
© The Author 2014. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/iwc/iwu003

Graphical Toolkits for Rapid Prototyping
of Multimodal Systems: A Survey

Fredy Cuenca
∗
, Karin Coninx, Davy Vanacken and Kris Luyten

Hasselt University – tUL – iMinds, Expertise Centre for Digital Media, Diepenbeek, Belgium
∗Corresponding author: fredy.cuencalucero@uhasselt.be

The creation of prototypes and their iterative adaptation are important stages in the time-consuming
development process of a multimodal system. This reality has brought about the appearance of
many specialized toolkits intended for facilitating the prototyping of multimodal systems. Using these
toolkits, some functionalities of the intended prototype can be specified by means of a visual language
instead of programming code. This article reports on a comparative study of a representative set of
graphical toolkits for rapid prototyping of multimodal systems. It presents a set of criteria to identify
the scope of a toolkit. According to their scopes, toolkits can be clustered into three classes called
flow-based, state-based and token-based. Toolkits within each class do not only offer similar benefits

to their users, but also exhibit resemblance in their underlying visual languages.

RESEARCH HIGHLIGHTS

• We define an indicator, herein called scope, which enables us to gauge the support provided by a toolkit
during the creation of a multimodal prototype.

• The scope of a toolkit is defined as a nominal variable so that it can yield unambiguous measurements
and allow comparisons.

• We compare several toolkits as a function of their scopes.
• We identify three distinct classes of toolkits: flow-based, state-based and token-based and show that

visual models created with the toolkits within each class are similar. They resemble block diagrams, state
diagrams or Petri net graphs.

Keywords: user Interface toolkits; interface design prototyping; systems and tools for interaction design

Editorial Board Member: Jean Vanderdonckt

Received 11 March 2013; Revised 15 October 2013; Accepted 13 January 2014

1. INTRODUCTION

A multimodal system is a computer system capable of collecting
the information provided by a user through multiple input
modes, integrating these inputs in order to interpret the
user’s intent and responding to him/her via multiple outputs.
Examples of input modes that can be used to enter information
into a multimodal system are speech, touch, hand gestures,
handwriting or sketching. Some output modes used to respond
to the user may include images, audio, synthesized voice, video
or haptics.

Multimodal systems can expand computing to accommodate
to a broader spectrum of people and more adverse usage condi-
tions than in the past (Oviatt, 2003). They can combine comple-
mentary information conveyed through different input modes.

This capacity can be exploited to perform disambiguation
(Oviatt, 1999), and thus to reduce the misinterpretations that
usually arise because of the use of error-prone input modes.
For instance, speech recognition can be improved when sup-
ported by lip movements recognition (Gibbon et al., 2000).
Furthermore, multimodal systems have the potential to provide
equivalent input modes for issuing a command so that the users
can choose the most convenient mode to utilize according to
the context. For example, in noisy environments, a person may
prefer to issue touch commands rather than voice commands
to his/her multimodal mobile phone. Such flexibility enables
human–machine interaction under unfavorable circumstances.

The development of multimodal systems is time-consuming
(De Boeck et al., 2009; Dumas et al., 2013; Flippo et al.,
2003) and therefore expensive (De Boeck et al., 2007). This

Interacting with Computers, 2014

 Interacting with Computers Advance Access published March 30, 2014
 at Pennsylvania State U

niversity on M
ay 11, 2016

http://iw
c.oxfordjournals.org/

D
ow

nloaded from
 

http://iwc.oxfordjournals.org/


2 Fredy Cuenca et al.

is partly because of the complexity of multimodal interaction
(Ait-Ameur and Kamel, 2004; Dargie et al., 2007), the
absence of standardized methodology (Dargie et al., 2007)
and the mastering of different state of the art technologies
required for their construction (Dumas et al., 2013). One
important phase of the development of multimodal applications
is prototyping (Lawson et al., 2009). It involves the creation and
iterative adaptation of prototypes (Vanacken et al., 2006), i.e.
incomplete versions of the system being developed. Therefore,
the development phase of a multimodal system can be shortened
by facilitating the creation and modification of prototypes,
which is precisely the purpose of the toolkits under study.

A graphical toolkit for rapid prototyping of multimodal
systems includes a framework and a graphical editor. It
aims to enhance an external application, herein called client
application, with multimodal capabilities. On one hand, the
client application has to be developed by means of a textual
programming language and with no support from the toolkit. On
the other hand, the graphical editor allows the depiction of visual
models that will be interpreted and executed by the framework.
The visual models specify the tasks the prototype must perform
during its interaction with the end-user. Some of these tasks
are present in a wide variety of multimodal systems (e.g.
speech recognition, tracking of the system’s state, simultaneous
activation of rendering devices) and can be performed by the
framework. Other tasks are application-specific and have to be
carried out by the subroutines of the client application.

