
Department of Communication Systems
Lund Institute of Technology

Quality Improvement in
Software Platform Development

Enrico Johansson

ISSN 1101-3931

KF-Sigma

ISRN LUTEDX/TETS--1053--SE+112P

 Enrico Johansson

Printed in Sweden

Lund 2002

Contact Information:

Enrico Johansson
Department of Communication Systems
Lund University, Lund
Sweden

email:enrico.johansson@telecom.lth.se

This thesis is submitted to Research Board II - Physics, Informatics, Mathematics and Elec-
trical Engineering (FIME) - at Lund Institute of Technology (LTH), Lund University, in par-
tial fulfilment of the requirements for the degree of Licentiate in Engineering.

Abstract

A major problem when using software platforms to produce a variety of
products relates to keeping a high quality of the platform throughout the
development of the products. For a software platform development to be
successful, it is essential to master the quality issues when managing and
designing the platform.

This thesis presents approaches that enable efficient use of the soft-
ware platform when it is used as one of the core assets of a product line.
Different approaches that are believed to improve the quality of the plat-
form are presented. In order to study the approaches’ effect on the devel-
opment process it is vital to understand what quality attributes are of
importance for the users and developers of the software platform. Several
important aspects related to different quality attributes are presented.

When using software platforms it is important to understand why the
system is designed in a certain way (i.e. the design rationale of the plat-
form). This knowledge can be used to improve the change impact analysis
when building variations of products and when updating the platform
itself.

Management processes are needed to support development efforts in
different phases of platform projects and across the products built on the
platform. A way to find improvements is to benchmark the platform
process used in the organisation with practices in similar organisations.
Another way is to understand how the processes affect the quality by
measuring and tracking different quality attributes.

The results from this thesis provide support for quality improvements
in software platform development by using the presented approaches.

Acknowledgements

This work was funded by Ericsson Mobile Platforms AB, Sweden (formerly part of Eric-
sson Mobile Communications AB, Sweden) and by the Swedish Agency for Innovation
Systems (VINNOVA), under a grant for the Center of Applied Software Research at
Lund University (LUCAS).

I am very grateful to Professor Claes Wohlin for his knowledge and guidance when
introducing me to the area of software engineering and research methodology. I
appreciate the belief he had in me when enrolling me as a student and providing the
opportunity for me to pursue studies to a licentiate degree. I am also very grateful to Dr.
Martin Höst for his mentoring and friendship. His sincere engagement and great effort
have been crucial factors that brought this thesis to an end. I extend a special thanks to
Dr. Lars Bratthall for good collaboration in the early part of the thesis. There had for
sure been opportunity for more joint projects if he had not pursued a life in Norway.

I am grateful for the financial support of Ericsson Mobile Platforms AB, which
allowed me to spend half of my time as employee at the company as a student.

I will forever be indebted to all my colleagues at Ericsson Mobile Platforms AB and
Sony Ericsson Mobile Communications AB (both companies formerly part of Ericsson
Mobile Communications AB). They have provided me with data and suggestions that
have been invaluable input to the research during these years.

I wish to thank my co-authors for sharing the load and waiting patiently for me to
finish my bits and pieces. Also a sincere thanks to all who did the non-glamorous work
of reviewing drafts of the thesis and the papers.

A warm thanks to all the current and former colleagues at the Department of
Communication Systems for providing a stimulating and fun environment during the
work with the thesis, and for just putting up with me in general. The doors in the
department have always been exceptionally wide-open, thus creating a good ground for
exciting and illuminating discussions whenever I needed encouragement and new
impulses. In particular I would thank Professor Ulf Körner, the head of the department,
for making this possible.

Finally, I would like to thank my family and friends for their unconditional support
and encouragement during this time.

Quality Improvement Software Platform Development ix

Contents

Introduction ...1
1. Overview.. 1

2. Software platforms.. 4

3. Software platform quality ... 8

4. Research methodology .. 10

5. Interaction between industry and academia .. 14

6. Research result.. 20

7. Future work.. 23

8. References .. 25

PAPER I: The Importance of Quality Requirements in Software Plat-
form Development – A Survey..29

1. Introduction ... 30

2. Method .. 31

3. Results and analysis .. 38

4. Conclusions and applications of results... 45

PAPER II: Is a Design Rationale Vital when Predicting Change Impact?
- A Controlled Experiment on Software Architecture Evolution.....51

1. Introduction ... 52

2. Object of study: A specific approach to design rationale documentation......... 54

3. Experiment planning and operation ... 55

4. Data analysis... 62

5. Summary and conclusions .. 65

PAPER III: Benchmarking of Processes for Managing Product Plat-
forms - a Case Study ...71

1. Introduction ... 71

2. Benchmarking methodology... 72

3. Case study .. 80

4. Conclusions.. 84

x Quality Improvement Software Platform Development

PAPER IV: Tracking Degradation in Software Product Lines through
Measurement of Design Rule Violations...87

1. Introduction ... 87

2. Design rules in platform development .. 89
3. A measure of degradation.. 90

4. Usage implications of the measure .. 94

5. The case study .. 96
6. Conclusion ... 99

Quality Improvement in Software Platform Development 1

Introduction

1. Overview

During the last decades, software has become an indispensable part of
many commercial products. Products of all kinds, from digital cameras
and cellular phones to transaction systems, automobiles and aeroplanes
contain more and more software every year. This has meant that software
has become a competitive advantage in many industries. Strategic think-
ing about the functionality, quality and lead-time of the entire product is
largely dependent of the methods and tools used in the development and
management of the software. Building product platforms is one of the
methods that has become a common and crucial element of today’s busi-
ness planning. Product platforms are a set of common components
around which a stream of derivative products can be built.

The use of platforms as an engineering concept is not new. It is in
many aspects the common practice of the past being rediscovered today
by management and developers in various industries. The practice con-
sists of building a line of products around a set of shared components. For
example, in the case of the Black & Decker [19] power tools, the shared
components have been the motor platform and battery pack platform.
Product platforms have also been used with success by the aircraft indus-
try [19], car manufactures [26] and manufactures of consumer electronics
[23].

Components that are common for many products and consist of soft-
ware form a software platform. CelsiusTech Systems AB presented one of

In
tr

od
uc

ti
on

Introduction

2 Quality Improvement in Software Platform Development

the first documented success stories of using software platforms in [2]. To
meet a compressed project schedule the engineers built a product line
around a software platform.

The term software platform can also be used as an application on
which other applications can be executed on, for example an operating
system. This definition is neither used nor further discussed in this thesis.

There are risks, which must be managed and assessed when using soft-
ware platforms. A number of product versions are developed based on the
same software platform. The platform must, therefore, be managed and
updated according to new requirements if it should be reusable in a series
of releases. This means that the platform is constantly changed during its
life cycle.

This thesis focuses on identifying and evaluating methods to improve
the quality of a software platform in a specific industrial organisation. The
intention is that the findings should be general enough to be applied in
other organisations with similar software platforms. The software plat-
form quality is in this thesis defined as the ability for a project to use a
software platform for different families and versions of software products.
The result of the thesis indicates that, although the problem of maintain-
ing and managing the quality in a software platform is a complex task,
some basic approaches may be used.

The thesis is organised into two parts. The first part contains an intro-
ductory part, which is divided in sections as follows: In Section 2, soft-
ware platforms are further introduced. Section 3 presents the concept of
software quality. The research methodology is summarised in Section 4.
In Section 5 the research collaboration between academia and industry is
discussed. The research results are presented in Section 6 together with
summaries of papers. Finally, Section 7 contains suggestions for future
work. The second part of the thesis contains the following papers:

[I] The Importance of Quality Requirements in Software Platform
Development – A Survey
Enrico Johansson, Martin Höst, Anders Wesslén and Lars Bratthall
Proceedings of 34th Hawaii International Conference on System Sciences
(HICSS-34), pp. 3884-3893, Maui, Hawaii, USA, January, 2001

[II] Is a Design Rationale Vital when Predicting Change Impact? - A Con-
trolled Experiment on Software Architecture Evolution
Lars Bratthall, Enrico Johansson and Björn Regnell

1. Overview

Quality Improvement in Software Platform Development 3

Proceedings of 2nd International Conference on Product Focused Software
Process Improvement (PROFES 2000), pp. 126-139, Oulo, Finland, June,
2000

[III] Benchmarking of Processes for Managing Product Platforms - a Case
Study
Martin Höst, Enrico Johansson, Adam Norén and Lars Bratthall
Proceedings of Empirical Assessment in Software Engineering (EASE 2002),
Keele, England, April, 2002

[IV] Tracking Platform Degradation via a Graph Impurity Measure
Enrico Johansson and Martin Höst
Submitted to the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE), Ischia, Italy, July, 2002

The papers included in this thesis have had small changes and minor
improvements, compared to the published versions. For example, text for-
matting has been changed to provide a common layout of all material.

The following report is related but not included in the thesis:

[V] Benchmarking at EMP
Enrico Johansson
LD/EMP/GTX/KX 02:006, Technical report describing the architecture
development process at Ericsson Mobile Platform. The report was used in
the research done in paper III, Ericsson Mobile Platforms, Lund, Sweden,
2002

Introduction

4 Quality Improvement in Software Platform Development

2. Software platforms

Many products with high requirements on time to market are developed
in a series of different versions, which are part of the same product family.
That is, one product family can contain versions of the product, which
differ in functionality and complexity, see Figure 1.

The advantage of this is that a large portion of the product can be
reused in one product family [20] [25]. To achieve an even higher degree
of reuse and shortening the time between releases of consecutive product
families, different product families could share a common software plat-
form.

The intention is that reuse, within product families and between the
different releases of product families, should decrease the development
time and the cost of new products. The intention is also that it improves
the reliability since already tested and evaluated parts can be used.

However, reuse is difficult to achieve if it is not managed and planned
for in earlier products. Software developing organisations need processes
that support reuse between different products and between different ver-
sions of the same product. This type of processes is often included in a
product line architecture [2] [3] [7] [13], which is the basis for a number

FA1

Platform
Release Ak

... FAn

FB1

Platform
Release Ak+1

... FBm

Versions 1... m of product family FB

Versions 1... n of product family FA

Platform
 Evolution

Figure 1. An illustration of two product families (FA and FB) that are based on two consecutive
releases of a software platform.

2. Software platforms

Quality Improvement in Software Platform Development 5

of versions of a product. A product line architecture is a common archi-
tecture for related products or systems developed by an organisation.

With this type of processes, development of a series of products can be
summarised as follows. First a software platform is developed. The archi-
tecture of the platform should be general enough to be useful in the
releases where it should be used. When the software platform has been
developed, a number of product projects can be launched. Every product
project results in a product version that may be sold on the market. Nor-
mally, some product projects are run in parallel, in order to obtain an
appropriate pace of new product releases. Each of the product projects
uses the software platform as a basis and adds a set of functions that is spe-
cific for the release of that version. This type of work is often organised
and performed in a number of teams. A team manages the development
of the software platform, and the product projects are run by a number of
project teams. The objective of the project teams is to develop a new
release with a given release date to a given cost. The objective of the plat-
form teams is to manage the software platform and to support the differ-
ent product projects with functionality packaged in the platform. This
means that each of the product projects has a number of requirements on
the platform and the objective of the platform team is to provide a plat-
form that meets these requirements.

Ideally the requirements of all product projects on the software plat-
form coincide and the platform team can develop a platform that can be
used directly by all development teams. However, for a number of reasons
the platform must be enhanced and changed during its lifetime. New
requirements are constantly identified and functions implemented in one
product project should often be part of future products. This means that
the software platform should be constantly enhanced and changed based
on the requirements from the product teams. To manage constant
changes a number of design rules and design constraints may be formu-
lated in order to limit an eventual loss in quality, in the software platform,
caused by the changes. Such loss of quality would make the reuse of the
product line between two product families and within the product family
very difficult to achieve.

Introduction

6 Quality Improvement in Software Platform Development

2.1 Architecture

A software platform can be modelled by using a number of different
architecture elements and by using a number of different views. In the
thesis the software platform has mainly been modelled by using four dif-
ferent elements, see Figure 2. The four elements are components, connec-
tors, interfaces and design rules. Each of the elements is defined as
follows:

Components are elements that contain a selection of functions. A
software platform can contain one or several components.

Interfaces are elements that enable intra-component communica-
tion.

Connectors are the mechanisms used for the communication
between the components.

Design rules are elements that describe and constrain the usage of
components, interfaces and connectors.

In order to allow the model to be useful when mapping the objects to
arbitrary software platform architectures rather generic elements have
been chosen. In addition, the elements chosen are well agreed upon in the
architecture community [2] [10] [16].

A static deployment view [11] [16] with a model that consists of these
four different elements has been used in all papers in the thesis.

Figure 2. The interactions between components, interfaces and connectors

...

... Connectors

Interfaces

Components

2. Software platforms

Quality Improvement in Software Platform Development 7

2.2 Related work

In the recent years, the area of software product lines and software plat-
forms has been given a lot of attention. This section provides a short sum-
mary of two major contributions in this area. The summary is focused on
contributions that are related to quality improvements.

In [3] Bosch suggests the use of architecture transformations as a
means of improving the quality of a software product line. Four different
types of transformation are introduced (imposing an architecture style,
imposing an architectural pattern, applying a design pattern and convert-
ing quality requirements to functionality). Normally it is necessary to use
a combination of these four different types to obtain the required quality
improvement. The transformations can be further specialised to improve
the quality of software product lines. The specialisation is done in order
to achieve three crucial aspects of a product line, (variability, optionality
and conflict resolution). The variability aspect is needed when the archi-
tectural solution does not satisfy all the requirements members of the
product line. An optionality aspect is needed to enable the inclusion of
optional functionality in the products. Finally, the third aspect concerns
the conflicts that can arise in a software product line. Bosch gives also dif-
ferent examples of techniques improving the run-time quality attributes
(i.e. performance and reliability) of software product lines. The exempli-
fied techniques are concerned with caches, memory management, indirect
calls and wrappers.

The software platform is by Northrop and Clements [7] defined as the
assets that form the basis of the software product line. The development
of software platforms is together with product development and manage-
ment identified as essential activities in the successful scoping of a soft-
ware product line. The product line development depends on three
outputs described as the product line scope, the production plan and the
software platform. Variability in product lines is brought up as an essen-
tial quality enabler for the software platforms. Mechanisms as a service
component framework and a requirement definition hierarchy are pro-
posed as a mean of achieving the variability. Product line management
deals with the resource planning, co-ordination and supervision of activi-
ties. The management must be committed to both the technical and
organisational levels of a software product line. Techniques for collecting
metrics and tracking data are also discussed as means to manage the prod-
uct line process. Northrop and Clements include in [7] part of the exten-

Introduction

8 Quality Improvement in Software Platform Development

sive work done by the Product Line Initiative at Software Engineering
Institute (SEI PLP).

3. Software platform quality

Quality is a software platform and development process prerequisite,
which must be in place and continuously improved if successful software
product line development is to be achieved. However, the intangible facet
of value of quality makes the improvement of it a challenging task. To
deal with this, different quality models and quality improvement tech-
niques have been developed. When these models and techniques are used
in the software domain, it must be considered that software development
is mostly a development skill and not a manufacturing skill. General qual-
ity improvement techniques and models used in the manufacturing
industry cannot be used directly in the software development.

The discipline of software quality engineering has put focus on both
producing new models and modifying traditional models for the software
industry. An established software quality model is for example the McCall
quality model [18]. The model identifies a number of quality factors from
three different ways (operation, revision, transition) of using a software
product. Table 1 illustrates the model.

There exist several established techniques for assuring and improving
the quality of software development. A list of such techniques, without
pretending to be complete, can be summarised as follows:

Testing

Inspections and reviews

Software Process Assessment

Measurements

Table 1. McCall quality factors

Product operation Product revision Product transition

Usability
Integrity
Efficiency
Correctness
Reliability

Maintainability
Testability
Flexibility

Reusability
Portability
Interoperability

3. Software platform quality

Quality Improvement in Software Platform Development 9

Benchmarking

Project Tracking

Software platforms are used when striving to maintain a number of
quality factors in a series of products. Some of these quality factors are
concerned with the ability of software to function as a software platform.
Other factors are concerned with quality requirements from the domain
of the products that are based on the platform (e.g. real-time, embedded,
safety critical, enterprise, etc.).

When a company releases new product families it is vital to meet a
desired market-window with a quality of the product that matches the
expectations of the market. The usage of product line architectures and
software platforms is enforced by the potential decrease in lead-time that
can be gained. This leads to increasing the possibility of a successful
release of a product during the desired market-window. Missing to release
a product during a desired market-window or releasing a product family
with quality attributes not matching the requirements from the market,
can cause major financial losses and even to loose the complete market
opportunity for future products.

Since it is believed that software platforms decrease lead-time and
increase quality, they are used by an increasing number of companies to
meet tight market driven time-plans and quality plans for releases of prod-
uct families.

Neglecting to keep track of whether the platform is suitable for being
used for another release of another product family can lead to an incom-
plete management of risks. Inappropriate usage of software platforms can
lead to a decrease in quality and an increase in lead-time for new product
families developed. Therefore, there is a clear need of knowing if the soft-
ware platform has high enough quality to be the base of a product family.

Software platforms, as all other software artefacts, are subject to quality
changes during their life cycle. Considering the high-level nature of the
development decision related to replacing and updating elements in the
platform, these decisions should preferably be taken from an architectural
abstraction level. This is further motivated by the fact that a software plat-
form is the core asset of a product line, and as such incorporates architec-
tural constructions to cater for maintainability, reusability, performance
and other quality attributes.

Introduction

10 Quality Improvement in Software Platform Development

4. Research methodology

Research can be defined as the method of investigation that, if results are
obtained and if correctly undertaken, builds knowledge. The investiga-
tion done represents an objective investigation of facts about a certain
subject.

The research can be performed as either applied research or basic
research. Whereas basic or pure research attempts to expand the limits of
knowledge, applied research attempts to find the solution to a specific
problem. Research can also be classified in many other ways. For example,
a distinction between quantitative and qualitative research can be made.

The research done in the thesis, which can be classified as applied
research, has been performed to improve the development of software
platforms.

The focus in this section is on what methods was used to explore and
test the research questions. In the end of the section, the validity and
industrial application of the thesis are discussed.

The research questions pursued in the thesis are the following:

What quality factors are important for users of software platforms?

What quality factors are important for developers of software plat-
forms?

How should the software platform design documents be written?

How should the interactions between software platform stakehold-
ers be optimised?

How should the platform development and management process be
improved?

How should the software platform degradation be tracked?

4.1 Empirical validation

To every research study, there are a number of threats to the validity. In
this section the validity is discussed based on an often-used list of threats
to validity [5]. The validity of empirical studies is often evaluated based
on four aspects: conclusion validity, internal validity, construct validity,
and external validity. These aspects are elaborated below:

4. Research methodology

Quality Improvement in Software Platform Development 11

The conclusion validity concerns whether it is possible to draw sta-
tistically significant conclusions from the study.

The internal validity concerns the possibility that the effect (out-
come) has been caused by factors unknown to the researchers.

The construct validity concerns whether the measurements and
interviews represent the constructs of interest in the study.

The external validity of a study concerns the ability to generalise the
findings.

In the following paragraphs, each validity concerns is discussed along
with a number of considerations that can be seen as threats to the validity
of the result presented in the thesis.

Conclusion validity. In this thesis, the number of people that has been
involved in the studies is the most serious threat to the conclusion validity.
In addition, a related threat concerns the uncertainty and the dispersion
of the participants. It will generally be hard to draw valid conclusions
from the study if the participants answer differently and the uncertainty is
large. If there are few people, dispersion in the answers is hard to inter-
pret. When designing the research the goal has been to minimise these
threats by using as many participants as possible.

Internal validity. None of the results in this thesis has been validated by
performing a replication in the same environment and with the same
instrumentation. Therefore, it cannot be ruled out that the outcome
would have been different if the studies had been performed at another
point of time. However, great care has been put on the instrumentation to
minimise this threat. Great care has also been taken when selecting partic-
ipants for the studies. For example, when groups were compared, atten-
tion was taken to ensure that the groups contained equal level of expertise.
Another aspect when selecting participants is that they have always been
recruited on voluntary basis. Knowing or controlling all the factors that
affect the research is a truly challenging task. It must however be done to
maximise the internal validity of the result. The precautions taken are
believed to have had a positive effect in achieving greater internal validity.

External validity. A related question concerns the reliability with
respect to the environments in the other companies. Although some of
the studies were carried out in another company, it is of course, not obvi-
ous that the factors affecting the result would be the same. This is due to a
different environment. However, we have not identified any factors that

Introduction

12 Quality Improvement in Software Platform Development

indicate that the environment should be principally different from the
other companies. To gain better external validity further studies and repli-
cations in the area could be carried out.

Construct validity. A threat to the construct validity is that the persons
that are interviewed are restricted in their answers, which means that the
result actually concerns different constructs than the researchers intend to
investigate. In this thesis, we believe that the participating people have
been speaking openly. They are guaranteed anonymity and the questions
are to the researchers' knowledge in no way sensitive. This, in combina-
tion with that the atmosphere at the company is open, means that we do
not believe that this kind of threat to the construct validity is large in this
thesis.

