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Abstract

Let M be a right R-module. A right R-module N is called pseudo-
M -c-injective if for any monomorphism from a closed submodule of
M to N can be extended to homomorphism from M to N. In this
paper, we give some properties of pseudo-M-c-injective modules and
characterization of commutative semi-simple rings is given in terms of
quasi-pseudo-c-injective modules. Sufficient conditions are given for a
quasi-pseudo-c-injective module to become co-Hopfian.
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1 Introduction and Preliminaries

Throughtout this paper, R is an associative ring with identity and Mod-R is
the category of unitary right R-modules. Let M be a right R-module and
S = Endgr(M), its endomorphism ring. A submodule N of a right R-module
M is called an essential submodule in M (denoted by N CS M)if NNA#0
for any non-zero submodule A of M. For a submodule N of a right R-module
M is called closed in M (denoted by N C¢ M) if N has no proper essential
extension inside M. Clearly, every direct summand of a right R-module M is
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closed in M. For the property of closed submodules, the reader is referred to
[13].

Consider the following conditions for a right R-module M:

(C1) : Every submodule of M is an essential in a direct summand of M.

(Cy) : If a submodule of M is isomorphic to a direct summand of M then
it is itself a direct summand of M.

(C3) : If A and B are direct summand of M with AN B =0 then A® B
is also a direct summand of M.

A right R-module M is called C'S-module (or extending module) if M sat-
isfies (C). We have a right R-module M, which is C'S-module if and only if
every closed submodule in M is direct summand of M. For a right R-module
M is called continuous if it satisfies (C4), (Cs) and quasi-continuous if it sat-
isfies (C1),(C5). For more details of C'S-modules, continuous modules and
quasi-continuous modules, we can refer to [8].

In [6], let M and N be right R-modules, N is called M -closed-injective
(briefly M-c-injective) if every homomorphism « : K — N where K is a
closed submodule of M can be extended to a homomorphism & : M — N.
A right R-module M is called quasi-c-injective (the original terminology is
self-c-injective) if M is a M-c-injective. Under M-closed-injective condition,
Chaturvedi A. K., Pandeya B. M., Tripathi A. M. and Mishra O. P. (2010) [5]
gave some new characterizations of self-c-injective modules in terms endomor-
phism ring of an R-module satisfying the CM-property. For the more details
of M-c-injective module, we can refer to [5], [6] and [12].

A generalization of injective module is studied that is pseudo-injective mod-
ule which have been studied in [10], [14], [15]. In 2005, H. Q. Dinh [7] intro-
duced the notion of pseudo-M-injective modules (the original terminology is
M-pseudo-injective) following which a right R-module N is called pseudo-M -
injective if for any monomorphism from submodule of M to N can be extended
to a homomorphism from M to N. Lately, S. Baupradist and S. Asawasamrit
(2011) [1] introduced the notion of pseudo-M-c-injective modules and studied
their properties.

In this paper, we give more characterizations of pseudo-M-c-injective mod-
ule. After this we have provided a characterization of commutative semi-simple
ring by using pseudo-c-injectivity have been provided (S. Baupradist and S.
Asawasamrit [1]). A sufficient condition for a quasi-pseudo-c-injective module
to be co-Hopfian is given.
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2 Pseudo-C-Injectivity

Definition 2.1. Let M be a right R-module. A right R-module N is called
pseudo-M-closed-injective (briefly pseudo-M-c-injective) if for any monomor-
phism from a closed submodule of M to N can be extended to homomorphism
from M to N. The right R-module N is called pseudo-c-injective if N is a
pseudo-A-c-injective for all A € Mod-R. A right R-module N is called quasi-
pseudo-c-injective if N is a pseudo-N-c-injective. A ring R is called right
self-pseudo-c-injective if it is a pseudo- Rr-c-injective.

Remark.
(1) Clearly, every M-c-injective module is a pseudo-M-c-injective module.
(2) The following example (see [3]), shows that there exists a right R-
module M with is a quasi-pseudo-c-injective. For the right Z-module M =
(Z/pZ)® Q where p is a prime number, Z is the set of all integers and Q is the
set of all rational numbers. By [3], we have M is a quasi-c-injective module.
Hence M is a quasi-pseudo-c-injective module.

Proposition 2.2. Let M and N be right R-modules. If N is a pseudo-M -c-
injective module, A is a direct summand of N and B is a closed submodule of
M then

1. A is a pseudo-B-c-injective module.

2. A is a pseudo-M -c-injective module.

3. N is a pseudo-B-c-injective module.

Proof. 1. Let K be a closed submodule of B and ¢ a monomorphism from K
to A. Since A is a direct summand of M, there exists a submodule A of N such
that N = A @® A. Let ix be an inclusion map from K to B, ip an inclusion
map from B to M and i an injection map from A to N = A & A. Since N
is a pseudo-M-c-injective module and 74 is a monomorphism, there exists a
homomorphism « from M to N such that aigix = iap. Choose p = mqaip
where 74 is a projection map from M to A. Clearly, ¥ is a homomorphism from
B to A and Dig = maaipix = maiap = . Hence A is a pseudo-B-c-injective
module.