For illustrative purposes, consider a multimodal system
whose users are allowed to utter a voice command ‘zoom here’
while touching a specific point on the screen to indicate the
region to zoom in (left side of Fig. 1). Prototyping such a system
with the support of a toolkit entails the implementation of the
graphical user interface (GUI) the end user will interact with
and the subroutine(s) required to scale up a specific region
of this GUI. Both the particular behavior of the GUI and the
specific scaling algorithms must be implemented as part of a
client application. This client application does not need to detect
voice commands or touchscreen events. Neither does it have to
verify the temporal co-occurrence of the speech input ‘here’and
the touch on the screen, required to zoom in a region of the GUI.
Both functionalities can be delegated to the framework through
a visual model like the one shown in the right-hand side of

FIGURE 1. Left: End-user interacting with a multimodal system.
Right: Visual model used for specifying human–machine interaction.

Fig. 1. This model specifies that the detection of the speech input
‘zoom’ followed by the simultaneous detection of the speech
input ‘here’ and a touch on the screen will cause the execution
of the subroutine ZoomAt, implemented in the client application.

By using both the client application and the visual models
as inputs, the framework of the toolkit can load a working
system that is used to explore, clarify and refine user
requirements. After this prototype has served its purpose of
elaborating the user’s requirements, one typically progresses
toward the implementation of the final system. Aspects like
efficiency, portability, error handling, ambiguity resolution and
contradiction detection have to be considered for the final
implementation. The functionality described by the visual
models has to be implemented too, since the toolkits cannot
convert it into programming code. This inability to translate
visual models into programming code confines the studied
toolkits to the role of executors able to launch rapid prototypes
(Beaudouin and Mackay, 2003).

The visual model shown in Fig. 1 was not created with any
of the toolkits presented in this work. However, as with the
models supported by many of the studied toolkits, it resembles
a state diagram (Wagner et al., 2006). For other toolkits, their
editors allow the creation of visual models that resemble block
diagrams (Nise, 2011) or Petri net graphs (Jensen et al., 2007;
Murata, 1989).

The differences among the existing graphical toolkits are not
restricted to their underlying visual languages. These toolkits
also provide different features, target different domains, use
different programming paradigms and/or expect different skills
from their users. This overwhelming diversity obstructs the
comparative study of these toolkits. It is difficult to find criteria
that are applicable to every graphical toolkit.

The present work provides a comparative study of graphical
toolkits for rapid prototyping of multimodal systems. The
variable chosen as the main comparison criterion was the
scope of a toolkit—an indicator that measures the amount
of programming workload that can be avoided through the
use of a toolkit. This criterion was chosen not only because
it abstracts away the abundant technical differences among
existing toolkits. But it is also of interest for a user wondering
how much support he/she can receive from a toolkit, i.e. how
much programming work he/she can avoid. Additionally, other
aspects of the toolkits have also been contrasted throughout the
paper. The formal definition and the way to measure the scope
of a toolkit will be shown in future sections.

An important finding that resulted from this comparative
study is that the evaluated toolkits can be clustered into three
groups such that every toolkit within a group has the same scope.
These three groups are flow-based, state-based and token-
based toolkits. Furthermore, toolkits within a class also exhibit
resemblance in their underlying visual languages. Flow-based
toolkits do not allow depicting symbols for representing system
states. State-based toolkits allow using one symbol, usually a
circle, to represent each state of a system. And token-based

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 3

toolkits allow one symbol to represent the state variables of a
system and another one, usually a token, to represent the values
assigned to a state variable.

This article is organized as follows: Section 2 describes
the architecture of a multimodal system. Section 3 presents
the definition of the scope of a toolkit and shows that this
yields unambiguous measurements. Section 4 describes how to
measure the scope of an arbitrary toolkit. Section 5 outlines the
results obtained after measuring the scopes of several toolkits.
Section 6 describes a representative set of flow-based toolkits.
For each toolkit, a strong emphasis is placed on explaining the
semantics of its underlying visual language through a running
example. This emphasis is justified because the visual language
is the means through which users exploit the functionalities
incorporated in the toolkit framework.At the end of this section,
a comparison between the scopes of flow-based toolkits is made.
Sections 7 and 8 have the same structure as Section 6 but for
the case of state-based and token-based toolkits, respectively.
The article is concluded by a discussion and conclusions in
Sections 9 and 10, respectively.

2. ARCHITECTURE OF A MULTIMODAL SYSTEM

The architecture of a software system is an abstraction of
that system (Len et al., 2000). This abstraction is defined by
describing the set of structures needed to reason about the
system, and the relations among those structures (Clements
et al., 2010).