4.2 Empirical methods used

Experiments, surveys and case studies have been used to validate the result
of the research. The methods are by Robson [22] summarised as:

Experiments: measuring the effects of manipulating one variable on
another variable.
A typical feature is that samples of individuals from known popula-
tions are studied. The samples are then allocated to different exper-
imental conditions. The conditions are then altered by making
changes to one or more variables. Normally measurements can be
performed on only small number of variables, when at the same
time issuing control on a larger amount of other variables. The
analysis of an experiment usually involves hypothesis testing.

Survey: collection of information in standardised from groups of people.
A typical feature is that samples of individuals from known popula-
tions are studied. A relatively small amount of data in standardised
form is collected from each individual. A survey usually employs
questionnaires or structured interviews to collect the data.

Case studies: development of detailed, intensive knowledge about a sin-
gle “case“, or a small number of related cases.
A typical feature is to investigate a selection of a single case (or a
small number of related cases) of a situation. The case can concern

4. Research methodology

Quality Improvement in Software Platform Development 13

an individual or group. The study of the case is done in its context.
A range of data collection techniques including observations, inter-
view and documentary analysis can be used.

Each of the methods used has its advantages and disadvantages. To
decide what method to use is an important step in research design. The
choice done will govern the validity expected of the result, and the possi-
bility of the conclusion that can be drawn from the result. Therefore, the
method chosen must be based on the research questions that are explored.
Table 2 summarises the choices made in the thesis.

Table 2. Summary of research questions and empirical methods

4.3 Industrial application

To be able to impact an industrial software organisation with the gained
result the research must have high industry validity. Robson [22] classifies
this validity from a real world perspective as:

Level A: The traditional approach:”Science only”.
The research is of a theoretical nature. Although the focus can be on
solving practical problem, the application of the research is not seen
as important and is often left to others to study.

Level B: Building bridges between researcher and user.
The researcher believes that the eventual outcome of the research
has practical implications, and wants to influence the client with

Research question Empirical method

What quality factors are important for users of soft-
ware platforms?

Survey

What quality factors are important for developers of
software platforms?

Survey

How should the software platform design docu-
ments be written?

Experiment

How should the interactions between software plat-
form stakeholders be optimised?

Survey

How should the platform development and man-
agement process be improved?

Case study

How should the software platform degradation be
tracked?

Case study

Introduction

14 Quality Improvement in Software Platform Development

the outcome. The work may be conducted in collaboration with
the client and may include giving the client status reports of the
ongoing work.

Level C: Research-client equality.
The researcher and client discuss the problem areas to investigate in
collaboration. The client, the researcher or the client and researcher
in collaboration may identify the research problem. The work must
be performed together with the client, where the client can issues
some control over the work done.

Level D: Client-professional exploration.
A client requests help from a researcher. The collection of data is
minimal and the advice or recommendation is based on the
researcher’s expertise in the area.

Level E: Client dominated quest.
The client requests help from a specialist or colleague with relevant
expertise. The advice or recommendation is given based on current
practices or knowledge.

The research questions in this thesis have been investigated with level
of application equal to C.

5. Interaction between industry and
academia

The interaction between industry and academia has been going on from
the very start of the software engineering discipline. There are several
examples of industry involvement in academic research projects that have
been fruitful for both parties. A win-win situation for both parties is nor-
mally the goal for the collaboration between industry and academia. This
is however not a situation that happens per se. On the contrary, in order
to make it work there are a number of issues that must be taken into con-
sideration. There are a variety of ways to organise the interaction between
industry and academia. Different forms of interaction can for example be:

Workshops and seminars through university-industry research cen-
tres.

5. Interaction between industry and academia

Quality Improvement in Software Platform Development 15

Networks to focus on specific areas and needs of the local industry.

Industry-sponsored academics (Professors, Ph.D. students, etc.)

Research projects with industrial collaborators

The workshops can be sponsored by industry funding and organised
by academia researchers. The objective of the workshops is to encourage
attendees to brief each other on recent developments in academia and in
industry. Workshops can encourage collaborations between researchers
and industry to influence the direction of research projects.

Networks are a way of bringing together participants from industry
and academia that share a common area of interest in a common organisa-
tion. The overall goal of the networks is to strengthen the way technology
is developed and exploited within a regional area by stimulating technol-
ogy transfer between researchers and industry.

The industry-sponsored academics represent an area of the collabora-
tion where individual faculty positions are funded by industry. Industry
can choose to finance the complete cost of a full-time position or it may
choose to finance only a part of the cost. Which of the choices is taken
affects the level of influence that industry can have on the research area
investigated. When a complete research area is of interest the funding may
result in the establishment of a professor’s chair. When the collaboration is
in areas where academia have the expertise and industry need answers to a
specialised area or research question it may be most appropriate to spon-
sor a Ph.D. student. The reason for industry not investigating the prob-
lem can be the lack of equipment and expertise in the area. A research
contract can be laid out to describe what is expected from the university
and what shall be provided by industry.

Research collaborators from industry can be involved in both academic
research and education. For example, the aim could be to have courses
taught by industry experts. These courses could preferably be in the form
of projects; in order to put the emphasis on the application of the theories
taught.

In Section 5.1, incentives for collaboration are presented. Finally,
Section 5.2 discusses practical considerations when conducting research
in industry.

Introduction

16 Quality Improvement in Software Platform Development

5.1 Incentives for a collaboration

In order for any of these collaborations to be a perceived as a win-win sit-
uation, both parties must have realistic incentives when entering them.
Incentives are the motives for collaboration, which are based on the beliefs
of benefits to be gained. The incentives induce people and organisations
to behave in a certain way. Incentives for the collaboration between indus-
try and academia can be classified in the following categories [17]:

Infrastructure incentives such as technology transfer and profes-
sional contacts.

Economic incentives as for example the trend in the recent years
that the Swedish government matches the economical commitment
from industry with an equal value.

Honorific incentives, such as official awards and unofficial public
recognition are important driving forces.

Knowledge incentives, such as training, participation in seminars
and workshops and participating in projects.

One interesting issue for collaboration is to understand if the incen-
tives for collaborations were realistic. Realistic incentives are defined as
incentives that are based on expectations that came true during the collab-
oration.

From the listed categories, three incentives are normally mentioned
when discussing the reason for academia to collaborate with industry.
There is the incentive for academia and in particular for faculty members
to gain practical knowledge to improve their own pedagogical function
(knowledge incentive). Another incentive is to support and advance their
personal research agenda (honorific and economic incentives). Finally,
there is the incentive of entrepreneurship that means to capitalise on its
own research and intelligence property (infrastructure incentive). All these
incentives can be decomposed into the following list of reasons for
academia to initiate industry collaborations [17]:

1. Finding supplements funds.

2. Testing the practical applications of the research and theory.

3. Gaining practical insights related to the research done.

5. Interaction between industry and academia

Quality Improvement in Software Platform Development 17

4. Strengthening the university’s outreach mission.

5. Looking for business opportunities.

6. Finding scenarios that are useful for teaching.

7. Creating student internship and job placement opportunities.

8. Securing funding for research assistants and lab equipment.

When discussing industry incentives the most obvious ones are the
knowledge and infrastructure incentives. It is a natural step for industry to
take contact with an academic research group when needing answers to
specific problems. The incentives oriented towards infrastructure are
related to support long-term collaboration goals. Reasons for industry to
initiate collaboration with academia can be decomposed into the follow-
ing list [17]:

1. Solving specific problems.

2. Developing new products and processes.

3. Filing new patents.

4. Improving quality of products.

5. Reorienting the R&D program.

6. Accessing new research (via seminars and workshops).

7. Maintaining an ongoing relationship and network with the uni-
versity.

8. Searching for new technology.

9. Conducting basic research with no specific applications in mind.

10. Recruiting university graduates.

5.2 Practical considerations

In this section practical consideration of time, management, feedback and
intelligence property in research collaborations are discussed. The discus-
sion focuses on performing research in the role as an industrial Ph.D. stu-

Introduction

18 Quality Improvement in Software Platform Development

dent. None of the considerations is specifically related to a single research
project or case study performed during this work. Instead, it is a summary
of guidelines with general applicability.

Time:
In a software company with projects with tight deadlines, time is
always a scarce resource. There might be numerous meetings and
other project duties that must be completed during a day at work.
An environment like that is far from optimal from a collaborative
point of view. Unfortunately, the described environment is com-
mon among software companies. There are, however, some practi-
cal consideration that can be used to make research collaboration
smoother to perform. One practical consideration could be to plan
the research session to be performed during a period of the project
that is relatively calm. A different aspect of time is the duration of
the research session. The longer the research session is intended to
be the more in advance should it be planned. Besides working on
research projects alone, industrial Ph.D. students have the opportu-
nity to work on short-term industrial projects to gain additional
experience. This allows the student to keep in touch with industry
practices. Although the intention is for the best, there are difficul-
ties along the way. The main difficulties derive from the different
perspectives of projects. Academia stands for the long-term project
perspective and industry for the short-term perspective.

Management:
When starting a collaboration that involves employees in a com-
pany, the consent and support from project managers is required.
The consent is required even if the company already funds the
research. In addition, in discussion with management it is impor-
tant to highlight the objective of the research done in terms of solv-
ing specific problems and values for the company as a whole.
Another potential management issue that must be clarified prior to
the collaboration is how the researchers’ time is managed and prior-
itised.

Feedback:
The companies' commitments to a research project are often made
by the management. It is on the other hand not the managers but
the software engineers that participate in the collaboration. Further-
more, the software engineers are the ones that allow part of their

5. Interaction between industry and academia

Quality Improvement in Software Platform Development 19

time into the research collaboration. Therefore, it is important to
realise that the engineers must feel that participating in the research
gives something of value to them. When the research collaboration
solves a specific problem, the answer to the problem is the self-evi-
dent feedback. The research collaboration can on the other hand be
of a more general aspect and looking at more long-terms aspects.
Even if this is the case, there is still a number of ways to give feed-
back to the participants. For example, training sessions can be
included in the research. The training can be done before, during or
after the research. A seminar and explanation of the result is the
least that should be offered to the participants in the research. If the
research is conducted during a long period, it may be a wise
approach to give the feedback as intermediate seminars or training
sessions.

Intellectual Property:
Academia and industry share a common goal to produce intellec-
tual property. There are, however, differences in the objective of
wanting to achieve the goal and of using the intellectual property.
The objective in academia is to use the intellectual property as a
tool to advance and disseminate knowledge. The objective in indus-
try is to capitalise the intellectual property in patents and products.
That is, the industry has a protective relation to its intellectual
property, while academia has a complete opposite relation. Publica-
tions of intellectual properties are in academia encouraged and
mandatory.

Although considerations have been given to practical problems, it can
be that the research collaboration does not pay off. The reason could be
that wrong participants have been chosen for the research collaboration.
Another reason could be that the company research strategies do not
endorse collaboration with academia.

There is a possibility to gain mutual benefits in an academia-industry
co-operation if and only if the threat of having the wrong scope and
incentives in mind when starting the collaboration are taken seriously,
and dealt with appropriately. These threats were thoroughly discussed in
this section. Difficulties from practical aspects of the collaboration in the
view of time, management, feedback and intellectual properties have been
discussed and some guidelines were given.

Introduction

20 Quality Improvement in Software Platform Development

6. Research result

6.1 Summary of results

The result of the thesis indicates the possibility of quality improvement in
several phases and areas of software platform development. The main
findings can be summarised as answers to the initial research questions:

What quality factors are important for users of software platforms?
What quality factors are important for developers of software platforms?
From studying how different stakeholders prioritise different qual-
ity factors, reliability seems to be most important for both the
developers as the users of the platform.

How should the software platform design documents be written?
It is likely that having access to a design rationale expressed in the
suggested way in the design documents has a positive impact on
both lead-time as well as quality. This fact was experienced by
designers when faced with the task of predicting where changes
must be performed on an unknown real-time system. In projects
where lead-time is important, it is possible that a sharp schedule
prohibits the creation of models during design. In that case, writing
a design rationale in the suggested manner after initial system
release may be a cost effective way to facilitate future system evolu-
tion, without prolonging the time to initial system release. This
result can easily be incorporated in standard development processes.

How should the interactions between software platform stakeholders be
optimised?
A few rules of thumb for the development of the architecture of
software platforms are devised. One stakeholder, such as an archi-
tecture group, should be given the uttermost responsibility for the
fulfilment of the reliability of the platform. A software platform
should in general not be developed as a part of another project, or it
is likely that either the software platform becomes unreliable due to
lead-time constraints, or the project may become late. Even experi-
enced individuals have varying opinions regarding what is impor-
tant to have in a software platform. Therefore, techniques that

6. Research result

Quality Improvement in Software Platform Development 21

allow for both the precise communication of what is needed as well
as techniques for eliciting these requirements from different stake-
holders are needed.

How should the platform development and management process be
improved?
An approach to benchmark two software platform organisations is
proposed and proven feasible in a case study. The benchmarking
approach consists of two parts. One part is a questionnaire with
eight questions customised to elicit improvements. The other parts
consist of letting organisations review descriptions of each other’s
answers to the questionnaire. The majority of the participants
acknowledged the questionnaire as positive. The result indicates
also that it is possible to use the questionnaire and the cross-wise
reviews as a benchmarking approach.

How should the software platform degradation be tracked?
A measure for product line degradation is proposed and it is shown
that the measure is based on sound theoretical properties. In a case
study the measure is evaluated and there are indications that the
measure can be usable to track product line degradation based on
measurements on the software platform. By knowing the gradient
of the graph depicted by the proposed measure the degradation of
the complete product line can be tracked and predicted.

6.2 Summary of papers

This section lists the abstracts of the individual papers in this thesis.

PAPER 1: The Importance of Quality Requirements in Software
Platform Development - A Survey

Enrico Johansson, Martin Höst, Anders Wesslén and Lars Bratthall

Proceedings of 34th Hawaii International Conference on System Sciences (HICSS-
34), Maui, Hawaii, USA, January, 2001

This paper presents a survey where some quality requirements that com-
monly affect software architecture have been prioritised with respect to
cost and lead-time impact when developing software platforms and when
using them. Software platforms are the basis for a product-line, i.e. a col-

Introduction

22 Quality Improvement in Software Platform Development

lection of functionality that a number of products is based on. The survey
has been carried out in two large software developing organisations
using 34 senior participants. The prioritisation was carried out using the
Incomplete Pairwise Comparison method (IPC). The analysis shows that
there are large differences between the importance of the quality require-
ments studied. The differences between the views of different stakeholders
are also analysed and it is found to be less than the difference between the
quality requirements. Yet this is identified as a potential source of negative
impact on product development cost and lead-time, and rules of thumb
for reducing the impact are given.

PAPER 2: Is a Design Rationale Vital when Predicting Change Impact?
- A Controlled Experiment on Software Architecture Evolution

Lars Bratthall, Enrico Johansson and Björn Regnell

Proceedings of Second International Conference on Product Focused Software Proc-
ess Improvement, Oulo, Finland, June 2000

Software process improvement efforts often seek to shorten development
lead-time. A potential means is to facilitate architectural changes by pro-
viding a design rationale, i.e. a documentation of why the architecture is
built as it is. The hypothesis is that changes will be faster and more correct
if such information is available during change impact analysis. This paper
presents a controlled experiment where the value of having access to a ret-
rospective design rationale is evaluated both quantitatively and qualita-
tively. Realistic change tasks are applied by 17 subjects from both industry
and academia on two complex systems from the domain of embedded
real-time systems. The results from the quantitative analysis show that, for
one of the systems, there is a significant improvement in correctness and
speed when subjects have access to a design rationale document. In the
qualitative analysis, design rationale was considered helpful for speeding
up changes and improving correctness. For the other system the results
were inconclusive, and further studies are recommended in order to
increase the understanding of the role of a design rationale in architectural
evolution of software systems.

PAPER 3: Benchmarking of Processes for Managing Product
Platforms - a Case Study

Martin Höst, Enrico Johansson, Adam Norén and Lars Bratthall

7. Future work

Quality Improvement in Software Platform Development 23

Proceedings of Empirical Assessment in Software Engineering, (EASE 2002),
Keele, England, April, 2002.

This paper presents a case study where two organisations participate in a
benchmarking initiative in order to find improvement suggestions for
their processes for managing product platforms. The initiative is based on
an instrument which consists of a list of questions. It has been developed
as part of this study and it contains eight major categories of questions
that guide the participating organisations to describe their processes. The
descriptions are then reviewed by the organisations cross-wise in order to
identify areas for improvement. The major objective of the case study is to
evaluate the benchmarking procedure and instrument in practice. The
result is that the benchmarking procedure with the benchmarking instru-
ment was well received in the study. We can therefore conclude that the
approach probably is applicable for other similar organisations as well.

PAPER 4: Tracking Degradation in Software Product Lines through
Measurements of Design Rule Violations

Enrico Johansson and Martin Höst

Submitted to the 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE), Ischia, Italy, July, 2002

In order to increase reuse, a number of product versions may be developed
based on the same software platform. However, the platform must be
managed and updated according to new requirements if it should be reus-
able in a series of releases. This means that the platform is constantly
changed during its life cycle, and changes can result in degradation of the
platform. In this paper, a measurement approach is proposed as a means
of tracking the degradation of a software platform and consequently in
the product line. The tracking approach is evaluated in an industrial case
study where it is applied to a series of different releases of a product. The
result of the case study indicates that the presented approach is feasible.

7. Future work

Examples for further work in these areas are given for benchmarking the
platform process, tracking degradation in product lines and performance
investigations in software platforms.

Introduction

24 Quality Improvement in Software Platform Development

Further work can be done in benchmarking the platform process. For
example, the real improvement effect of the benchmarking can be studied
and the use of the benchmarking instrument may be extended. It would
be interesting to investigate if the benchmarking instrument can be used
for self-assessment or if a third party could perform the assessment. The
following research questions might be pursued:

Can a benchmarking approach be used for self-assessment of the
development process for software platforms?

Does a benchmarking approach have significant measurable
improvement on the development process for software platforms?

Further work can be done in the area of tracking product line degrada-
tion. A significant challenge for such a tracking is to depict the degrada-
tion quantitatively and relate the quantitative values to actions performed
in the platform development process. The approach can also be investi-
gated in order to track the degradation of specific quality attributes (e.g.
degradation of maintainability, degradation of performance, degradation
of usability, etc.). The following research questions might be pursued:

Can a software platform measure be used as a general approach to
track the degradation of software product lines?

How can the gradient of a degradation measure be related to the
platform development process?

Can a software platform measure be used to track the degradation
of specific quality attributes (e.g. performance, reliability, usability,
etc.) in software product lines?

Further work can be done in optimising the performance of the plat-
form without sacrificing the other platform specific aspects. Performance
is an important quality attribute of a software platform. This is, in partic-
ular, true for an embedded system as for example a software platform for
hand-held communication devices. Also when constructing the software
platform to primarily deal with other quality attributes than performance,
for example maintainability and reusability, there is a strong cost and real-
time incentive to avoid performance penalties. Therefore, there is a need
to predict the performance of a software platform, or at least a need to
compare available architectures of platforms for best performance charac-
teristics. The research may deal with early performance assessments and

8. References

Quality Improvement in Software Platform Development 25

prediction of software architectures in order to explore the described
problem areas. The following research questions might be pursued:

How should an evaluation method for investigating the perform-
ance of an architecture implementation be designed?

How should a method that is used to compare different architec-
tures’ performance look like?

What performance characteristics can be estimated by evaluating an
architecture design?

What guidelines for architecture design can be proposed by investi-
gating the performance of an architecture implementation?

The research field of quality improvement in software platform devel-
opment is still a wide-open arena. Many quality factors and their implica-
tions in various phases of the development process need to be explored
and given research attention to.

