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ABSTRACT
With rapid development of positioning techniques and loca-
tion based services (LBS), locations and traces of moving
objects are collected by service providers, the data will then
be published for novel applications. Although analyzing
and mining trajectories is useful for mobility-related applica-
tions, new challenges of trajectory privacy leakage arise ac-
cordingly. Trajectories contain rich spatio-temporal history
information that may expose users’ whereabouts and other
personal privacy. At present, trajectory k-anonymity which
aims at anonymizing k trajectories together on all sample
points is one of the most popular techniques to protect tra-
jectory privacy. The challenge lies in how to find trajectory
k-anonymity sets. In this paper, a trajectory graph is con-
structed to simulate spatial relations of trajectories, based
on which we propose to find trajectory k-anonymity sets
through graph partition, which is proven NP-complete. We
then propose a greedy partition method to find trajectory k-
anonymity sets, as well as yielding low information loss. We
run a series of experiments on both real-world and synthetic
datasets, the results show the effectiveness of our method.
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INTRODUCTION
Recent years, location based services and positioning tech-
niques developed fast based on the pervasive of location-
aware devices, such as, GPS-enabled cell phones and PDAs,
location sensors and RFID cards. Thus, location privacy of
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users may be exposed when requiring for services. Loca-
tion privacy-preserving techniques has gained much atten-
tion in last a few years [6,7,9,12]. However, another privacy
threaten arises with people’s trajectories left behind and col-
lected by service providers. The collected trajectories are
then published for novel applications [3, 14, 17]. For ex-
ample, analyzing trajectories of passengers in a certain area
may help bussiness men making commercial decisions, such
as where to build a restaurant or a shopping mall. Another
example can be seen in traffic controlling systems, analyz-
ing trajectories of vehicles in a city may help government to
optimize traffic management strategy. Although publishing
and analyzing trajectories is beneficial for mobility-related
decision making processes, it may represent serious threats
to users’ privacy, since locations and trajectories contain rich
spatio-temporal information, which may reveal ones’ behav-
ior patterns, living habits, health conditions, social customs
etc.

When an adversary associates some sensitive information
with a moving object’s identity, a privacy violation happens.
It is generally accepted that, simply removing identifiers may
not prevent leakage of privacy, since adversaries may re-
identify a victim through background information linkage,
such as, by linkage of a trajectory with one’s home and work
place may identify a user from the published data. Suppose
there are two neighbors Bob and Alice, Bob bears malice
to Alice, he wants to know private information about Al-
ice. Since they are neighbors, Bob knows where Alice lives,
through their causal conversations, Bob knows where Alice
works. The home address and work place can be regarded as
background information. Through linkage of background in-
formation to published trajectory data, Bob tries everything
to find from the published data which trajectory belongs to
Alice and where Alice has visited, such as bars, clinics or
other sensitive places during her way to work or back home.
If Bob succeeds in associating a trajectory or sensitive loca-
tions of a trajectory with Alice, her privacy exposes through
her everyday life trajectories.

In order to protect trajectory privacy, researchers have pro-
posed several techniques, such as dummy trajectories confu-
sion, suppression-based method and trajectory k-anonymity.
Among these techniques, trajectory k-anonymity which tries
to anonymize k trajectories together while balances well be-
tween privacy level and data utility is one of the most pop-
ular techniques in trajectory privacy-preserving community.



However, how to find trajectories k-anonymity sets with min-
imum information loss is the key issue. Most existing meth-
ods try to find trajectory k-anonymity sets through trajec-
tory clustering, however, these methods do not in general in-
clude much provision for satisfying constraints on the sizes
of the anonymity sets, nor do they provide for systematic
assignment of trajectories that do not obviously belong to
any clusters. Moreover, clustering methods need to compute
distances repeatedly to get better clusters, this may cause ex-
tra computation cost. So how to find trajectory k-anonymity
sets is still a challenging problem. In this paper, we make
the following contributions:

• We formalize trajectory k-anonymity to a graph partition
problem based on the concept of trajectory graph we de-
fine. A trajectory graph is a weighted undirected graph
which models spatial relations of trajectories.