2. By (1), we have A is a pseudo-M-c-injective module.

3. Let K be a closed submodule of B and ¢ a monomorphism from K to
N. Since N is a pseudo-M-c-injective module, there exists o a homomorphism
from M to N such that aigip = ¢ where iy : K — B and ig : B — M are
inclusion map. Choose ¥ = aip. Clearly, ¥ is a homomorphism from B to N
and Pix = aigix = @. Hence N is a pseudo- B-c-injective module. O

Corollary 2.3. Let M and N be right R-modules. Then N is a pseudo-M -
c-injective module if and only if N is a pseudo-X-c-injective module for very
closed submodule X of M.
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Proof. Suppose that N is a pseudo-M-c-injective module. By proposition 2.2.
(3), we have N is a pseudo-X-c-injective module for very closed submodule X
of M. Conversely, Since M is a closed submodule of M and by assumption,
we have N is a pseudo-M-c-injective module. a

Proposition 2.4. Let X,Y and M be right R modules such that X =Y. Then
the following statements hold:

1. If X is a pseudo-M-c-injective module then Y is a pseudo-M-c-injective
module.

2. If M is a pseudo-X -c-injective module then M s a pseudo-Y -c-injective
module.

Proposition 2.5. Let M be a right R-module and X a closed submodule of
M. If X is a pseudo-M -c-injective module then X is a direct summand of M.

Proof. The proof is routine. O

Proposition 2.6. Let M and N be right R-modules. If N is a pseudo-M-c-
injective module, A is a direct summand of N and B is a direct summand of
M then A is a pseudo-B-c-injective module.

Proof. Let K be a closed submodule of B and ¢ a monomorphism from K to
A. Since A is a direct summand of N and B is a direct summand of M, there
exist submodules A’ of N and B’ of M such that N = A®@ A’ and M = B& B'.
Let 74 be an injective map from A to N = A @ A’, ig an injective map from
B to M = B@® B’ and ik an inclusion map from K to B. Since B C% M,
B is a closed submodule of M and B is not an essential in M. Then K is
a closed submodule of M. But N is a pseudo-M-c-injective module, so 74¢
can be extended to a homomorphism « from M to N such that aipix = 14p.
Choose ¢ = mqaig where 74 is the canonical projection from N to A. We have
@ is an extension of (. Therefore A is a pseudo-B-c-injective module. a

Proposition 2.7. A right R-module M satisfies Cy. (CS-module) if and only
if every right R-module N is a pseudo-M -c-injective.

Proof. A similar proving to ([3], Proposition 3.1.1.). O
Proposition 2.8. Every quasi-pseudo-c-injective module satisfies Cl.

Proof. Assume that M is a quasi-pseudo-c-injective module. Let A and B
be submodules of M such that A = B and A C¢ M. We have A is a closed
submodule of M. But A = B then B is a closed submodule of M. Since M
is a quasi-pseudo-c-injective module and A C® M, then A is a pseudo-M-c-
injective module. But A = B thus B is a pseudo-M-c-injective module. By
proposition 2.5, we have B C% M. Hence M satisfies Cs. O
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Corollary 2.9. Every quasi-c-injective module satisfies Cs.

In the following, we give a weaker conditions of the C; and C5 conditions.

Proposition 2.10. Let M be a quasi-pseudo-c-injective module.

(1) (CCy): If A is a direct summand of M and B is a closed submodule of
M such that A = B then B is a direct summand of M.

(2) (CCy): Let A and B be two direct summand of M with AN B = 0. If
A @ B is a closed submodule of M then A @ B is a direct summand of M.

Proof. By proposition 2.8, we have (1) and (2). a

Theorem 2.11. Let M be a right R-module. If M is a quasi-pseudo-c-injective
which 1s a uniform module then M is a quasi-c-injective module.

Proof. Assume that M is a quasi-pseudo-c-injective which is a uniform module.
Let X be a closed submodule of M and ¢ : X — M a homomorphism. Since
M is a uniform module, either ¢ or Iy — ¢ is a monomorphism where [y is
an inclusion map from X to M.

Case I. ¢ is a monomorphism. Since M is a quasi-pseudo-c-injective module,
there exists a homomorphism @ : M — M.

Case II. Ix — ¢ is a monomorphism. Since M is a quasi-pseudo-c-injective
module, there exists a homomorphism g : M — M such that gIx = Ix — .
Hence Iy — g is an extension of ¢.

Therefore M is a quasi-c-injective module. a

Proposition 2.12. Suppose that R is a commutative domain and let ¢ be a
non-zero non-unit element of R. Then the right R-module R ® (R/cR) is not
a quasi-pseudo-c-injective.