8. References

[1] Basili, V.R., “The Experimental Paradigm in Software Engineering”, In Experi-
mental Software Engineering Issues: Critical Assessment and Future Directives,
Edited by Rombach, D., Basili, V.R., Selby, R.W., Lecture Notes in Computer
Science, pp. 3-12, August, 1993

[2] Bass, L., Clements, P., Kazman, R., Software Architecture in Practise. Addison Wes-
ley, 1998

[3] Bosch, J., Design & Use of Software Architectures: Adopting and Evolving a Product-
line Approach, ACM Press/Addison Wesley, 2000

[4] Briand, L.C., Morasca, S., Basili, V.R., “Measuring and Assessing Maintainability
at The End of High Level Design”, Proceedings of International Conference on Soft-
ware Maintenance (ICSM´93), pp. 88-97, 1993

[5] Campbell, D., Stanley, J., Experimental and Quasi-Experimental Designs for
Research, Chicago, IL: Rand-McNally, 1963

[6] Carriere, S.J., Kazman, R., Woods, S., “Assessing and Maintaining Architectural
Quality”, Proceedings of Third European Conference on Maintenance and Reengi-
neering (CSMR´99), pp. 23-30, Amsterdam, 1999

[7] Clements, P., Northrop, L.M., Software Product Lines: Practices and Patterns, Add-
ison-Wesley, 2001

Introduction

26 Quality Improvement in Software Platform Development

[8] Gall, H., Hajek, K., Jazayeri, M., Detection of Logical Coupling based on Prod-
uct Release History, Proceedings of International Conference on Software Mainte-
nance (ICSM´98), pp. 190-198, Washington D.C, 1998

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns: Abstraction
and Reuse of Object-Oriented Design”, Proceedings of 7th European Conference on
Object Oriented Programming (ECOOP´93), pp. 406-431, Springer Verlag, 1993

[10] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reus-
able Object-Oriented Software, Addison-Wesley, 1995

[11] Hofmeister, C., Nord, R., Soni, D., Applied Software Architecture, Addison-Wesley
Longman, 2000

[12] IEEE. IEEE Standard 610.12-1990: IEEE Standard Glossary of Software Engi-
neering Terminology, 1990

[13] Jazayeri, M., Ran, A., van der Linden, F., Software Architecture for Product Fami-
lies: Principles and Practise, Addison-Wesley, 2000

[14] Kazman, R., “Tool Support for Architecture Analysis and Design”. Proceedings of
2nd International Workshop on Software Architectures, pp. 94-97, ACM Press, 1996

[15] Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C., A Two-Phase
Process for Software Architecture Improvement, Proceedings of IEEE International
Conference on Software Maintenance (ICSM '99), pp. 371 -380, 1999

[16] Kruchten, P.B., “The 4+1 View Model of Architecture”, IEEE Software, Vol. 12,
No. 6, pp. 42-50, November, 1995

[17] Lee, Y.S., “The Sustainability of University-Industry Research Collaboration: An
Empirical Assessment, Journal of Technology Transfer, No. 25, pp. 111-133, Kluwer
Academic Publishers, The Netherlands, 2000

[18] McCall, J.A., Richards, P.K., Walters, G.F., “Factors in Software Quality” RADC
TR-77-369, 1977, Vols. I, II, III, US Rome Air Development Center Response
NTIS AD/A-049 014, 015, 055, 1977

[19] Meyer, M., Lehner, A., The Power of Product Platforms, The Free Press, New York,
1997

[20] Parnas, D.L., “On the Design and Development of Program Families”, IEEE
Transactions on Software Engineering, No. 2, March, 1976

[21] Perry, D.E., Wolf, A.L., “Foundations for the Study of Software Architecture”.
Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, October, 1992

[22] Robson, C., Real World Research: A Resource for Social Scientists and Practitioner-
Researchers, Blackwell Publishers Ltd., United Kingdom. 1993

[23] Sanderson, S., Uzumeri M., "Managing Product Families: The Case of the Sony
Walkman," Research Policy, No. 24, pp. 761-782, 1995

8. References

Quality Improvement in Software Platform Development 27

[24] Shaw, M., Garlan D., Software Architecture – Perspectives on an Emerging Disci-
pline, Prentice Hall, USA, 1996

[25] Weiss, D.M., Lai C.T.R., Software Product-line Engineering: A Family-Based Soft-
ware Development Process, Addison-Wesley, Reading, MA, USA, 1999

[26] Womack, J., Ones, D., Rooms, D., The Machine that Changed the World, New
York: Harper-Colons, 1991

Introduction

28 Quality Improvement in Software Platform Development

Quality Improvement Software Platform Development 29

PAPER I:

The Importance of Quality Requirements
in Software Platform Development – A Survey

Enrico Johansson, Martin Höst, Anders Wesslén and Lars Bratthall

Proceedings of HICSS-34, Hawaii International Conference on System Sciences, Maui, Hawaii,
USA, January, 2001

Abstract

This paper presents a survey where some quality requirements that com-
monly affect software architecture have been prioritized with respect to
cost and lead-time impact when developing software platforms and when
using them. Software platforms are the basis for a product-line, i.e. a col-
lection of functionality that a number of products is based on. The survey
has been carried out in two large software developing organizations
using 34 senior participants. The prioritization was carried out using the
Incomplete Pairwise Comparison method (IPC). The analysis shows that
there are large differences between the importance of the quality require-
ments studied. The differences between the views of different stakeholders
are also analysed and it is found to be less than the difference between the
quality requirements. Yet this is identified as a potential source of negative
impact on product development cost and lead-time, and rules of thumb
for reducing the impact are given.

The Importance of Quality Requirements in Software Platform Development – A Survey

30 Quality Improvement in Software Platform Development

1. Introduction

Time to market for new products is an important business driver for
many organizations [5, 12, 23, 24, 25]. Sometimes, the market can be an
all-or-almost-nothing market, and there can be a clear benefit from being
first to market, i.e. having the first-mover advantage [20]. For example,
in [2] an organization stated that being only one week late to market
could make a product introduction fail completely, and another organiza-
tion stated that being just three months ahead of its closest competitor
allowed it to become world market leader.

A commonly used technique to compress product development lead-
time is to develop a software platform, and then make minor changes in
order to release a product that is perceived as “new” [27]. Thus a software
platform has an impact on the cost, the development lead-time and the
overall quality of several generations of products.

A software platform has several qualities, such as its maintainability, its
efficiency etc. Since a software platform has an impact on several genera-
tions of products, the set of qualities in the platform may be more impor-
tant than the set of qualities in a single product. At the same time, there is
a cost associated with achieving these qualities in a software platform.

In order to find out which qualities are considered the most expensive
to obtain, as well as which are the most wanted, a survey has been con-
ducted. The study was conducted in two steps. First a pilot study was car-
ried out in academia (A) in order to improve the instruments later used
for data collection. As a second step, two industrial organizations, subse-
quently denoted Organization B and Organization C, have participated
in this study. Organization B develops large transaction systems, with
high reliability and security demands. Organization C develops hand-held
consumer devices for production in large numbers. Both organizations are
considered representative for large organizations that develop and use
software platforms, where time to market and reliability are major busi-
ness drivers.

In each of these organizations, there are several stakeholders involved
in determining the qualities needed in the software platform and the
products based on the platform. If these stakeholders have different views
on what qualities are expensive to create in a software platform, and
which have a positive impact when creating the products based on the
platform, there is a risk that the software platform is sub-optimized. This
can result in longer lead-time and unnecessary costs when developing

2. Method

Quality Improvement in Software Platform Development 31

products based on the software platform. This study investigates three
roles at Organization B (architects, system designers, and marketing), and
two roles at Organization C (architects and system designers). The pur-
pose is to identify differences between stakeholders. In summary, the
research questions of this study can be summarized as:

RQ1: Is there a difference in how various stakeholders prioritize qual-
ity requirements when developing a software platform?

RQ2: Is there a difference in how various stakeholders prioritize qual-
ity requirements, that they want to be present in a software platform
when using it for developing a new product?

In Section 2, the method used to investigate the research questions is
explained and in Section 3, results are presented. In Section 4, conclusion
and applications of results are presented.

2. Method

The strategy used to answer the research questions is a replicated survey
study. The planning of the study is outlined in Section 2.1. The operation
of the study is described in detail in Section 2.2. In Section 2.3, the pro-
cedures for data analysis and presentation are described. In Section 2.4,
threats to the validity of the study are discussed.

2.1 Planning

In order to identify which stakeholders and which quality requirements to
study, a group of people with extensive industrial and/or research back-
ground elicited a list of stakeholders which were known to have an inter-
est in the development or evolution of systems in the two organizations
studied. The stakeholders all have a large impact on the elicitation and
prioritization of quality requirements. Considering these stakeholders, a
number of quality requirements from [14, 17] were selected for investiga-
tion. The criteria for selection was that they were believed by the expert
group to both have a large impact on product development lead-time,
product development cost and product quality and also that they were
within the scope of this study.

The definitions in [14, 17] of the quality requirement studied proved
to be hard to understand in the pilot study performed before studying the
two industrial organizations. Therefore, using these definitions without

The Importance of Quality Requirements in Software Platform Development – A Survey

32 Quality Improvement in Software Platform Development

any modification would imply taking a considerable risk, since there was a
risk that participants would not understand them sufficiently. To secure
that a common understanding would be achieved, the definitions
from [14, 17] have been slightly rephrased. During this process the ques-
tionnaires used for data collection were iteratively tested against practi-
tioners who later did not participate in the study. The quality
requirements and the final definitions selected for study are shown in
Table 1, and the stakeholders studied are shown in Table 2. Apart from
these definitions, lead-time is explicitly defined as “the duration of a
project. The starting point of the project is when it has been decided that
a development project should take place, and ending point is when a
product can be used by an end-user, such as a user of a hand-held con-
sumer device or a user of an Internet bank system.”. Cost is defined as
“the amount of person-hours needed to accomplish something”. A soft-
ware platform is defined as “the first in a product-line, which is a collec-
tion of functionality that a number of products is to be based on”.

Table 1. Quality requirements studied. (Based on the ISO-9126 quality model).

Id. Requirement Definition
I Efficiency The architecture shall solve stated or implied needs efficiently with

respect to hardware usage (e.g. memory usage and CPU load).

II Functionality The architecture shall satisfy the stated or implied needs.

III Reliability The architecture shall perform its required functions correctly.

IV Usability The effort to understand and use the architecture correctly shall be
low.

V Reusability It shall be possible to reuse the architecture in other applications in
the same environment.

VI Maintainability The effort required to make changes to the architecture shall be
low.

Table 2. Stakeholders studied.

Name Definition
Architect An architect has a high level design responsibility, and is generally more

experienced than a system designer.

System designer A person who is primarily concerned with programming and fine-grained
design.

Marketing A person who is primarily concerned with marketing of products. This
role is only studied in Organization B.

2. Method

Quality Improvement in Software Platform Development 33

2.2 Operation

Data collection has taken place in several steps. First, a questionnaire was
given to all participants. On completion, the questionnaire was sent back
to the experimenters. The respondents have been given the possibility to
comment orally and in writing on their answers. After filling in the ques-
tionnaires, participants have been able to clarify answers and provide
more input through non-directive interviews [7] in order to capture unex-
pected information. In non-directive interviews, there is no pre-specified
set of questions, nor is there any schedule.

From previous experience [2], it is known that questionnaires must be
very clear, or there is a high risk that they will be erroneously interpreted,
thus reducing the validity of findings. For this purpose, a pilot study
among seven participants (Ph.D. students/Ph.D.s in software engineer-
ing) has taken place. The pilot study resulted in modifications to the
questionnaire, that made it more clear to the participants. Especially, the
concepts of lead-time, cost and software platform were defined in a clear
way.

The questionnaire has two parts. The first part contains simple ques-
tions that are used to establish the accountability of the participants. This
part also functioned as a primer, i.e. a mind opener. The second part has
six forms for comparing the quality requirements in Table 1 on a nine-
step scale. The scale was exemplified and explained in the questionnaire,
and the respondents were encouraged to use the entire scale. The ques-
tions asked are listed in Table 3. The order of questions, as well as the
order of comparisons made to answer each question are random for each
participant.

2.3 Analysis

The main analysis method applied to the quantitative data collected
through the questionnaires is a variant of the Analytic Hierarchical Proc-
ess (AHP) [15, 22], called the Incomplete Pairwise Comparison Method
(IPC) [9, 10]. The AHP was developed to improve decision-making
through prioritizing items pair-wise, rather than prioritizing all items at
once. Thus the method simplifies complex decision-making.

The AHP method is used to pairwise compare a set of n objects. For
every pair of objects, a subjective comparison should be made and it
should be decided how large the difference between the objects is accord-

The Importance of Quality Requirements in Software Platform Development – A Survey

34 Quality Improvement in Software Platform Development

ing to a pre-defined scale. The comparisons are coded and placed in a
comparison matrix. Based on the comparison results a priority vector can
be calculated. The priority vector consists of n items, which summarize
to 1 and describe the relative importance of the n objects that are com-
pared.

According to the original AHP method, every possible pair of objects
should be compared, i.e., if there are n objects, n(n-1)/2 comparisons
should be made. However, in [3] it is shown that the result is not nega-
tively affected if up to half of the comparisons are removed randomly, i.e.
by using the (IPC) method [9, 10]. The original AHP method is intended
to be used by one person or one group of people, who for every compari-
son decides one answer based on consensus. In [6] it is shown how to
instead aggregate the result of individual comparisons after the compari-
sons have been made.

In this study, comparisons have been made individually by the partici-
pants and 6 out of 15 comparisons have been omitted randomly in order
to lower the number of comparisons that every person has to make.

In the pilot study mentioned in Section 2.2, no comparisons were
omitted. The results from AHP analysis of this data-set has been com-
pared to the results of an IPC analysis of the same data-set with random

Table 3. Aspects studied and questions asked.

Aspect id. Question. Requirements 1 and 2 refer to those in Table 1.
LTDEV Which of requirement 1 and requirement 2 do you consider the most impor-

tant in terms of that it increases the lead-time in the creation of a new soft-
ware platform?

COSTDEV Which of requirement 1 and requirement 2 is the most expensive to create in
a new software platform?

QUALDEVa Which of requirement 1 and requirement 2 in the software platform do you
think is the most important to focus on when creating a new software plat-
form?

LTUSE Which of requirement 1 and requirement 2 in the software platform
decreases the lead-time the most when creating the new software product?

COSTUSE Which of requirement 1 and requirement 2 in the software platform
decreases the cost the most of a new software product based on the software
platform?

QUALUSEa Which of requirement 1 and requirement 2 in the software platform do you
think is the most important property for your work when developing a new
software product based on the software platform?

a. The questions for aspects QUALDEV and QUALUSE are intentionally rather loosely
defined. In that way the answer to each question is affected by the complete set of require-
ments and the business situation of each company, as known to the participants.

2. Method

Quality Improvement in Software Platform Development 35

data removed. In most cases, there is a slight modification of the absolute
results computed using AHP and IPC. In most cases, the ordering of aver-
age results is the same, while individual results vary more. It is concluded
that the ordering between the average weight assigned to the objects stud-
ied has a high degree of trustworthiness, if the absolute difference between
the elements is less than 0.02. In other cases, the IPC used in this study
may show an incorrect result.

The qualitative data collected through comments in the questionnaires
and through the interviews has been analytically analysed, and are mainly
used to describe the various systems.

A number of tests has been used1, notably two-tailed Kruskal-Wallis
tests [16], Analysis of Variance (ANOVA) [19] and Least Significant Dif-
ference tests (LSD) [19]. The Kruskal-Wallis test is non-parametric and
does not make any assumptions about the distribution or the variance of
the data collected. This test is used to initially get a picture of the data
analysed. The ANOVA makes two assumptions: The variance in the
groups being compared must be equal, and the data must be distributed
according to a normal distribution. If both a Kruskal-Wallis test and an
ANOVA on the same data-set show the same result, LSD tests can be
trusted as it is assumed that the preconditions for the ANOVA have been
met well enough. LSD tests have been used to identify what contributes
the most to the results of an ANOVA.

Since this study is explorative rather than hypothesis confirming, a rel-
atively large number of statistical tests are performed on data produced by
the same participants. This introduces the problem of multiplicity, i.e. the
risk that a test yields a significant result by chance due to the number of
tests performed. There are several ways to adjust for this risk. For exam-
ple, the Bonferroni adjustment [18] is a conservative adjustment that
states that if a pre-set significance level at e.g. p=0.10 is used, performing
ten tests would adjust the significance-level to 0.010. A less conservative
method is Holm’s method [13], which suggests ordering the results from
tests and adjusting the significance level required by the tests according to
the initial level, the number of tests, and the ordering of the results from
the tests. In this paper, neither Bonferroni adjustment nor Holm’s method
is used, but the reader should be aware of the multiplicity problem when
interpreting data.

1. SPSS 10.0 has been used for all statistical analysis, with the exception for the AHP analysis.

The Importance of Quality Requirements in Software Platform Development – A Survey

36 Quality Improvement in Software Platform Development

Boxplots are used to present the data. How to interpret boxplots is
shown in Figure 1. Note that the values outside the whisker-range are not
treated as outliers in the statistical analysis.

2.4 Threats to the validity

The validity of the findings reported depends to a large extent on how
well threats have been handled. Four types of validity threats [28] are ana-
lysed, namely threats to conclusion validity, construct validity, internal
validity and external validity.

Conclusion validity concerns the composition of participants and the
statistical analysis. The validity of material gathered through the question-
naire and the interviews is highly dependent on the experience of the
respondents. All of the participants have been several years in their organ-
ization. Some of the participants are the most senior in their role in their
organizations.

Since all participants are anonymous to all but the experimenters, there
is reason to believe that participants have answered according to their best
knowledge. There should be no social pressure to answer in a particular
way.

Interviewer bias cannot be completely removed, but since both ques-
tionnaires and interviews have been used, it is believed that the impact of
interviewer bias has been minimized. The instrumentation was carefully
reviewed with respect to understandability, and a pilot study was carried
out as described in Section 2.2. None of the reviewers or the participants
in the pilot study are participants in the survey. The reviews and the pilot

Possible outlier

Whisker: Up to 1.5*IQR or the
highest value inside that range

75% quartile marker

Median

25% quartile marker

Possible outlier

No whisker: There is no value
in the 1.5*IQR range

IQR

V
al

ue

Figure 1. Interpretation of boxplots.

2. Method

Quality Improvement in Software Platform Development 37

study are believed to have removed flaws in the questionnaires and the
interview guide.

The problem of multiplicity when using several statistical tests on the
same data set is addressed in Section 2.3. It was expected that statistical
significance would be low. Therefore as experienced participants as possi-
ble were included in this study, a decision based on the belief that experi-
enced stakeholders are more secure in their role than inexperienced
stakeholders are.

Construct validity concerns whether we measure what we believe we
measure. The multiple method approach should reduce the mono-
method bias, i.e. relying on data provided by only one data collection
method. Care has been taken to provide definitions on important con-
cepts used in the questionnaire. Thus, the threat against the construct
validity originating from that participants have different systems in mind
and therefore relate differently to the definitions and concepts given
should be minimized. It is, however, not possible to completely remove
this threat. The randomization questions as well as the individual com-
parisons within each question should balance any hypothesis guessing.
The full anonymity provided should minimize the risk for evaluation
apprehension, i.e. attempts to “look better”. Also, all participants have
been asked how much of the questions in the questionnaire used they
believe they understand, and all believe that they have understood the
majority of the questions correctly.

Internal validity concerns matters that may affect the measured varia-
bles outside the knowledge of the researcher.

The risk for maturation has been explicitly taken into account, by
making sure in advance that the questionnaire took not more than 40
minutes to complete. The use of IPC rather than AHP has reduced the
number of questions, thus also decreasing the risk for maturation. Selec-
tion effects due to how the participants have been selected can never be
completely out-ruled, but to the best of our knowledge, the selection
process should be adequate. No participant has left the study; i.e. there
has been no mortality during the survey. The use of the AHP should
reduce the risk for social threats, as should the full anonymity provided.
Social threats are threats that may cause a participant to deliberately skew
his answers to questions in a particular direction.

External validity concerns generalization of the findings to other con-
texts and environments than the one studied. Following Robson [21],
external validity can be compromised if sampling is not done appropri-

The Importance of Quality Requirements in Software Platform Development – A Survey

38 Quality Improvement in Software Platform Development

ately, or if mortality is high. Section 1 gives a conservative view on where
external validity should be high, i.e. in large organizations where TTM is
a major business driver.

Given the amount of thought put into methodology, and considering
the high level of experience of the participants, there is reason to believe
that the validity is high within a population close to the characteristics
described in Section 1. The main threat to validity is probably the use of
subjective data rather than objective measurements. Given the large vari-
ance in estimations made by some population, shown in for example
[11, 26], this is a serious threat. This threat has been addressed through
discussing with experienced participants, and by using the IPC.

A valid objection by readers of this survey may be that only a particular
set of quality requirements has been assessed, which is a correct observa-
tion. However, the choice seems sound given the purpose.

3. Results and analysis

In this section, the results of the survey are presented. Particular results are
denoted Rn. An overall discussion of findings is presented in Section 3.1.
RQ1 is analysed in Section 3.2. In Section 3.3, RQ2 is analysed.

3.1 Overall discussion

For each of the datasets from Organization B and Organization C, an
ANOVA has been performed in order to detect differences in how stake-
holders prioritize the quality requirements (Table 1), with respect to each
aspect (Table 3). No such difference has been detected. Yet, there is a sta-
tistically significance difference (p<0.10) in the way the stakeholders have
graded the importance of the quality requirements for some of the
aspects, which is detected both by the ANOVA test and the non-paramet-
ric Kruskal-Wallis test. This can be an indication of differences in the way
different stakeholders prioritize the quality requirements with respect to
various aspects. The data is visualized in Figures 2 and 3 and statistics are
summarized in Tables 4 and 5. Naturally this assumption must be
regarded with caution, since it is not detectable by the ANOVA test.

3. Results and analysis

Quality Improvement in Software Platform Development 39

Architect System designer Marketing
LT

D
E

V
C

O
ST

D
E

V
Q

U
A

LD
E

V
LT

U
SE

C
O

ST
U

SE
Q

U
A

LU
SE

 I II III IV V VI
0

10

20

30

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

10

20

30

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

P
er

ce
nt

 I II III IV V VI
0

10

20

30

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

10

20

30

40

P
er

ce
nt

 I II III IV V VI

10

20

30

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

P
er

ce
nt

Figure 2. Organization B, prioritization of quality requirements I to VI with respect to
role and aspect.