• We define k-node partition which is proven NP-complete
to achieve trajectory k-anonymity. A greedy k-node parti-
tion method is proposed to get an approximate result.

• We run a set of evaluations on both real-world and syn-
thetic datasets. The results show advantages of our method.

The rest of the paper is organized as follows. Section 2 sum-
marizes related works. Section 3 defines concepts and attack
models we study in this paper. In section 4, we present our
proposed solutions. Experiment evaluations are shown in
section 5. Finally, section 6 concludes the paper.

RELATED WORKS
Trajectory data privacy is a rather young research area that
has received a lot of interests in recent years. Relational data
privacy protection methods are extended spatio-temporally
to the community of trajectory data privacy. Main tech-
niques in this community are in three types: dummy tra-
jectory confusion, suppression-based method and trajectory
k-anonymity.
Dummy trajectory confusion. Protecting trajectory privacy
in a data publication perspective is first proposed in [16] with
a simple dummy trajectories confusion method, the authors
propose to generate dummy trajectories in order to confuse
the adversaries. In order to confound fake trajectories and
the true ones, dummy trajectories are generated under two
principles: first, the movement patterns of dummies should
be similar to real users; second, the intersections of trajec-
tories should be as more as possible. Based on these rules,
dummy trajectories are generated by rotating real users’ tra-
jectories.
Suppression-based method. Study in [13] is based on the
assumption that different adversaries may have different and
disjoint part of users’ trajectories. The authors propose a
suppression-based method to reduce the probability of dis-
closing the whole trajectories. Trajectory pieces should be
suppressed when publication of these pieces may increase
the whole trajectory’s breach probability above a certain thresh-
old.
Trajectory k-anonymity. In [1], Abul et al. propose a novel
concept named (k,δ)-anonymity due to the imprecision of
GPS data, where δ represents the possible location impre-

cision. Based on the concept of (k,δ)-anonymity, the au-
thors propose an approach called Never Walk Alone (NWA)
to achieve (k,δ)-anonymity through trajectory clustering and
space translation. In [15] Yarovoy et al. address trajec-
tory privacy problem in a quasi-identifier (QID) perspec-
tive. In this work, the authors propose a novel trajectory
k-anonymity model based on an attack graph, then two ap-
proaches which are called Extreme Union and Symmetric
Union are proposed to achieve trajectory k-anonymity. In
[11] Nergiz et al. argue that since the trajectory data are pub-
lished for analyzing purpose, it is useful to publish atomic
trajectories rather than anonymized regions, so they design
privacy protection strategies in an anonymization and recon-
struction manner. First, trajectories are clustered based on
log cost metric, each sample location on trajectories is gen-
eralized to a region containing at least k moving objects.
Then trajectories are reconstructed through randomly select-
ing sample points from the anonymized region. More re-
cently, [10] propose a method for achieving true anonymity
in a trajectory dataset by transformation of the original tra-
jectories based on spatial generalization and k-anonymity.

Our approach is different from the above mentioned ones.
We are the first to formalize trajectory k-anonymity into a
graph partition problem with which the information loss of
the anonymization is reduced. Also, with our method, we
can control the size of each partition, and systematically as-
sign the outlier trajectories that are not partitioned into any
anonymity set.

PROBLEM STATEMENTS
Trajectories of moving objects (MOBs) are collected and
stored in moving object databases (MOD). For a moving ob-
ject Op, its trajectory Tp is a set of time ordered discrete
location samples.

Basic Notion
In this section, we give some definitions that will be used in
our study.

Definition 1. (Trajectories). A moving object Op’s trajec-
tory is a sequence of location samples represented as T={(x1,
y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)}, where (xi, yi) represents
the coordinate of Op at time ti for all 1 ≤ i ≤ n.

Definition 2. (Synchronized Trajectories). Given two tra-
jectories Tp and Tq, both trajectories are said to be synchro-
nized if they have the same number of location samples at
the same sampling time. A set of trajectories is said to be
synchronized if all pairs of trajectories are synchronized.