The study of several multimodal systems (Bui, 2008;
Johnston et al., 2002; Flippo et al., 2003; Oviatt, 2003; Neal
et al., 1989; Vo and Wood, 1996; Wahlster et al., 2001)

reveals that, despite their differences, it is still possible to
distinguish functionalities that are common to most of them. The
components that implement these common functionalities will
be referred to as recognizers, fusion engine, dialog manager,
fission component, synthesizers and knowledge sources. The
relation among these components is depicted in Fig. 2 and their
functionalities are described below.

While a user is interacting with a multimodal system,
inputs are recognized by a group of specialized components
called recognizers. Each recognizer is continuously sensing the
external environment: it captures natural input from the user
and transforms it into an appropriate format. Some examples of
these components are handwriting, voice and facial expression
recognizers whose implementation usually involves stochastic
models such as hidden Markov chains, Kalman filters or particle
filters (Mitra and Acharya, 2007; Monwar and Gavrilova, 2011;
Rabiner, 1989; Sushmita, 2007; Trung, 2008). This probabilistic
treatment is usually intended to cope with the uncertainty caused
by the noise of the environment.

Whenever a recognizer has interpreted a stream of user
inputs, it informs the fusion engine (Lalanne et al., 2009).
This engine is in charge of merging the information provided
by all the recognizers in order to interpret the user’s request.
Since recognizers do not necessarily complete their work at the
same time, a fusion engine must be able to synchronize several
recognizers’ outputs so that the fusion can be performed only
after all the relevant data are available. But synchronization
is not the only matter to be considered when implementing a
fusion engine; the information provided by the recognizers may
be ambiguous or contradictory, and therefore the fusion engine
must have disambiguation and error recovery mechanisms.

FIGURE 2. Architecture of a multimodal system performing fusion at the semantic level (Sharma et al. 1998). These systems are characterized
by the use of independently developed recognizers whose outputs are not merged before reaching the fusion engine. These are the types of systems
targeted by the toolkits under study.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


4 Fredy Cuenca et al.

Since the same user’s request may result in different system
reactions depending on the context, the dialog manager must
track the status of the human–machine dialog so that user
requests can be addressed correctly. For instance, the voice
command ‘yes’ may have distinct meanings at different stages
of a human–machine dialog. Beyond this, the dialog manager
can also request services from external applications, e.g. when
a system for cinema seat reservation recognizes the intended
seat’s positions of the user and notifies a reservation agent
through an external service (Wahlster et al., 2001).

After the dialog manager has decided on the response to be
sent, it delegates this task to the fission component, which must
then choose and activate the synthesizers—computer programs
that control rendering devices—that are best suited for the
situation. Whereas the fusion engine merges the information
coming from different input modes, the fission component
dissociates the returning message through several output modes.
The generation and coordination of multiple outputs through the
selected modalities is the task of the fission component, e.g. it
can control a graphics display and a voice synthesizer in order to
highlight the object that is being mentioned in the simultaneous
natural language output (Neal et al., 1989).

Finally, the interpretation of the fusion engine and the
decisions made by the dialog manager or the fission component
may not depend only on the user’s actions. Personal information
about his/her age, gender, language or disabilities may affect
the interpretation and/or response of the system. The system
may also need information that is particular to its application
domain, e.g. when a multimodal restaurant recommender
system (Rajman et al., 2004) consults a database to retrieve
information of the names, addresses and telephone numbers
of a series of restaurants. All relevant information needed for
decision-making is contained in data storages called knowledge
sources.

Since the creation of prototypes has to be efficient, the
toolkits do not expect their users to implement software for
recognition or synthesis of modalities. Rather, they already
incorporate a wide assortment of recognizers and synthesizers;
which can be exploited by the client application. With regard to
the knowledge sources, these are expected to be created with a
database management system and without toolkit intervention.
For these reasons, we are only interested in determining the
support provided by a toolkit to the implementation of the fusion
engine, dialog manager and fission component.

3. SCOPE OF A GRAPHICAL TOOLKIT FOR RAPID
PROTOTYPING OF MULTIMODAL SYSTEMS

Several researchers have presented study cases showing that
their proposed toolkits do support the implementation of
multimodal prototypes (Bourguet, 2003; De Boeck et al., 2007;
Dragicevic and Fekete, 2004; Dumas et al., 2010; Lawson et al.,
2009; Navarre et al., 2006, 2009; Werner et al., 2010). For

instance, Vanacken (2009) shows how CoGenIVE can be used
to create a multimodal prototype that allows its end-users to
manipulate objects from a virtual world by using a tracking
glove and speech inputs. (Dragicevic and Fekete, 2004) show
that Input Configurator (ICon) can support the development
of a graphical application that can be controlled with a wide
assortment of hardware devices like palmtops or trackballs.
Navarre et al. (2009) show that PetShop can support the creation
of a multimodal prototype intended to control the orientation of
a 3D virtual satellite. The complexity and sophistication of the
aforementioned prototypes may be misleading. Readers might
associate the complexity of these prototypes with the goodness
of the toolkits used to create them. However, such association
can be mistaken because significant parts of a complex system
could have been built with fine-grained programming code at
the client side and with no participation of the toolkit.