The Importance of Quality Requirements in Software Platform Development – A Survey

40 Quality Improvement in Software Platform Development

Architect System designer
LT

D
EV

C
O

ST
D

E
V

Q
U

A
LD

E
V

LT
U

SE
C

O
ST

U
SE

Q
U

A
LU

SE

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

10

20

30

40

P
er

ce
nt

 I II III IV V VI

10

20

30

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

40

P
er

ce
nt

 I II III IV V VI

5

10

15

20

25

30

35

P
er

ce
nt

 I II III IV V VI

10

20

30

40

P
er

ce
nt

Figure 3. Organization C, prioritization of quality require-
ments I to VI with respect to role and aspect.

3. Results and analysis

Quality Improvement in Software Platform Development 41

3.2 RQ1 - Impact of software platform qualities when
developing a software platform

This section compares the different views on the studied quality require-
ment when developing a software platform. The results presented are
based on both statistically significant findings and observed trends in the
dataset.

R1 In Organization B, marketing considers functionality (quality
requirement II) to be the quality requirement of those studied that has the
highest impact on lead-time when developing a software platform, closely

Table 4. Results related to the development of a software platform. p-values are given
for tests (p<0.10 is highlighted).

Organization B - Figure 2
Organization C -
Figure 3

Architect
System
designer Market Architect

System
designer

Participant ID BA-BH BI-BO BP-BW CA-CF CG-CL

LT
D

E
V

Kruskal-Wallis test 0.052 0.205 0,028 0.001 0.383

ANOVA test 0.032 0.268 0.026 0.001 0.650

Order of prioritization, highest
first

III, II, VI, I, V,
IV

V, III, II, IV,
VI, I

II, III, VI, I,
V, IV

V, III, VI, I,
IV, II

II, V, VI, III,
I, IV

An LSD indicates a difference
between quality requirements
priorities

I-III, II-IV, III-
IV, III-V, III-VI

Criteria for
LSD not ful-
filled.

I-II, I-III, II-
IV, II-V, III-
IV, III-V

I-II, I-III, I-V,
II-III, II-V, II-
VI, III-IV, III-
VI, IV-V, V-VI

Criteria for
LSD not ful-
filled.

C
O

ST
D

EV

Kruskal-Wallis test 0.017 0.123 0.271 0.328 0.761

ANOVA test 0.002 0.162 0.254 0.436 0.914

Order of prioritization, highest
first

II, III, I, V, VI,
IV

III, V, II, VI,
IV, I

III, VI, I, II,
IV, V

V, III, VI, I, II,
IV

VI, V, III,
IV, I, II

An LSD indicates a difference
between quality requirements
priorities

I-II, I-III, II-IV,
II-V, II-VI

Criteria for
LSD not ful-
filled.

Criteria for
LSD not ful-
filled.

Criteria for
LSD not ful-
filled.

Criteria for
LSD not ful-
filled.

Q
U

A
LD

E
V

Kruskal-Wallis test 0.184 0.019 0.026 0.204 0.012

ANOVA test 0.109 0.004 0.019 0.164 0.012

Order of prioritization, highest
first

III, II, VI, I, IV,
V

III, VI, V, II,
IV, I

III, VI, II, V,
IV, I

III, II, VI, V,
IV, I

An LSD indicates a difference
between quality requirements
priorities

Criteria for
LSD not ful-
filled

I-II, I-III, I-VI,
II-V, III-V, III-
VI, V-VI

I-III, I-VI,
II-III, III-IV,
III-V, IV-VI

Criteria for
LSD not ful-
filled.

I-II, I-III, I-
VI, II-IV, II-
V, III-IV, III-
V, IV-VI

The Importance of Quality Requirements in Software Platform Development – A Survey

42 Quality Improvement in Software Platform Development

followed by reliability. Architects, on the other hand, consider that relia-
bility takes the longest lead-time. System designers believe that achieving
functionality and reusability takes the longest lead-time.

R2 In Organization B, it can be observed that architects and system
designers have a relatively large difference in how they perceive the cost of
achieving reusability (quality requirement V), where system designers
consider the cost to be higher. This may be due to that the two groups
normally work at different architectural aggregation levels [1], where
architects work at higher levels. At the same time, marketing believes that
achieving reusability is the cheapest quality to achieve of those studied.

Table 5. Results related to the use of a software platform. p-values are given for tests
(p<0.10 is highlighted).

Organization B - Figure 2
Organization C -
Figure 3

Architect
System
designer Market Architect

System
designer

LT
U

SE

Kruskal-Wallis test 0.246 0.781 0.246 0.291 0.055

ANOVA test 0.712 0.951 0.584 0.420 0.056

Order of prioritiza-
tion, highest first

V, III, IV, II,
VI, I

III, VI, V, IV,
II, I

V, III, IV,
II, VI, I

V, II, IV, III,
VI, I

V, IV, II, I,
VI, III

An LSD indicates a
difference between
quality requirements
priorities

Criteria for
LSD not ful-
filled.

Criteria for
LSD not ful-
filled.

Criteria for
LSD not
fulfilled.

Criteria for
LSD not ful-
filled.

I-IV, I-V, III-
IV, III-V, IV-
VI, V-VI

C
O

ST
U

SE

Kruskal-Wallis test 0.562 0.819 0.308 0.460 0.339

ANOVA test 0.540 0.774 0.406 0.829 0.210

Order of prioritiza-
tion, highest first

V, IV, VI, II I V, III, II, VI,
IV, I

V, VI, I,
IV, III, II

IV, II, V, III,
VI, I

VI, (II/III),
IV, V, I

An LSD indicates a
difference between
quality requirements
priorities

Criteria for
LSD not ful-
filled.

Criteria for
LSD not ful-
filled.

Criteria for
LSD not
fulfilled.

Criteria for
LSD not ful-
filled.

Criteria for
LSD not ful-
filled.

Q
U

A
LU

SE

Kruskal-Wallis test 0.039 0.293 0.103 0.185 0.019

ANOVA test 0.005 0.379 0.108 0.128 0.031

Order of prioritiza-
tion, highest first

III, I, II, V,
VI, IV

III, VI, V, II,
IV, I

V, VI, III,
II, IV, I

III, II, V, I,
IV, VI

III, VI, II, IV,
V, I

An LSD indicates a
difference between
quality requirements
priorities

I-III, II-III,
III-IV, III-V,
III-VI

Criteria for
LSD not ful-
filled.

Criteria for
LSD not
fulfilled.

Criteria for
LSD not ful-
filled.

I-II, I-III, I-
VI, I-VI, III-
V

3. Results and analysis

Quality Improvement in Software Platform Development 43

R3 In Organization B, it can be observed that all three groups have
prioritized reliability as the most important to focus on when developing
a software platform. This observation is emphasized by the significant dif-
ference in prioritizations among system designers and marketing.

R4 In Organization C, there are similarities (Figure 3) between the
prioritization with respect to cost (COSTDEV) and lead-time (LTDEV)
aspects for both system designers and architects.

R5 Architects in Organization C prioritize reliability and reusability
as the two properties that take the longest lead-time to achieve. The sys-
tem designers give a much more blurred picture. This is evident in the sta-
tistics in Table 4 where no statistically significant difference in the system
designers’ prioritization with respect to lead-time (LTDEV) can be found.

R6 Regarding what increases cost the most in developing a software
platform in Organization C, there is no clear answer for neither the archi-
tects nor the system designers. However there is a significant difference in
how architects have graded the quality requirements. It seems that archi-
tects consider neither functionality nor usability costly to achieve.

R7 There is a significant difference in how system designers in
Organization C prioritize quality requirements from how the architects
prioritize the quality requirements. They prioritize reliability when devel-
oping a software platform. It can be observed that architects in
Organization C prioritize reusability instead.

3.3 RQ2 - Impact of software platform qualities when
using a software platform

This section compares the impact of the qualities studied, in a software
platform used in a new project. The results presented are based on both
statistically significant findings and observed trends in the dataset.

R8 In Organization B, all three types of stakeholders consider that
the maintainability of the software platform has the largest impact on
decreasing the lead-time in a project that builds upon the software plat-
form. The marketing role emphasizes this more clearly than system
designers and architects as seen in the boxplots related to lead-time
(LTUSE) in Figure 2.

The Importance of Quality Requirements in Software Platform Development – A Survey

44 Quality Improvement in Software Platform Development

R9 It can be observed that in Organization B, all three stakeholders
consider efficiency the least important factor in a software platform with
respect to lead-time reduction in a new software product. However, in
interviews, it was explained that a “good enough” efficiency in the plat-
form is mandatory for its use, therefore it was not prioritized the highest.

R10 In organisation B, the impact of quality requirements on cost
and lead-time in a new software project is considered similar for all three
groups. This indicates that there is a close correlation between cost and
lead-time in projects where a software platform is used.

R11 Generally in Organization B, architects and designers believe
that reliability is the most important quality in a software platform for the
success of a new software project. However, marketing prioritizes reusabil-
ity much higher than reliability with respect to cost. This result is empha-
sized by the fact that there is a significant difference in how architects
prioritize the quality attribute for the cost aspect (COSTUSE).

R12 Regarding what qualities in a software platform that reduce the
lead-time in the development of a product, architects in Organization C
give no clear answer. System designers have a much more clear opinion as
reflected by the significant difference in prioritization related to lead-time
(LTUSE). Usability and reusability are the two most important proper-
ties. However, when asked what reduces cost the most, system designers
claim that maintainability of the software platform is the most important
quality. Architects have no clear opinion regarding what quality that
reduces cost the most.

R13 Regarding what quality in a software platform that in general
causes success in a project that builds on the platform, there are trends
that can be interpreted as that both the architect and the system designer
consider reliability to be the most important aspect.

3.4 Comments from the participants

This section provides results from interviews and written comments.
R14 In both organizations, the participants are more uniform in their

opinions regarding software platform development (Table 4), than in
their opinions related to the use of the platforms (Table 5).

R15 When a software platform is bought rather than developed in-
house, market dominance and local support of the platform provider are
much more important than any of the aspects studied in this survey.

4. Conclusions and applications of results

Quality Improvement in Software Platform Development 45

4. Conclusions and applications of results

Several results in this study support a hypothesis that different stakehold-
ers prioritize various quality requirements with impact on the software
architecture differently, despite that the organization’s goal are the same
for the stakeholders. This holds true both for the development of a soft-
ware platform (R1, R2, R5, R6 and R7) as well as the use of a software
platform (R11 and R12). This may lead to erroneous balancing of quali-
ties when developing a software platform. It is therefore important to
make all the stakeholders understand the prioritization of the quality
attributes made for the software platform, since this prioritization may
not coincide with the prioritization made by the individual stakeholders.
These measures are taken in order to create a software development envi-
ronment with a good foundation for achieving a mutual understanding of
the challenges the different stakeholders are faced with.

In particular, marketing in one of the involved companies believes that
achieving reusability is the cheapest quality to achieve. This belief is defi-
nitely not shared by the technical stakeholders (R2). This can result in big
losses if marketing sells a “reusable” software product too cheap. A risk
management process in place as early as during the sales of software that is
based on a software platform should take this into account, possibly by
involving technical people in the sales process.

Both organizations prioritize reliability as an important aspect in a
software platform (R7, R11 and R13). Yet reliability is expensive to
achieve in a software platform (R5). This indicates that a software plat-
form development project should not be part of a more market-oriented
project, as this can have very hard lead-time requirements. If a plat-form
is developed as part of a market-oriented project, it is likely that either the
platform does not become reliable, or any other aspect of the product may
suffer.

It seems to be better known in the organizations studied what qualities
requirements have an impact on cost and lead-time when developing a
platform, than what quality in a software platform has an impact on cost
and quality when using the platform (R12, R14). This lead us to believe
that inadequate metrics for the impact of qualities in a software platform
are in use in the organisations. This results in that it is really not known
by the stakeholders what quality requirements are most important to
focus on when developing a software platform. Therefore, a software
development process must ensure that the impact of different qualities are

The Importance of Quality Requirements in Software Platform Development – A Survey

46 Quality Improvement in Software Platform Development

made clear to the stakeholders in software platform development in
advance, and a feedback loop from the use of the software platform to the
development of the next such product must be in place.

From the above discussion, a few rules of thumb for the development
of the architecture of software platforms are devised. These are considered
to be generalizable to other large organizations where time to market is a
major business driver:

1. In the development of a software platform, reliability has been iden-
tified by a multitude of stakeholders to be the most important qual-
ity requirement to focus on. Giving one stakeholder, such as an
architecture group, the uttermost responsibility for the fulfilment of
this quality requirement should emphasize this.

2. A software platform should in general not be developed as a part of
another project, or it is likely that either the software platform
becomes unreliable due to lead-time constraints, or the project may
become late.

3. Since even experienced individuals have varying opinions regarding
what is important to have in a software platform, techniques that
allow for both the precise communication of what is needed as well
as techniques for elicitating these requirements from different stake-
holders are needed.

What has not been answered in this study is how a feedback cycle that
identifies what quality requirements really affect cost, quality and lead-
time in projects that build upon a software platform, can be established.
This is subject to further research. It would also be interesting to know
why different stakeholders prioritize the aspects as they do, as it could be
of value in resolving the conflicts indicated in this study as well as in the
teaching of software architects.

The relationship between the quality attributes could be further stud-
ied. This could include an analysis of the effects on the other attributes
when focusing on improvement with respect to one specific attribute. For
example, improvement with respect to one attribute may mean that there,
under certain conditions, also will be improvements with respect to the
other attributes. Or under other conditions, deterioration with respect to
the other attributes.

Finally, extending this study to incorporate more types of stakeholders,
e.g. managers, would be interesting since it is hypothesised that this

4. Conclusions and applications of results

Quality Improvement in Software Platform Development 47

would show further discrepancies in prioritization of qualities in a soft-
ware platform.

Acknowledgements

This work was partly funded by The Swedish National Board for Indus-
trial and Technical Development (NUTEK), grant 1K1P-97-09673. We
thank Prof. C. Wohlin and the Software Engineering Research Group at
the Dept. of Communication Systems and Dr. M. Jørgensen and the
Industrial Systems Development Research Group at the Department of
Informatics, Oslo University, as well as employees at the participating
organizations. In particular we thank E. Nordby, I. Rutle and P. Solvang.

References

[1] Bratthall, L., Runeson, P. “A Taxonomy of Orthogonal Properties of Software
Architecture”. In Proc. Second Nordic Workshop on Software Architecture. Ron-
neby, Sweden. August, 1999

[2] Bratthall, L., Runeson, P., Adelswärd, K., Eriksson, W. “Lead-time Challenges in
the Development and Evolution of Distributed Real-time Systems”. Information
Systems and Technology. Vol. 14, No. 13, pp. 947-958. September, 2000

[3] Carmone, F.J., Kara, A., Zanakis, S.H., “A Monte Carlo Investigation of Incom-
plete Pairwise Comparison Matrices in AHP”. European Journal of Operational
Research, Vol. 102, Issue 3, pp. 538-554. 1997

[4] Cook, T.D., Campbell, D.T. Quasi-Experimentation - Design and Analysis Issues for
Field Settings. Houghton Mifflin Company. 1979

[5] Datar, S., Jordan, C., Kekre, S., Rajiv, S., Srinivasan, K. “New Product Develop-
ment Structures and Time-to-Market”. Management Science, Vol. 43, No. 4,
pp. 452-464. April, 1997

[6] Forman, E., Peniwati, K., “Aggregating Individual Judgements and Priorities with
the Analytic Hierachy Process”. European Journal of Operational Research,
Vol. 108, pp. 165-169. 1998

[7] Frankfort-Nachimias, C., Nachmias, D. Research Methods in the Social Sciences,
Forth Edition. Edward Arnold, London, Great Brittain. 1992

[8] Graves, S.B. “The Time-Cost Trade-off in Research and Development: A Review”.
Engineering Costs and Production Economics, Vol. 16, No. 1, pp. 1-9. 1989

The Importance of Quality Requirements in Software Platform Development – A Survey

48 Quality Improvement in Software Platform Development

[9] Harker, P.T., “Incomplete Pairwise Comparison in the Analytic Hierarchy Process”,
Mathematical Modelling”, Vol. 9, No. 11, pp. 837-848. 1987

[10] Harker, P.T., “Alternative Modes of Questioning in the Analytic Hierarchy Process”,
Mathematical Modelling, Vol. 9, No. 35, pp. 353-360. 1987

[11] Hayes, W., Over, J.W. “The Personal Software Process (PSP): An Empirical Study
of the Impact of PSP on Individual Engineers”, Software Engineering Institute,
Carnegie Mellon University, USA, CMU/SEI-97-TR-001. December 1997

[12] Hendricks, K.B., Singly, V.R. “Delays in New Product Introduction and the Mar-
ket Value of the Firm: The Consequences of Being Late to the Market”. Manage-
ment Science, Vol. 43, No. 4, pp. 422-436. April, 1997

[13] Holm, S. “A Simple Sequentially Rejective Multiple Test Procedure”, Scandinavian
Journal of Statistics, Vol. 6, pp. 65-70. 1979

[14] International Standard Organization, Information Technology - Software Product
Evaluation - Quality Characteristics and Guide lines for their Use, ISO/IEC IS 9126,
Geneva, Switzerland. 1991

[15] Karlsson, J., Ryan, K. “A Cost-Value Approach for Prioritizing Requirements”.
IEEE Software, Vol. 14, No. 5, pp. 67-74. September/October, 1997

[16] Kruskal, W.H., Wallis, W.A. “Use of Ranks on One Criterion Variance Analysis”.
Journal of the American Statistical Association, Vol. 47, pp. 583-621, Corrections
appear in Vol. 48. 1952

[17] McCall, J.A., Orchards, P.K., and Waters, G.F, Factors in Software Quality, RADC
TR-77-369, 1977. Vols. I, II, III, US Rome Air Development Centre Reports
NTIS AD/A-049 014, 015, 055. 1977

[18] Miller, R. G. Jr., Simultaneous Statistical Inference, Springer-Verlag, New York,
USA. 1991

[19] Montgomery, D.C. Design and Analysis of Experiments, Third Edition. John Wiley
& Sons, New York, USA. 1991

[20] Nagle, T.T., Holder, R.K. The Strategy and Tactics of Pricing: A Guide to Profitable
Decision Making, Prentice Hall. 1994

[21] Robson, C. Real World Research: A Resource for Social Scientists and Practitioner-
Researchers. Blackwell Publishers, Great Britain. 1993

[22] Saaty, T.L., The Analytic Hierarchy Process, McGraw-Hill, New York, USA. 1980

[23] Schilling, M.A. “Technological Lockout: An Integrative Model of the Economic
and Strategic Factors Driving Technology Success and Failure”. Academy of Man-
agement Review, Vol. 23, No. 2, pp. 267-284. April, 1998

[24] Stalk, G., Jr. “Time - The Next Source of Competitive Advantage”. Harward Busi-
ness Review, Vol. 66, No. 4, pp. 41-55. July/August, 1988

4. Conclusions and applications of results

Quality Improvement in Software Platform Development 49

[25] Urban, G.L., Carter, T., Gaskin, S., Mucha, Z. “Market Share Rewards to Pioneer-
ing Brands: An Empirical Analysis and Strategic Implications”. Management Sci-
ence, Vol. 32, No. 6, pp. 645-659. June, 1986

[26] Wesslén, A. “A Replicated Empirical Study of the Impact of the PSP on Individual
Engineers”, Empirical Software Engineering, Kluwer Academic Publishers, Vol. 5,
No. 2, pp. 93-123. 2000

[27] Wheelwright, S.C., Clarc, K.B. Leading Product Development. The Free Press, New
York, USA. 1995

[28] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and Wesslén, A.
Experimentation in Software Engineering An Introduction. Kluwer Academic Pub-
lishers. 1999

The Importance of Quality Requirements in Software Platform Development – A Survey

50 Quality Improvement in Software Platform Development

Quality Improvement in Software Platform Development 51

PAPER II:

Is a Design Rationale Vital when Predicting
Change Impact?
– A Controlled Experiment on Software Architecture Evolution

Lars Bratthall, Enrico Johansson and Björn Regnell
Proceedings of PROFES 2000, International Conference on Product Focused Software Process
Improvement, Oulo, Finland, June 2000

 Abstract

Software process improvement efforts often seek to shorten development
lead-time. A potential means is to facilitate architectural changes by pro-
viding a design rationale, i.e. a documentation of why the architecture is
built as it is. The hypothesis is that changes will be faster and more correct
if such information is available during change impact analysis. This paper
presents a controlled experiment where the value of having access to a ret-
rospective design rationale is evaluated both quantitatively and qualita-
tively. Realistic change tasks are applied by 17 subjects from both industry
and academia on two complex systems from the domain of embedded
real-time systems. The results from the quantitative analysis show that, for
one of the systems, there is a significant improvement in correctness and
speed when subjects have access to a design rationale document. In the
qualitative analysis, design rationale was considered helpful for speeding
up changes and improving correctness. For the other system the results
were inconclusive, and further studies are recommended in order to
increase the understanding of the role of a design rationale in architectural
evolution of software systems.