If two trajectories are synchronized, location samples which
have the same timestamps are called corresponding location
samples. In fact, trajectories are not always synchronized
in real-world dataset. In order to process un-synchronized
trajectories, we will give an trajectory synchronization ap-
proach in section 4.

Several trajectory distance measures have been proposed in
the past, we adopt the Euclidean distance measure which is



widely used in trajectory privacy-preserving community.

Definition 3. (Trajectory distance) For any two synchro-
nized trajectories Tp and Tq, the distance between Tp and
Tq is defined as the average of Euclidean distances between
corresponding location samples:

Dist(Tp,Tq) =

∑n
i=1

√
(xpi − xqi)2 + (ypi − yqi)2

tn − t1

We will use [xs, ys, ts] and [xe, ye, te] to represent the start
point and the end point of a trajectory henceforth. Locations
of a trajectory’s start and end can be represented as a spatial
pair [xs, xe] in x coordinate and [ys, ye] in y coordinate. We
argue that, if two trajectories have no spatio-temporal rela-
tions, it is unnecessary to compute distance between them,
since they can hardly be anonymized together. For temporal
relations, we mean that two trajectories should appear in a
same time span; for spatial relations, it can be described by
the following definition of s-overlap.

Definition 4. (s-overlap). Given two synchronized trajec-
tories Tp={(xp1, yp1, t1), (xp2, yp2, tp2), . . . , (xpn, ypn, tn)}
and Tq={(xq1, yq1, t1), (xq2, yq2, t2), . . . , (xqn, yqn, tn)} with
(xq1, yq1, t1) equals to (xqs, yqs, t1) and (xqn, yqn, tn) equals to
(xqe, yqe, tn), if ∃ (xi, yi) ∈ Tp (i=1, 2, . . ., n), xi ∈ [xqs, xqe]
or yi ∈ [yqs, yqe], Tp s-overlaps with Tq, where s>0 is the
portion of Tp that s-overlaps with Tq.

S-overlap describes the spatial relationships between trajec-
tories, it will be employed in trajectory graph construction
in section 4 to reduce edges of a graph.

Attack Model Assumption
There are two important assumptions to declare before defin-
ing the attack models: firstly, the public spatio-temporal space
is accessible to any observers no matter he is an adversary or
not; secondly, the users which the attackers are trying to re-
identify is unknown to the adversary. Before our methods,
we assume the traces are already anonymized by replacing
the true identifier with a random and unique pseudonym, we
call this phase tentative anonymous. We found that after
tentative anonymous, threatens of privacy leakage still ex-
ist through following attacks:

• Linkage attack: Users may expose its whereabouts through
background information, such as a causal talk between
two people about one’s work place may expose the desti-
nation of his everyday trajectories. Suppose an adversary
knows a user Op will be at location Li at time ti through
background information linkage, while ti happens to be
a sample time points in Op’s trajectory in the published
dataset D*. The adversary tries to link this information
D* to re-identify the whole trajectory of Op. This kind
of attack is called linkage attack. In this scenario, we
assume background information happens to be at sample
time and all the background information is trusted.

• Observation attack: Suppose an adversary who stays in
one place or moving through a pre-defined movement strat-

egy to observe users, we assume that there is no noise dur-
ing the observation. When the adversary found Op appear-
ing, he observes Op for at least one sample period in or-
der to identify Op’s precise location at sample time. In the
worst case, if Op is the only person appearing at that place
at that time, the adversary can re-identify Op’s whole tra-
jectory history from the tentative anonymized dataset D*
with 100% confidence. If there are N users appearing in
one place at the same time, the re-identification possibil-
ity drops to 1/N if the adversary has no other observa-
tions or background information. This kind of attack is
called observation attack. It should be noted that adver-
saries in observation attack do not purely mean persons, it
also contains various data collectors, such as cameras in a
shopping mall, or monitors on roadside.