The scope of a graphical toolkit for rapid prototyping of
multimodal systems is a concept we are proposing to refer to
its capability for facilitating the implementation of the fusion
engine, dialog manager or fission component of a multimodal
prototype. When properly measured, this concept will make us
aware of how much functionality of an intended multimodal
prototype can be delegated to the framework of a toolkit (by
means of visual models) and how much has to be implemented
in a client application. The more functions that can be delegated
to the framework of a toolkit, the more programming work its
users can avoid. Therefore, the scope of a toolkit would be an
important indicator to estimate how well a toolkit accomplishes
its ultimate goal of shortening the prototyping phase. This
concept must be defined with enough precision so that it can
be measurable, thus comparable.

Definition 1. Let T be the set of all graphical toolk-
its for rapid prototyping of multimodal systems and
C = {fusion engine, dialog manager, fission component}. The
scope of a graphical toolkit for rapid prototyping of multimodal
systems is a mapping function S such that

S : T −→ 2C,

t �→ {x ∈ C : Some functionalities of the component

‘x’ can be delegated to the framework of ‘t’},
where 2C is the power set of C, i.e. the set containing all subsets
of C.

The set 2C will be the scale to be used for measuring the scope
of a toolkit—hereafter referred to as the scale of measurement
(Stevens, 1946) of the scope. This definition satisfies three
properties that allow us to claim that we have defined the scope
of a toolkit as a nominal variable (Engel and Schutt, 2013).

First, the values of the scale of measurement have no mathe-
matical meaning. For instance, let ‘r’and ‘t’be two toolkits such
that their scopes are S(r) = {fusion engine, dialog manager}
and S(t) = {dialog manager, fission component}, respectively.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 5

This means that the utilization of toolkit ‘r’ can reduce the pro-
gramming effort involved in the implementation of the fusion
engine and dialog manager. And the same is true for the toolkit
‘t’ with regard to the dialog manager and fission component.
However, no quantitative information can be obtained about
toolkits ‘r’ and ‘t’. Moreover, we cannot add, subtract, mul-
tiply or divide S(r) and S(t). These observations disclose the
qualitative character of S(r) and S(t). Secondly, the scale of
measurement has collectively exhaustive values. This means
that the scope of any arbitrary toolkit can take on at least one
value of the scale of measurement. The support for this claim
comes from the fact that, by definition, the power set 2C con-
tains all the possible combinations of components included in C.
Thirdly, the scale of measurement has mutually exclusive val-
ues. This means that the scope of any arbitrary toolkit can take
on only one value, which is directly verifiable from the corre-
spondence rule used in Definition 1.

To clarify matters, the previous definition does not indicate
how to measure the scope of a toolkit. Rather, it indicates how
to record a measurement value: it will be recorded as a set, not
as a number. As to the collective exhaustiveness and mutual
exclusivity of the scale of measurement, they warrant that there
will never be situations where there are no values or many values
that can be correctly used to represent the scope of a toolkit.

Treating the scope of a toolkit as a nominal variable not only
leads to unambiguous measurements. Additionally, nominal
variables admit the equivalence operation (Engel and Schutt,
2013), which implies that the previous definition allows us to
measure and determine whether the scopes of two arbitrary
toolkits are equal or not.

The contents of this section ensure that the scope of a toolkit
can be unambiguosly measured. The following is an explanation
of how to measure it.

4. METHODOLOGY

The formalism shown in the previous section only guarantees
that once the scope of a toolkit is determined, one and only
one value of the scale of measurement can be correctly used to
record this result. However, it does not mention how to measure
the scope of a toolkit.

The study of several toolkits, along with their visual
modeling languages, made us devise rules for determining the
functionalities that are pre-programmed in their frameworks.

(1) The toolkits that facilitate the implementation of the fusion
engine are those that allow for composite events in their visual
models.

A composite event is a group of events, along with the
temporal constraints among them; its occurrence reveals that a
multimodal command has been issued. Consider, for instance, a
speech input ‘zoom’followed by the simultaneous occurrence of
a speech input ‘here’and a finger touch (Fig. 1). All these events
in the specific order previously mentioned define a composite

event whose occurrence discloses the user’s intention to zoom
in a region of the GUI. The toolkits that do not allow composite
event definitions are confined to notify the client application
of each event that occurs in the outside world. The client
application has to verify whether these streams of events are
reflecting the user’s intention to issue a multimodal command
or not. Such verification is implemented by time-stamping the
events and checking whether their order of receipt matches
with some meaningful pattern. In contrast, toolkits allowing
the definition of composite events permit their users to specify
event patterns that are of interest for the client application and
omit the need to process each event separately. The possibility
to include composite events in a visual model enables us to
delegate their detection to the (framework of the) toolkit, thus
reducing the programming workload at the client side. The
detection of composite events discloses the user’s intent, this
being a function of the fusion engine.