Is a Design Rationale Vital when Predicting Change Impact?

52 Quality Improvement in Software Platform Development

1. Introduction

Improvement of the software design process may include the introduction
of activities related to better and more elaborated documentation of a sys-
tem’s architecture. Typically, architecture documentation describes what is
present in the architecture in terms of its constituents. It may also be ben-
eficial to spend time on the creation of Design Rationale (DR) documen-
tation, i.e. descriptions of why a software architecture is built as it is. A
major argument for introducing DR, is its potential benefit as a tool when
making changes to the system in the context of architectural evolution. A
change task includes the activity of change impact analysis, where changed
and added architectural components are identified [3], and it can be
argued that the rationale for the architecture is vital information when
analysing how new or changing requirements impact the design. How-
ever, all expansions of the software development process may affect lead-
time negatively, as there of course is a cost associated with documenting a
system. This cost must obviously be balanced to the potential gain.

This paper presents an empirical study on the effectiveness of DR in
software evolution. The main research question is: How effective is DR as
a support for change impact analysis? The main motivation for the pre-
sented research relates to the general need for a better understanding of
how process changes relate to product and process quality. In the pre-
sented research, the product quality in focus is maintainability and the
process quality in focus is development lead-time.

The importance of having a short product development lead-time has
been argued by many, e.g. [11, 26, 35]. A short product development
lead-time increases access to the market introduction window. This in its
turn increases the chance of market dominance [34] and decreases the risk
of market lockout [28]. Being early on the market also enhances the mar-
ket’s education on a particular product, and increases the likelihood that
market survey information still is valid at actual market introduction [31].
Not being late to market is also an issue for shareholders; in a study
reported in [16], the average stock value drop was more than five percent
when an announced product was later than expected. In [4], a company
witnessed that being only one week too late to market resulted in the total
annihilation of the potential market, and several million dollars of soft-
ware investments were wasted. These are examples of an important qual-
ity of service that software companies are faced with today: Extremely

1. Introduction

Quality Improvement in Software Platform Development 53

short time to market or time to customer. Improvements to the software
development processes is one way of increasing the development speed.

Short lead-time is, however, not only a requirement for the first mem-
ber of a product family. For example, in the mobile phone industry, new
versions built on existing products have to be release regularly to keep the
consumer interest high, and new services that work together with existing
systems must be regularly introduced at a high pace.

Maintainability and controlled evolution of a system is dependant on
the understanding of what is currently present, as changes in design are
affected by the prior design [12]. This understanding is perhaps best
acquired through experience in working with the system, or at least
through communication access to its original developers. Unfortunately,
it is not always possible to communicate with the designers of the original
system architecture, or they may have problems recalling the structure of
the system. Examples include systems developed with a high staff turn-
over and systems made by consultants that leave the contractor after the
first version of a system has been accepted. For these systems, it is desira-
ble to establish communication which is available over time, and a docu-
mentation of DR is, in this situation, assumed to be important for the
understanding of the present system architecture.

The problems that occur when changes are being made to poorly
understood problems have been highlighted by e.g. [5, 7]. An important
problem is architectural erosion [25]: A system that is being changed
when the architecture has not been understood erodes into an entity
where new change requests are becoming harder and harder to fulfil, and
eventually a change request is either impossible to accommodate, or it
results in more new errors than those potentially being fixed. This is a
serious problem in domains where lead-time is an important issue, since
lead-time accelerating activities such as product-family or product-line
reuse requires a strong grip of the architecture. In the light of these argu-
ments, we have designed a controlled experiment to investigate the
hypothesis of DR documentation being an effective means for supporting
change impact analysis.

The paper is structured as follows. Section 2 gives a brief description of
the selected approach to design rationale documentation. Section 3
explains the variables and hypothesis being studied, as well as the design
of the experiment. In Section 4 the data from the experiment is analysed,
and in Section 5 the results are interpreted in relation to the hypothesis of
the experiment together with conclusions and issues of further research.

Is a Design Rationale Vital when Predicting Change Impact?

54 Quality Improvement in Software Platform Development

2. Object of study: A specific approach to
design rationale documentation

DR was early suggested as an important part of software architecture [25],
and in [1] the importance of documenting DR is also recognized. Accord-
ing, to Shum [29], DR research originates from argumentation formal-
isms (e.g. [32, 33]), hypertext representational technology [8, 14, 24],
design research [10] and software engineering. This paper focuses on soft-
ware engineering aspects, as it investigates the potential business value of
DR in an actual software design environment.

A DR is a kind of documentation, that not necessarily must be pro-
duced before the first release of a system. Instead, it can be written after
the development of the first generation of a system as a retrospective
DR [29], albeit with the risk that the DR is biased by the person writing
the DR [21]. A retrospective DR does not delay the market introduction
of the first generation of a system, as does a narrative DR [29], written
during the initial development.

There are many approaches to both representing and manipulating a
DR [17, 20]. A weakness in some approaches to DR, e.g. QOC [29],
rIBIS [27], is that they may need substantial training in order to be used
effectively. Another weakness is the weak association between a DR docu-
ment and the actual code. This is a problem, since designers usually dis-
like making additional documentation [29]. Also, it has been noted that
some kind of style guide is necessary if a good DR should be produced,
and a structure of DR has been asked for in [29].

Our approach to DR is very simple, yet it tries to address the previ-
ously discussed deficiencies: For each aggregation level [6] in a system, the
original designer should write a short note on why it is broken down into
the lower aggregation levels, and what the purpose of each component is.
This ensures that the DR has a strong association with the code, and that
the DR’s size is limited which is not the case for e.g. a QOC DR [18]. On
a system level, comments should be made on only four standardized head-
ings: Organization of system into files, use of language constructs, main
dynamic architectural principles and finally, clues to understanding the
system. Together, the DR provides explicit information for
Kruchten’s [19] development view and implicit information on any of the
logical, the synchronization, and the physical views. The value of structur-
ing the DR according to the 4+1 View Model [19] is that its information

3. Experiment planning and operation

Quality Improvement in Software Platform Development 55

content is field-proven to be useful in architecture level design. The rea-
son why architectural level design is addressed is that during this level of
design, decisions with system-wide implications must be taken, which
both constrain a system’s natural change room, as well as facilitates
changes within this room. Thus an architectural understanding is crucial
for maintaining flexibility in a system during its evolution.

The suggested approach has several strengths. First of all, it requires
only little training. The writing of a DR for a component at a particular
aggregation level can be prompted by a code entry tool, resulting in
higher likelihood of actually producing the documentation. Since the
documentation follows the structure of the code, the likelihood of the
appropriate DR being found when changes are being performed increases.
Since the DR documentation is tightly associated with the code, the like-
lihood that it will be maintained when code changes increases, as a
designer does not have to go through the a tedious of updating multiple
documents. Apart from this, the approach scales well also to large systems,
unlike e.g. QOC [18], and can easily be used with many existing case
tools which is important since those generally lack the explicit ability to
capture design rationale at different levels of abstraction [13].

In summary, the chosen DR approach which is the object of this
empirical study includes natural language explanations of (1) the rationale
for the static structure of the system; (2) the organization of the system
into files; and (3) rationale for other design decisions considered impor-
tant, when the original designers subjectively thinks about future likely
product changes.

3. Experiment planning and operation

The experiment is motivated by the need to reduce the time spent in
changing complex systems when it is not possible to communicate with
the original developers, or the original developers have forgotten much of
the system at hand. The aim of this study is to evaluate the effectiveness of
having access to a simple textual design description, where care has been
taken to motivate why the system is designed in the way it is, i.e. a DR is
available.

The experiment is defined as follows:

Is a Design Rationale Vital when Predicting Change Impact?

56 Quality Improvement in Software Platform Development

n Object of study: A textually represented DR combined with some
system static architectural description [6] at various aggregation
levels [6].

n Purpose: The effectiveness of a DR is studied. Effectiveness is meas-
ured in terms of how well change requests are being performed, as
well as how long time these change requests take to fulfil.

n Perspective: Single experienced developers coming to a new system,
without previous knowledge of it.

n Context: The effectiveness is measured when attempting changes to
two real-time systems: A local telephony switch control software
and a car cruise control system. Participants are from two groups:
Senior industrial designers and a group of Ph.D. students and fac-
ulty members in software engineering.

3.1 Variables and hypotheses

The independent variables are variables that we can control and
manipulate [37]. There are two independent variables: The provision of a
DR – or not, and the system where change requests are applied on. Our
main hypothesis is that people design differently when having access to a
DR. Three more formal hypotheses are shown in Table 1. All hypotheses
are tested at on a Windows PC running SPSS version 9.0. The
level of significance is chosen beforehand to avoid fishing for particular
results.

Table 1. Hypotheses.

Hypothesis

: There is a difference in how long time it
takes to complete the change tasks depending on whether a DR is available or not. Null
hypothesis: There is no difference in this aspect.

: There is a difference in how large
percentage of the required changes are correctly suggested when a DR is available and when it is
not. Null hypothesis: There is no difference in this aspect.

: There is a difference in how
many superfluous, incorrect or unsuitable changes are suggested when a DR is available and
when it is not. Null hypothesis: There is no difference in this aspect.

p 0.10≤

Sys System A, System B{ }∈

Ht Sys 1, , tChange Sys WithDR, , tChange Sys NoDR, ,≠

HPercOK Sys 1, , PercOKSys WithDR, PercOKSys NoDR,≠

HNoExtra Sys 1, , NoExtraSys WithDR, NoExtraSys NoDR,≠

3. Experiment planning and operation

Quality Improvement in Software Platform Development 57

3.2 Design

There are 17 participants in the experiment of which 7 are industrial sen-
ior designers active in a designated software architecture group. The rest
are faculty members or Ph.D. students with varying industrial experience.
All participants have received training in the formality of the source mod-
els used, the form of the change requests, and how to indicate where they
believe that changes are requested in order to fulfil each change request.
The participants have been exposed to two or three systems, and a
number of change requests for each system. One group of participants has
had access to a DR, and the other group has not.

Before the experiment, all participants filled in a form describing their
knowledge and experience. In total, 17 aspects of their experience and
knowledge have been asked for. The experience from real-time systems
and the modelling language have been used to randomize participants
regarding their access or no access to a DR. The reason that these two
aspects have been used to randomize participants is that these aspects have
been seen in a prior experiment to have a relatively large correlation with
the ability to quickly identify errors in distributed real-time systems [2] of
similar complexity as those studied in this experiment.

In the beginning of the experiment, an introduction and an overview
of the model language used to describe code, SDL [30], were given. SDL
describes the code graphically using extended finite state machines, which
can be hierarchically grouped. The introduction was guided by slides.
These slides were available to all participants as handouts. These handouts
were used as a reference when the code was studied, in case something in
the modelling language should be unclear. Through the introduction and
the model language overview, it was made sure that all participants had a
reasonable understanding of the code modelling language and initial
learning effects would not affect the experiment. It was also made certain
that everyone knew what to do and how to fill in the forms.

All participants were first assigned four change requests in random
order, that required changes to a local telephony system – system A
(described in Table 2). An example change task is shown in Figure 1. The
change requests are realistic requests for new services. The author writing
the DRs has had no knowledge of the change tasks to come, thus reflect-
ing reality. This seem to differentiate this study from e.g. [15] and several
studies in [29].

Is a Design Rationale Vital when Predicting Change Impact?

58 Quality Improvement in Software Platform Development

For practical reasons, the maximum time allowed for each change
request was nine minutes, not including maximally 5 minutes for study-
ing the extent of documentation and reading each change task. The sug-
gested change impact is recorded in a form where it is possible to indicate

Table 2. Description of systems

System A is a real-time system that controls the operation of a local PBX. The software is based
on asynchronous processes, and it is modelled in SDL [30], which is a high-level well-defined
language. The requirements specification is rather complete and well-written. The system has
previously been described in [36]. The system is described at 3 aggregation levels containing
seven different static software processes. The maximum number of concurrently executing soft-
ware processes is 28.

System B is a real-time system written in SDL that consists of two distinct parts: i) A car cruise
control and ii) a test-driver stub for i). The test-driver allows the simulation of a road and driver
actions while allowing monitoring of speed and dash-board indicators. The system is in indus-
trial use. The requirements are described on less than a half page of text. This specification is
incorrect as well as incomplete – a too common situation in an industrial context. The system
is described at 5 aggregation levels containing 18 different static software processes. The maxi-
mum number of concurrently executing software processes is 18.

System C is a building access control real-time system written in SDL that consists of two dis-
tinct parts: i) A part that is a central database for key-cards and their authorization and ii) A
part that is the real-time handler for each door. The requirements are described on four pages,
and the requirements are considered as being correct and complete. Their is also a short defini-
tion of the vocabulary used. The system is described at 3 aggregation levels containing 2 differ-
ent static software processes. The maximum number of concurrently executing software
processes is potentially unlimited, depending on the number of doors connected to the system.
In the program provided to the participants, there are 2 concurrently executing software proc-
esses.

Figure 1. Example of change task

Purpose: The system must be updated in order to maintain speed
and safe distance from other vehicles. A highly sensitive radar
will be used to precisely locate the position of the cars ahead and
behind. The cruise control should be able to take advantage of
this new functionality. All the described functionality must be
implemented.

Description: Detailed description (e.g. it must be possible to set
the distance using particular switches)

Constraints: Constraints (e.g. The solutions must use a particular
display present in the car).

3. Experiment planning and operation

Quality Improvement in Software Platform Development 59

components requiring internal change, as well as addition of new compo-
nents at various aggregation levels. Parts of such a form is illustrated in
Figure 2.

After the change tasks related to system A, the participants have been
exposed to either of two experimental designs. The reason for this is that
it was seen that the first pilot experimental design did not work well – in
short, there was so little time available for the change requests that the
participants did not succeed at all in delivering answers to the change
requests.

Design I (pilot): After the telephony switch control system, both a car
cruise control system and a building access control system was provided in
random order, together with four change requests for each system, with
the change requests for each system in random order. The time limit for
each change request was maximized to nine minutes for practical reasons.
In practise, this limit proved to be far to low for the cruise control system
(system B, described in Table 2), and the building access control
(system C) proved to be so simple that almost all participants gave equal
answers. Therefore, only data from the telephony switch control systems
are retained and analysed in this paper.

Design II (main run). After system A had been addressed, all partici-
pants were faced with the cruise control system. Only two change requests
were provided in random order. These change tasks were sampled from a
commercial patents database. The time-limit for these two change
requests were maximized to thirty minutes each. In practise, this design
worked well, since there was ample time to comprehend the cruise control
system.

Finally, after completing all change tasks, the participants were inter-
viewed to get some subjective data. The interviewer used a predefined
order of asking defined questions, i.e. schedule-structured interviews have

Indicate where you believe you will have to make changes
for the current change task here.

What (Components
in software)

An X indicates that
you believe you
would like to make
a change

An X indicates that you would
like to add a SDL-process or
an SDL-block in this block

Cruise_Requirements
Analysis

Figure 2. Parts of form for recording where changes are likely, i.e. “change points”

Is a Design Rationale Vital when Predicting Change Impact?

60 Quality Improvement in Software Platform Development

been performed. This kind of interview ensures that variations in answers
to as large extent as possible are attributable to the respondents and not
from variations in the interviews [23].

Each change task is compared to a system expert written solution, con-
taining required change-points (both additions and changes in Figure 2).
Indicated changes that are not part of the expert solution are called super-
fluous change points.

3.3 Threats to validity

The validity of the findings is highly dependent on how well threats have
been handled. Four types of validity threats [9] are analysed: Threats to
conclusion validity, construct validity, internal validity, and external valid-
ity. The relationships between these are illustrated in Figure 2.

Conclusion validity. Conclusion validity (marked 1 in Figure 2) con-
cerns the relationship between the treatment and the outcome. Care has
been taken not to violate any assumptions made by the statistical tests. All
time measurements have minutes as their unit, and the participants have
been instructed to use the same clock during all measurements. Com-
bined with the fact that there is no gain for a participant in adjusting their
measurements, the reliability of measures should be good. There is a risk
that participants have used the supplied DR in different ways, but this
threat has been addressed by explicitly allowing time for studying the
available documentation for each system, before the change tasks were
delivered to the participants. There are no random irrelevancies (such as
mobile phone calls during the experiment) that we are aware of. The
threat of a large random heterogeneity of subjects have been balanced by
proper randomization of participants and treatments. Each participant

T
he

or
y

O
bs

er
va

ti
on

What you test
Independent Dependent

cause-effect
construct

treatment-
outcome
construct

Cause
construct

Effect
construct

Treat-
ment

Out-
come

1 2

4
3 3

Experiment objective

variable variable

Figure 2. Experiment principles as described in [37]

3. Experiment planning and operation

Quality Improvement in Software Platform Development 61

has been assigned individually to a group firstly depending on their self-
assessed knowledge of real-time systems, secondly depending on their
knowledge of system A (some participants have seen this system before).
To the best of our beliefs, the individual performance has been cancelled
out, as has the effect of learning the systems during the experiment.

Internal validity (2). This validity concerns matters that may affect an
independent variable’s causality, without the knowledge of the researcher.
Maturation effects have been countered by making sure that the experi-
ment does not take more than two and a half hour to conduct. The ran-
dom order of change requests should cancel any other maturation and
learning effects. There may be selection effects present, since the partici-
pants have been unusually well educated or well-experienced designers.
However, we do not think that this affects the results other than that the
difference between the group that had access to DR and the other group,
without DR, may be smaller than in a less experienced group of partici-
pants. There has been no mortality during the experiment. Since the
experiment was given with and without DR at the same time, the control
group (without DR) cannot have learned about the treatment (access to
DR) in advance, and thus cannot have imitated the solution strategies
used by the DR-equipped group.

Construct validity (3). Construct validity concerns whether we measure
what we believe we measure. There are two main threats to construct
validity: Design threats and social threats.

As there are several change tasks and two different systems, the effect of
peculiarities of a single system/change task should be low. We know of no
confounding level of constructs, and the participants have been rand-
omized as to cancel any effect of having different knowledge and experi-
ence a priori the experiment. Given the careful presentation of the
experiment and the full anonymity provided, there should be no social
threats.

External validity (4). This last validity concerns generalization of the
findings to other contexts and environments than the one studied. There
may be some problem with generalizing the results to less experienced
groups, such as students going directly from university to industry, since
all participants are either very well-educated or have a senior designer
experience level. However, we believe that the difference between the

Is a Design Rationale Vital when Predicting Change Impact?

62 Quality Improvement in Software Platform Development

group receiving DR and the control group, without DR, should be bigger
in a group with less experienced designers. The change tasks are consid-
ered realistic for system A and very realistic for system B since the change
tasks are sampled from a patents database. Thus they should be represent-
ative in an industrial environment. System B as well as its accompanying
documentation are industrially operational system, while system A is an
educational system, but of such size and complexity that we believe it to
be comparable to industrial systems.

In summary, great care has been taken in the design of the experiment,
so the threats to validity should be under control.

4. Data analysis

The purpose of this section is to present results and statistical analysis of
data collected. The experiment provides quantified data. The hypotheses
have been tested using the non-parametric Mann-Whitney test, at
p≤0.10. The results are presented in Sections 4.1 and 4.2. The subjective
data from interviews are investigated in Section 4.3.

4.1 Analysis of experiment data, system A

For the change-tasks for system A, there is a statistically significant differ-
ence in both the time spent on the change tasks as well as the quality of
the predicted changes, based on data from 57 completed change tasks. All
data are illustrated in Figures 3-5, and the results of the statistic analyses
are summarized in Table 3. No participants are treated as outliers in the
analysis. The boxplots all show an improvement (Figures 3 and 4) or at
least no clear difference (Figure 5) between the group having access to a
DR, and the group that does not. The statistic tests reflect this, by reject-
ing the null hypotheses and .

The null hypothesis is not rejected. This is interpreted as
that there is no clear difference between the two groups in this aspect.
This interpretation is strengthened from Figure 5.

Ht SysA 0, , HPercOK SysA 0, ,

HNoExtra SysA 0, ,

4. Data analysis

Quality Improvement in Software Platform Development 63

4.2 Analysis of experiment data, system B

For the change-tasks for system B, there is a no statistically significant dif-
ference in neither the time, nor any of the quality measurements taken for
the change tasks. This is based on data from 20 completed change tasks.
All data are illustrated in Figures 6-8, and the results of the statistic analy-
ses are summarized in Table 3. No participants are treated as outliers in
the analysis. Judging from the medians in the figures, there is a trend
showing that it is beneficial to have access to a DR. For example, the
median time for accomplishing each change task decreases from 20 min-
utes to less than 15 minutes, while the median of correctness in answers
increases. These results are similar to those from system A, which
strengthens the position that a DR can be beneficial. However, the Mann-
Whitney test does not detect any significant difference in any case tested.

It is possible that the statistical tests cannot detect a significant differ-
ence between the two groups, given the lower number of data-points (20),
and rather small difference between the groups. Therefore, the results are
inconclusive for this system.

