
Future Generation Computer Systems 18 (2002) 1101–1112

Distributed data mining on the grid

Mario Cannataroa, Domenico Taliaa,b,∗, Paolo Trunfioa,b
a ICAR-CNR, Via P. Bucci, Cubo 41-C, 87036 Rende (CS), Italy

b DEIS, Università della Calabria, Via P. Bucci, Cubo 41-C, 87036 Rende (CS), Italy

Abstract

In many industrial, scientific and commercial applications, it is often necessary to analyze large data sets, maintained over
geographically distributed sites, by using the computational power of distributed and parallel systems. The grid can play a
significant role in providing an effective computational support for knowledge discovery applications. We describe a software
architecture for geographically distributed high-performance knowledge discovery applications calledKnowledge Grid,
which is designed on top of computational grid mechanisms, provided by grid environments such as Globus. TheKnowledge
Grid uses the basic grid services such as communication, authentication, information, and resource management to build
more specific parallel and distributed knowledge discovery tools and services. The paper discusses how theKnowledge
Grid can be used to implement distributed data mining services.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Knowledge discovery; Distributed data mining; Grid services

1. Introduction

In many scientific and business areas, massive data
collections of terabyte and petabyte scale need to be
used and analyzed. These huge amounts of data rep-
resent a critical resource in several application areas.
Moreover, in many cases these data sets must be shared
by large communities of users that pool their resources
from different sites of a single organization or from a
large number of institutions.

Grids are geographically distributed platforms for
computation, composed of a set of heterogeneous
machines accessible to their users via a single in-
terface. Grid computing has been proposed as an
important computational model, distinguished from

∗ Corresponding author. Present address: DEIS, Università della
Calabria, Via P. Bucci, Cubo 41-C, 87036 Rende (CS), Italy.
Tel.: +39-09-8449-4726; fax:+39-09-8483-9054.
E-mail addresses:cannataro@isi.cs.cnr.it (M. Cannataro),
talia@deis.unical.it (D. Talia), trunfio@si.deis.unical.it (P. Trunfio).

conventional distributed computing by its focus on
large-scale resource sharing, innovative applications,
and, in some cases, high-performance orientation.
The main original application area was advanced sci-
ence and engineering. Recently, grid computing is
emerging as an effective paradigm for coordinated
resource sharing and problem solving in dynamic,
multi-institutional virtual organizations operating in
the industry and business arena[1]. Thus, today grids
can be used as effective infrastructures for distributed
high-performance computing and data processing.

Together with the grid shift towards industry and
business applications, a parallel shift toward the imple-
mentation of data grids has been registered. Data grids
are designed in order to allow large data sets to be sto-
red in repositories and moved about with the same ease
that small files can be moved. They represent an en-
hancement of computational grids, driven by the need
to handle large data sets without constant, repeated
authentication, aiming to support the implementation

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(02)00088-2



1102 M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112

of distributed data-intensive applications. Data grids
seem to be present largely motivated by the data han-
dling needs of next-generation particle accelerators.
Significant examples are the EU data grid[2], the par-
ticle physics data grid[3] and the Japanese grid data
farm [4] projects. In particular, the Globus data grid
project[5] is currently engaged in defining and devel-
oping a persistent data grid middleware that offers:

• A high-performance, secure, robust data transfer
mechanism.

• A set of tools for creating and manipulating replicas
of large data sets.

• A mechanism for maintaining a catalog of data set
replicas.

Data grid middleware is crucial for the management
of data on grids, however in many scientific and busi-
ness areas is also vital to have tools and environments
that support the process of analysis, inference and
discovery over the available data. These environments
support scientists and engineers in the implementation
and use of grid-based problem solving environments
(PSEs) for modeling, simulation and analysis of sci-
entific experiments. The same occurs for executives
that ask analysts to mine very large distributed data
sets to discovery corporate knowledge to be used in
decision making.

On the basis of these motivations, the evolution of
data grids are represented by knowledge grids that of-
fer high level tools and techniques for the distributed
mining and extraction of knowledge from data repos-
itories available on the grid. The development of such
an infrastructure is the main goal of our research ac-
tivities that are focused on the design and implementa-
tion of an environment for geographically distributed
high-performance knowledge discovery applications
calledKnowledge Grid. TheKnowledge Grid can
be used to perform data mining on very large data
sets available over grids, to make scientific discov-
eries, improve industrial processes and organization
models, and uncover business valuable information.