(2) The toolkits that facilitate the implementation of the dialog
manager are those allowing the depiction of the system’s states.

The responses provided by a multimodal system may depend
on its current state, which is continuously changing during the
human–machine dialog (Luyten et al., 2003). For example,
a command to zoom in a region of a GUI may lead to its
enlargement or to an error message if the target area has
previously been enlarged.

When a toolkit does not allow depicting the states the intended
prototype may ever be in, its client application has to be
overloaded because it now has to be constantly determining
the prototype’s current state. This task entails maintaining
global variables across different event handlers, and evaluating
them at different branching points (if-else conditions) (Samek,
2009). In contrast, by using an appropriate toolkit, users can
release their client application from this tracking operation.
Toolkits allowing one to depict the potential states of the
intended prototype guarantee that its current state will always be
correctly identified after any arbitrary sequence of events. This
identification is pivotal to undergo context-dependent human–
machine dialogs, this being the goal of the dialog manager.
For some toolkits, the state of the system is depicted by using
one designated symbol; for others, it is required to depict the
system’s state variables and enter their initial values.

(3) The toolkits that facilitate the implementation of the
fission component are those including language constructs for
concurrency and synchronization.

The concurrent activation of synthesizers allows conveying
the returning message through multiple modalities; the
synchronization of their outputs makes the returning message
intelligible to the end-user. For instance, a system implementing
an animated avatar must be concurrently activating a display
manager and a voice synthesizer in order to portray the
avatar’s face and generate its voice, respectively. Additionally,
both outputs have to be constantly synchronized so that
the avatar’s face can always be in accordance with its

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


6 Fredy Cuenca et al.

speech. Petri net graphs, which can be interpreted by some
toolkits, are well-known visual models that can represent
the synchronization of concurrent processes. The inability to
express concurrency and synchronization in a visual model will
lead to the implementation of a multithreaded client application.
However, manual implementation of multiple threads is error-
prone and cumbersome.

The toolkits whose study allowed us to devise these rules were
ICon (Dragicevic and Fekete, 2002), OpenInterface (Lawson
et al., 2008), Squidy (Werner et al., 2010), MEngine (Bourguet,
2002), CoGenIVE (De Boeck et al., 2007), HephaisTK (Dumas
et al., 2009) and PetShop (Navarre et al., 2009). For all these
toolkits, the semantics of their visual languages were revealed
from the analyzes of the numerous running examples discussed
in the papers, from the study of the theses that refer to these
toolkits, from the observations of publicly available demos
and/or from e-mail correspondence with some members of their
development teams.

Because the visual languages of many toolkits are variations
of finite state machines (Wagner et al., 2006) or object Petri
nets (OPNs) (Lakos, 1991; Sy et al., 1999), the mathematical
apparatuses behind these formal models were an additional
source of information we used to decipher the semantics of
the said toolkits.

As regards ICon, Squidy and PetShop, they were publicly
available and could be successfully installed and evaluated.
CoGenIVE was also available for evaluation since it was
developed in our research lab. The evaluation of these toolkits
consisted of exploring corner cases that were not commented
upon in the papers, thus increasing our understanding of their
underlying semantics.

The proposed rules allowed us to easily evaluate the scopes
of several toolkits.

5. EVALUATION

The heuristic rules exposed in the preceding section were used
to evaluate the scopes of several toolkits. The measurements
obtained unveiled that the studied toolkits can be classified into
three groups (Table 1).

For the first group, their toolkits work as servers for event
recognition but they do not facilitate the fusion or fission of
modalities, or the dialog management. Their scopes are the
empty set {}. These toolkits were called flow-based toolkits
(Section 6) because their visual models are intended to specify
how the data flows from the input devices to the client
application.

A second group of toolkits support the implementation of the
fusion engine and dialog manager, i.e. their scopes are {fusion,
engine, dialog manager}. These were called state-based toolkits
(Section 7) because of the resemblance of their visual models
with state diagrams.

Finally, the third class of toolkits facilitates the implemen-
tation of the fusion engine, dialog manager, and fission com-
ponent, i.e. their scopes are the set C defined above. These
were called token-based toolkits (Section 8) because the mod-
els designed with their editors use a symbol called token to allow
for modeling parallelism.

The next section presents a representative set of flow-based
toolkits.