Table 3. Summary of statistical analysis at significance level

Mann-
Whitney Illustration

Mann-
Whitney Illustration

Reject Figure 3 No reject Figure 6

Reject Figure 4 No reject Figure 7

No reject Figure 5 No reject Figure 8

Figure 3. System A,
time used for change tasks

With DR No DR

Minutes

0

4

8

12

Figure 4. System A,
percentage of required change
points

With DR No DR
0

25

75

50

100

%

Figure 5. System A,
number of superfluous
change points

With DR No DR
0

1

2

3

4
No.

p 0.10=

Sys System A= Sys System B=

Ht Sys 0, ,
HPercOK Sys 0, ,
HNoExtra Sys 0, ,

Is a Design Rationale Vital when Predicting Change Impact?

64 Quality Improvement in Software Platform Development

4.3 Analysis of interview data

This section presents some subjective data elicited during the interviews.
One of the questions asked was “How much faster can you solve the
change task (comfortably well) with access to a DR?”. The results are pre-
sented in Figures 9 and 10. The participants believe that there is some
improvement in development lead-time with access to a DR for the less
complex system A, and a high degree of improvement for the more com-
plex system B.

Another question was “To what degree do you think that a DR
increases your correctness in change predictions?” with results presented
in Figures 11 and 12. The participants indicate no or a little improvement
for the less complex system A, and a much higher degree of improvement
for the more complex system B.

It should be noted that the participants appreciated the DR more for
the complex system B than for the less complex system A. No participants
claimed that having access to a DR was harmful. Several participants wit-
nessed that they believe that the effectiveness of the DR decreases as the
system at hand gets better known.

Figure 6. System B,
time used for change tasks

With DR No DR
0
5
10

20

30

15

25

Minutes

Figure 7. System B,
percentage of required change
points

With DR No DR
0

25

75

50

100
%

Figure 8. System B,
number of superfluous change
points

With DR No DR
0

1

2

3

4

No.

Figure 9. System A,
change in lead-time
with access to DR

% of participants

1 2 3 4 5 6
Improvement category

0

20

40

Figure 10. System B,
change in lead-time
with access to DR

% of participants

1 2 3 4 5 6
Improvement category

0

20

40

Improvement categories
1 No opinion

2 0-19% faster with DR

3 20-39% faster with DR

4 40-59% faster with DR

5 60-79% faster with DR

6 80+ % faster with DR

5. Summary and conclusions

Quality Improvement in Software Platform Development 65

5. Summary and conclusions

This section gives an interpretation of the results presented.

Regarding system A, it did take significantly shorter time for the par-
ticipants to accomplish the change-tasks when having access to a DR, and
the quality of the results were significantly better or possibly equal than
for the group that did not have access to a DR. These objective results are
further reinforced by the subjective interview data.

Regarding system B, the picture is not as clear. The median time used
for the change tasks is shorter for the group having access to DR than the
non-DR group. The median percentage of correctly indicated change
points is also better for the DR-group. However, this result is not statisti-
cally significant. There may be many reasons for this, such as unrealistic
experimental procedures, too few data points (there are much fewer data
points for system B, since we discarded all data related to this system from
the pilot run of this experiment), or that qualities in the system itself
affect the effectiveness of having access to a DR. Regardless, it calls for
further analysis.

Information from the interviews suggests that the participants liked
having access to a DR. They believed that could work both faster and bet-
ter, and a Mann-Whitney test shows that the group that had access to a
DR believed they would need significantly (p≤0.10) shorter time to solve
the change-tasks related to system B than the group without a DR. All
participants believe that they work faster and better with access to a DR,
than when no DR is available, when no other documentation is available
than the source code and the requirements specification.

Figure 11. System A,
change in impact prediction
correctness with access to
DR

% of participants

1 2 3 4 5 6
Improvement category

0

20
30

10

40

Figure 12. System B,
change in impact
prediction correctness with
access to DR

% of participants

1 2 3 4 5 6
Improvement category

0

20

40

Figure 12. System B,
change in impact
prediction correctness with
access to DR

Improvement categories
1 No opinion

2 It makes predictions worse

3 It does not affect correct-
ness at all

4 I become marginally more
correct

5 I become more correct

6 I become a lot more cor-
rect

Is a Design Rationale Vital when Predicting Change Impact?

66 Quality Improvement in Software Platform Development

In short, we conclude the following and suggest some future lines of
work:

It is likely that having access to a DR expressed in the suggested way
have a positive impact on both lead-time as well as quality when experi-
enced designers are faced with the task of predicting where changes must
be performed on an unknown real-time system. However, it is possible
that there are better ways of achieving the same results using other models
or ways of transferring the sought for knowledge to maintainers. For
example, participants frequently indicated that they needed a static archi-
tecture overview and sequence diagrams/MSCs. Further experimentation
is needed to find out what is “the best” model for various purposes.

In projects where lead-time is important it is possible that a sharp
schedule prohibits the creation of models during design. In that case,
writing a DR in the suggested manner after initial system release may be a
cheap, yet effective way to facilitate future system evolution, without pro-
longing the time to initial system release. This result can easily be incor-
porated in standard development processes.

 Acknowledgements

This work was partly funded by The Swedish National Board for Indus-
trial and Technical Development (NUTEK), grant 1K1P-97-09690. We
thank the designers at Ericsson Mobile Communication AB, Lund, Swe-
den for interest and participation in this study. Prof. Claes Wohlin at the
Dept. of Communication Systems, Software Engineering Research
Group, Lund University has given insightful comments on this paper, as
well as Dr. Magne Jørgensen at the Dept. of Informatics, Industrial Sys-
tems Development Group, Oslo University. Lars Bratthall is currently at
Oslo University.

References

[1] Bass, L., Clements, P., Kazman, R. Software Architecture in Practise. Addison Wesley.
1998

[2] Bauer, N., Olsson, T., Runeson, P., Bratthall, L. “Lead-time Impact of Distributed
Testing on Distributed Real-time Systems”. To be published in Proc 7th Interna-
tional Metrics Symposium (METRICS 2001). London, England. April, 2001

5. Summary and conclusions

Quality Improvement in Software Platform Development 67

[3] Bohner, S., Arnold, R. (Eds). Software Change Impact Analysis. IEEE Computer
Society Press. 1996

[4] Bratthall, L., Adelswärd, K., Eriksson, W., Runeson, P. “A Survey of Lead-Time
Challenges in the Development and Evolution of Distributed Real-Time Systems”.
Information and Software Technology. Vol. 42, No. 13, pp. 947-958. 2000

[5] Bratthall, L., Runeson, P. “Architecture Design Recovery of a Family of Embedded
Software Systems - An Experience Report”. In Proc. TC2 First IFIP Working Conf.
on Software Architecture, pp. 3-14. San Antonio, Texas. February, 1999

[6] Bratthall, L., Runeson, P. “A Taxonomy of Orthogonal Properties of Software
Architectures”. Proc. 2nd Nordic Software Architecture Workshop. Ronneby.
August, 1999

[7] Brooks, F. The Mythical Man-Month: Essays on Software Engineering. Ingram Int’l.,
USA. 1995

[8] Conklin, J. “Hypertext: An Introduction and Survey”. IEEE Computer, Vol. 20,
No. 9, pp. 17-41. 1987

[9] Cook, T.D., Campbell, D.T. Quasi-Experimentation – Design and Analysis Issues for
Field Settings. Houghton Mifflin Company. 1979

[10] Cross, N. “The Nature and Nurture of Design Ability”. Design Studies, Vol. 11,
No. 3, pp. 127-140. 1990

[11] Datar, S., Jordan, C., Kekre, S., Rajiv, S., Srinivasan, K. “New Product Develop-
ment Structures and Time To Market”. Management Science, Vol. 43, No. 4,
pp. 452-464. April, 1997

[12] Fisher, G., Lemke, A.C., McCall, R., Morch, A.I. “Making Argumentation Serve
Design”. Human-Computer Interaction, Vol. 6, No:s 3&4, pp. 393-419. 1991

[13] Grundy, J. “Software Architecture Modelling, Analysis and Implementation with
SoftArch”. proc. 34th Hawaii International Conference on System Sciences. Janu-
ary, 2001

[14] Halasz, F.G. “Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems”. Comm. of the ACM, 31, pp. 836-852. 1988

[15] Hamilton, F., Johnson, H. “An Empricial Study in Using Linked Documentation
to Assist Software Maintenance”. In Human-Computer Interaction (Interact ‘95),
pp. 219-224. Chapman & Hall, London. 1995

[16] Hendricks, K.B., Singhal, V.R. “Delays in New Product Introduction and the Mar-
ket Value of the Firm: The Consequences of Being Late to the Market”. Manage-
ment Science, Vol. 43, No. 4, pp. 422-436. April, 1997

[17] Jarczyk, A.P.J., Løffler, P., Shipman III, F.M. “Design Rationale for Software Engi-
neering: A Survey”. In Proc. 25th Annual Hawaii Int’l Conf. on System Sciences.
pp. 577-586. 1992

Is a Design Rationale Vital when Predicting Change Impact?

68 Quality Improvement in Software Platform Development

[18] Jørgensen, A.H., Aboulafia, A. “Perceptions of Design Rationale”. In Human-
Computer Interaction (Interact ‘95), pp. 61-66. Chapman & Hall, London. 1995

[19] Kruchten, P.B. “The 4+1 View Model”. IEEE Software Vol. 12, No. 6, pp. 42-50.
1995

[20] Lee, J., Lai, K.”What’s in Design Rationale?”. Human-Computer Interaction.
Vol. 6, No.s 3&4, pp. 251-280. 1991

[21] Lee, J. “Design Rationale Systems: Understanding the Issues”. IEEE Expert,
Vol. 12, No. 3, pp. 78-85. May/June, 1997

[22] Message Sequence Charts (MSC), ITU-T Standard Z.120. International Telecom-
munication Union. 1996

[23] Frankfort-Nachmias, C., Nachmias, D. Research Methods in the Social Sciences,
Fourth Edition. St. Martin’s Press, United Kingdom. 1992

[24] Nelson, T.H. “A File Structure for the Complex, the Changing, and the Indetermi-
nate”. Proc. ACM National Conference. pp. 84-100. 1965

[25] Perry, D.E., Wolf, A.L. “Foundations for the Study of Software Architecture”. Soft-
ware Engineering Notes. Vol. 17, No. 4, pp. 40-52. October, 1992

[26] Porter, M.E. Competitive Strategy - Techniques for Analyzing Industries and Competi-
tors. The Free Press, New York, USA. 1980

[27] Rein, G.L., Ellis, C.A. “rIBIS: A Real-time Group Hypertext System”. Int’l. Journal
of Man-Machine Studies, Vol. 34, No. 3, pp. 349-367. March, 1991

[28] Shilling, M.A. “Technological Lockout: An Integrative Model of the Economic and
Strategic Factors Driving Technology Success and Failure”. Academy of Manage-
ment Review, Vol. 23, No. 2, pp. 267-284. 1998

[29] Shum, S.J. A Cognitive Analysis of Design Rationale Representation. Ph.D. Thesis,
York University, Great Brittain. December, 1991

[30] Specification and Description Language (SDL), ITU-T Standard Z.100. Interna-
tional Telecommunication Union. 1992

[31] Stalk, G. “Time – the Next Source of Competitive Advatage”. Harward Business
Review, Vol. 66, No. 4, pp. 41-55. 1998

[32] Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., Suchman, L. “Beyond
the chalkboard: Computer Support for collaboration and problem solving in meet-
ings”. Comm. of the ACM, Vol. 30, No. 1, pp. 32-47. 1987

[33] Toulmin, S. The Uses of Argument. Cambridge University Press. Cambridge, Great
Brittain. 1958

[34] Urban, G.L., Carter, T., Gaskin, S., Mucha, Z. “Market Share Rewards to Pioneer-
ing Brands: An Empirical Analysis and Strategic Implications”. Management Sci-
ence, Vol. 32, No. 6. June, 1986

5. Summary and conclusions

Quality Improvement in Software Platform Development 69

[35] Wheelwrigt, S.C., Clark, K.B. Leading Product Development - The Senior Manager’s
Guide to Creating and Shaping the Enterprise. The Free Press, New York, USA. 1995

[36] Wohlin, C. “The Challenge of Large Scale Software Development in an Educa-
tional Environment”. Proc. Conf. on Software Engineering Education & Training,
pp. 40-52. Virginia Beach, Virginia, USA. 1997

[37] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A. Exper-
imentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Boston, MA, USA. 1999

Is a Design Rationale Vital when Predicting Change Impact?

70 Quality Improvement in Software Platform Development

Quality Improvement Software Platform Development 71

PAPER III:

Benchmarking of Processes for Managing
Product Platforms - a Case Study

Martin Höst, Enrico Johansson, Adam Norén and Lars Bratthall

Proceedings of Empirical Assessment in Software Engineering, (EASE 2002), Keele, England,
April, 2002

Abstract

This paper presents a case study where two organisations participate in a
benchmarking initiative in order to find improvement suggestions for
their processes for managing product platforms. The initiative is based on
an instrument which consists of a list of questions. It has been developed
as part of this study and it contains eight major categories of questions
that guide the participating organisations to describe their processes. The
descriptions are then reviewed by the organisations cross-wise in order to
identify areas for improvement. The major objective of the case study is to
evaluate the benchmarking procedure and instrument in practice. The
result is that the benchmarking procedure with the benchmarking instru-
ment was well received in the study. We can therefore conclude that the
approach probably is applicable for other similar organisations as well.

1. Introduction

Effective management is important for the process of developing plat-
forms on which a number of products are based and for the process of
developing the platforms themselves. A platform can be seen as the core
asset of a product line architecture, a type of architecture which is used in

Benchmarking of Processes for Managing Product Platforms - a Case Study

72 Quality Improvement in Software Platform Development

products that come in many versions or families. These families are based
on the same platform to reduce cost and shorten lead-time [1]. Software
companies should not have to re-create the infrastructure for each new
project, instead the development and the management activities should be
based on well-defined processes and a solid product architecture. It is also
critical that managers, platform developers and product developers all
share the same vision for a software platform.

“Technically excellent product line architectures do fail, often because
they are not effectively used. Some are developed but never used or, if
used, they are used in an incorrect way.” [2] There is a large number of
users of a platform (e.g. software product developers), and there can be
several different concurrent product projects using the platform. Manage-
ment processes are needed to support dependent development efforts in
different phases of product projects, platform projects and across the sepa-
rate development teams involved.

Processes for managing product platforms (Product Platform Manage-
ment Processes, PPMP) have recently been given much attention, see for
example [3, 4, 5]. In practice, there are of course many different processes
in place, which means that companies constantly have to evaluate and
improve their processes in this area. The objectives for an organisation for
carrying out a study as the one presented here are to identify improve-
ment proposals for their PPMP and, in the long run, to introduce
improvements in the process. That is, this kind of study can be part of a
software process improvement program.

In this paper a procedure for carrying out a benchmarking initiative in
order to improve PPMPs is presented and evaluated in a case study. In
Section 2 the benchmarking procedure is described and the case study is
presented in Section 3. In Section 4 the conclusions from the study are
reported.

2. Benchmarking methodology

2.1 Introduction

Software process improvement is important for all software development
and management processes. Often the steps that are taken in software
improvement is to first carry out an assessment, and then, based on the
assessment, identify improvement proposals and after that to introduce,

2. Benchmarking methodology

Quality Improvement in Software Platform Development 73

evaluate, and tune the changes [6]. The benchmarking technique that is
presented here is one technique that can be used for assessment and iden-
tification of improvement proposals.

Benchmarking [7, 8] has been used as a general improvement
approach in a variety of business areas. The basic idea behind the bench-
marking concept is that for each company, there are a number of other
companies that have been working with the same issues and problems. A
company that wants to improve in a certain area should therefore identify
appropriate companies to compare themselves with and learn from. It is,
of course, important that competitors are not chosen. Instead, companies
which are working in the same way with similar processes, but with prod-
ucts not competing, should be chosen. In the study that is presented in
this paper, the companies have in common that they are developing new
products based on a common platform, and that they have a PPMP.

Camp presents a benchmarking process using four major steps [8].
According to that process the first step is planning, where it is decided
what business function or type of product the benchmarking initiative
should focus on, what companies should be involved in the initiative and
details on how the initiative should be carried out. For example, it is
decided how data should be collected during the work. The second step is
the analysis step, where the actual comparison of the companies is carried
out. The third step is an integration step, where it is decided and planned
how findings from the initiative can be integrated in the current process.
It is, for example, important to obtain management and operational
acceptance and to communicate the changes to all levels of the organisa-
tion. The fourth step is the action step, where the changes are imple-
mented and the results are monitored.

The benchmarking approach that is presented and evaluated in this
paper concerns the first two steps (planning and analysis) of the process
presented above. It is also tailored to be used for comparing PPMPs. That
is, it gives guidance on how to compare two processes for product plat-
form management. After the comparison it is important to identify
improvement actions from the result of the comparison and to actually
implement the changes. It would, however, be too much to cover imple-
mentation issues in this paper.

There are a number of issues from the philosophy of Total Quality
Management (TQM) that are relevant in the area of benchmarking.
Benchmarking initiatives can be designed around the key issues of, for
example, the Malcolm Baldridge approach [9] or the Capability Maturity

Benchmarking of Processes for Managing Product Platforms - a Case Study

74 Quality Improvement in Software Platform Development

Model from the Software Engineering Institute [10]. Part of the approach
that is presented here is influenced by the method of performing quality
evaluations according to, for example, the Malcolm Baldridge approach.
However, in this approach the involved organisations are not compared to
any general model. Instead, they are compared to each other in areas that
are of interest for them.

Organisations can be analysed with respect to a number of dimensions
[11, 12], e.g., with respect to the approach (i.e. the process) that they
describe, the deployment of the approach, i.e., to which extent the work
according to the approach is performed in the organisation, and the results
that the approach results in.

The organisations that participate in this kind of initiative have a
number of objectives for participating. First of all, one objective is to
receive information on how another company has organised their work in
the area. That is, it is a way of receiving improvement proposals from the
work of another organisation. Another objective is to receive feedback on
their processes from experts in the area. The idea of the approach is that
the participating organizations should achieve their objectives by partici-
pating in the work. That is, if two organizations participate, both of them
should reach their goals by mutually analysing and commenting on the
processes of each other.

2.2 Benchmarking process

In this section, a benchmarking approach that can be used for analysing
PPMPs is presented. The benchmarking approach has been evaluated in a
case study, which is presented in Section 3. The benchmarking process is
based on a Benchmarking Instrument (BI), which is a list of questions
that the participating companies use to develop descriptions of their
PPMPs. The following benchmarking process can be used in a bench-
marking activity with two organisations (A and B):

1. Identify important issues to work with and agree on a final BI. This
may, for example, be done by letting the participating organisations
review an initial proposal for a BI. In this way they will be able to
add issues that they are interested in and remove issues that they are
not interested in. The final BI that was used in the case study is pre-
sented in Section 2.2.12.2.1.

2. Benchmarking methodology

Quality Improvement in Software Platform Development 75

2. Each organisation develops a presentation of their PPMP according
to the BI. This results in one document from each company (PA,
PB).

3. Each organisation reviews the presentation written by the other
company. The reviews are carried out according to a review tem-
plate (RT) which is presented in Section 2.2.3. Each review results
in a number of comments to the presentation (CP). That is, Com-
pany A reviews PB, which results in CPB, and Company B reviews
PA, which results in CPA. The comments to the presentations are
sent to the benchmarking coordinator.

4. CPA is distributed to Company A and CPB is distributed to Com-
pany B.

5. A meeting is held with representatives from each company. At this
meeting, it is, for example, possible to discuss common improve-
ment proposals.

The procedure may be organised by a coordinator who is responsible
for initiating the different tasks and delivering the needed documentation
etc. This is illustrated in Figure 1. The role of the coordinator is refined
in Section 3, where the case study is presented. Step 2 of the benchmark-
ing approach is further described in Section 2.2.2, and Step 3 is further
described in Section 2.2.3.

Company BStep

1 BI BI

PA PB

PB, RT PA, RT

CPB CPA

CPA CPB

2

3

4

Figure 1. The benchmarking process.

CoordinatorCompany A

Benchmarking of Processes for Managing Product Platforms - a Case Study

76 Quality Improvement in Software Platform Development

The idea of carrying out a benchmarking initiative by letting organiza-
tions review descriptions of each other is not unique to this approach.
The benchmarking instrument that was used is however developed espe-
cially for this study.

2.2.1 Benchmarking instrument

In this section, the benchmarking instrument that has been used is pre-
sented. The benchmarking instrument consists of a number of questions
that are presented in Table 1. There are questions at two levels, one high-
level and one more detailed level. For every high-level question there are a
number of detailed questions. The benchmarking instrument guides the
participating organisations to describe their PPMP with respect to the fol-
lowing issues:

Introduction/Context. In order to better interpret answers to the
other questions in the questionnaire, there are a number of ques-
tions that characterize the development organization in general.
The participants are asked to make an overview of the architecture
of their product, as well as of their development process. In this
way, it is possible to interpret answers in the context of, e.g., evolu-
tionary development or more waterfall-model development. These
questions are not further analysed in this paper and they are not
included in Table 1.