The outline of the paper is as follows.Section 2
describes theKnowledge Grid general architecture
and the features of the main components.Section 3
discusses a meta-learning application on grids devel-
oped on theKnowledge Grid. Section 4outlines
the implementation status of the system andSection 5
concludes the paper.

2. The Knowledge Grid architecture

The Knowledge Grid architecture is defined on
top of grid toolkits and services, i.e. it uses basic
grid services to build specific knowledge extraction
services. Following theIntegrated Grid Architecture
approach[6], these services can be developed in
different ways using the available grid toolkits and
services. The current implementation is based on the
Globus toolkit [7]. As in Globus, theKnowledge
Grid offers global services based on the cooperation
and combination of local services. We designed the
Knowledge Grid architecture so that more special-
ized data mining tools are compatible with lower-level
grid mechanisms and also with theData Gridservices.
This approach benefits from “standard” grid services
that are more and more utilized and offers an open
parallel and distributed knowledge discovery architec-
ture that can be configured on top of grid middleware
in a simple way.

2.1. KNOWLEDGEGRID services

The Knowledge Grid services are organized in
two hierarchic levels:

• the Core K-grid layer;
• the High level K-grid layer.

The former refers to services directly implemented
on the top of generic grid services, the latter is used to
describe, develop and execute distributed knowledge
discovery computations over theKnowledge Grid.
The Knowledge Grid layers are depicted inFig. 1.
The figure shows layers as implemented on the top
of Globus services; moreover, theKnowledge Grid
data and metadata repositories are also shown. In the
following the termK-grid nodewill denote a Globus
node implementing theKnowledge Grid services.

2.1.1. Core K-grid layer
The Core K-grid layer offers the basic services for

the definition, composition and execution of a dis-
tributed knowledge discovery computation over the
grid. Its main goals are the management of all metadata
describing features of data sources, third party data
mining tools, data management, and data visualization
tools and algorithms. Moreover, this layer coordi-
nates the application execution by attempting to fulfill



M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112 1103

Fig. 1. TheKnowledge Grid architecture.

the application requirements and the available grid
resources. This layer comprises two main services.

2.1.1.1. KNOWLEDGE directory service (KDS). This
service extends the basic Globus MDS service and it
is responsible for maintaining a description of all the
data and tools used in theKnowledge Grid. The
metadata managed by the KDS regard the following
kind of objects:

• Repositories of data to be mined, such as databases,
plain files, eXtensible Markup Language (XML)
documents and other structured or unstructured data
(data sources).

• Tools and algorithms used to extract, filter and ma-
nipulate data (data management tools).

• Tools and algorithms used to analyze (mine) data,
that is data analysis tools available on the grid.

• Tools and algorithms used to visualize, store and
manipulate mining results, that is data visualization
tools.

• Distributed knowledge discovery execution plans.
An execution plan is an abstract description of a
Knowledge Grid application, that is a graph de-
scribing the interaction and data flow among data
sources, DM tools, visualization tools, and result
storing.

• Knowledge obtained as a result of the mining pro-
cess, i.e. learned models and discovered patterns.

The metadata information are represented by XML
documents and are stored in aKnowledge Metadata
Repository(KMR). They describe features of different
data sources that can be mined, as location, format,
availability, available views and level of aggregation
of data.

Whereas it could be infeasible to maintain the data
to be mined in an ad hoc repository, it could be useful
to maintain a repository of the discovered knowledge.
These information (see below) is stored in aKnowl-
edge Base Repository(KBR), but the metadata de-
scribing them are managed by the KDS. The KDS is
then used not only to search and access raw data, but
also to find previously discovered knowledge that can
be used to compare the output of a given mining com-
putation when varying data, or to apply data mining
tools in an incremental way.

Data management, analysis and visualization tools
are usually pre-existent to theKnowledge Grid (i.e.
they resides over file systems or code libraries). How-
ever, to make them available to knowledge discov-
ery computations, relevant metadata have to be stored
in the KMR. At the same time, metadata are vital
to allow the use of data sources. Another important



1104 M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112

repository is theKnowledge Execution Plan Reposi-
tory (KEPR) storing the execution plans of data min-
ing processes.

