A Statistically Rigor ous Approach for Improving Simulation M ethodol ogy

Joshua J. Yi*, David J. Lilja', and Douglas M. Hawkins’
'Department of Electrical and Computer Engineering
Minnesota Supercomputing Ingtitute
?School of Statistics
University of Minnesota— Twin Cities
{ijyi lilja} @ece.umn.edu
doug@stat.umn.edu

Abstract

Due to codt, time, and flexibility constraints, simulators are often used to explore the design space when
developing a new processor architecture, as well as when evaluating the performance of new compiler-based and
microarchitectura performance-enhancement mechanisms. However, despite this continued dependence on simulators,
gtatistically rigorous simulation methodologies are not typically used for computer architecture research. Without a formal
methodology, however, it is possible to underemphasize the effect of parameter interactions when choosing processor
parameter values for simulations or when performing sensitivity analyses. A formal methodology can provide a sound basis
for drawing conclusions gathered from simulation results by adding Satistical rigor and, consequently, can increase
confidence in the simulation results. This paper demonstrates the application of a rigorous statistical technique to the setup
and analysis phases of the simulation process. Specifically, we apply a Plackett and Burman design to: 1) identify key
processor parameters, 2) classify benchmarks based on how they affect the processor, and 3) analyze the effect of processor
performance enhancements. Our technique expands on previous work by applying a statistical method to improve the
simulation methodol ogy instead of applying a statistical model to estimate the performance of the processor.

1 Introduction

Simulators are an extremely valuable tool for computer architects. They reduce the cost and time of a project by
allowing the architect to quickly evaluate different processor implementations without having to fabricate a chip each time.
Additionaly, a smulator allows the architect to quickly determine the expected performance improvement of a new
compiler-based or microarchitectural mechanism.

Despite this dependence on simulators, computer architects often approach the smulation process in an ad-hoc
manner. For example, when performing a sensitivity analysis, the architect will hold most of the processor parameters
congtant while varying the values of a select group. However, there are several questions that must be addressed regarding
the simulation setup. For instance, which parameters should be held constant and which should be varied? Do any of the
constant parameters interact with the variable ones? What is the magnitude of the effects of those interactions? How do the
magnitudes of the interactions compare with the magnitudes of the effects of the individual parameters? What values should
be used for the constant parameters? Should they be set to very large values or to middle-of-the-range values? How much
effect, if any, do the specific values chosen for the constant parameters have on the results? Can they significantly alter the
apparent effect of the variable parameters? What range of values should be used to test the effects of the variable
parameters?

Since it is impossible to separate out the effect of the interactions and constant parameters after performing the
simulations when varying only a single parameter at atime, the architect must answer these questions before starting the
simulations. Due to the sheer computational cost, however, it is virtually impossible to simulate the effect of all parameters
and their interactions simultaneously. This type of situation illustrates the need for a statistically-based methodology that
addresses these types of questions.

While using such a methodology may require the overhead of some additional simulations, it has the following
advantages as compared to the current ad-hoc method:

1) It decreasesthe number of errorsthat are present in the simulation process and hel ps the computer architect
detect errors more quickly. Errors include, but are not limited to, simulator modeling errors, user
implementation errors, and simulation setup errors [Black98, Cain02, Desikan01, Gibson00, GlammOQ].

2) Itgivesmoreinsight intowhat isoccurring inside the processor or the actual effect that a compiler-based or
microarchitectura enhancement has on the processor.

3) It gives aobjective confidence to the results and provides statistical support regarding the observed
behavior.

While the first and third advantages are self-explanatory, it is not obvious from the second advantage how a
statistically rigorous simulation methodology can help improve the quality of the analysis. Since smulators are comple, it
is very difficult to fully understand the effect that a design change or an enhancement may have on the processor. As a
result, in most cases, architects resort to using high-level metrics, such as speedup, to understand the “big-picture’ effects.
However, analyzing a processor from a satigical point-of-view can help the architect quantify the effects that all
components have on the performance and on other important design metrics, such asthe power consumption, and so on.

Therefore, as a first sep in developing a forma methodology, this paper makes specific suggestions on how to
improve the smulation setup process and the analysis of results. The suggestions include methods for identifying the key
processor parameters, an approach for classifying benchmarks based on how they affect the processor, and analyzing the
effects of processor enhancements.

The contributions of this paper are asfollows:

1) This paper demonstrates the need for methodological improvement in computer architecture research and the
efficacy of a particular Satistical method to accomplish that.

2) This paper makes specific recommendations on how to improve the simulation methodology. In particular,
the recommendations include how to: A. choose the processor parameter values, B. classify benchmarks, and
C. analyze the effect that an enhancement has on the processor. Coallectively, these recommendations can
improve simulation methodol ogy, decrease the total number of simulations, quickly determine the processor’s
performance bottlenecks (i.e. key processor parameters), and provide analytical insights into the impact of
processor enhancements.

3) Thispaper, by way of illustrating the second contribution, determines the most important machine parameters
in the commonly used SimpleScalar superscalar smulator [Burger97].

The remainder of this paper is organized as follows: Section 2 describes the statistical method that is used in this
paper, the Plackett and Burman (PB) design. Sections 3 and 4 describe the experimental setup and the results, respectively,
while Section 5 discusses some related work. Section 6 then concludes.

2 Fractional Multifactorial Analysis Using a Plackett and Burman Design
2.1 Computational Cost vs. Level of Detail for Applicable Statistical M ethods

The value of a parameter that remains constant throughout a group of simulation experiments can sgnificantly
affect the results of a sensitivity analysis by interacting with one of the variable parameters. Varying just one parameter a a
time, while leaving others constant, is called a ‘one-at-a-time’ experimental design. These designs are bad and should be
avoided because they are vulnerable to masking important effects that exist due to interactions between the parameters.
Furthermore, a constant parameter can be set to such an extreme value that it dominates the results and overshadows the
effect of the parameters under test. For ingtance, setting the size of a buffer too small can cause this unit to become the
performance bottleneck, thereby masking the actual performance effect provided by some new architectural enhancement.

To avoid these problems, the user should vary all parameters simultaneously. However, the problem with this
solution isthat it is extremely computationally expensive. For example, if the user were trying to measure the effect of 40
parameters, each of which can assume only two values, smulating all the possible combinations would require 2°, or more
than 1 trillion, simulations. Since this number of simulations is prohibitively high, smulating all possible combinations of
parameter values is not a feasible solution. For N parameters, the first technique of fixing al parameters save one requires
N+1 simulations. On the other hand, simulating all possible combinations of N parameters that can assume b unique values
requires b simulations. That latter case is referred to as a full multifactorial design or analysis. An example of thisis the
analysis of variance (ANOVA) technique [Lilja00].

‘Saturated designs' are recipes that vary all N parameters smultaneously over a total of N+1 simulations. They
provide the logically minimal number of simulations required to estimate the effect of each of the N parameters. The
Plackett-Burman (PB) design [Plackett46] is a well-established approach of this type. An improvement on the basic PB
design isthe ‘foldover’ PB design [Montgomery91]. Thisrequires 2(N+1) runs. With this experimenta design, the user can
determine the effect of all of the main parameters and selected interactions. PB designs exist only in sizesthat are multiples
of 4. Thus afoldover PB design requires 2X simulations, where X isthe next multiple of four that is greater than N. Table 1
summarizes the key aspects of each of the previously mentioned three methods.

As is summarized in Table 1, the one-at-a-time single parameter design, as exemplified by a set of single
parameter sensitivity analyses, requires haf as many simulations as the fractional multifactorial design. However, the level
of detail that is obtained from these simulations is much lower than the other experimental designs. It provides information
on each parameter at only a single level of all other parameters (rather than the averaging obtained with a simultaneous
design) and is badly affected by interactions, which it has no power to detect. Furthermore, since each parameter’s effect is

estimated by the difference between a single simulation and the base case, the information it givesis far less precise than
that given by a multifactorial approach in which each parameter is at the high level in haf the simulations and at the low
level in the other half.

