (b) HCSMB9, using the model of Eq. 2

Figure 6: Graphs showing how the adaptive threshold varids the dissimilarity mea-
sure for MESA21 and HCSM9. In each case the bottom trace disisamilarity measure,
and the top trace is the adaptive threshold.

as that of our main data set, teneral Sequence.

We went through the same procedure as for the main data setéontine the best
performing models. In the case of the animation seque@asgpon, the best baseline
method is ME and for the sport sequenBegby, HC. As shown in Fig. 8, the adaptive
methods give a considerable improvement in the detectierfoaboth these sequences.

These two sequences differ from our main data set. In the aomsequence, the
content is synthetic and the maximum number of distinct edavas only 256, which
we believe to be the norm for television cartoons. We have raddiced that on occasions
where there is relatively little action over the course ofhats each frame is repeated
(giving an effectivel 25 frames per second rate).

For the sports sequence, the main feature was the presebgsyofamera movements
and high speed action. Also, there were numerous shots eftshjoving across the field
of view whilst the camera was focused on action further atie#lte distance.

6 Conclusion

We have shown that adaptive thresholding considerably orgs the rate of detection
for shot cuts regardless of the method used. In some casesngrovements can be
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Figure 7: ROCs for the baseline algorithms.
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Figure 8: Comparison between the best baseline algorittaimathe adaptively thresh-
olded methods.

dramatic.

Our methods also show a marked improvement over the Dugdubmhé&r all the data
sets which we tested. This is true for all of the baselineréigms, not just the histogram
comparison method used in [2].

It is found that the adaptively thresholded versions of M &C are the best per-
forming algorithms. The ME based model achieved a margirmtter equal error rate
for the general sequence but is limited in its true positigéedtion rate due to the large
window size required to achieve this. In this respect, theldd€ed model is better.

Interestingly, for theCartoon andRugby sequences, in each case there was one algo-
rithm which was clearly better than the others, which was MEGartoon and HC for
Rugby. This meant that the adaptive thresholding versions ofetlaégorithms were also
the best performers for the respective sequences. It adicaites that certain algorithms
are better suited for some sequences than others.
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