2.1.1.2. Resource allocation and execution manage-
ment service (RAEMS).These services are used to
find the best mapping between an execution plan and
available resources, with the goal of satisfying the
application requirements (computing power, storage,
memory, database, network bandwidth and latency)
and grid constraints. The mapping has to be effectively
obtained (co-)allocating resources. After the execution
plan activation, this layer manages and coordinates the
application execution. Other than using the KDS and
the Globus MDS services, this layer is directly based
on the Globus GRAM services. Resource requests of
each single data mining program are expressed using
theResource Specification Language(RSL). The anal-
ysis and processing of the execution plan will gener-
ate global resource requests that in turn are translated
into local RSL requests for local GRAMs.

2.1.2. High level K-grid layer
The High level K-grid layer includes services

used to compose, validate, and execute a parallel
and distributed knowledge discovery computation.
Moreover, the layer offers services to store and ana-
lyze the discovered knowledge. Main services are as
follows.

2.1.2.1. Data access service (DAS).The DAS is re-
sponsible for the search, selection (data search ser-
vices), extraction, transformation and delivery (data
extraction services) of data to be mined. The search
and selection services are based on the core KDS ser-
vice. On the basis of the user requirements and con-
straints, the DAS automates (or assists the user in) the
searching and finding of data sources to be analyzed
by the DM tools.

The extraction, transformation and delivery of data
to be mined are based on the Globus GASS services
and also use the KDS. When useful data are found,
data mining tools can require some transformation,
whereas the user requirements or security constraints
can require some data filtering before extraction.
These operations can be usually done after the DM
tools selection. The extraction functions can be em-
bedded in the data mining programs or, more use-

fully, can be coded and stored in a utility repository,
accessible by the KDS.

2.1.2.2. Tools and algorithms access service (TAAS).
This service is responsible for the search, selection,
downloading of data mining tools and algorithms. As
before, the metadata regarding their availability, lo-
cation, and configuration are stored in the KMR and
managed by the KDS, whereas the tools and algo-
rithms are stored in the local storage facility of each
K-grid node. A node wishing to “export” data min-
ing tools to other users has to “publish” them using
the KDS services, which store the metadata in the lo-
cal portion of the KMR. Some relevant metadata are
parameters, format of input/output data, type of data
mining algorithm implemented, resource requirements
and constraints, and so on.

2.1.2.3. Execution plan management service (EPMS).
An execution plan is represented by a graph describing
the interaction and data flows between data sources,
extraction tools, DM tools, visualization tools, and
storing of knowledge results in the KBR. In simplest
cases, a user can directly describe the execution plan,
using a visual composition tool where the programs
are connected to the data sources. However, due to the
variety of results produced by the DAS and TAAS,
different execution plans can be produced, in terms
of data and tools location, strategies to move or stage
intermediate results and so on. Thus, the EPMS is a
semi-automatic tool that takes data and programs se-
lected by the user, and generates a set of different,
possible execution plans that meet user, data and al-
gorithms requirements and constraints.

Execution plans are stored in the KEPR to allow for
the implementation of iterative knowledge discovery
processes, e.g. periodical analysis of the same data
sources that vary during time. More simply, the same
execution plan can be used to analyze different sets
of data. Furthermore, different execution plans can be
used to analyze in parallel the same set of data, and
to compare the results using different point of views
(e.g., performance, accuracy).

2.1.2.4. Results presentation service (RPS).Result
visualization is a significant step in the data mining
process that can help users in the model interpreta-
tion. This service specifies how to generate, present



M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112 1105

and visualize the knowledge models extracted (e.g.,
association rules, clustering models, classifications),
and offers the API to store them in different formats in
the KBR. The result metadata are stored in the KMR
to be managed by the KDS. The KDS is used not
only to search and access raw data, but also to find
pre-discovered knowledge that can be used to compare
the output of a givenKnowledge Grid computation
with different data sets, or to apply data mining tools
in an incremental way.

3. Distributed meta-learning on grids

After the general description of theKnowledge
Grid architecture, here we describe how it can be
exploited through a practical example of distributed
meta-learning process.

Several classes of knowledge discovery applications
over the grid can be taken into account, both in the
parallel data mining (PDM) and distributed data min-
ing (DDM) domains. PDM applications could get a
great improvement from a computational grid setting,
scaling up the speed of the DM process over grid
nodes. On the other hand, DDM systems, offering
techniques for the analysis of data that are stored on
remote sites of a computer network, could mainly ben-
efit of grid environments both for accessing distributed
domain-specific sources of data and by distributing the
KDD process over the computational grid resources.