Table 1: Key Aspectsof Three Simulation Designs, N = Number of Parameter s, Each of Which can Assume Two

Values
Design Example Simulations Level of Detail
One Parameter at-atime | Simple Sensitivity Anaysis N+1 Single Parameter
Fractional Plackett and Burman ~2N All Parameters, Selected Interactions
Full Multifactorial ANOVA N All Parameters, All Interactions

On the other hand, the user is able to glean the most information from a full multifactorial design. The effect of all
parameters and all interactions can be explicitly quantified using such a design. However, the computational cost is
enormous unless N is tiny. As a result, while this type of design could be extremely useful for a small number of
parameters, with alarge number of parameters, the computational cost is prohibitively expensive.

2.2 The Plackett and Burman Fractional Experimental Design

From a cost versus level of detail obtained point-of-view, using a fractional multifactorial design, such as a
Plackett and Burman design, is by far the best choice. Thistype of design only requires approximately 2N simulations, but
it quantifies the effects of all of the parameters and specific interactions selected by the experimenter.

The downside of the PB design, however, isthat it cannot quantify the effects of all the interactions. Therefore, the
possihility exists for unknown, but significant, interactions to ater the apparent effect of any of the parameters. Fortunately
for computer architects, this situation probably does not occur for processor parameters, as was shown for a set of
benchmarks from the SPEC 2000 benchmark suite [Yi02-2]. When there was a significant interaction, it was the result of
two significant individual parameters, although, in contrast to the main effects, the effect of the interactions was relatively
small. As aresult, using a fractional multifactoria design to analyze the effects of processor parameters does not affect or
compromise the results. For even more precision, the fractional multifactorial design can be used to determine the most
significant parameters and then a full multifactorial design can be used to determine the effects of those most significant
parameters and their interactions.

The PB design determines the effect of each parameter by varying several parameters in each configuration and
then comparing the results of all configurations with respect to a base case. The PB design matrix gives the parameters
configuration for each test case. For most values of X, a PB design is fairly simple to construct. For these values of X, the
first row of the design matrix, a series of plus and minus ones, is given in [Plackett46]. The design matrix is X rows by X —
1 columns (recall that X isthe next multiple of 4 larger than the N, the number of parameters being varied). The next X — 2
rows are formed by performing a circular right shift on the preceding row. The last line of the design matrix, line X, isa
row of minus ones. Table 2 illugtrates the congtruction of the PB design matrix for X=8, a design appropriate for
investigating 7 (or fewer) parameters

Table 2: Plackett and Burman Design Matrix for X =8 (Up to 7 Parameters)

+1|+1|+1|-1|+1|-1]|-1
|41 +1 |41 -1+ -1
-1 |+ |41+ -1 | +1
+1|-1|-1|+1|+1|+1]| -1
1|+ -1 -1+ +1)+
+1| -1 |+1|-1]|-1|+1|+1
+1|+1|-1|+1|-1]-1]|+1
10101 -1)-1)-1]-1

The rows of the design matrix correspond to different Smulation configurations. The columns of the design matrix
correspond to the values that each of the parameters will have. In the event that there are more columns than parameters
(i.e. N < X — 1), then the additional columns are simply “dummy parameters’ and consequently have no effect on the
simulation results. A “+1” in the table corresponds the “high” value for a parameter. The high value represents a value that
ishigher than therange of normal values. Conversely, a“-1" correspondsto the “low” value for a parameter, avalue that is

lower than the range of normal values. It is important to note that the high and low values are not restricted to only
numerical values. In the case of branch prediction, for instance, the high value could correspond to perfect branch
prediction while the low value could correspond to some other specific branch predictor. In the case of compiler
optimizations, the high value could correspond to loop unrolling, for instance, while the low value would correspond to no
loop unralling.

It is extremely important to note that choosing high and low values that represent too large a range for
numerically-valued parameters can sgnificantly affect the results by inflating the effect of that parameter. Furthermore, the
opposite situation of too small a range has the opposite effect. Therefore, it is necessary to exercise some caution when
choosing each vaue. Ideally, the high and low values for each parameter should be just outside of the “norma” range of
values. If nat, then the effect of that parameter could be over or under-inflated by an amount proportional to the difference
between the “ideal” and actual values for that parameter.

The most basic PB design requires only X runs. However, with this basic design, the user is unable to determine
the effects of any interactions. Therefore to protect the results from the effects of some of the most important interactions,
the user can use the foldover concept. Using foldover, X additiona rows are added to the matrix. The signsin each entry in
the additional rows are the opposite of the corresponding entries in the original matrix. Table 3 shows the resulting design
matrix after using foldover for the design shown in Table 2. Note that the original design matrix is shaded with gray in
Table 3.

Table 3: Plackett and Burman Design Matrix for X=8 with Foldover

+1 | +1|+1|-1|+1|-1]|-1
1|4+l +1 |41 -1 | +1 | -1
1) -1 |+ |41+ -1 | +1
+1| -1 |-1|+1|+1|+1]| -1
1| +1) -1 -1 +1) +1 | +1
+1| -1 |+1|-1|-1|+1|+1
+1 | +1|-1|+1|-1]-1]|+1
101 -1)-1]-1]-1]-1
1011 +1) -1 |+ +1
+1|-1|-1]|-1|+1]-1|+1
+1|+1|-1(-1|-1|+1]-1
1|+ +1)-1]-1)-1)+
+1| -1 |+1|+1|-1]-1]-1
|41 -1 |41 41 -1 -1
0 T s I ¢ O s I 3¢ O ¢ N e
+1 | +1|+1|+1|+1 | +1 | +1

After generating the configuration files and performing the smulations, the effect of each parameter is computed
by multiplying the result for each configuration by the value of the entry for that configuration and parameter combination.
Then the results of all those multiplications are summed together to determine the overall effect for that parameter. Table 4
illustrates the mechanics of this process using the design matrix shown in Table 2 for parameters A — G.

Table 4: Example Analyss Using a Plackett and Burman Design Without Foldover for X=8

AJBJ] C D] E | F | GJReult
+1 +1 +1 -1 +1 -1 -1 1

-1 +1 +1 +1 -1 +1 -1 9

-1 -1 +1 +1 +1 -1 +1 74
+1 -1 -1 +1 +1 +1 -1 28

1 | +1 | 1 | 1| +1 | +1 || 3

1| 1| +1 | 1| 1| «1 [« 6

+1 +1 -1 +1 -1 -1 +1 112
1 1| 1| 1| 1] 1] 1| =

Effect | -23 | -67 | -137 | 129 | -105 | -225 | 73 R

The effect of parameter A in thistableis computed as follows:
Effecta=(1* 1) +(-1* 9+ (-1* 74) +(1* 28) +(-1* 3) + (1L* 6) + (1 * 112) + (-1 * 84) =-23

These results show that the parameters with the most effect are F, C, and D, in order of their overall impact on
performance. Only the magnitude of the effect isimportant; the sign of the effect is meaningless.

To summarize, this section compares three different statistical techniques in terms of the number of simulations
versus level of detail obtained from these simulations as it applies to simulation-based computer architecture research. We
find that a PB design finely balances the number of simulations required with the level of detail that can be obtained.

3 Simulator, Benchmarks, and Processor Parameter Values

In the remainder of the paper, we demonstrate how the Plackett and Burman experimenta design approach can be
used to appropriately select parameters for a series of simulation experiments, to classify and select benchmark programs
for the smulations, and to provide indgghts into the performance impact of a specific microarchitectural enhancement. The
base simulator was from the SimpleScalar tool suite [Burger97] and is an execution-driven smulator that models a state-of-
the-art superscalar processor. The smulator was modified to include user configurable ingruction latencies and
throughputs.