Proof. A similar proving to ([3], Proposition 3.2.3.). O

All right R-modules M;,: € I are called relatively pseudo-c-injective mod-
ules if M; is a pseudo-Mj-c-injective for all distinct ¢, € I, where I is the
index set.

Corollary 2.13. Let My and My be right R-modules and M = M, & M. If M
18 a quasi-pseudo-c-injective module then M, and My are both quasi-pseudo-c-
injectives and are relatively pseudo-c-injective module.

Proof. By Proposition 2.2.(2) and Corollary 2.3., we have M; and M, are quasi-
pseudo-c-injective modules. It is also obvious that M; and M, are relatively
pseudo-c-injective module. a
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The converse of Corollary 2.13. is not true. We can consider the example
([3]), let My = Z and My = Z/pZ, where p is a prime number and Z is the set
of all integers, be right Z-modules. Since M; and M, are uniform, M; and M,
are quasi-pseudo-c-injectives and relatively pseudo-c-injective. By Proposition
2.12., we have M; @& M, is not quasi-pseudo-c-injective module.

Now we consider the sufficient conditions for a direct sum of two quasi-
pseudo-c-injective modules to be quasi-pseudo-c-injective. We have the follow-
ing result.

Theorem 2.14. For a commutative ring R. Then the following conditions
are equivalent:

(1) The direct sum of two quasi-pseudo-c-injective module is quasi-pseudo-
c-injective module;

(2) Every quasi-pseudo-c-injective is injective;

(3) R is a semi-simple artinian.

Proof. (1) = (2) Let M be a quasi-pseudo-c-injective module and E(M)
be an injective hull of M. So E(M) is a quasi-pseudo-c-injective module and
by assumtion, we have M & FE(M) is a quasi-pseudo-c-injective module. Let
ing : M — M@ E(M) be a nature injective map. There exits a homomorphism
f:Me®EM)— M&E(M) such that iy, = figi where 7 is an inclusion map
from M to E(M) and ig is an nature injective map from E to M & E(M). Thus
I = mypipng = my figt where [ is an identity map from M to M and ), is a
nature projection map from M @ E(M) to M. Then I = gi where g = 7y fig.
We have M is a direct summand of E(M). Hence M is an injective module.
(2) = (3) Assume that every quasi-pseudo-c-injective is injective. Since every
simple R-module is quasi-pseudo-c-injective, its is injective. Hence R is a V-
ring and thus a Von-Neuman regular ring due to commutativity. Let M be a
completely-reducible R-module. So we have very closed submodule is a direct
summand. Then M satisfies C'S-module. By ([1], Proposition 2.7), we have
M is a quasi-pseudo-c-injective module. By assumption, it is injective module.
By [11], it follows that if the countable direct sum of injective hull of simple
module is injective then R is a Noetherian ring. Thus R is a Noetherian and
regular, so it is semi-simple artenian.

(3) = (1) It is obvious. 0

Remark. In the above theorm, commutativity of ring is needed to prove only
the part (2) = (3).

Corollary 2.15. For a commutative ring R. Then the following conditions
are equivalent:

(1) The direct sum of two quasi-c-injective module is quasi-c-injective mod-
ule;
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(2) Every quasi-c-injective is injective;
(3) R is a semi-simple artinian.

By Haghany A. and Vedadi M. R. [9], a right R-module M is called co-
Hopfian (Hopfian) if every injective (surjective) endomorphism f : M — M
is an automorphism. According to [13], a right R-module M is called directly
finite if it is not isomorphic to a proper direct summand of M.

Lemma 2.16. (/13/, Proposition 1.25) An right R-module M is directly finite
if and only if fg = I implies that gf = I for all f,g € S = Endr(M) where [
is an identity map from M to M.

Proposition 2.17. A quasi-pseudo-c-injective module M is a directly finite if
and only if it is co-Hopfian.

Proof. Let f be an injective endomorphism of M and I an identity homomor-
phism from M to M. Since M is a quasi-pseudo-c-injective module, there exits
a homomorphism ¢g : M — M such that gf = I. By Lemma 2.16, we have
fg = I which implies that f is an automorphism. Hence M is co-Hopfian.
Conversely, assume that M is a co-Hopfian. Let f,g € S = Endgr(M) such
that fg = I. Then ¢ is an injective homomorphism and ¢~! exists. Thus
f=fggt=1Ig7' =gt Sogf =gg ' =1 By Lemma 2.16, we have M is a
directly finite. a

Corollary 2.18. If M is an indecomposable quasi-pseudo-c-injective module
then M is a co-Hofian.

Proof. Since every indecomposable module is directly finite and by proposition
2.17, M is a co-Hofian. O

Corollary 2.19. If M is a quasi-pseudo-c-injective and Hofian module then
M is co-Hopfian.

Proof. Since every Hopfian module is a directly finite and by proposition 2.17,
M is co-Hopfian. O
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