3.1. A meta-learning scenario

In the following we discuss a simple example of
meta-learning process over theKnowledge Grid. It
is not representative of every possible scenarios, how-
ever it can be useful to show how the execution of
a significant DDM application can benefit from the
Knowledge Grid services. Meta-learning aims to
generate a number of independent classifiers by ap-
plying learning programs to a collection of distributed
data sets in parallel. The classifiers computed by learn-
ing programs are then collected and combined to ob-
tain a global classifier[8].

Fig. 2 shows a distributed meta-learning scenario,
in which a global classifierGC is obtained onNodeZ
starting from the original data setDSstored onNodeA.
This process can be described as follows:

Step 1: onNodeA, training setsTR1, . . . , TRn, test-
ing set TS and validation setVS are ex-
tracted fromDS by the partitionerP. Then
TR1, . . . , TRn, TS and VS are respectively
moved from NodeA to Node1, . . . , Noden,
and toNodeZ.

Step 2: on eachNodei (i = 1, . . . , n) the classifier
Ci is trained fromTRi by the learnerLi . Then
eachCi is moved fromNodei to NodeZ.

Step 3: onNodeZ, theC1, . . . , Cn classifiers are com-
bined and tested onTSand validated onVSby
the combiner/testerCT to produce the global
classifierGC.

If data of interest are already distributed over dif-
ferent nodes, step 1 is omitted and the meta-learning
process starts from step 2, in whichTRi are the por-
tions of data stored on variousNodei , andVSandTS
are extracted fromTSi across distributed nodes.

The meta-learning scenario described above could
be applied to the following example. Let us assume
that:

(i) the data setDS is stored onNodeA(NodeAis a
K-grid node);

(ii) the necessary tools for meta-learning process, that
is the partitionerP, the learnerL (we assumeL1 =
L2 = · · · = Ln = L) and the combiner/testerCT,
are available as multi-platform executables on a
NodeS(NodeSis a K-grid node).

We suppose that a grid user (GU) needs to per-
form the classification of data inDS by means of
meta-learning tools available onNodeS. This task
could be performed over theKnowledge Grid as
described inFig. 3:

Step 1: the GU starts the search of computational
resources for executing the meta-learning
task from his/her K-grid node (NodeU). The
search, performed by means of the KDS, lo-
cates the computational resources needed to
execute the learning process, respectively the
HC1 and HC2 Globus nodes (i.e. homoge-
neous clusters which provide then computing
elements on which learning processes will be
performed in parallel), and theNodeZGlobus
node, on which the combining process will
be executed. The search process compares
the meta-information about theL and CT



1106
M

.
C

a
n

n
a

ta
ro

e
t

a
l./F

u
tu

re
G

e
n

e
ra

tio
n

C
o

m
p

u
te

r
S

yste
m

s
1

8
(2

0
0

2
)

1
1

0
1

–
1

1
1

2



M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112 1107

Fig. 3. Meta-learning task over the grid.

programs (i.e., required memory, libraries,
etc.) against the features of theHCs and
NodeZnodes.

Step 2: the GU builds an execution plan for the
meta-learning task, specifying strategies for
tools and data movement, and for algorithm
execution. The execution plan is built by us-
ing the EPMS and is stored into the local
KEPR.

Step 3: the GU starts the application by submitting the
execution plan to the RAEMS. The following
steps are then executed:

a. FromNodeS, P is staged onNodeA, L (as
Li) is staged on each cluster node, andCT is
staged onNodeZ. The staging process (i.e.
program movement and eventual installa-
tion on a target node) is executed by using
the TAAS service onNodeS.

b. On NodeA, P extracts data subsets
TR1, . . . , TRn, TSandVSand move them,

respectively, to the computing elements of
the two clustersHC1 andHC2, and to the
NodeZ. These data extraction and move-
ment operations are executed by using the
DAS service onNodeA.

c. On each computing element of the cluster
nodesHC1 andHC2, the learning programs
Li generate the partial classifiersCi , which
are then moved onNodeZ. TheCi are partial
results of the data mining process, so they
are moved to theNodeZby means of the
DAS service.

d. On NodeZthe combining and testing pro-
cesses performed byCTgenerate the global
classifierGC, which is moved to the KBR
of the NodeU. This task is executed by the
RPS service onNodeU.

Step 4: the GU visualizes and evaluates the result of
computation (theGCstored in the local KBR)
by means of the RPS tools.



1108 M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112

3.2. Task building and execution process

The task building and execution process is shown
in Fig. 4.