The benchmarks that were used in this study, shown in Table 5, were selected from the SPEC 2000 benchmark
suite. These benchmarks were chosen because they were the only ones that had MinneSPEC [KleinOsowski02] large
reduced input sets available at the time. Since vpr uses two “sub-input” sets, Place and Route, the results for each are listed
separately. All benchmarks were compiled at optimization level O3 using the SimpleScalar version of the gcc compiler and
wererun to completion.

Table 5: Selected Benchmar ks from the SPEC 2000 Benchmark Suite Used in This Study

Benchmark Type Ingructions Simulated (M)
gzip I nteger 1364.2
vpr-Place I nteger 1521.7
vpr-Route I nteger 881.1
gcc I nteger 4040.7
mesa Floating-Point 1217.9
art Floating-Point 2181.1
mcf Integer 601.2
equake Floating-Point 713.7
ammp Floating-Point 1228.1
parser I nteger 2721.6
vortex I nteger 1050.2
bzip2 I nteger 2467.7
twol f Integer 764.6

As described in the Section 2, the choice of values for the processor parameters used in the simulations should be
chosen to be values that are dightly too low and too high to allow the PB experimenta design to work most efficiently. As
a result, the final values that we chose for each parameter are not values that would be actually present in commercia
processors nor are they supposed to represent a potential value. Rather, the values were deliberately chosen to be values
that were dightly higher and lower than the range of “reasonable” values. Choosing values in this way allows the PB
design to more accurately determine the effect of each parameter on the processor’ s performance.

We based our range of “reasonable’ values on the parameter values found in several commercial processors. Our
list of commercia processors included the Alpha 21164 [Bannon97, Edmondson95] and 21264 [Kessler98, Kesder99,
Leiholz97, Matson98]; the UltraSparc | [Tremblay96], 11 [Normoyle98], and |1l [Horel99]; HP PA-8000 [Kumar97]; the
PowerPC 604 [Song94]; and the MIPS R10000 [Yeager96]. To fill in the gaps left by the aforementioned papers, [Silc99,
Sima97] and several web searches were also used as references.

Based on the range of reasonable values, we chose a low and high value for each parameter. Tables 6, 7, and 8
show the final values for each of the relevant parameters for the processor core, the functiona units, and the memory
hierarchy, respectively.

Table 6: Processor Core Parametersand Ther Plackett and Burman Values

Processor Core Parameter Low/Off Value High/On Vaue
Ingruction Fetch Queue (IFQ) Entries 4 32
Branch Predictor 2-Leve Perfect
Branch Predictor Misprediction Penalty 10 Cycles 2 Cycles
Return Address Stack (RAS) Entries 4 64
Branch Target Buffer (BTB) Entries 16 512
Branch Target Buffer (BTB) Associativity 2-Way Fully-Associative
Speculative Branch Update In Commit In Decode
Decode, Issue, and Commit Width 4-Way
Reorder Buffer (ROB) Entries 8 64
L oad-Store Queue (LSQ) Entries 0.25* ROB 1.0* ROB
Memory Ports 1 4

Table 7: Functional Units Parametersand Ther Plackett and Burman Values

Functional Unit Parameter Low/Off Value Hi gh/On Vaue
Integer ALUs 1 4
Integer ALU Latencies 2 Cycles 1 Cycle
Integer ALU Throughputs 1
Floating-Point ALUs 1 4
Floating-Point ALU Latencies 5 Cycles 1 Cycle
Floating-Point ALU Throughputs 1
Integer Mult/Div Units 1 4
Integer Multiply Latency 15 Cycles 2 Cycles
Integer Divide Latency 80 Cycles 10 Cycles
Integer Multiply Throughput 1
Integer Divide Throughput Equal to the Integer Divide Latency
Floating-Point Mult/Div Units 1 4
Floating-Point Multiply Latency 5 Cycles 2 Cycles
Floating-Point Divide Latency 35 Cycles 10 Cycles
Floating-Point Square Root Latency 35 Cycles 15 Cycles
Floating-Point Multiply Throughput Equal to the Foating-Point Multiply Latency
Floating-Point Divide Throughput Equal to the Hoating-Point Divide Latency
Floating-Point Square Root Throughput § Equal to the Floating-Point Square Root Latency

Several parameters across all threetables are shaded in gray. For these parameters, the low and high values cannot
be chosen completely independently of the other parameters due to the mechanics of a PB design. The problem occurs
when one of the shaded parameters is set to its high or low value and the parameter it is related to is set to the opposite
value. In those configurations, the combination of values for those parameters leads to a situation that either does not make
sense or would not actually occur inareal processor. For example, if the number of LSQ entries were chosen independently
of the number of ROB entries, some of the configurations would have an 8-entry reorder buffer and a 64-entry LSQ. Since
the total number of in-flight instructions cannot exceed the number of reorder buffer entries, the maximum number of filled
LSQ entries could never exceed 8. Therefore, to avoid the above and other similar situations, the specific values used in the
simulations for all gray-shaded parameters are based on their related parameter.

All parameter values were based on a 4-way issue processor. While the issue width is a very important parameter,
we fixed the issue width at 4 for several reasons. The first reason is the same as the reason given above for the parameters
shaded in gray. If the issue width were set to its low value while the number of functional units were set to their high
values, then some of the functional units would never be used since simulator alows only 4 new instructions to start
executing per cycle. Second, several 4-way issue commercial processors exist and these processors are fairly well
documented. Therefore, to obtain a good range of values for each parameter, we chose the issue width to reflect the issue

width of the processors with good documentation. However, fixing the issue width to a constant value does not affect the
conclusions drawn from these simulationsin any way. It only removes the issue width as one of variable parameters.

Table 8 Memory Hierarchy Parametersand Their Plackett and Burman Values

Memory Hierarchy Parameter Low/Off Value High/Off Value
L1 1-Cache Size 4KB 128 KB
L1 I-Cache Associativity 1-Way 8-Way
L1 I-Cache Block Size 16 Bytes 64 Bytes

L1 I-Cache Replacement Policy

Least Recently Used (LRU)

L1 I-Cache Latency 4 Cycles 1 Cycle
L1 D-Cache Size 4KB 128 KB

L1 D-Cache Associativity 1-Way 8-Way
L1 D-Cache Block Size 16 Bytes 64 Bytes

L1 D-Cache Replacement Palicy

Least Recently Used (LRU)

L1 D-Cache Latency 4 Cycles 1 Cycle
L2 Cache Size 256 KB 8192 KB

L2 Cache Associativity 1-Way 8-Way
L2 Cache Block Size 64 Bytes 256 Bytes

L2 Cache Replacement Policy

Least Recently Used (LRU)

L2 Cache Latency

20 Cycles

5 Cycles

Memory Latency, First Block

200 Cycles

50 Cycles

Memory Latency, Following Blocks

0.02 * Memory Latency, First Block

Memory Bandwidth 4 Bytes 32 Bytes
I-TLB Size 32 Entries 256 Entries
I-TLB Page Size 4KB 4096 KB
I-TLB Associativity 2-Way Fully-Associative
I-TLB Latency 80 Cycles 30 Cycles
D-TLB Size 32 Entries 256 Entries
D-TLB Page Size Sameas|-TLB Page Size
D-TLB Associativity 2-Way | Fully-Associative
D-TLB Latency Sameas |-TLB Latency

Finally, it is important to mention that this particular smulator was used instead of the validated Alpha 21264
simulator [Desikan01] for three reasons. The first reason is that this is a methodology study and not an architecture or
performance-only study. Consequently, since the simulation results serve only to illustrate certain key points, the choice of
a specific simulator does not affect the point that is being made. The second reason is that the Alpha simulator contains
many parameters that are specific to the Alpha architecture while the basic SimpleScalar simulator models a generic
superscalar processor. Therefore, to avoid therisk of producing results that are particular to the Alpha 21264 processor, we
decided to use the generic processor. The third reason is that the SimpleScalar smulator is itself a widely used simulator.
Therefore, using this simulator has the extra benefit of producing resultsthat are beneficial to the SmpleScalar community.