Problem Characterization
In order to withstand both attacks, we must adopt a more
strict privacy protection strategy rather than only removing
the true identifiers. Trajectory k-anonymity works with both
of the two attack models. For linkage attack, the linkage
of a location to a specific user will not help adversaries to
re-identify a user since the published trajectories are dis-
crete regions shared by k users, the same can be seen in
observation attack, even if the adversaries observe Op him-
self somewhere, Op still can not be re-identified since the
published trajectories are generalized to regions of location
samples. However, anonymizing k trajectories together may
cause serious information loss, so the key issue in trajec-
tory k-anonymity is how to find k trajectories that can be
anonymized together with minimum information loss. In our
proposed method, we try to formalize trajectory k-anonymity
to a graph partition problem, then design a greedy method to
form trajectory k-anonymity set.

Definition 5. (Trajectory k-anonymity). Given a moving
object database D, a published database D* is an anonymized
version of D. The resulting anonymization must meet the fol-
lowing requirements:

• Each trajectory in D* is anonymized with other k-1 trajec-
tories on all time samples;

• The published version D* should have minimum informa-
tion loss.

For both two attack models, the breach probability of trajec-
tory k-anonymity is under 1/k even if adversaries know how
many trajectories are anonymized together and their distri-
butions in each anonymized region.

PROPOSED SOLUTIONS
Our proposed method consists of three main phases: phase I,
pre-processing of trajectories to form equivalent classes with
the same time span; phase II, constructing trajectory graphs
for each equivalent class based on the notion of trajectory s-
overlap; phase III, partitioning trajectory graphs, connected
components of size k(or larger than k) are retained to form
trajectory anonymity sets. At last, each location sample on
trajectories are generalized to a region containing at least k



Notations Explanations
Op A moving object in our dataset.
Tp Trajectory of moving object Op.
k Users’ anonymity requirement.

TG(V, E) Trajectory graph with V represents
vertices and E represents edges.

EC The equivalent class.
ωi, j the weight of edge (vi, v j).
Vi A partition of TG with vertex num-

ber larger than k.
Di A partition of TG with vertex num-

ber less than k.
Tp.xs x coordinate of Tp’s start point.
Tp.xe x coordinate of Tp’s end point.

tht Threshold to recognize a stay.

Table 1. A list of notations

users. Table 1 shows a partial list of symbols used in the
following.

Pre-processing
In trajectory data pre-processing phase, three tasks should
be complemented: start/end points recognition; equivalent
class formation and trajectory synchronization.

A trajectory of a moving object may contain several long
stays during his way. For example, a person arrives at home
on someday’s afternoon and leaves home on next morning.
This long stay split the whole trajectory into two sperate
parts. So the start and end points of a trajectory should be
recognized. For a trajectory of a moving object Op, if a stay
in the trajectory lasts for a time longer than a given threshold
tht, it is regarded as the end point of the trajectory, while the
next triple is assigned as a start point of a new trajectory of
Op.

Another concern in pre-processing phase is that, trajectories
may begin or end at arbitrary time. However, trajectory k-
anonymity only works when trajectories are in the same time
span. In order to enforce large equivalent classes within the
same time span, we adopt a new strategy to form equivalent
classes. Trajectories with start and end time within a time
interval [tds1, tds2] and [tde1, tde2] respectively are assigned
into a same equivalent class. A more formal definition is
given in the following.

Definition 6. (Trajectory Equivalent Class). Trajectory equiv-
alent classes consist of trajectories within nearly the same
time span. Given two trajectories Tp and Tq, both of them are
assigned in a same equivalent class if and only if Tp.ts,Tq.ts ∈
[tds1, tds2] and Tp.te,Tq.te ∈ [tde1, tde2].

Start time and end time of trajectories in a same equivalent
class must happen in time intervals [tds1, tds2] and [tde1, tde2]
respectively according to the definition. For example, time
interval [tds1, tds2] can be set as [08:00:00, 08:10:00] and
[tde1, tde2] can be set as [09:00:00, 09:10:00], that is to say,
trajectories that start during [08:00:00, 08:10:00] and end