6. FLOW-BASED TOOLKITS

A toolkit is called flow-based when its graphical editor does not
allow depicting the state of a system. In the remainder of this
article, any diagram that can be depicted with the editor of these
toolkits will be called a flow-based model. These are directed

TABLE 1. Checkmarks indicate the components whose implementation is facilitated through the use of a toolkit. Toolkits can be clustered into
three groups.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 7

FIGURE 3. ICon’s diagrams specify the transformations applied to the data that flow from input devices towards a client application.

graphs whose links allow data to flow in the direction of their
arrowheads and whose nodes perform operations with the data
that flow through them. In this section, we describe our study
of ICon, OpenInterface and Squidy.

6.1. Input Configurator

ICon (Dragicevic and Fekete, 2002, 2004) is a toolkit that allows
a client application (implemented in Java) to support a large set
of heterogeneous hardware devices without the need of low-
level configuration programming code. Therefore, ICon enables
users with no programming skills to test their applications with
a wide variety of input devices. The possibility to easily define
and redefine the input devices supported by a client application
encourages innovation (Dragicevic and Fekete, 2004).

Diagrams made in ICon are composed of nodes, called
devices, connected by links. Figure 3 shows a diagram used to
control some functionality of an application called IConDraw.
In this diagram, the device mouse is representing the hardware
to be used as input source. When the left button of the mouse is
down, its corresponding virtual device is continuously sending
signals through its output port left. Similarly, delta values are
sent through ports dx and dy whenever the mouse is moved.
As to the devices sum, they are in charge of transforming the
delta values (dx, dy) into cursor locations (x, y). In summary,
this diagram establishes that every time the user is pressing the
mouse, the free-style mode of IConDraw will be activated and
thus the user will be able to paint free-form shapes by moving
the mouse over the IConDraw’s canvas.

Each ICon device belongs to one of three categories: system,
library or application devices. System devices are virtual
representations of the hardware used to interact with the system,
e.g. mouse, trackball, palmtop. Library devices are intended to
process the signals generated by system devices before finally
passing them to the application devices. In Fig. 3, both nodes

sum are library devices and freehand is an application device.
Whereas system and library devices are predefined, application
devices belong to external applications and are thus extensible.
In order to define an ICon-recognizable application device,
the client application must implement classes that extend from
AbstractDevice, found in the libraries of ICon.

With respect to the architecture shown in Fig. 2, ICon serves
as a library of ready-to-use input recognizers but does not
support fusion of modalities (Dragicevic and Fekete, 2004).
ICon permits its users to acquire information from the external
environment and apply simple transformations to this data
before sending it to a client application, which must implement
the functionality of a fusion engine, dialog manager and fission
component.

6.2. OpenInterface

OpenInterface (Lawson et al., 2008, 2009; Pineux, 2012) is
an open-source software solution designed to support rapid
prototyping of interactive multimodal systems. SKEMMI,
its graphical editor, allows specifying multimodal systems
by means of visual models that will then be executed on
the OpenInterface runtime platform. Models created with
SKEMMI are directed graphs composed of two symbols: nodes
and links. The nodes represent components that are autonomous
pieces of software that implement the functionalities of a
multimodal system. These components can be developed in
different programming languages, but their interfaces have to
be described in an XML-based language called Component
Interface Description Language. On the other hand, the links
are intended to connect the input ports of one component
to the output ports of another, thus indicating the path in
which the data can flow. Once a group of components
have been built, a multimodal system can be specified by
plugging and wiring these components. SKEMMI also offers

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


8 Fredy Cuenca et al.

FIGURE 4. Upper left: Wiimote control. Lower left: OICDShell is a component whose graphical interface shows the album covers (pictures) of
a series of available albums. Right: SKEMMI model of an MP3 player. [Images from (Pineux, 2012), reproduced with permission.]

predefined components, called OI Adapters, which provide
common functionality such as filtering, buffering and data
transformation.

As an example, consider an MP3 player that can be handled
by a Wiimote control. Specifically, button A will set the system
in album navigation mode, whereas buttons + or − will
change it into volume mode. Moreover, signals sent by the
Wiimote’s accelerometer will adjust the volume of the music
or allow navigating through a list of albums depending on
whether the system is in the volume or navigation mode. The
specification of the described system is shown in the right-hand
side of Fig. 4. Components OIWiiYourself, OICDShell and
AudioComponent, referred to in Fig. 4, have been developed
by the user. OIWiiYourself recognizes the events generated
by the Wiimote control, OICDShell is the GUI that shows
the list of available albums and AudioComponent allows
playing/stopping a song and increasing/decreasing the volume
of the MP3 player. The three additional components seen in
the right side of Fig. 4, MultiIfThenElse, ProgressBar and
Switch, are called OI Adapters and are ready-to-use predefined
SKEMMI components. The adapter MultiIfThenElse is used to
transform the value received through its input port into −1 or +1
to indicate whether the previous or the next album cover must
be displayed by OICDShell. The ProgressBar adapter shows a
progression bar that enables the user to set the volume between
0 and 1 as required by AudioComponent. Finally, the adapter
Switch must route the signals generated by the accelerometer
of the Wiimote –to the OICDShell or to AudioComponent
depending on whether the system is in navigation mode or
volume mode.