4 Plackett and Burman Design Resultsfor the Simulation Setup and Analysis

The three most basic stages of the simulation process in computer architecture research are Smulation setup, the
simulation itself, and data analysis. Note that the first stage occurs after determining the initial set of testcases to examine
and after modifying the smulator and/or compiler. Therefore, in thefirg stage, the user needs to determine the values of the
different user-configurable processor parameters and to select the benchmarks that will be simulated. In the third stage, the
user analyzes the results that were gathered during the smulation stage. Then, depending on the results, the user may wish
to repeat the process with variations to the specific mechanism or enhancement being tested.

The section focuses on improving the methodology in the first and third stages of the smulation process. To
improve the methodology of the first stage, we describe a statistically rigorous method of choosing the values of the
processor parameters. In addition, to improve the benchmark selection process, we describe a method of classifying
benchmarks based on grouping those benchmarks that have similar effects on the processor. To improve the methodol ogy
of the third stage, we describe a statistically rigorous method of anayzing the effect that an enhancement has on the base

processor. For each method, we briefly describe the problem or pitfalls that could result if that particular method were not
employed. Furthermore, to show the effectiveness, usefulness, and mechanics of each method, a short example is given. It
isimportant to note that each example contains general results that can be considered a contribution to the art.

4.1 Pre-Simulation Methodology: Processor Parameter Selection

Improperly choosing a single parameter can significantly affect the simulated speedup of a processor enhancement
that is being tested. For instance, smply increasing the reorder buffer size can change the speedup of a value reuse
mechanism from approximately 20% to approximately 30% [Yi02-2]. As a result, a few poorly chosen parameters can
severely overestimate or underestimate the potential speedup of the enhancement. However, choosing a “good” set of
parameters is extremely difficult since many of the important parameters may interact, thus compounding the error
associated with choosing only a single poor value for one of the parameters. Determining which parameters interact
requires performing a sensitivity analysis on all the parameters simultaneously or choosing a select few parameters for
detailed study. The problem with the former approach is that trying to simulate al possible combinations is an extremely
difficult problem. The problem with the latter approach isthat in studying only a few parameters, other parameters have to
be set to constants. However, if one of those constant parameters is significant and interacts heavily with some of the free
parameters, then the results of the sensitivity analysis will be distorted. Fortunately, this problem can be solved by using a
PB design to identify the significant parameters.

Table 9: Plackett and Burman Design Resultsfor All Processor Parameters, Ranked by Significance and Sorted by
the Sum of Ranks

Parameter gzip vpr-Place vpr-Route gce mesa art mcf equake ammp parser \ortex bzip2 twolf Sum
Reorder Buffer Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 36
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 52
BPred Type 2 5 3 5 5 27 11 6 4 4 16 7 5 100

Int ALUs 3 7 5 8 4 29 8 9 19 6 9 2 9 118

L1 D-Cache Latency 7 6 7 7 12 8 14 5 40 7 5 6 6 130
L1I-Cache Size 6 1 12 1 1 12 37 1 36 8 1 16 1 133

L2 Cache Size 9 35 2 6 21 1 1 7 2 2 6 3 43 138

L1 I-Cache Block Size 16 3 20 3 16 10 32 4 10 11 3 22 3 153
Memory Latency First 36 25 6 9 23 3 3 8 1 5 8 5 28 160
LSQ Entries 12 14 9 10 13 39 10 10 17 9 7 4 10 164
Speculative Branch Update 8 17 23 28 7 16 39 12 8 20 22 20 17 237
D-TLB Size 20 28 11 23 29 13 12 11 25 14 25 11 24 246

L1 D-Cache Size 18 8 10 12 39 18 9 36 32 21 12 31 7 253

L1 I-Cache Associativity 5 40 15 29 8 34 23 28 16 17 15 9 21 260
FP Multiply Latency 31 12 22 11 19 24 15 23 24 29 14 23 19 266
Memory Bandwidth 37 36 13 14 43 6 6 29 3 12 19 12 38 268
Int ALU Latencies 15 15 18 13 41 22 33 14 30 16 41 10 16 284
BTB Entries 10 24 19 20 9 42 31 20 22 19 20 17 34 287

L1 D-Cache Block Size 17 29 34 22 15 9 24 19 28 13 32 28 26 296
Int Divide Latency 29 10 26 16 24 32 41 32 20 10 10 43 8 301

Int Mult/Div 14 20 29 31 10 23 27 24 33 36 18 26 15 306

L2 Cache Associativity 23 19 14 19 32 28 5 39 37 18 42 21 12 309
|I-TLB Latency 33 18 24 18 37 30 30 16 21 32 11 29 18 317
Instruction Fetch Queue Entries 43 13 27 30 26 20 18 37 9 25 23 34 14 319
BPred Misprediction Penalty 11 23 42 21 6 43 20 34 11 22 39 37 23 332
FPALUs # 11 31 15 # 17 40 22 26 37 13 42 13 335

FP Divide Latency 22 9 35 17 30 21 38 15 43 38 17 39 11 335
|-TL B Page Size 42 39 8 37 36 40 7 17 12 26 28 14 39 345

L1 D-Cache Associativity 13 38 17 34 18 41 34 33 14 15 35 15 42 349
|-TL B Associativity 24 27 37 25 17 31 42 13 29 30 21 33 22 351
L2 Cache Block Size 25 43 16 38 31 7 35 27 7 35 38 13 40 355
BTB Associativity 21 21 36 32 11 33 17 31 34 43 27 35 25 366
D-TL B Associativity 40 32 25 26 22 35 26 26 18 33 26 30 35 374
FPALU Latencies 32 16 38 41 38 11 22 30 23 27 30 40 29 377
Memory Ports 39 31 41 24 27 15 16 41 5 42 29 41 27 378
I-TLB Size 35 A 28 35 20 37 19 18 31 A A 27 31 383
Dummy Factor #2 27 42 21 39 35 14 13 35 41 28 43 18 30 386

FP Mult/Div 41 22 43 40 40 19 28 38 27 31 31 19 20 399

Int Multiply Latency 30 41 39 36 14 26 29 21 15 41 37 32 41 402
FP Square Root Latency 38 30 40 33 33 5 25 42 42 24 24 38 37 411
L1I-Cache Latency 26 26 32 42 28 38 21 40 38 40 36 25 33 425
Return Address Stack Entries 28 33 33 27 42 25 36 25 39 39 33 36 32 428
Dummy Factor #1 19 37 30 43 25 36 43 43 35 23 40 24 36 434

Table 9 shows the results of the PB design for the base superscalar processor with the parameter values shown in
Tables 6-8. To generate the results in Table 9, an X = 44 foldover PB design was used. After simulating al 88 (2X)
configurations, the PB design results were calculated. Then the parameters for each benchmark were assigned a rank based
on the significance of the parameters (1 = most important). Then the ranks of each parameter were summed across all

benchmarks and the resulting sums sorted in ascending order. Summing the ranks across benchmarks reveals the most
significant parameters averaged across all of the benchmarks. The parameters with the lowest sums represent the
parameters that have the most effect across al benchmarks.

Several key results can be drawn from this table. First, we see that only the first ten parameters are significant
across all benchmarks. The conclusion can be drawn by examining the large difference between the sum of the ranks of the
tenth parameter (LSQ size) and the sum of the ranks of the eleventh parameter (Speculative Branch Update). Furthermore,
we see that, while the ranks of the top ten parameters for each benchmark are completely different, only two parameters
(Reorder Buffer Entries and L2 Cache Latency) are significant across all benchmarks since those two parameters are almost
always one of the most important parameters for every benchmark.