Algorithm 1: TrjGraphCons(EC)
Input: Trajectory equivalent class EC=T1,T2, . . . , Tn
Output: TG = (V, E)// Vertexes and edges of trajectory
graph TG;
1: E ← Φ; V ← T1;
2: Vle f t ← EC − V;
3: while (Vle f t is not empty) do
4: if Ti in Vle f t s-overlap with trajectories in V
5: for each trajectory T j s-overlap withTi do
6: ωi j ← distance(Ti, T j);
7: E ← (Ti,T j, ωi j);
8: V ← V + T j;
9: Vle f t ← Vle f t − Vi;
10: end for
11: else
12: V ← V + Ti;
13: Vle f t ← V − Ti;
14: end while
15: end

during [09:00:00, 09:10:00] of a same day can be assigned
into an equivalent class. Time intervals [tds1, tds2] and [tde1, tde2]
are set according to the characteristics of the dataset. If the
data is sparse, time intervals should be set broader and vice
versa.

Trajectories in the same equivalent class can then be syn-
chronized through inserting new location samples. We as-
sume that between two sample locations of a trajectory, the
object is moving along a straight line in a constant speed.
Given two trajectories Tp and Tq, if a sample location in Tp
has a timestamp ts which is not in Tq, then insert a new sam-
ple location [xs, ys] to Tq having the timestamp ts and [xs,
ys] is between two existing consequent locations.

After pre-processing, trajectories in equivalent classes are
synchronized trajectories within the same time span.

Trajectory Graph Construction
In this section, we first define trajectory graph, then we show
procedure of trajectory graph construction.

Definition 7. (Trajectory Graph). A trajectory graph TG =
(V, E) is a weighted undirected graph where vertices repre-
sent trajectories; an edge exists between two vertices Tp and
Tq if they s-overlap with each other with s>0; the weight of
the edge (Tp, Tq) is the trajectory distance between Tp and
Tq.

Algorithm 1 shows the procedure of trajectory graph con-
struction. The input of the algorithm is trajectory equivalent
class EC, while the output is a trajectory graph TG=(V , E).
At the beginning, the edges set E is empty, and the vertices
set V contains an arbitrary trajectory in EC, trajectories that
are not included by TG are put into Vle f t (line 1-2). Then
each trajectory in Vle f t is scanned to check if any trajectory s-
overlap with trajectories in V . If s-overlap happens, the dis-
tance of the overlapped trajectories is computed and stored
as weight of the edge, the vertices is then removed from Vle f t
and put into V(line 5-10); if s-overlap doesn’t happen, just
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Figure 1. (a) shows trajectories distribution, (b) is a trajectory graph based on (a), (c) is a partition of the graph with 3 trajectories contained in each
partition.

move the trajectory from Vle f t to V(line 11-13).

Trajectory graph is very likely to be an un-connected graph
with several connected components since some trajectories
may not s-overlap with others. If two trajectories do not
s-overlap, there is no edge between them, this can reduce
edges in a trajectory graph.

Trajectory Anonymization
We then turn trajectory k-anonymity problem to a graph par-
tition one in order to control the size of each anonymity set
and assign the outliers systematically. The most ideal situa-
tion is that each partition is a connected sub-graph of k ver-
tices with minimized cost, which satisfies the requirement of
trajectory k-anonymity. In this section, we show a running
example of graph partition-based trajectory k-anonymity, then
we formally define the problem as a k-node partition. After-
wards, an approximate approach is given to solve the prob-
lem.

A running example
A running example of the trajectory k-anonymity problem
is shown in figure 1. Figure 1.(a) shows the distribution of
ten trajectories in an equivalent class, where Ti.xs represents
the start point’s x-coordinate of trajectory Ti, while the Ti.xe
represents the end point’s x-coordinate, the same can be seen
in y-coordinate. A trajectory may have projections on both
x-coordinate and y-coordinate, for simplification, the exam-
ple shown in figure 1 considered projections in one direction
only. A trajectory graph in figure1.(b) is constructed accord-
ing to trajectories in figure1.(a), where vertices are trajecto-
ries, while weights of edges represents the distances between
two adjacent vertices. T10 is not connected to the component
formed by T1-T9, since it does not s-overlap with any tra-
jectory in that component. For a k-anonymity requirement
where k=3, TG is partitioned into four disjoint component
V1, V2, V3 and D1, as for partitions V1, V2 and V3, each of
them contains three nodes, and the sum of weights in each
component is minimized. D1 is dropped since it does not
satisfy the 3-anonymity requirement. V1, V2 and V3 are tra-
jectory k-anonymity sets with k=3.

k-node partition
Different from the k-way partition [8], our problem is de-
fined as a graph k-node partition problem. The definition is
shown in the following.