It is important to highlight that the identification of the context
(MP3 player’s operation mode) is the responsibility of the
component Switch and not of the OpenInterface platform. In
other words, the identification of the context has to be written
in the source code of a component and cannot be delegated to
the framework by means of graphical specifications (as is the
case of state-based models we will elaborate upon later). Thus, it
cannot be said that the studied toolkit facilitates the prototyping
of a dialog manager.

Unlike ICon, OpenInterface routes the data generated
by input devices to several software components (possibly
implemented in different programming languages), whereas
ICon routes it to a single client application (developed in Java).

6.3. Squidy

Squidy (Werner et al., 2010) is another toolkit that provides
a visual language based on dataflow programming. Its gra-
phical editor allows users to select nodes from a predefined
collection, called knowledge base, and to connect them
through wires in order to create a directed graph, called
pipeline (Fig. 5), which aims to specify an interaction
technique. Some nodes are virtual representations of hardware
devices—like a mouse, laser pointer, mobile phone or a
printer—whereas others are filters—like gesture recognizers or
Kalman filter—to process the information flowing through the
pipelines.

Squidy’s graphical editor allows users to configure devices
or filters by double-clicking on their corresponding nodes and
setting a list of relevant parameters. The capability to enable

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 9

FIGURE 5. Pipeline specifying that the data generated by a laser pointer and a mobile device must be directed to a TUIO client application.
Additionally, the mouse cursor position will be controlled with the laser pointer.

access to more advanced functionality on demand is called
semantic zooming. Furthermore, users can also monitor the
signals flowing through the pipeline by double-clicking the
wires. Signal analysis can be useful to verify whether some data
processing, e.g. filtering, is needed. For every signal generated
by an input device, a message is sent through the outgoing
arcs of its corresponding node. These messages will continue
flowing downstream. Every message that flows through the
pipelines is encapsulated in an object that implements a generic
interface, IData. Therefore, unlike ICon and SKEMMI, there is
only one link between two connected nodes. The use of generic
data types rather than low-level ones not only prevents graphs
from abundant wiring, but also releases users from recalling the
primitive data types of the flowing information.

Another important feature of Squidy is the possibility to
add empty nodes (from the knowledge base) in a diagram
and to embed programming code into them. In this way, new
functionalities can be added to a pipeline, thus increasing the
range of interaction techniques that can be modeled. Squidy’s
programming editor can be opened by double-clicking on an
empty node.

Like ICon and OpenInterface, prototypes specified in Squidy
can route the data generated by input devices to existing
applications. The only requirement for these applications is to
use the TUIO protocol (Kaltenbrunner et al., 2005). Figure 5
shows how to route the data generated by a laser pointer and a
mobile device to an external application represented as a node
labeled TUIO. By double-clicking on a TUIO node, users can set
the address and listening port of the external application. In this

model, the data generated by the laser pointer is Kalman-filtered
to reduce the imprecision produced by the natural hand
tremor.

In contrast to ICon and OpenInterface, Squidy also allows
routing input data directly to an output device (without needing
an external application). This possibility enables users to define
interaction techniques like controlling the mouse cursor position
with a laser pointer, digital pen, palmtop or other hardware
device as seen in the upper branch of Fig. 5.

In order to wrap up this section, the support provided by the
studied toolkits to the development of multimodal systems will
be commented upon.

6.4. Comparing the scopes of flow-based toolkits

Based on the toolkits presented in this section, the following
observations have been made:

• Prototyping a fusion engine by using ICon or Squidy is not
possible. The fusion requires collecting data coming from
multiple recognizers in order to interpret user requests.
Unfortunately, the semantics of these languages do not
allow their nodes to postpone their execution until the
reception of a meaningful set of data. Rather, these nodes
are continuously transforming and reinjecting the data
they receive as soon as they arrives. With regard to
OpenInterface, (Lawson et al., 2009), claim that it supports
fusion of modalities. Unfortunately, we could not verify it
during this research.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


10 Fredy Cuenca et al.

TABLE 2. Components whose implementation can be
facilitated through the use of a flow-based toolkit.

Fusion Dialog Fission

engine manager component
Icon × × ×
OpenInterface × × ×
Squidy × × ×

• With regard to the dialog manager, it must track the state
of its conversation with the user in order to allow context-
dependent dialogs. Unfortunately, flow-based models are
stateless, i.e. the state of a system cannot be depicted.
Consequently, the task of tracking the state of a system
cannot be delegated to the framework, but has to be
programmed at the client side.

• Flow-based toolkits do not simplify the prototyping of a
fission component either. They are limited to route the data
obtained from user inputs to a client application that must
be responsible for rendering multimedia output. That is,
the client application must include the logic required for
selection and coordination of synthesizers.