Second, the effect of each benchmark on the processor can be clearly seen. For instance, since the ranks for the |-
Cache Sze, associativity, and block size are lower than or Smilar to the ranks for the D-Cache size, associativity, and block
sizefor mesa, we conclude that mesa stresses the instruction cache much more than the data cache. Furthermore, the results
show that mesa’s performance is highly dependent on the branch predictor and its related parameters (misprediction
penalty, BTB entries and associativity, and the speculative branch update) since those parameters have relatively low ranks.
Since each benchmark has a unique “fingerprint” asto how it stresses the different parameters of the processor, a computer
architect could use thisinformation to classify benchmarks based on their effect on the processor, as we demonstrate in the
next section.

Finally, several parameters have surprisngly high rankings in some benchmarks. For example, the FP square root
latency in art hasarank of 5. Since art does not have a significant number of FP square root instructions, the rank of 5 does
not appear to be consistent with the significance of that parameter. In this particular case, the parameter’s rank only
indicates that it is the fifth most important parameter. However, what the rank does not reveal is that this parameter is
completely overshadowed when compared to any of the four most significant parameters (i.e. ranks 1-4). Therefore, this
situation shows that the rank alone cannot be used to measure the significance of a parameter’ simpact on performance.

After determining the key parameters, the task of choosing the actual parameter values is greatly simplified since
only the values for the key parameters need to be chosen with extreme caution; the others can be chosen with less caution.
To actuadly choose the “appropriate’ value for each of the key parameters, we recommend performing iterative sets of
sensitivity anayses so that the exact interaction between key parameters can be accounted for when choosing the final
parameter values. To summarize, we recommend the following steps when choosing processor parameter values:

1) Determinethe critical processor parameters using a Plackett and Burman design.
a) Choose low and high values for each of the parameters.
b) Run and analyze the PB simulations to determine the key parameters.
2) Choose reasonable values for the non-critical parameters based on commercial processor values, or some other
appropriate source.
3) Perform a sensitivity analysis over reasonable ranges for each critical parameter using the ANOVA technique.
4) Choose final valuesfor the critical parameters based on the sendtivity anaysis results.

4.2 Pre-Simulation Methodology: Benchmark Selection

Just as a poorly chosen set of processor parameters can drastically affect the performance results, a poorly chosen
set of benchmarks from a benchmark suite may not accurately depict the true potential of the processor or the enhancement
being tested. For ingtance, if the set of benchmarks was extremely memory-intensive, then an optimization to the memory
hierarchy, such as data prefetching, will overestimate the performance of that optimization across all benchmarks.
However, if in an effort to avoid the above situation the user decides to simulate all the benchmarks from the benchmark
suite, then the user may be wasting time by simulating benchmarks that are too similar in their impact on the processor. In
this case, the obvious drawback is that the user may be simulating “redundant” benchmarks a the expense of a more
complete exploration of the design space. Therefore, for accuracy and efficiency reasons, it is important for the user to
simulate a set of benchmarks that are digtinct, but that are representative of the population of potential benchmarks.

However, determining which benchmarksin a benchmark suite are similar isadifficult task snce benchmarks can
be classified in many different ways (by application, by relative use of integer or floating-point operations, by processing
time versus memory usage, etc.). Therefore, as an aternative classification that may be more relevant to computer
architects, we propose that the benchmarks could be classified by their effect on the processor. Under this method of
classification, if two benchmarks stress the same components of the processors to similar degrees, then the user could
classify those two benchmarks as being similar.

To determine the similarity of benchmarks, we treated therank of each parameter that we varied in this study as an
element of a vector. Accordingly, each benchmark’s vector represents the ranks of all parameters. To determine how
similar the two benchmarks were, we simply computed the Euclidean distance between the two vectors as follows:

Distance = [(x-Y2)” + (X-¥2)* + .. + (XnaYn1) * + (Xryn) 7]

In this computation, n isthe number of parameters that can be varied and X = [X, X2, ... , Xn1, Xl @d Y =[y1, V2, ..., Y1y
ya] arethe vectors that represent benchmark X and Y. Each element of X and Y correspondsto the rank of that parameter.
For example, the distance between gzip and vpr-Place, using the ranks from Table 9, is as follows:

Distance = [(6-1) > + (5-40) 2 + (16-3)* + ... + (40-32)? + (19-37)° + (27-42)*] = [8058] * = 89.8

Accordingly then, the distance between the two vectors is a measure of the similarity of the impact of the
simulated parameters for the two benchmarks. Obvioudy, the smaler the distance between vectors, the greater the
similarity between the two benchmarks, in terms of how those two benchmarks affect the processor. Benchmarks can be
defined to be similar if their distance is below some user-defined threshold. Therefore, by comparing each benchmark
againgt all the other benchmarksin a benchmark suite, the user can determine which benchmarks can be defined as similar.

To illugrate this process, Table 10 shows the result of comparing each benchmark against all the other
benchmarks, including itself, using the ranks from Table 9.

Table 10: Distance Between Benchmark Vectors, Based on Parameter Ranks

] vpr vpr]
ozip Place | Route gce mesa art mcf equake | ammp | parser | vortex | bzip2 | twolf

gzip 0.0 898 | 811 | 819 | 620 | 1135|1096 | 795 | 1117 | 736 | 920 | 781 | 855

F‘,I’g;e 898 | 00 | 989 | 637 | 940 | 1028 | 1109 | 847 | 1181 | 89.7 | 685 | 1114 | 352

F;’cf’tjt'e 811 | 989 | 00 | 7.7 | 985 | 1004 | 755 | 733 | 917 | 564 | 79.2 | 457 | 96.6

gcc 819 | 637 | 71.7 | 0.0 | 909 | 926 | 945 63.6 985 | 65.0 | 546 | 888 | 67.3
mesa 620 | 940 | 985 | 909 | 00 | 1209 | 1099 | 818 | 1002 | 889 | 878 | 941 | 917
art 1135 | 102.8 | 1004 | 926 | 1209 | 0.0 98.6 96.3 | 1052 | 944 | 92.7 | 1025 | 105.2
mcf 109.6 | 1109 | 755 | 945 | 109.9 | 98.6 0.0 1049 | 948 | 876 | 101.3 | 80.0 | 1111
equake | 795 | 847 | 733 | 636 | 818 | 963 | 1049 0.0 984 | 771 | 678 | 761 | 86.5
ammp § 1117 | 1181 | 91.7 | 985 | 100.2 | 105.2 | 94.8 98.4 0.0 911 | 988 | 92.7 | 120.0
parser | 73.6 | 89.7 | 564 | 650 | 889 | 944 | 876 77.1 91.1 0.0 774 | 629 | 89.7
vortex | 920 | 685 | 792 | 546 | 878 | 927 | 101.3 | 678 988 | 774 0.0 948 | 731
bzip2 781 | 1114 | 457 | 888 | 94.1 | 1025 | 80.0 76.1 92.7 | 629 | 9438 0.0 | 1079

twolf 855 | 352 | 966 | 673 | 917 | 1052 | 1111 | 865 | 120.0 | 8.7 | 731 | 1079 | 0.0

The diagonal of thetableis al zeros because it represents the cases where a benchmark is compared against itself.
For this example, if the similarity threshold was set to 63.2 (the square root of 4000), all pairs of benchmarks that had a
distance less than 63.2 could be considered similar. The entries shown in bold correspond to benchmark pairs whose
distances areless than the threshold. Each row in the following table, Table 11, shows the groups of benchmarks that have a
similar effect on the processor, as determined by the above similarity distances.

Table 11: Benchmarks Grouped by Their Effect on the Processor

gzip, mesa
vpr-Place, twolf
vpr-Route, parser, bzip2
gcc, vortex
art
mcf
equake
ammp

The gzip and mesa benchmarks are defined to be similar because the distance between those two benchmarks,
62.0, is less than our arbitrary threshold value of 63.2. On the other hand gzip and vpr-Place are defined as dissimilar
because their distance of 89.8 exceeds the threshold.