Organizational context for architecture work. The participating
organizations are known to have a group that is responsible for their
product architecture. Questions Q1 and Q2 concern the responsi-
ble groups' empowerment and responsibilities.

Initial architecture design. This section contains detailed questions
regarding architecture development. The questions in this section
are intentionally formulated open-ended, as it is believed that this
will help elicit a broad spectrum of techniques. This is mainly cov-
ered by questions Q3, Q4, and Q5.

Architecture use and evolution. At some point, the architecture is
no longer not only the property of an architecture group as many
people must use it. This section focuses on the deployment and fol-
low up of the architecture. This is mainly covered by questions Q6,
Q7, and Q8.

2. Benchmarking methodology

Quality Improvement in Software Platform Development 77

Table 1. Questions in benchmarking instrumentation.

Id Question

Q1 How is the responsibility and empowerment for the group responsible for the
platform defined?

Q1a How and by whom is the group responsible for the platform constituted?

Q1b Who decides when the group responsible for the platform should be involved in
the decision-making?

Q1c What and who gives the group responsible for the platform the ability to perform?

Q2 Describe the stakeholder interaction.

Q2a To which stakeholders do the group responsible for the platform communicate?

Q2b What commitments are made to different stakeholders?

Q3 Which procedures are used to identify architectural requirements?

Q3a What different types of architectural requirement are identified?

Q3b How are the different types of requirements handled?

Q3c How are the architectural requirements prioritized?

Q4 What design process is used?

Q4a What methods are used when identifying the requirements impact on the archi-
tecture?

Q4b What languages are used in order to design the architecture?

Q4c What granularity does the architecture design cover?

Q4d What technical solution are used in order to ensure the wanted quality on the
architecture?

Q5 Describe how the architecture is validated.

Q5a How is it validated that the architecture meets the identified requirements?

Q6 Describe how the architecture is distributed.

Q6a How is the architecture presented and stored?

Q6b What architecture views are used? Why are they?

Q6c How are the architecture views presented and stored?

Q7 Describe how it is ensured that software architecture has its self-evident place in
the software development process.

Q7a How do you ensure that the architecture rules and visions are used in the rest of
the organization?

Q7b How is the feedback on the architecture work collected

Q7c How is it ensured that the product-line architecture is conceived as positive
among the users of the architecture

Q8 How is the product-line architecture controlled?

Q8a How is it ensured that the architecture has a positive impact on the organization.

Benchmarking of Processes for Managing Product Platforms - a Case Study

78 Quality Improvement in Software Platform Development

The benchmarking instrument that was used in the case study guides
the participating companies to present their approach in the area. It
would be possible to include questions that guide the companies to
present other dimensions of their PPMPs as described in Section 2.1. For
example, the results of this approach could be presented. However, in this
case there was not enough data available. The results are instead captured
in the review questions as described in Section 2.2.3.

2.2.2 Development of presentation

The presentation should preferably be developed by persons that are
familiar with the organisation, but it can be developed in different ways.
It may, for example, be developed by one person that already has knowl-
edge of most of the work in the area, and therefore directly can describe
the work. It may also be developed by one person that gathers informa-
tion from the work in a structured way.

In the first case, a presentation can initially be developed and then be
internally reviewed by appropriate persons in the organisation. In the lat-
ter case the person that is responsible for developing the presentation may
first interview people in the organisation and then develop a presentation
that can be internally reviewed by appropriate persons in the organisation.

In the case study, presented in Section 3, it was decided that the pres-
entation should be written in natural language, since this was considered
the most natural for the questions that were defined.

2.2.3 Review of presentation

There are two major objectives of the reviews. The first is that the organi-
sations that have developed the presentations should receive feedback on
their work. The second objective is that people in the reviewing organisa-
tions should get information from another organisation. Both of these

Q8b How is ensured that the correct architecture vision is applied by the architecture
group?

Q8c How is the wanted architectural quality ensured when the architecture is evolved?

Q8d How are the causes of product-line architecture erosion identified?

Q8e How is it ensured that the product-line architecture is used in a correct way?

Table 1. Questions in benchmarking instrumentation.

Id Question

2. Benchmarking methodology

Quality Improvement in Software Platform Development 79

objectives are premiered by letting many people review the presentations.
However, for practical reasons, such as limited available effort, there will
be a limited number of people that are able to review the presentations. It
is important to note issues of confidentiality, which may also limit the
number of people that review the presentations.

A likely procedure is that a number of people review each presentation
and that one person is responsible for summarizing the findings and pro-
ducing a report with feedback. After that, the feedback report is presented
to the organisation that has produced the presentation in step 4 of the
process (see Figure 1).

In order to guide the reviewers during the review and in order to
obtain interesting feedback to the other organisation a review template
with five review questions has been used. In the first two review questions
the reviewer should assess the maturity of the presented approach and the
result that it produces with a grade (0-10). The template includes a
description of some of the grades. The intermediate are, of course, also
allowed. The two quantitative review questions are presented in Table 2.

For the three other review questions the reviewer should state the
answers qualitatively. The two qualitative review questions are presented
in Table 3.

All review questions (RQ1-RQ5) should be answered for every area in
the description (according to the major questions in the benchmarking
instrument, Q1-Q8).

Table 2. Quantitative review questions.

Id Formulation Description of grades

RQ1 Evaluate the maturity of the
presented approach and grade it
(0-10)

0: no approach presented

1: An example of how it was once done is pre-
sented.

5: According to the presentation, most work is
carried out in a methodological way.

10: A systematic procedure is used in every situ-
ation without exception. Systematic improve-
ments are integrated in the approach.

RQ2 Evaluate and grade (0-10) the
results that you believe that the
presented approach gives to the
presenting organisation.

0: There is no (or a negative) result of using the
presented approach.

5: Most results are good. The approach seems to
be a good way of working.

10: The best possible result is obtained. No
other approach would give a better result.

Benchmarking of Processes for Managing Product Platforms - a Case Study

80 Quality Improvement in Software Platform Development

The intention is that the most important information transferred to
the other company should be provided by the reviewers in RQ3 and RQ4.
The objective of the first two review questions is to obtain data that allows
comparison of the different reviewers and to let the reviewers reflect over
the issues in the questions. This is why the order of the questions has been
chosen in this way. If you are first asked to grade an approach, you will
probably evaluate it carefully and compare it to the other approaches, etc.

3. Case study

The benchmarking approach has been evaluated in a case study [13, 14].
The research objectives of the study are to evaluate the importance of the
areas covered by the questions in the benchmarking instrument, and to
get experience from carrying out a benchmarking initiative according to
the process presented above. The case study is carried out as a cooperation
between two organisations:

ABB Automation Technology Products AB: The organisation
develops real time systems that operate in industrial environments.
The systems have a life-cycle of about 10 to 30 years. Goals of the
architecture are hardware and operating system independency, easy
extension, openness, high reliability, small size, and high perform-
ance. Many products are built from the same system platform. The
developed products are part of a larger system. The configuration of
the used systems may differ greatly, from single components to large
plants or geographically spread out configurations.

Ericsson Mobile Communications AB: The company develops con-
sumer products within the telecommunication area where competi-
tion has increased drastically during recent years. Consumer
products for mobile Internet will be cheaper, smaller and more

Table 3. Qualitative review questions.

Id Formulation

RQ3 Explain your reasons for the grades in questions RQ1 and RQ2.

RQ4 Present suggestions for improvements for the presenting organisation. It is impor-
tant for the presenting company that you answer this question.

RQ5 Additional comments.

3. Case study

Quality Improvement in Software Platform Development 81

complex and to be able to compete in this cutting-edge market,
Ericsson Mobile Communication focuses on developing a software
architecture that can easily be extended, maintained and reused.
The purpose of the software architecture is to provide a common
platform that can be used as a basis when developing consumer
products with low cost and small effort.

Lund University and both of the industrial organisations are part of
the same research network (LUCAS, Center for Applied Software
Research1). It was therefore natural to involve the two industrial organisa-
tions as participants in the case study.

In the benchmarking approach a number of additional actions were
taken in order to be able to draw conclusions. In order to receive feedback
on the questions in the benchmarking instrument, a number of feedback
questions (FQ) were formulated and distributed together with the review
template to the two organisations. Everyone who reviewed the descrip-
tions also replied to the feedback questions. This means that feedback
information (FI) was produced by all participants in the study. The
research actions and the usage of the research instrumentation are
described in Figure 2.

1. Further information on LUCAS can be found at http://www.lucas.lth.se.

Company BStep

1 BI BI

PA PB

PB, RT, FQ PA, RT, FQ

CPB, FIA1,...FIAn CPA, FIB1,...FIBm

CPA CPB

2

3

4

Figure 2. The benchmarking process with research instrumentation
(FQ - Feedback Questions, FI - Feedback Information) in bold writing.
n denotes the number of reviewers at Company A and m denotes the number
of reviewers at Company B.

CoordinatorCompany A

Benchmarking of Processes for Managing Product Platforms - a Case Study

82 Quality Improvement in Software Platform Development

Two feedback questions were formulated. Everyone that reviewed
material from the other company answered the feedback questions for
every general question in the benchmarking instrument. The answers to
the feedback questions were given quantitatively with a grade from 0 to
10. The two feedback questions are presented in Table 4.

3.1 Analysis and results

In total, 11 persons answered the feedback questions. There were 6 per-
sons from one of the organisations, organisation A, and 5 persons from
the other organisation, organisation B2. The result of the analysis with
respect to the feedback questions FQ1 and FQ2 are displayed in Figure 3
The result is displayed as mean values and error bars representing one
standard deviation above the mean and one standard deviation below the
mean. A small error bar shows that the reviewers' answers to the question
were in close agreement.

The benchmarking instrument is analysed with respect to the major
categories of questions, i.e., Q1, Q2,... Q8 in Table 1. This approach was
chosen, because it was deemed too hard for the reviewers to distinguish

Table 4. Feedback questions.

Id Formulation Description of grades

FQ1 Grade (0-10) the importance
for your own organisation of
the issue that is covered by the
question.

0: Not important at all.

10: Our most important question.

FQ2 Grade (0-10) the use of the
answer to the question.

0: The answers to the question cannot help us at
all when we compare to our own organization.

5: The presented approach can help us to find
changes to the procedures at our company. Or,
parts of the presented approaches may be directly
introduced in our organisation.

10: The procedures that are presented in the
answer are directly applicable in our organization
and they would without doubt help us to improve
with respect to quality, cost and lead time in our
projects.

2. For confidentiality reasons it is not published which one of the involved organisations is
denoted “Company A” and which organisation is denoted “Company B”.

3. Case study

Quality Improvement in Software Platform Development 83

between their opinions about the different sub-questions, Q1a, Q1b, etc.
Most reviewers answered with respect to the major questions, but a few
reviewers answered with respect to both the major questions and the sub-
questions. For those persons a major score was estimated as the mean
value of the major question and the sub-questions. For example, for the
first major question the general answer would be calculated as
(Q1+Q1a+Q1b+Q1c)/4.

The results in Figure 3 are shown for each major question (Q1-Q8),
organisation and feedback question (FQ1, FQ2). FQ1 is denoted “impor-
tance” and FQ2 is denoted “use” in the figure. It can be seen that all ques-
tions are important for both organisations. No question seems to be less
important than any other question. It can also be seen that the use of the
descriptions of the other organisation is given a lower grade than the
importance of the question by both organisations. In some questions
organisation A gives a higher grade to FQ2 than organisation B, and in
some cases it is the other way around. This may be interpreted as the
organisations learn different things from each other in different areas. It is
not only that the areas are considered important, it also indicates that it,
in this case, was possible to use descriptions from the other organisation
in order to identify improvement proposals. For example, the result for
Q6 shows that both organisation A and organisation B have given a high

Figure 3. Analysis-results for the feedback questions.

-2

0

2

4

6

8

10

C
el

lM
ea

n

Q
1:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
1:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
1:

us
e,

C
om

pa
ny

A
Q

1:
us

e,
C

om
pa

ny
B

Q
2:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
2:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
2:

us
e,

C
om

pa
ny

A
Q

2:
us

e,
C

om
pa

ny
B

Q
3:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
3:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
3:

us
e,

C
om

pa
ny

A
Q

3:
us

e,
C

om
pa

ny
B

Q
4:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
4:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
4:

us
e,

C
om

pa
ny

A
Q

4:
us

e,
C

om
pa

ny
B

Q
5:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
5:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
5:

us
e,

C
om

pa
ny

A
Q

5:
us

e,
C

om
pa

ny
B

Q
6:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
6:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
6:

us
e,

C
om

pa
ny

A
Q

6:
us

e,
C

om
pa

ny
B

Q
7:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
7:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
7:

us
e,

C
om

pa
ny

A
Q

7:
us

e,
C

om
pa

ny
B

Q
8:

im
po

rt
an

ce
,C

om
pa

ny
A

Q
8:

im
po

rt
an

ce
,C

om
pa

ny
B

Q
8:

us
e,

C
om

pa
ny

A
Q

8:
us

e,
C

om
pa

ny
B

Grouping Variable(s): Review question, Review company
Error Bars: ± 1 Standard Deviation(s)

Benchmarking of Processes for Managing Product Platforms - a Case Study

84 Quality Improvement in Software Platform Development

rate to the importance of the question. This can be interpreted, as the area
of work covered by the question is important for both companies. For the
same question, the result shows that the companies have rated the ques-
tion differently when considering the usage. Organisation A has given Q6
a low rating with respect to the usage of the answers to Q6 given by
organisation B. Organisation B has on the other hand, given a high rating
to the answers to Q6 from organisation A.

To summarise, it can be stated that the questions were appropriate for
the organisations involved in this benchmarking initiative.

4. Conclusions

It can be concluded that the presented benchmarking approach was feasi-
ble in the case study. All major areas of the benchmarking instrument
were regarded as important by both organisations. No areas in the bench-
marking instrument was considered significantly less interesting than the
other areas. This means that no major changes must be made to the
instrument before it is further used and evaluated. Both organisations
were interested in acquiring knowledge from the descriptions that were
developed by the other organisation. It should, however, be noted that
both organisations were involved in developing the instrument.

It is important to evaluate the validity of the results. In this case we
believe that the most important issue to evaluate is the possibility to gen-
eralisation of the results. It is hard to estimate the possibilities of generali-
sation of the study. Further studies are needed in the area to be able to
draw general conclusions. Another threat is that the organisations have
been active in developing the instrument that later on has been evaluated
in the case study. This also makes it hard to draw general conclusions,
although we do not believe that it affects the other results to any large
degree.

There are a number of areas that could be investigated in further work.
Some time after the case study it would be possible to investigate what
changes that have actually been introduced in the organisations as a result
of the initiative.

It would also be interesting to carry out an evaluation as a self-assess-
ment instead of involving two companies in a benchmark approach. Pos-
sible further research issues, of course, also include further case studies
involving other companies.

4. Conclusions

Quality Improvement in Software Platform Development 85

Acknowledgments

This work was partly funded by The Swedish Agency for Innovation Sys-
tems (VINNOVA), under a grant for the Center for Applied Software
Research at Lund University (LUCAS). The authors would also like to
thank all the participants in the study.

References
[1] Bosch, J., ‘Design & Use of Software Architectures: Adopting and Evolving a Product-

line Approach’, ACM Press/Addison-Wesley, 2000

[2] Cohen, S., Gallagher, B., Fisher, M., Jones, L., Krut, R., Northorp, L., O´Brien,
W., Smith, D., Soule, A., ‘Third DoD Product Line Practice Workshop Report,
Software Engineering Institute’, Technical Report, CMU/SEI-2000-TR-024, 2000

[3] Narahari, Y., Viswandham, N., Kiran Kumar, K., ‘Lead Time Modeling and Accel-
eration of Product Design and Development’, IEEE Transactions on Robotics and
Automation, 1999, Vol. 15, No. 5, pp. 882-896

[4] Tersine, R.J., Hummingbird, E.A.,, ‘Lead-time Reduction: The Search for Com-
petitive Advantage’, International Journal of Operations & Production Manage-
ment, 1995, Vol. 15, No. 2, pp. 8-18

[5] Wheelwright, S.C., Clark, K.B., ‘Leading Product Development: The Senior Man-
ager's Guide to Creating and Shaping the Enterprise’, The Free Press, New York, USA,
1995

[6] Humphrey, W., ‘Managing the Software Process’, Addison-Wesley, 1989

[7] Bergman, B., Klefsjö, B., ‘Quality from Customer Needs to Customer Satisfaction’,
Studentlitteratur, Lund, Sweden, 1994

[8] Camp, R., ‘Benchmarking - The Search for Industry Best Practices that Lead to Supe-
rior Performance’, ASQC Quality Press, Milwaukee, Wisconsin, USA, 1989

[9] Steepels, M.M., ‘The Baldridge Award and ISO 9000 in the Quality Management
Processes’, IEEE Communications Magazine, 1994, October, pp. 52-56

[10] Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., ‘Capability Maturity Model
for Software, Version 1.1’, Software Engineering Institute, CMU/SEI-93-TR-24,
1993

[11] National Institute of Standards and Technology, ‘Criteria for Performance Excel-
lence, Baldrige National Quality Program’, National Institute of Standards and
Technology, USA, 2001. Available via http://www.quality.nist.gov

[12] Swedish Instiute for Quality, ‘The SIQ Model for Performance Excellence’, Swed-
ish Instiute for Quality, SIQ, 2000. Available via http://www.siq.se

Benchmarking of Processes for Managing Product Platforms - a Case Study

86 Quality Improvement in Software Platform Development

[13] Robson, C., ‘Real World Research’, Blackwell Publishers Ltd., Oxford, UK, 1993

[14] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.,
‘Experimentation in Software Engineering, an Introduction’, Kluwer Academic Pub-
lishers, 2000

Quality Improvement Software Platform Development 87

PAPER IV:

Tracking Degradation in Software Product Lines
through Measurement of Design Rule Violations

Enrico Johansson and Martin Höst

Submitted to the 14th International Conference on Software Engineering and Knowledge Engi-
neering (SEKE), Ischia, Italy, July, 2002

Abstract

In order to increase reuse, a number of product versions may be developed
based on the same software platform. The platform must, however, be
managed and updated according to new requirements if it should be reus-
able in a series of releases. This means that the platform is constantly
changed during its lifecycle, and changes can result in degradation of the
platform. In this paper, a measurement approach is proposed as a means
of tracking the degradation of a software platform and consequently in
the product line. The tracking approach is evaluated in a case study where
it is applied to a series of different releases of a product. The result of the
case study indicates that the presented approach is feasible.

1. Introduction

Software organizations use tracking to promote efficiency in management
and development of software. The tracking consists of monitoring and
controlling that organizations stay within wanted cost, quality and lead-
time boundaries. This is also valid for the tracking approach presented in
this paper, though focused on software platforms and product line archi-
tectures [1][2][5][12][17]. The importance of tracking is accentuated in

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

88 Quality Improvement in Software Platform Development

software platforms, the core asset of product line architecture. This is due
to the fact that the same platform architecture supports a large number of
products with guide-lines and mechanisms and is as such often in the crit-
ical line of product projects. The benefit of this kind of reuse is that the
quality is maintained and lead-times improved when building many prod-
ucts on the same platform [15] [19].

Since the software platform is one of the core reusable assets of a prod-
uct line architecture it has influence on the quality of the whole software
product line. The quality is regarded as the totality of features and charac-
teristics of the software platform that bears on its ability to satisfy stated
or implied needs from the product line [10]. Therefore, tracking the devi-
ation from a wanted platform structure (i.e. "erosion" [18] and "software
aging" [16]) can communicate knowledge concerning the degradation of
the whole product line. The degradation is characterized by a product line
to pass from a higher grade to a lower grade of accomplishment of its pur-
poses. This concerns the possibility to build different of versions and a
family of products based on it.

The objective of the research presented in this paper is to identify and
evaluate a measure for tracking degradation in product lines. The measure
is based on design rules and a graph representation of the design rule vio-
lations.

The benefits of using measurement to improve and track the develop-
ment and maintenance of software has been recognized in many studies,
see e.g. [3]. Setting-up a measurement program for software platforms
based on the measure presented is simple and can be highly automated.
The measure has the possibility to detect the trend when platform erosion
starts, and can cause the product line to degrade. Computing the pre-
sented measure at consecutive points in time gives the possibility to track
the degradation over desired platforms versions or product families.
Similar studies have been made to investigate and present quantifiable
metrics for degradation of software structures. Approaches to explicitly
find architectural metrics have been presented in several studies, for exam-
ple [4][11][14] however their main objective has not been the tracking of
degradation of product lines and nor has graph measurements been used.

This paper is organized as follows. In Section 2, the usage of design
rules in a product line is presented. The measure is defined in Section 3.
The case study and the results derived from it are discussed in Section 4.
In Section 5, conclusions and suggestions for further work are presented.