The Task Composer(TC), an internal EPMS mod-
ule, assists the user in building the execution plan. It
presents to the user a set of graphic objects represent-
ing resources (e.g., datasets, data mining tools, com-
putational nodes), which metadata were previously
stored into theTask Resource Cache(TRC). These
metadata, containing information about resources
selected to perform the computation, are extracted

Fig. 4. Task building and execution process.

from local or remote KMRs as result of KDS queries.
Therefore, theTC allows the user to compose these
objects using common visual facilities (e.g., drag and
drop), to form a graphic representation of the appli-
cation data flow. That composition is submitted to
the Execution Plan Generator(EPG), another inter-
nal EPMS module, which validates it by verifying its
logical consistency, and hence generates its XML rep-
resentation, that is the execution plan of computation.

As an example, the execution plan inFig. 5 de-
scribes the KDD computation at a high level, not con-
taining physical information about resources (which



M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112 1109

Fig. 5. A fragment of the execution plan for the meta-learning example.

are identified by metadata references), nor about sta-
tus and current availability of such resources.

In fact, specific information about the involved
resources will be included in the next phase, when
the execution plan is translated into the particular
broker language.Fig. 5 shows a fragment of the exe-
cution plan for the meta-learning example described
above. The execution plan gives a list of tasks and
task links, which are specified using respectively the
XML tags Task and TaskLink. The label at-
tribute for Task element identifies each basic task

in the execution plan, and is used in linking various
basic tasks to form the overall task flow. EachTask
element contains a task-specific sub-element, which
indicates the parameters of the particular represented
task. For instance, the task identified by theTR11
label contains aDataTransfer element, indicating
that it is a data transfer task. TheDataTransfer
element specifiesSource and Destination of
the data transfer. Thehref attributes of such ele-
ments specify the location of metadata about source
and destination objects. In this example, metadata



1110 M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112

about source of data transfer in theTR11 task are
provided by theTR1 A.xml file, whereas metadata
about destination are provided by theTR1 1.xml
file. The TR1 A.xml document provides metadata
about the training setTR1 when stored onNodeA,
whereas theTR1 1.xml document provides meta-
data aboutTR1 when stored, after data transfer, on
Node1. Both TR1 A.xml andTR1 1.xml files are
stored in the local TRC. TheTaskLink elements
represent the relations among the tasks of execution
plan. For instance, the firstTaskLink specified in
Fig. 5 indicates that the task flow proceeds from the
taskTR11 to the taskL11, as specified by itsfrom
andto attributes.

The Broker Adapter(BA) (see Fig. 4) maps the
generic execution plan, represented by an XML doc-
ument, into a specific Globus RSL script, which can
be directly executed by means of theglobusrun
program. The mapping process performed by the BA
is based on theResource Monitor(RM) tool, which
provides physical information of resources referenced
in the execution plan. Static information (e.g., CPU
speed, memory size, etc.) is provided by the RM di-
rectly accessing metadata stored in the TRC (a local
cache in the KDS), while dynamic information (e.g.,
current CPU load and network latency) is provided by
means of specific testing tools, for instance based on
standard Unix or TCP/IP utilities.

4. Knowledge Grid implementation

As discussed inSection 2, the Knowledge Grid
architecture is composed of two hierarchic layers: the
Core K-grid and theHigh level K-grid layers. To de-
ploy K-grid applicationswe are implementing the for-
mer layer, on top of the Globus services. In particular,
we are currently implementing the KDS, the RAEMS,
and some basic tools allowing a user for publishing
metadata about theKnowledge Grid objects (data
sources and data mining algorithms). Moreover, we are
implementing the basicHigh level K-gridtools useful
to compose and start aKnowledge Grid application.

4.1. KNOWLEDGEGRID metadata management

Each node of the grid declares the availability of
K-grid objects (resources, components and services)

by publishing specific entries into the Directory Infor-
mation Tree (DIT) maintained by a LDAP server such
as the Grid Resource Information Service (GRIS) pro-
vided by Globus Toolkit.

For instance, by publishing the following LDAP
entry:

dn: kgr=KMR, hn=NodeS.domain. . . ,
dc=domain,. . .

objectclass: KGridRepository
kgr: KMR
description: Knowledge Metadata
Repository

hn: NodeS.domain. . .

storedir:/opt/kgrid/KMR
. . .