It is important to note that the benchmarksin Table 11 represent only one method of classifying benchmarks with
one specific threshold value. It is aso important to redlize that key metrics, such as IPC and miss rates, could be quite
different for benchmarks within the same set. The primary purpose of this section was to introduce an aternative method of
classifying benchmarks that simultaneously considers the average impact of all processor parameters. Therefore, it isleft to
the experimenter to set the threshold value, to group the benchmarks accordingly, and to decide which benchmarks to select
based on this method of classification and potentially, other metrics (e.g., IPC, missrates, €tc.).

4.3 Post-Simulation Methodology: Analysis of Processor Enhancements

For many computer architecture studies, analyzing the simulation results due to a processor enhancement involves
examining the individual statistics (e.g. speedup, missrate, functional unit utilization, etc.) without trying to determine the
whole-picture effect of the enhancement on the processor. While the individual statistics may provide insight into the effect
of the enhancement on key hardware gtructures, identifying all of the important individual statistics and trying to piece
them together to form a higher-level view of the overall effect on the processor is daunting. Therefore, as a method of
improving the methodol ogy in the analysis of processor enhancements, we describe a method that smultaneoudy considers
all components of the processor to give the user ahigher-level view that isvery easy to understand.

Our proposed method involves using a PB design to analyze the effect that a benchmark has on the processor
parameters before and after the application of the enhancement. Therefore, by using this method, the user can determine the
effect of the enhancement on the most significant parameters and also determine which of the enhancement’s parameters
are significant and how those parameters compare in significance to the processor’ s parameters without the enhancement.

The analysis of an enhancement uses the same steps as were used to determine the processor parameter values in
Section 4.1. Namely, a PB design is used to determine the effect that each parameter has on the performance. The
parameters are then ranked in descending order of significance. Then, to account for the significance of al benchmarks, the
ranks for each parameter are summed together. The parameters with the lowest sum-of-ranks are the most significant
parameters. Therefore, by comparing the sum-of-ranks for each parameter before and after the application of the
enhancement, the user can determine how the enhancement affects the processor. For example, if the L1 D-Cache size and
associativity sharply drop in significance due to an enhancement, it is reasonable to conclude that that particular
enhancement does a good job of improving memory performance. However, this particular enhancement may also cause a
sharp rise in the significance of the memory ports and the number of LSQ entries, for ingance. Therefore, it would be
reasonable to conclude that this particular enhancement improves the memory performance at the cost of increased pressure
on the memory ports and the LSQ.

To illugtrate the mechanics and effectiveness of this method, we analyze the effect that the instruction
precomputation mechanism [Yi02-1] has on the processor. Ingtruction precomputation is similar to value reuse [Sodani97]
in that it dynamically removes redundant computations from the pipeline by using a cached output value instead of
computing the result. The key difference between instruction precomputation and value reuse is that instruction
precomputation uses the compiler to statically identify the highest frequency redundant computations instead of using
hardware. In instruction precomputation, the redundant computations are loaded into the on-chip precomputation table
before the program begins execution and are never updated. By contrast, value reuse dynamically updates the on-chip value
reuse table with the most current computations.

Table 12 shows the effect of instruction precomputation with a 128-entry precomputation table on the processor.
While Table 12 represents the “after” case, Table 9 representsthe “before” case, that is, the unenhanced processor.

By comparing these two tables, we can draw two conclusions about the effect of instruction precomputation on the
processor. First of all, the same parameters that were significant for the base processor are also significant for the processor
with instruction precomputation. Instruction precomputation changes the relative ordering of the significant parameters,
with respect to each other, but does not change which parameters have the greatest significance. Secondly, of the significant
parameters, the parameter that has the biggest change in its overall effect (defined as the biggest change in the sum of
ranks) is the number of integer ALUs. This result is intuitively reasonable since most of the ingtructions that instruction
precomputation eliminates would have executed on the integer ALUs. Therefore, by using instruction precomputation, the
impact of the number of integer ALUs on the processor’ s performance decreases in sgnificance.

In conclusion, applying this method to analyze simulation results has a few advantages over commonly-used
approachesthat amply look at a single metric, such as execution time. First of all, the exact effect that the enhancement has
on the processor parameters can be determined, as was shown in the preceding example. Thisis especially useful in finding
parameters that would seem to be unaffected by an enhancement, but actually turn out to be impacted by the enhancement.
Thisresult also can quickly point the experimenter to the areas of the processor that may require a more detailed analysis.

Second, by analyzing the impact of the enhancement on all of the parameters, the experimenter can determine which of
those parameters is the most significant and how that parameter compares with the unenhanced processor’s important
parameters. This comparison can alow the experimenter to make design decisions as to how to maximize the performance
and minimize the cost of the enhancement. Finally, using this method to analyze simulation results gives the analysis a
gtatistically solid foundation that improves the overall quality of the analysis, in addition to improving the confidence in the
fina results and conclusions.

Table 12: Plackett and Burman Design Resultsfor All Processor ParametersWhen Using I nstruction
Precomputation; Ranked by Significance and Sorted by the Sum of Ranks

Factor gzip vpr-Place vpr-Route gce mesa art mcf equake ammp parser vortex bzip2 twolf Sum
RUU Entries 1 4 1 4 3 2 2 3 6 1 4 1 4 36
L2 Cache Latency 4 2 4 2 2 4 4 2 13 3 2 8 2 52
BPred Type 2 5 3 5 5 28 11 8 4 4 16 7 5 103
L1 D-Cache Latency 7 6 5 7 11 8 14 5 40 7 5 4 6 125
L1I-Cache Size 5 1 12 1 1 12 38 1 36 8 1 15 1 132
Int ALUs 6 8 8 9 8 29 9 13 20 6 9 3 9 137
L2 Cache Size 9 35 2 6 22 1 1 6 2 2 6 2 43 137
L1 I-Cache Block Size 15 3 20 3 14 10 32 4 10 11 3 20 3 148
Memory Latency First 35 25 6 8 18 3 3 7 1 5 7 6 27 151
LSQ Entries 13 14 9 10 15 40 10 9 17 9 8 5 10 169
D-TLB Size 21 28 11 24 25 13 12 10 25 14 25 10 24 242
Speculative Branch Update 8 20 25 29 7 16 39 11 8 20 21 22 19 245
L1 I-Cache Associativity 3 41 15 28 6 34 23 28 16 17 11 9 21 252
L1 D-Cache Size 18 7 10 12 42 19 8 35 32 21 13 32 7 256
FP Multiply Latency 31 12 22 11 19 24 15 22 24 28 14 24 18 264
Memory Bandwidth 33 36 13 14 43 6 6 31 3 12 20 11 38 266
BTB Entries 10 23 19 20 9 41 31 20 22 19 19 16 34 283
Int ALU Latencies 16 15 18 13 40 22 33 14 31 16 41 12 16 287
L1 D-Cache Block Size 17 30 34 22 16 9 24 19 26 13 33 25 26 294
Int Divide Latency 30 10 26 17 24 33 40 33 19 10 10 41 8 301
L2 Cache Associativity 23 19 14 19 33 27 5 39 37 18 42 21 12 309
Int Mult/Div 14 21 30 31 12 23 27 23 33 37 18 27 15 311
|I-TLB Latency 32 17 24 18 34 30 30 16 21 33 12 29 17 313
Instruction Fetch Queue Entries 43 13 27 30 23 20 19 37 9 25 23 34 14 317
BPred Misprediction Penalty 11 24 41 21 4 43 20 32 11 22 39 35 23 326
FP Divide Latency 20 9 36 16 28 21 37 15 43 38 17 38 11 329
FPALUs 34 11 31 15 38 17 41 24 27 36 15 43 13 345
|-TL B Page Size 42 38 7 38 39 39 7 17 12 26 28 14 39 346
L1 D-Cache Associativity 12 39 17 35 17 42 34 34 14 15 36 17 42 354
L2 Cache Block Size 25 43 16 37 31 7 35 27 7 35 38 13 40 354
1-TL B Associativity 26 27 38 25 20 31 42 12 29 30 22 33 22 357
BTB Associativity 22 18 35 32 10 32 17 30 34 43 27 36 25 361
D-TL B Associativity 40 32 23 26 27 35 25 26 18 32 26 28 35 373
Memory Ports 39 31 39 23 26 15 16 40 5 42 30 40 29 375
FPALU Latencies 37 16 37 41 37 11 21 29 23 27 29 42 28 378
I-TLB Size 36 34 28 A 21 37 18 18 30 A A 30 32 386
Dummy Factor #2 28 42 21 39 32 14 13 36 42 29 43 18 30 387
Int Multiply Latency 29 40 42 36 13 26 29 21 15 41 35 31 41 399
FP Mult/Div 41 22 43 40 41 18 28 38 28 31 31 19 20 400
FP Square Root Latency 38 29 40 33 35 5 26 43 41 24 24 39 37 414
Return Address Stack Entries 27 33 33 27 36 25 36 25 39 40 32 37 31 421
L1 |-Cache Latency 24 26 32 42 29 38 22 41 38 39 37 26 33 427
Dummy Factor #1 19 37 29 43 30 36 43 42 35 23 40 23 36 436