2. Design rules in platform development

Quality Improvement in Software Platform Development 89

2. Design rules in platform development

“The structure of the system is given by a set of design rules, a structure
can be seen as the architecture of the system“ [7]. This statement is also
true for the structure of a software platform. The structure of the system is
however complemented by adding elements of implementation to the
picture. The implementation elements can take the form of components,
interfaces, connection mechanism or whatever units of high-level design
that are used in the platform [8]. The implementation elements together
with the design rules define the physical view of the architecture [9]. The
way of building software products with these elements is described by a
set of design rules, which the developers are required to follow when
developing software products. The set of design rules communicates an
architecture that is believed to be appropriate [13]. The usage of design
rules can be summarized as follows:

1. A design rule describes the prescribed usage of the components,
mechanisms and interfaces.

2. If a design rule is applicable to a component, mechanism, interfaces
or a combination of these, the rule must be followed.

3. It can be the case that a design rule is not applicable for the product
being developed. Some of the design rules may only be valid under
some specific conditions. If these conditions are not met, the design
rule is not applicable.

During the development of a product, several versions of design rules
may be released. This can result in situations where a design that previ-
ously was considered as violations against the design rules is accepted and
not considered as violations any more. The opposite can also be the case.
Non-violations become violations because of new design rules that invali-
date the design already in place. Therefore, the tracking approach sug-
gested in this paper take into consideration both different releases of the
platform and different releases of design rules.

The reasons for violating the design rules can be grouped into four cat-
egories, which relate to lead-time, quality and cost discussions of software
development. The four reasons are defined by Perry and Wolf [18]: The
first three concern architectural deviation and the forth concerns architec-
tural drift.

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

90 Quality Improvement in Software Platform Development

Lead-time: Following the design rules will result in missing a market
deadline and the economic revenue.

Quality: Following the design rules will result in missing the quality
goal (e.g. throughput) of the software products, which are based on the
platform.

Cost: The cost of following the design rules will cause the software
project to miss its economical goal.

Knowledge: The developers using the design rules to develop a soft-
ware product do not have the knowledge to use them correctly.

3. A measure of degradation

In this paper, a measure for tracking and quantifying product line degra-
dation is presented. The tracking is performed by investigating the
number of violations of design rules in a software platform. The measure
can be used for tracking different releases and versions of a product, as
well as the platform itself. However, before describing the measure and its
proposed usage, some basic concepts concerning development, usage and
evolution of software platform and software products are clarified.
In a product line development project the platform architecture is reused
to develop several versions of a software product and even product fami-
lies. Design rules are, as discussed earlier, a vital part of the architecture.
During the development, these design rules may be removed, added or
changed in order to preserve or change wanted quality attributes. These
changes can be considered as violations to the original design rules that
were defined to uphold a specific architecture in the platform. The viola-
tions will cause the product to deviate from the original perception of
how an optimal platform and product architecture should look like. This
deviation can give knowledge of a possible indication of degradation in
the product line. This section describes the properties of a tracking
approach based on a graph measure.

3.1 Graph measure properties

In a product line there can exist different versions of products. The
product versions 1 to s are denoted as: P1, P2,..,Ps. In the same product

3. A measure of degradation

Quality Improvement in Software Platform Development 91

line there exist different releases of approved design rules. The design rule
releases 1 to t are denoted as: DR1, DR2,..,DRt.

The graph measure can be seen as a function of Pi and DRj for all i and
j, m(Pi,DRj). This denotes the deviation of the architecture structure for
product i compared to the wanted structure defined by release j of the
design rules. The structure of Pi can be represented by a finite non-
directed graph containing arcs and nodes. The nodes represent the imple-
mentation units described in Section 2. It is important that the arcs define
the existence of a relationship between nodes, not the number of relation-
ships. Nodes may be represented by points, and arcs are represented by a
curve connecting the two points.

The arcs (relationships) that are not allowed by the design rules are
considered as design rule violations. In the same way arcs only represent
the existence of relationships. The arcs defining violations of design rules
only depict the existence of violations, not the number of violations
between nodes nor the type of the relationship between nodes.

A measure is meaningful and well formulated if the properties that are
described below are true. The properties are based on the tree impurity
measure properties presented by Fenton [6]. The four properties are as
follows:

Property 1. m(Pi,DRj) = 0 if and only if Pi does not violate any design
rules of DRj.

Property 2. m(Pk,DRj) > m(Pi,DRj) if Pk differs from Pi only by the
insertion of an extra arc (representing a violation of a design rule of
DRj)

Property 3. Let ni denote the number of nodes in Pi and viola-
tions(Pi,DRj) the number of violations against design rules DRj.
Then let Pk be an increment of Pi by having added new nodes to
the product according to the design rules DRj. Both products use
the same versions of design rules. Then the following is valid:

That is, the graph of Pk has more nodes than the graph of Pi, but in

if nk ni and violations Pk DRj(,) violations Pi DRj(,)=>

then

m Pk DRj(,) m Pi DRj(,)≤

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

92 Quality Improvement in Software Platform Development

both cases, the arcs that represent violations against the design rules
are the same. The graph impurity should be greater or equal for Pk
compared to Pi. The property formalizes the intuitive notion that
the measure should be smaller if the number of violations are the
same but the system is larger.

Property 4. Let violations(Pi,DRj) denote the number of violations of
design rules DRj in product Pi. The maximum value of m(Pi,DRj)
for any DRj and Pi is reached only when the product Pi violates all
possible design rules possible for the product.

3.2 Definition of the graph measure

We can define a measure that satisfies all four properties: Let
number_of_violations(Pi,DRj) denote the number of violations against the
design rules DRj which are present in Pi. Let
max_number_of_violations(Pi,DRj) denote the maximal number of viola-
tions against the design rules DRj which are possible in Pi. A measure can
be defined as the following:

If the design rules DRj allow the max_number of violations(Pi,DRj) to
be zero the measure is not valid. However, there is no sense in measuring
violations against the design rules, if no violations are possible to make.

It is assumed that the number of violations can be measured by calcu-
lating the number of arcs in a finite non-directed graph. The graph repre-
sents the structure of the product, where the nodes represent architectural
decomposition units and the arcs represents a dependency between the
decomposition units. The number of arcs in Pi considered as violations
against the design rules DRj, are denoted as arcs_violations(Pi, DRj). The
nodes and arcs are also used to calculate the maximum number of possible
violations against the design rules DRj for a product Pi. The maximum
number of arcs in a finite non-directed graph with ni nodes is subtracted
by the number of allowed arcs. The number of allowed arcs given by the

m Pi DRj(,)
number_of_violations Pi DRj(,)

max_number_of_violations Pi DRj(,)
---= (1)

3. A measure of degradation

Quality Improvement in Software Platform Development 93

design rules in release DRj for product Pi is denoted arcs_allowed(Pi,DRj).
If ni denotes the number of nodes in Pi, then the maximum number of
arcs in a finite non-directed graph with ni nodes, is equal to ni(ni-1)/2.
Thus, equation (1) can be rewritten as:

3.3 Properties of the proposed measure

Below it is shown that the four properties are true for the proposed meas-
ure.

Property 1. The consequence that Pi does not violate any design rules

DRj is that arcs_violations(Pi,DRj) = 0 and this makes the equation

(1) equal to zero.

Property 2. If Pk differs from Pi only by an extra arc (representing a

violation of a design rule of DRj) the value of the denominator in

equation (1) is equal for both m(Pk,DRj) and m(Pi,DRj). The rela-

tion m(Pi,DRj) > m(Pk,DRj) can thus be simplified to

arcs_violations(Pi,DRj) > arcs_violations(Pk,DRj) which was a pre-

requisite for the property.

Property 3. For the property to be true, it must be shown that the max-
imum number of violations always are larger for Pk compared to Pi.

Pk and Pi are different versions of the same product and the number

nodes (decomposition units) are larger in Pk compared to Pi. Both

versions of the product uses the same version of design rules. By
adding new nodes more possibility to violating the design rules are
given. Thus, the maximum number of violations is increased for Pk

compared to Pi. This is the property that should be shown. The

equality stated by property 3 is true when the number of violations
are 0 for both products (i.e. property 1 is satisfied).

m Pi DRj(,)
arcs_violations Pi DRj(,)

ni ni 1–() 2⁄ arcs_allowed Pi DRj(,)–
---= (2)

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

94 Quality Improvement in Software Platform Development

Property 4. For any given Pi and DRj the value of ni(ni-1) and
arcs_desginrule(Pi,DRj) is fixed. This means that the maximum
value of equation (4) is given by the maximum of numerator
arcs_violations(Pi,DRj). The maximum value of arcs_violations(Pi,
DRj) is reached when it denotes all possible violations in product Pi
using DRj. The numerator arcs_violations(Pi,,DRj) would the be
equal to the denominator max_number_of_violations(Pi,DRj). The
measure will then take the value 1.

4. Usage implications of the measure

Using the design rule violations as an integral part in a software measure-
ment program puts strong requirements on the design rules. They should
be handled and stored in a formal way. The design rules should preferably
be stored in a version handling database, be categorized and have high vis-
ibility in the organization. By treating the design rules as any other artifact
(e.g. requirements, test cases, source code) of the platform development
will make this possible. This would be facilitated if the design rules had
their own natural place in the version handling structure of the platform.
The design rules can be documented in different categories of quality
aspects (e.g. maintainability, performance, usability, etc.). This would
enable the measurement of the degradation for these particular aspects of
quality (e.g. degradation of maintainability, degradation of performance,
degradation of usability, etc.).

Violations against the design rules can be found by examining the
source code of the product and the platform. The source code can be
regarded as the building block of the software, and it is up to the measure-
ment method to extract the information of interest and to process it to
show the aspect of interest.

The measure (1) can be used in the following three scenarios. Scenario
1 is concerned by a long-term aspect of degradation of the platform deg-
radation while Scenario 2 and Scenario 3 are concerned with tracking
short-term aspect of the degradation.

Scenario 1. This scenario describes the rationale of measuring plat-
form degradation for product version i with respect to the first release of
design rules, i.e. m(Pi,DRj). The measure can be used to track how well
the initial design meets the requirements from a product built on the plat-

4. Usage implications of the measure

Quality Improvement in Software Platform Development 95

form. A great increase in the degradation measure can indicate that the
intended design or process was improper and many modifications had to
be performed in the platform during the development of the product.
This knowledge can give the developers of the software platform relevant
incentives for improvements when designing a new platform for the next
product families. Project managers can use the knowledge to assess the
risks and resources of a project to develop a new product family. A low
degradation could mean that the platform could be reused, while a high
value could mean that the complete platform and the development proc-
ess supporting it must be redesigned. The redesign should take into con-
sideration the causes of degradation and find remedies against them.

Scenario 2. This scenario describes the rationale of measuring plat-
form degradation for product version i with respect to the last release of
design rules, i.e. m(Pi,DRj). This measure can be used to keep of track of
the platform's degradation in the current project development. The opti-
mal outcome would be when that the degradation is zero. When the
measure is plotted against different versions of the product, a horizontal
line should visualize this. The measure can be of interest for the project
managers and developers of the platform in order to track this type of
degradation. The knowledge visualized by the tracking can be used by
developers to find corrective actions before the degradation gets out of
hand. Project managers can use the knowledge from the tracking, in an
early stage, to detect potential quality and lead-time risks in the product
release.

Scenario 3. This scenario describes the rationale of measuring plat-
form degradation for product version i with respect to the previous release
of design rules, i.e. m(Pi,DRj-1). This measure can be used to track degra-
dation in conjunction with the one described in scenario 2. The trend in
degradation describes if the action taken to stop the degradation tracked
by scenario 2 has been successful. If the comparison shows that the
tracked degradation is still the same, the action done did not have any
effect. In the worst case, it could be that the action taken have increased
the degradation. The scenario described should primarily be of interest
for the developers of the platform and the project managers of the prod-
uct. This can be motivated with the same argument as in scenario 2.

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

96 Quality Improvement in Software Platform Development

5. The case study

The case study is conducted by collecting data from the product line and
calculating the degradation measure proposed in Section 3. Finally, it is
discussed whether the case study indicates that the measure can be used to
track product line degradation.

5.1 Ericsson Mobile Communications AB, Sweden

The measurements are performed on a product developed by Ericsson
Mobile Communications AB. Ericsson Mobile Communications AB used
a product line approach for developing consumer products within the tel-
ecommunication area. The purpose of the platform in the product line is
to provide common software that can be adapted to a variety of consumer
products with low costs and small effort. The platform is an embedded
system with support for a variety of functionality, for example wireless
protocols, data communication protocols and multimedia services.

The software architecture of the studied software product is basically a
client-server solution, where software components provide public inter-
faces that are to be used by other software components. Standardized
architectural mechanisms for communication between software compo-
nents are defined and used throughout the system. The aim is to have a
set of stable software components and mechanisms that can be reused
between products without major redesign or rework.

5.2 Detecting design rule violations

It is important for the measure that the structure (i.e. architecture) sym-
bolizes some sort of relationship between the components. These relation-
ships can be in the form of source structure or behavior structure [20].
The source structure involves static dependencies while the behavior
structure involves dynamic interaction dependencies.

The case study investigates the behavioral structure, as violations
against design rules for intra-module invocations. A module is a high level
component of the system. Design rules defining the usage of function
calls and intra-module calls are therefore possible to check with this
method. Design rules stating which components can be called by another
component can be modelled in a graph. The arcs denote the invocations

5. The case study

Quality Improvement in Software Platform Development 97

between components and the nodes denote the components themselves.
Therefore, a graph showing the intra-module components invocation is
feasible to use as input for the measure proposed.

5.3 Performing the measurement on a selected product

The measurement is based on data collected from five different develop-
ment releases of the product stored in a configuration management (CM)
database. It has been possible to retrieve all the artifacts used and gener-
ated by the building process of the product. The source code, make-files
and other artifacts have been used to check for design rule violations in
the product. Five releases were selected to cover the life cycle of the prod-
uct stored in the database in a uniform way. This is achieved by having
chosen the same number of stored releases between each of the measure-
ment points.

All the five releases of the source code are checked in order to find vio-
lations against the design rules of Scenario 1, mentioned in Section 4.

The result from the measurements of the five releases is presented in
Figure 1.

Figure 1. The degradation measure is plotted against five measurement points (i.e. five
development versions of the product).

Graph measure

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

1 2 3 4 5

measurment point

m
(P

i,
D

R
1)

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

98 Quality Improvement in Software Platform Development

5.4 Result from case study

The curve in Figure 1 shows the measure per measurement points. Con-
sidering the curve, it can be noted that the gradient of the curve is positive
not negative. It can also be noted that the gradient is not constant. In
other words, Figure 1 can be interpreted as the product line is degrading
with non-constant rate between product versions. This interpretation was
confirmed by the organization in charge of the platform where the case
study has been performed. They confirmed that the trend for the product
is that the deviation from the wanted structure generally increases for
every version of a product based on the platform. This shows that using
the gradient of the proposed graph measure gives the possibility to track
degradation in the product line.

Despite this encouraging response of the case study, a set of issues that
still must be overcome to empirically validate the measure. The issues are
the following:

Other variables from the platform also have an increasing trend and
could therefore be used to track the degradation. For example, the
number of design rule violation also shows an increasing trend. It
can be argued that only studying the violations would be a good
enough tracking measure. This is true, but one of the prerequisites
of the measure was that it should be normalized with the size of the
platform. This is not true for a measure containing only the
number of design rule violations. There is, however, a need for a
comparative study of different possible measures (including the
graph measure). The study should quantitatively compare the
trends of degradation to the trends in the measures.

The rise of the graph measure calculated in the case study is very
small, in fact so small that the rising slope can be considered as
noise. To really investigate this issue larger case studies should be
performed and a larger number of design rules should be taken into
consideration.

The case study has only considered design rules that are related to
the invocations of decomposition units. A complete set of design
rules should be taken into consideration in order to have an opin-
ion of the complete platform.

6. Conclusion

Quality Improvement in Software Platform Development 99

The case study consists of measurement from one company and
from only one product. Also, data is only collected on five measure-
ment points. Case studies should be performed in other companies,
more products and with a larger set of data.

Only scenario 1 (see Section 4) is comprised in the case study.
However, it is believed that the practical implication of this scenario
can be related to the other scenarios.

6. Conclusion

A significant challenge for software product lines is to develop a software
platform that maintains the wanted quality between products and prod-
uct families. This article takes a step forward towards that goal by provid-
ing a method to track an eventual degradation of product lines. The
contributions of the method are the following:

A metric is identified that measures the deviation of the product
from the original structure depicted by the design rules of the soft-
ware platform. The measure is based on graph representation and
design rule violations.

The measure is evaluated in a limited case study. A goal of the
method is that it should be practical and feasible to use in a com-
pany using the concept of software platforms. This is shown in the
case study. More extensive, empirical studies must however be per-
formed in order to validate the measures further.

Different scenarios of how to use the measure are presented. The
different scenarios describe the usage of the measures to track both
short-term and long-term aspects of degradation. The short-term
aspect is concerned with the degradation of the product line in the
product being developed. The long-term aspect is concerned with
degradation of software platforms between product lines. In all sce-
narios, stakeholder, usage and practical consideration are described.

In developing the basis for the measurement a general discussion of
how to use design rules in a software platform environment are presented.
Four properties of a graph measure are discussed and it is shown that they
are applicable to the identified measure. The software platform process is
described in light of the usage of platform design rules. Possible causes for

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

100 Quality Improvement in Software Platform Development

degradation are described and it is discussed how they affect the usage and
definitions of design rules. The design rules are an important property of
many architectural descriptions. In addition, they open a way to analyze
the system. In this case, the analysis is done by counting the number of
violations against the design rules and relating them to the possible
number of violations.

Acknowledgements

This work was partly funded by The Swedish Agency for Innovation Sys-
tems (VINNOVA), under a grant for the Center for Applied Software
Research at Fund University (LUCAS). We thank employees at Ericsson
Mobile Platforms AB, Sweden, particularly Jan Lind and Peter Lerup, as
well as Fredrik Nilsson at Enea Realtime System, Sweden. A thanks also to
Daniel Karlström at the Department for Communications Systems, Lund
University, Sweden, for reviewing the article.

References

[1] Bass, L., Clements, P., Kazman, R., Software Architecture in Practice, Addison-Wes-
ley, 1998.

[2] Bosch, J., Design & Use of Software Architectures, Addison-Wesley, 2000.

[3] Briand, L. C., Morasca, S., Basili, V.R., "Measuring and assessing maintainability at
the end of high level design", Proceedings of International Conference on Software
Maintenance, pp. 88-87, 1993.

[4] Carriere, S. J., Kazman, R., Woods, S.G., "Assessing and maintaining architectural
quality", Proceedings of the 3rd European Conference on Software Maintenance
and Reengineering, pp. 22-30, 1999.

[5] Clements, P., Northrop, L.M., Software Product Lines: Practices and Patterns, Addi-
son-Wesley, 2001.

[6] Fenton, N.E., Pfleeger, S.L., Software Metrics: A Rigorous and Practical Approach,
Revised. Boston: PWS, 1997.

[7] Gacek, C., Abd-Allah, A., Clark, B., Boehm, B., "Focused Workshop on Software
Architectures: Issue Paper", USC Center for Software Engineering, 1994.

[8] Garland, D., Shaw, M., An Introduction to Software Architecture, Advances in Soft-
ware Engineering and Knowledge Engineering, Volume I, World Scientific Publish-
ing Company, 1993.

6. Conclusion

Quality Improvement in Software Platform Development 101

[9] Hofmeister, C., Nord, R., Soni, D., Applied Software Architecture, Addison-Wesley
Longman, 2000.

[10] ISO 9000:2000 - Quality Management Systems-Fundamentals & Vocabulary

[11] Jaktman, C.B., Leaney, j., Liu, M.,"Structural Analysis of the Software Architecture-A
Maintenance Assessment Case Study", Proceedings of 1st Working IFIP Conference
on Software Architecture, 1999

[12] Jazayeri, M., Ran, A., Van Der Linden, F., Van Der Linden, P.,"Software Architec-
ture for Product Families: Principles and Practice," Addison-Wesley, 2000.

[13] Jones, A.K.,"The Maturing of Software Architecture", Software Engineering Sympo-
sium, Software Engineering Institute, Pittsburgh, PA, 1993.

[14] Kazman, R.,"Assessing architectural complexity", Proceedings of the 2nd Euromicro
Conference on Software Maintenance and Reengineering, pp. 104-112, 1998.

[15] Meyer, M., Lehner, A.,"The Power of Product Platforms", The Free Press, New York,
1997.

[16] Parnas, D.L.,"Software aging", Proceedings of 16th International Conference on
Software Engineering, pp. 279-287, 1994.

[17] Parnas, D.L.,"On the Design and Development of Program Families", IEEE Transac-
tion Software Engineering (special issue), SE-2, 1976.

[18] Perry, D.E., Wolf, A.L.,"Foundations for the Study of Software Architecture", Proceed-
ings of ACM SIGSOFT, Vol.17, No.4, pp.40-52, 1992.

[19] Sanderson S., Uzumeri, M.,"Managing Product Families: The Case of the Sony Walk-
man", Research Policy, No. 24, pp. 761-782, 1995.

[20] Stafford, J.A., Wolf, A.L.,"Architectural-level Dependence Analysis in Support of Soft-
ware Maintenance", Proceedings of 3rd International Software Architecture Work-
shop, pp.129-132, 1998.

Tracking Degradation in Software Product Lines through Measurement of Design Rule Violations

102 Quality Improvement in Software Platform Development