Definition 8. (k-node partition) Given a trajectory graph
TG, a k-node partition of TG is a disjoint connected compo-
nent V1, V2, . . . , Vl and D1, D2, . . ., Dh where:

• V1∪V2∪ . . .Vl∪D1∪D2∪. . .∪Dh=TG;

• for any i, k≤ |Vi| ≤ 2k-1 and |Di| <k;

• for any i and j, Vi ∩ V j=φ; Di ∩ D j=φ and Di ∩ V j=φ;

• Wi represents sum of edge weights belongs to a same par-
tition, CostTG=

∑l
i=1 Wi is minimized, while h is as small

as possible.

In k-node partition, V1, V2, . . . , Vl form the k anonymity sets
with each subset contains at least k vertices, while D1, D2,
. . ., Dh represent the partitions that will be dropped, since
each of them contains less than k vertices which fails to sat-
isfy the minimum privacy requirements. The fourth condi-
tion requires that the number of dropped partitions should
be as small as possible. We also analyzed the generation of
drop sets Di, which may include the following three reasons:
firstly, TG is an un-connected graph which may contain sev-
eral connected components, if a connected component has
less than k nodes, neither of its vertices can be partitioned
into any sub graph, so it should be a drop set; secondly, in
a connected component, the deletion of several k-node par-
tition may split TG into smaller components, maybe with
vertex number less than k; thirdly, if the vertex number n
satisfies (n mod k) , 0, it will also cause extra trajectories
left.

In order to minimize information loss, the k-node partition
requires that, the internal cost which means the sum of edge
weights belongs to a same partition is minimized and the
number of drop sets should be as small as possible. We then
prove k-node partition problem as NP-complete.

L 1. The k-node partition problem is NP-complete.

P. We prove the lemma by reducing our problem to
k-way partition problem which is well known NP-complete
[4]. An instance of a k-way partition problem is that given
a graph G = (V, E) with |V |=n, a partition of G is a set of
nonempty non-overlap component of G, V1, V2, . . . ,Vk, such
that: V1∪V2∪ . . .Vk=G and the external cost

∑n
i=1 ωi is min-

imized, where ωi represents the weight of edges whose inci-
dent vertices belong to different subsets.



Algorithm 2: Greedy k-node partition(TG, k)
Input: A trajectory graph TG, node number in a partition k;
Output: Two sets of partitions RS and DS;
1: for each (Gi ∈ TG and |Gi| > k) do// Gi is a connected
component in TG
2: C ← GreedyFindC(Gi, k);
3: TG = TG −C;
4: RS ← C;
5: DS ← components with node number less than k;
6: end for
7: if |Gi| < k
8: DS ← Gi;
9: endif

To reduce this problem to the k-node partition problem, we
observe that given a graph G = (V, E), the sum of weights
of all edges is fixed, the minimization of external cost means
the maximization of internal cost. Apparently, a constant N
and a series of number µi can be found, where ωi = (N − µi)
for all edges in TG, thus the definition in k-way partition:
maximization of internal cost

∑n
i=1(N − µi) turns to be min-

imization of
∑n

i=1 µi. We then turn µi to ωi in our settings,
which is exactly the description of our k-node partition prob-
lem. Moreover, k-node partition requires that each resulted
partition is connected while k-way partition does not. So the
k-node partition is even harder than the k-way partition. This
completes the proof.

Since the k-node partition problem is NP-complete, our goal
in is paper is try to find an approximate method to partition
the trajectory graph.