5 Related Work

While there are several previous studies that are related to this work, we were unable to find any previous work
that directly focused on simulation methodology. Most of the related work focuses on simulator validation, while other
related work focused on modeling the performance of processors through statistical methods or on improving the accuracy
and precision of simulation results. Some previous work has performed sensitivity analyses of key processor parameters
and has described a method for classifying benchmarks. The work presented in this paper complements this previous work
by providing a basis for solid statistical analysis.

5.1 Smulator Validation, Processor Modeling, and Improving Simulator Accuracy

The authors of several papers have detailed their experiences with simulator validation. Black and Shen [Black98]
described amethod of validation that iteratively improves the accuracy of the performance model, as compared to the actua
processor. Their method of validation compared the cycle count that was produced by a simulator that was targeted at a
specific architecture (in this case the Power PC 604) against the cycle count that was produced by the actual hardware.
Their results show that modeling, specification, and abstraction errors were still present in their simulation model, even

after along period of debugging. Some of these errors could be revealed only after comparing the performance model to the
actual processor. Their work showed the need for extensive, iterative validation before the results from a performance
model can be trusted.

Desikan et al [Desikan01] measured the amount of error that was present in an Alpha version of the SimpleScalar
simulator. They defined the amount of error to be the difference in the simulated execution time and the execution time of
the processor itself. They found that the simulators that model a generic machine (such as SimpleScalar) generally reported
higher 1PCs than simulators that were validated against areal machine. In other words, a smulator that does not target a
specific architecture will generally report higher IPCs for the same benchmarks as compared to a validated simulator that
targets a specific architecture. On the other hand, unvalidated smulators that targeted a specific machine usually
underegtimated the performance.

Gibson et al [Gibson00] described the types of errorsthat were present in the FLASH simulator when compared to
the implemented FLASH processor. To determine which errors were present in the FLASH simulator, they compared the
simulated execution time reported by the FLASH simulator againgt the actua execution time of the FLASH processor.
They tested several versions of their simulator to evaluate the tradeoff of a faster, but less complex simulator versus a
dower, but more complex simulator in terms of simulator accuracy. Their results showed that most smulators can
accurately predict the architecturd trends if al of the important components have been accurately modeled. Furthermore,
they showed that a faster, less complex simulator that uses a scaling factor for the results often did a better job of predicting
a processor’ s performance than a slower, more complex simulator. Finally, their results showed that the margin of error (the
percentage difference in the execution time) of some simulators was more than 30%, which ishigher than the speedups that
are often reported for specific architectural enhancements.

Finally, Glamm and Lilja [GlammO0Q] introduced a method of verifying the functional correctness of a simulated
ISA. Their method of validation involved simultaneoudy executing a program'’s instructions on a smulator and on the
targeted machine. After each instruction, the simulated processor’s state was compared to the real machin€'s processor
state. Any difference between the states indicated the presence of an error in the simulated | SA.

A few papers aso have described statistica methods for reducing the complexity of a ssimulator and, thereby, the
resulting simulation time. Noonburg and Shen [Noonburg97] described a method that uses a trace of a program along with
probabilistic models to estimate the performance of the processor given a particular processor configuration. Their
simulator consists of two main pieces, the processor model and the gatistical model. The processor model accounts for the
microarchitecture and the timing aspects by modeling the key components, such as buffers, pipelines, etc. The statistical
model then uses probabilities to account for how long the instructions are in a particular state. By combining the two
models and using the program trace as an input, they were able to achieve estimates of performance ranging from 1% to
10% of the processor’s actual performance (as measured by the IPC) in afraction of thetime.

Oskin et al [Oskin00] described the HLS simulator that uses statistical profiles and symbolic execution to estimate
processor performance. The datistical profile stores the basic block sizes, distribution, and the number of instructions
separating the different instruction types (integer, floating-point, etc.). The symbolic code transforms the ingtruction stream
into a control-flow graph of blocks. Within each block are the resource requirements that are necessary to execute the
instructions that are represented by that block. The HLS simulator was reported to estimate to within 10% the performance
of the SimpleScalar smulator.

Cain et al [Cain02] measured the effect of the operating system and the effects of 1/O on simulator accuracy. To
accomplish this task, they integrated the SImOS-PPC operating system with SimMP, a multiprocessor simulator. Their
results showed that not including an operating system could introduce errors as high as 100% in the smulated performance.
Furthermore, their results showed the potential for error due to 1/0 if the additional memory traffic is not properly taken
into account. Overall, their results showed the need to integrate an operating system into the simulator for increased
simulator accuracy and precision.

5.2 Analysis of the Effect of Key Processor Parameters

Skadron et al [Skadron99] performed an in-depth study of the trade-offs between the ingtruction-window size,
branch prediction accuracy, and the L1 caches. Their paper performed a set of detailed sensitivity analyses that examined
the IPC for different instruction-window sizes, data and ingruction cache sizes, and different branch prediction accuracies
using the integer benchmarks of the SPEC 95 benchmark suite. Their base ssmulator was a heavily modified version of the
SimpleScalar smulator. While ther results were very detailed and had several meaningful conclusons, they did not
determine the important parameters and interactions before they performed their sensitivity analyses. Therefore, the
conclusions that were drawn from these results cannot be taken completely at face value without determining if any of the
constant parameters or interactions are sgnificant enough to affect the results.

5.3 Benchmark Classification

Giladi and Ahituv [Giladi95] identified the “redundant” benchmarks in the SPEC 92 benchmark suite. A
redundant benchmark was defined to be one that can be removed from the benchmark suite without significantly affecting
the resulting SPEC number for that benchmark suite. The SPEC number theoretically measures the performance of a
computer system across a wide range of programs. The SPEC number is generated by normalizing each benchmark’s
execution time to a baseline system and then a geometric mean formulais used to average al the normalized times. Their
results show that 13 of the 20 benchmarks in the SPEC 92 suite were redundant. This method of determining redundant
benchmarks is significantly different from our proposed method for a least two reasons. First of al, this method is
completely based on approximating the SPEC number. Secondly, since the SPEC number is calculated by using the
benchmark’ s execution and by normalizing the execution times to a baseline system, there is no direct connection to the
effect that each benchmark has on the processor. However, our method focuses exclusively on the benchmark’s effect on
the processor.