The K-grid nodeNodeS declares, according to the
definition of the objectclassKGridRepository,
the availability of a KMR which stores metadata
about K-grid resources, such as data sources and data
mining tools, in the file system directory specified by
thestoredir attribute provided by that node.

Metadata are implemented by XML documents, on
the basis of a set of specified schemas, and provide
specific information for the discovery and the use of
resources. For instance, metadata about data mining
tools provide information about the implemented task
(e.g., classification, clustering, regression), complex-
ity of the used algorithm, location of executables and
manuals, syntax for running the program, format of
input data and results, etc.

4.2. Knowledge directory services

The discovery of interesting resources over the
Knowledge Grid is accomplished in two steps:
the metadata repositories are first located, searching
LDAP directories for K-grid entries. Then the relevant
XML metadata are downloaded from the specified
KMR and stored in the local KMR or directly in
the local file system. The collected XML metadata
are then analyzed to find more specific information.
We implemented the basic tools to find, retrieve and
select metadata about K-grid resources (e.g., data
sources, data mining software), on the basis of dif-
ferent search parameters and selection filters. The
useful metadata (i.e., those satisfying the searching



M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112 1111

and filtering criteria) are then stored (seeFig. 4) in
the TRC, a local cache which contains information
about resources (nodes, data sources and algorithms)
selected to perform a computation.

4.3. Development of a KNOWLEDGEGRID

application

When the discovery process is completed success-
fully, the information stored into the TRC is used
to build graphic objects representing the resources
needed to perform the applications that are then com-
bined, in a graphic way, to compose aKnowledge
Grid application. In particular, we are implementing,
the Task Composer and the Execution Plan Gener-
ator, two Java programs that respectively implement
the composition of an application and the generation
of a suitable execution plan. The execution plans are
modeled as graphs, where nodes represent basic tasks
such as data movements, data filtering and program
execution, and arcs represent the link among tasks.
The produced execution plan is stored as a XML doc-
ument (seeFig. 4) into the KEPR repository for a
future use.

4.4. Resource allocation and execution
management

This component of the Core K-grid layer is re-
sponsible to start and manage the execution of a
Knowledge Grid application. Currently, we imple-
mented the Broker Adapter (seeFig. 4) that maps
the execution plan, represented by an XML docu-
ment, into a specific Globus RSL script, which can be
directly executed by means of theglobusrun pro-
gram. In this way theKnowledge Grid application
can be started as a Globus application by using its
basic allocation services. The RAEM module will be
completed by implementing dynamic monitoring and
management functions for the submitted applications.

In summary, we implemented the basicKnowledge
Grid services allowing the discovery of useful data
sources and data mining tools, their graphic compo-
sition to form aKnowledge Grid application, the
modeling of such application by means of an abstract
execution plan and distributed execution of such ap-
plication by using the dynamic information and the
allocation services provided by Globus.

5. Conclusion and future work

The Grid infrastructure is growing up very quickly
and is going to be more and more complete and
complex both in the number of tools and in the
variety of supported applications. Along this di-
rection the Grid services are shifting from generic
computation-oriented services to high level informa-
tion management and knowledge discovery services.
The Knowledge Grid system we discussed here is
a significant component for devising and providing
those services. It integrates and completes the data
grid services by supporting distributed data analysis
and knowledge discovery and management services
that will enlarge the application scenario and the
community of grid computing users[9].

Besides completing theKnowledge Grid imple-
mentation, we are designing a distributed tool, based
on the JXTA peer-to-peer technology. JXTA technol-
ogy is a set of open, generalized peer-to-peer proto-
cols that allow any connected device on a network to
communicate and collaborate in a peer-to-peer manner
[10,11]. That Knowledge Grid discovery tool, will
be based on the cooperation of mobile agents com-
municating each ones, in a decentralized manner, by
using the peer-to-peer JXTA technology. Whenever a
possibly useful resource for aKnowledge Grid com-
putation is added to the Grid, the mobile agents will
broadcast this information to the other agents, that in
turn will update the local KMRs of each K-grid node.

Acknowledgements

This work has been partially funded by the CNR
Agenzia 2000 project “GRIGLIE COMPUTAZION-
ALI E APPLICAZIONI”.

References

[1] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid:
enabling scalable virtual organizations, Intl. J. Supercomputer
Appl. 15 (3) (2001).

[2] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger,
K. Stockinger, Data management in an international data
grid project, in: Proceedings of the IEEE/ACM International
Workshop on Grid Computing Grid’2000, LNCS, Vol. 1971,
Springer, Berlin, December 2000, pp. 77–90.