Algorithms
TG is a trajectory graph of n vertices, a k-node partition will
be achieved by Algorithm 2. For each connected compo-
nent in TG, the greedy method GreedyFindC is called until
TG has no connected components that is larger than k. In
GreedyFindC (Algorithm 3), we adopt a greedy strategy to
partition TG. In algorithm 2, two sets of connected compo-
nents are maintained, one is retain set (RS) and the other is
drop set (DS). Partitions with k vertices are kept in RS, while
partitions with less than k vertices are kept in DS.

How to greedily find a partition C in a connected component
of TG is represented in Algorithm 3. The main idea of the
algorithm is to greedily find the edges with minimum edge-
weight to form a partition unless the deletion causes genera-
tion of components with vertex number less than k. The al-
gorithm starts from an edge with minimum edge-weight, two
vertices affiliated with the edge formed a component C, the
vertices are pushed into a stack SC (line 2-3). All the edges
adjacent to C is put into X (line 4). While |C| < k, C spread
itself by finding the vertices which connect it with minimum
edge-weight, then including that vertex into C (line 5-11).
While |C| = k, we try to delete it from Gi. Before the dele-
tion, we need to check if the deletion causes generation of
connected components with vertex number less than k. If so,
redo the detection-deletion phase to interchange another ver-
tex to see if connected component in TG−C have more than

Algorithm 3: GreedyFindC (Gi, k)
Input: A connected component in Gi=(V,E), vertex number
of each partition k;
Output: a partition C with k nodes;
1: Token=0; X=Φ;
2: Find minimum weight edge e = (vs, ve), put vs, ve in C;
3: Push(vs, SC), Push(SC, ve);// SC is a stack
4: X ← edge x which is adjacent to node in C;
5: While |C| < k do
6: if (X = Φ) then
7: X ← edge x which is adjacent to node in C;
8: end if
9: Find minimum weight edge e=(vi, v j) in X;
10: delete e from X;
11: C ← v j; Push(SC, v j);
12: X ← edges adjacent to C and not covered by C;
13: if |C| = k and token=0 then
14: Gi ← delete-detection(Gi,C)
15: if exist GS i ∈ Gi and |GS i| < k then
16: C ← C-pop(SC);
17: delete connected edges in X;
18: if X contains only (vs, ve) then
19: token=1;
20: Delete nodes in C until it contains (vs, ve)
21: end if
22: else
23: Gi ← Gi −C;
24: return C;
25: end if
26: else if |C| ≥ k and token=1 then
27: Gi ← Gi −C;
28: return C ;
29: end if
30: end while

k vertices (line 13-17). If all the interchanges cannot work,
C goes back to its original choice by deleting the vertices of
C (line 18-21), and do the while loop again. At last, C is
returned and deleted from Gi.

Each partition in RS is a k-anonymity set of trajectories and
partitions in DS are dropped. At last, D∗ is published with
each trajectory anonymized with other k-1 trajectories.

Measure of Privacy and Information Loss
The Greedy k-node partition algorithm achieves trajectory
k-anonymity based on graph partition, so the breach proba-
bility is under 1/k even if the adversary knows the number
of k and locations of each moving object that anonymized
together. If the adversaries have no knowledge about the
privacy model, the breach probability drops to 1/area, where
area represents the area size of the generalized region.

Here we measure information loss by the sum of area size of
anonymized region, while the number of dropped trajecto-
ries is also considered in this measure. The computation of
information loss is shown in the following formula.



Dataset |D| |Dec| MaxNo MinNo Ratio
TRUCKS 5587 154 340 1 32.96%
OLDEN. 26471 132 388 72 13.31%

Table 2. Datasets used in experiments

In f oLoss =

l∑

i=1

m∑

j=1

Area(x j, y j, t j)
MaxArea

+

h∑

i=1

|Ti|

Information loss are mainly caused for two reasons: first,
generalization of a location to a region makes the data utility
shrinks; second, the deletion of trajectories makes the utility
of a data item totally lost. In the formula, l represents the
number of partitions with k or more than k vertices, while h
represents the number of partitions with less than k vertices.
Area(x j, y j, t j) means the area size of generalized regions of
location (x j, y j) at time t j, MaxArea means the area size of
the whole space. If a trajectory is deleted, each location on
the trajectory is lost, meaning that Area(x j, y j, t j) equals to
MaxArea, so the total shrink of utility of trajectory Ti turns
to be |Ti|, the number of location samples of trajectory Ti.