6 Conclusion

Computer architects rely heavily on simulators when trying to design a new processor architecture or when
evaluating the performance of new compiler-based and microarchitectura mechanisms. However, due to a lack of a
formalized methodology, most current methods approach simulation methodology in an ad-hoc fashion. As a result,
unnecessary errors arise, such as using poorly chosen processor parameter values or using poorly chosen sets of benchmark
programs. Furthermore, without a more formalized methodol ogy, computer architecture researchers may not glean as much
information as possible from their extensive simulation results. Finally, by adding statistica rigor to our methodology, we
as a community can have more confidence in our simulation results.

As a first step in developing a formalized simulation methodology, this paper describes three methods of
improving the simulation methodology in computer architecture research. The firs two methods seek to improve the
simulation setup while the third method seeks to improve the analysis of the results. The first method focuses on how the
processor parameter values are chosen. In particular, ingead of using the current ad-hoc methods of choosing processor
parameters, this method advocates using a Plackett and Burman (PB) design to determine the most important parameters.
The values for these key parameters need to be chosen with care since the specific value chosen can serioudy affect the
performance results. Less caution needs to be exercised when choosing values for the remaining parameters.

The second method to improve simulation methodol ogy focuses on benchmark selection. Our proposed method of
benchmark selection groups the benchmarks based on the effect that each benchmark has on the processor. Two
benchmarks have similar effects on the processor if their sets of processor parameters have similar ranks. As with the
processor parameter selection, a PB design is used to determine the effect that a benchmark has on the processor.

Finally, the last method focuses on improving the analysis of the smulation results in the post-simulation phase.
This method uses a PB design to rank the parameters before and after an enhancement is added to the processor. By
comparing the before and after ranks, the effect that the enhancement has on the processor can be readily determined.

In conclusion, there is plenty of room for improvement with the current simulation methodology. Adopting some
or al of the methods described in this paper can significantly improve the quality of, and confidence in, Smulation results.

Acknowledgements
Thiswork was supported in part by National Science Foundation grants CCR-9900605 and EI A-9971666, the
IBM Corporation, Compaq's Alpha Development Group, and the Minnesota Supercomputing Ingitute.

References

[Bannon97] P. Bannon and Y. Saito; "The Alpha 21164PC Microprocessor”; International Computer Conference, 1997.

[Black98] B. Black and J. Shen; "Calibration of Microprocessor Performance Models'; IEEE Computer, Val. 31, No. 5, May
1998; Pages 59-65.

[Burger97] D. Burger and T. Austin; "The SmpleScalar Tool Set, Version 2.0"; University of Wisconsin-Madison Computer
Sciences Department Technical Report #1342, 1997.

[Cain02] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti; "Precise and Accurate Processor Simuletion "; Workshop on
Computer Architecture Evaluation using Commercial Workloads, 2002.

[Desikan01] R. Deskan, D. Burger, and S. Keckler; "Measuring Experimental Error in Microprocessor Simulation”;

International Symposium on Computer Architecture, 2001.

[Edmondson95] J. Edmondson, P. Rubinfeld, and R. Preston; "Superscalar Instruction Execution in the 21164 Alpha
Microprocessor”; IEEE Micro, Vol. 15, No. 2, March-April 1995; Pages 33-43.

[Gibson00] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich; "FLASH vs. (Simulated) FLASH:
Closing the Simulation Loop"; International Conference on Architectural Support for Programming Languages and
Operating Systems, 2000.

[Gilai95]
[Glamm00]
[Horel 99]
[Kesslerog]

[Kessler99]
[KleinOsowski02]

[Kumar97]
[Leiholz97]

[Lilja00]
[Matson98]
[Montgomery91]
[Noonburg97]
[Normoy!€98]
[Oskin00]
[Plackett46]
[Silcog]
[Simag7]
[Skadron99)]
[Sodanio7]
[Song94]
[Tremblay96]
[Yeager96]
[Yi02-1]

[Yi02-2]

R. Giladi and N. Ahituv; "SPEC as a Performance Evaluation Measure"; IEEE Computer, Vol. 28, No. 8, August
1995; Pages 33-42.

R. Glamm and D. Lilja; “Automatic Verification of Instruction Set Simulation Using Synchronized State
Comparison”; Annual Simulation Sympaosium, 2001.

T. Horel and G. Lauterbach; "UltraSPARC-I1I: Designing Third-Generation 64-Bit Performance”; IEEE Micro,
Val. 19, No. 3, May-June 1999; Pages 73-85.

R. Kesder, E. McLellan, and D. Webb; "The Alpha 21264 Microprocessor Architecture”; International Conference
on Computer Design, 1998.

R. Kesder; "The Alpha 21264 Microprocessor”; IEEE Micro, Vol. 19, No. 2, March-April 1999; Pages 24-36.

A. KleinOsowski and D.J. Lilja; "MinneSPEC: A New SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research.”; Vol. 1, June 2002.

A. Kumar; "The HP PA-8000 RISC CPU"; IEEE Micro, Val. 17, No. 2, March-April 1997; Pages 27-32

D. Leihalzand R. Razdan; "The Alpha 21264: A 500 MHz Out-of-Order Execution Microprocessor”; International
Computer Conference, 1997.

D. Lilja “Measuring Computer Performance”; Cambridge University Press, 2000.

M. Matson, D. Bailey, S. Bdl, L. Biro, S. Butler, J. Clouser, J. Farrell, M. Gowan, D. Priore, and K. Wilcox;
"Circuit Implementation of a 600 MHz Superscalar RISC Microprocessor”; International Conference on Computer
Design, 1998.

D. C. Montgomery; “Design and Analysis of Experiments’ (Third Edition), Wiley 1991.

D. Noonburg and J. Shen; "A Framework for Statistical Modeling of Superscalar Processor Performance ";
International Symposium on High Performance Computer Architecture, 1997.

K. Normoyle, M. Csoppenszky, A. Tzeng, T. Johnson, C. Furman, and J. Mostoufi; "UltraSPARC-I1i: Expanding
the Boundaries of a System on a Chip"; IEEE Micro, Val. 18, No. 2, March-April 1998; Pages 14-24.

M. Oskin, F. Chong, and M. Farrens; "HLS: Combining Statistical and Symbolic Simulation to Guide
Microprocessor Designs'; International Symposium on Computer Architecture, 2000.

R. Plackett and J. Burman; "The Design of Optimum Multifactorial Experiments’; Biometrika, Vol. 33, Issue 4,
June 1956; Pages 305-325.

J. Silc, B. Robic, and T. Ungerer; “Processor Architecture : From Dataflow to Superscalar and Beyond” ; Springer-
Verlag, 1999.

D. Sima, T. Fountain, and P. Kacsuk; “Advanced Computer Architectures, A Design Space Approach”; Addison
Wesley Longman, 1997.

K. Skadron, P. Ahuja, M. Martonosi, and D. Clark; "Branch Prediction, Instruction-Window Size, and Cache Size:
Performance Trade-Offs and Simulation Techniques'; IEEE Transactions on Computers, Vol. 48, No. 11,
November 1999; Pages 1260-1281.

A. Sodani and G. Sohi; "Dynamic Instruction Reuse"; International Symposium on Computer Architecture, 1997.
S. Song, M. Denman, and J. Chang; "The PowerPC 604 RISC Microprocessor”; IEEE Micro, Vol. 14, No. 5,
October 1994; Pages 8-17.

M. Tremblay and JM. O'Connor; "UltraSparc I: A Four-Issue Processor Supporting Multimedia®; IEEE Micro,
Val. 16, No. 2, March-April 1996; Pages 42-50.

K. Yeager; "The MIPS R10000 Superscalar Microprocessor”; IEEE Micro, Vol. 16, No. 2, March-April 1996;
Pages 28-40.

J. Yi, R. Sendag, and D. Lilja; "Increasing Instruction-Level Parallelism with Instruction Precomputation”; Euro-
Par 2002.

J.Yiand D. Lilja; " Effects of Processor Parameter Selection on Simulation Results"; M S| tech report #(pending).