1112 M. Cannataro et al. / Future Generation Computer Systems 18 (2002) 1101–1112

[3] P. Avery, I. Foster, GriPhyN Project Description, 2001.
Available athttp://www.griphyn.org/info/index.html.

[4] Y. Morita, et al., Grid data farm for atlas simulation data
challenges, in: Proceedings of the International Conference
on Computing of High Energy and Nuclear Physics, 2001,
pp. 699–701.

[5] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S.
Tuecke, The data grid: towards an architecture for the
distributed management and analysis of large scientific
datasets, J. Network Comput. Appl. 23 (2001) 187–200.

[6] I. Foster, Building the grid: an integrated services and toolkit
architecture for next generation networked applications,
Technical Report, 2000. Available athttp://www.gridforum.
org/building the grid.htm.

[7] I. Foster, C. Kesselman, Globus: a metacomputing infra-
structure toolkit, Int. J. Supercomputing Appl. 11 (1997) 115–
128.

[8] A.L. Prodromidis, P.K. Chan, S.J. Stolfo, Meta-learning in
distributed data mining systems: issues and approaches, in:
H. Kargupta, P. Chan (Eds.), Advances in Distributed and
Parallel Knowledge Discovery, AAAI Press/MIT Press, 2000,
pp. 81–87.

[9] F. Berman, From TeraGrid to knowledge grid, Commun. ACM
44 (11) (2001) 27–28.

[10] L. Gong, JXTA: a network programming environment, IEEE
Int. Comput. 5 (3) (2001) 88–95.

[11] http://www.jxta.org/.

Mario Cannataro is a Senior Researcher
at the ICAR-CNR, Institute of the Italian
National Research Council, and he is a
lecturer in Computer Science at University
of Calabria. He received his Laurea de-
gree cum Laude in Computing Engineer-
ing from the University of Calabria and
in 1986 he was awarded a fellowship for
2 years at CRAI. He is working in the
area of parallel processing and computer

networks since 1988. His current research interests are in grid
and cluster computing, adaptive Web systems, compression and
synthesis of semi-structured data. He is a member of the ACM
and IEEE Computer Society.

Domenico Talia is a Professor of Com-
puter Science at the Faculty of Engineering
of the University of Calabria, Italy. Talia
received the Laurea degree in Physics at
University of Calabria, from 1985 to 1996
he was a Researcher at CRAI (Consortium
for Research and Applications of Infor-
matics) and from 1997 to 2001, he was a
Senior Researcher at the ISI-CNR, Insti-
tute of System Analysis and Information

Technology of the Italian National Research Council. His main
research interests include parallel computing, parallel data mining,
parallel programming languages, cellular automata, computational
science, and grid computing. Talia is a member of the Editorial
Boards of the IEEE Computer Society Press, the Future Genera-
tion Computer Systems journal, the Parallel and Distributed Prac-
tices journal, and the Information journal. He is also a member of
the Advisory Board of Euro-Par and he served as Distinguished
Speaker in the IEEE Computer Society Distinguished Visitors Pro-
gram. He published three books and more than 110 papers in
international journals and conference proceedings. He is member
of the ACM and the IEEE Computer Society.

Paolo Trunfio is a PhD student in Com-
puter Engineering at the University of Cal-
abria, Italy. Since 2001 he collaborates
with the Institute of System Analysis and
Information Technology of the Italian Na-
tional Research Council in the area of grid
computing. His current research interests
include parallel and distributed computing,
and data mining.

http://www.griphyn.org/info/index.html
http://www.gridforum.org/building_the_grid.htm
http://www.gridforum.org/building_the_grid.htm
http://www.jxta.org/

	Distributed data mining on the grid
	Introduction
	The Knowledge Grid architecture
	Knowledge Grid services
	Core K-grid layer
	Knowledge directory service (KDS)
	Resource allocation and execution management service (RAEMS)

	High level K-grid layer
	Data access service (DAS)
	Tools and algorithms access service (TAAS)
	Execution plan management service (EPMS)
	Results presentation service (RPS)



	Distributed meta-learning on grids
	A meta-learning scenario
	Task building and execution process

	Knowledge Grid implementation
	Knowledge Grid metadata management
	Knowledge directory services
	Development of a Knowledge Grid application
	Resource allocation and execution management

	Conclusion and future work
	Acknowledgements
	References