EXPERIMENTS
In this section we report the empirical evaluation of our pro-
posed method. The evaluations on both real-word dataset
and the synthetic one are reported.

Experimental Data
Both real-world and synthetic trajectory dataset are used in
our evaluation. The real-world dataset, called TRUCKS [5]
henceforth, contains trajectories of 50 trucks delivering con-
crete to several construction places around Athens metropoli-
tan area in Greece for 33 distinct days. The second dataset,
called OLDENBURG henceforth has been generated using
Brinkhoff’s generator [2]. OLDENBURG contains 10,000
moving objects which represents one day movement over
the city Oldenburg in Germany. The generator parameters
are 150 timestamps and speed 50.

In table 2, we report the characteristics and some results af-
ter pre-processing of both datasets. |D| represents the num-
ber of trajectories in each dataset after pre-processing; |Dec|
is the number of equivalent classes in each dataset; MaxNo
and MinNo present the maximum and minimum population
of equivalent classes respectively; while Ratio represents the
average ratio of s-overlap between trajectories in each equiv-
alent class. It can be seen that, TRUCKS is much sparser
than OLDENBURG, that means TRUCKS contains smaller
number of trajectories distributed over a large spatial space.

Data Utility
We next compare greedy k-node partition algorithm on both
real-world and synthetic datasets in terms of data utility. In
the following we discuss the measure that we adopt.

Information loss: The information loss measure is defined
in section 4. We measure information loss on both OLD-
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Figure 2. Information loss evaluation
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Figure 3. Success ratio evaluation

ENBURG and TRUCKS. The results are shown in figure 2.
Since TRUCKS is much sparser than OLDENBURG, we set
different k values for two datasets. Information loss grows as
the privacy parameter k grows, that is because larger k value
causes larger area size of the generalized region. In another
aspect, the reduction of success ratio as k grows also cases
more information loss. It can be seen that, the growth of in-
formation loss is relatively stable, meaning that increasing
of privacy level won’t cause sharply increase of information
loss.

Success Ratio: The success ratio measures the portion of
successfully anonymized trajectories. We measure success
ratio on both OLDENBURG and TRUCKS, the results are
shown in figure 3. It can be seen that, success ratio of OLD-
ENBURG is above 65%, although success ratio drops as
k grows. For TRUCKS, success ratio is above 60%, less
than that on OLDENBURG, that is because TRUCKS is
sparser than OLDENBURG, making the partition of k ver-
tices sometimes hard to achieve.
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Figure 4. Run time evaluation



Efficiency
The greedy k-node partition algorithm is implemented in
JAVA, and all experiments are performed on a Intel Core 2
Quad 2.66G processor with 4GB RAM over a windows 7
platform.

The algorithm requires 13,897 ms in average to pre-process
OLDENBURG, and 194,732 ms to construct 132 trajectory
graphs for all the equivalent classes on OLDENBURG. For
TRUCKS, pre-processing cost 10,072 ms and a total 5455
ms to build 154 trajectory graphs. Running time of greedy
k-node partition are shown in figure 4. Since TRUCKS is
much smaller than OLDENBURG in size, greedy k-node
partition runs much faster on TRUCKS than on OLDEN-
BURG. Running time on both datasets grows as parameter k
grows, that is because growth of k may cause more cost on
deletion-detection phase.

CONCLUSIONS
Collection and publication of location based service users’
everyday trajectories poses serious problems to users’ per-
sonal privacy. In this paper, we analyze two kinds of at-
tacks on tentative anonymized dataset, then we formalize
trajectory k-anonymity problem into a k-node graph partition
problem. We prove the k-node partition is NP-complete. Af-
terwards a greedy method to achieve k-node partition is pro-
posed in this paper to get an approximate result. At last, a se-
ries of experimental evaluations are presented. Our proposed
method reduces information loss while providing high pri-
vacy guarantees. In the future, we will concentrate on how
to optimize the k-node partition methods as well as adopting
other trajectory distance measures.
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