These observations are summarized in Table 2.
For flow-based models, the nodes that represent input devices

(like mouse in Fig. 3, OIWiiYourself in Fig. 4, or Laserpointer
in Fig. 5) are representing the recognizers associated to
those devices. Then, the support provided by a flow-based
toolkit during the implementation of a multimodal system is
mainly limited to the specification and configuration of these
recognizers. Put in another way, the users of flow-based toolkits
can release their applications from including programming code
for input recognition, but the fusion and fission of data, as well
as the dialog management have to be implemented in the client
application with no support from these toolkits.

7. STATE-BASED TOOLKITS

A state-based toolkit is supported by a graphical editor that
offers exactly one symbol to depict each possible state of a
system. In the remainder of this article, any diagram that can
be edited with these toolkits will be called a state-based model.
State-based models resemble widely known state diagrams that,
in their canonical form, fail to express synchronization and
concurrency. However, they are well suited for modeling the
states of a human–machine dialog from which relevant aspects
of its history can be inferred. In this section, we are going
to study the state-based toolkits supported by the frameworks
MEngine, CoGenIVE and HephaisTK.

7.1. MEngine

For a traditional WIMP system, the detection of a single user
event is enough to identify the user’s intent, e.g. a click on a

button Accept or Cancel of a GUI is enough to realize whether
a user wants to process or close a form, respectively. In contrast,
a multimodal system allows its users to dissociate a command so
that it can be conveyed through multiple modalities. Therefore,
the detection of a single user-event is not enough to understand
his/her request. Rather, it is required to wait for a series of user-
events that together enclose the user’s intent. These meaningful
sets of events will be called composite events.

In order to allow a client application to detect composite
events, a toolkit consisting of two components, IMBuilder
and MEngine, was proposed (Bourguet, 2002, 2003). Briefly
speaking, IMBuilder allows specifying composite events as
state diagrams, whereas MEngine is in charge of detecting those
composite events and notifying about the client application their
occurrence. The nodes of the said state diagrams represent the
potential states of the system, and the arcs, its state transitions.
Every arc of a state diagram can expose two annotations: one
to indicate the event that makes a system change its state, and
other to specify the subroutine that must be executed during this
transition.

For illustrative purposes, assume that, for an existing client
application, it would be desirable to detect when a user is trying
to move an object from its original position to a different one. In
order to perform this action, the user clicks on an object, utters
the voice command ‘move’ and clicks on the new position of
the object. Alternatively, he/she can also click on an object and
then on its new position after the word ‘move’ is uttered. Both
sequences of events are specified in IMBuilder as shown in
Fig. 6. The implementation of the client application would be
facilitated if this could be directly notified about the occurrence
of the composite event ‘move-object’ and not of the multiple
and meaningless atomic events that compound it. It is precisely
MEngine, the framework, that is in charge of notifying the
client application about the occurrence of composite events.
To accomplish its work, MEngine is continuously tracking the
state of the system by checking one or several state diagrams.
The client application must redirect the atomic events it detects
to MEngine.

With regard to Fig. 6, when MEngine is loaded, it moves to
state 1. Then, every time MEngine is informed by the client
application of the occurrence of some event, the transition
whose uppermost label (blue) refers to this event will cause
MEngine to change its state, and the client application to execute
the subroutine indicated in the red label. Reaching the final state,
labeled as 5, implies that the composite event ‘move-object’has
already been detected, and the subroutine moveObject has been
launched at the client side.

The advantage of this approach is that it releases programmers
from writing code to detect the occurrence of composite events,
which is usually performed by updating a set of global variables
across different event handlers. On the other hand, the creation
of a multimodal system that enables its end-users to request
a service by performing actions in his/her preferred order will
lead to redundant specifications, e.g. in Fig. 6, arcs 2–4 and 1–3,

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 11

FIGURE 6. Composite event ‘move-object’ specified in IMBuilder. [Images from (Bourguet 2002), reproduced with permission.]

and 1–2 and 4–5 are redundant. This may cause an exponential
blow-up in the size of the state diagrams.

To sum up, MEngine helps a client application to decode the
user’s intent. Nevertheless, the selection and/or coordination
of synthesizers in charge of responding the user cannot be
delegated to MEngine; rather, it has to be programmed in the
client application.

7.2. CoGenIVE

NiMMiT (De Boeck et al., 2007, 2009; Vanacken et al., 2006)
is a visual language intended to model the ways in which
an end-user can interact with a virtual world. CoGenIVE, its
supporting framework, can be conceived as a black box that
receives a set of interaction techniques, specified in NiMMiT,
and a virtual world, specified in X3D, as inputs; and outputs
the programming code of an interactive virtual environment
where user behavior is regulated according to the specification
of NiMMiT models. In a NiMMiT model, the circles represent
the states of the system; the arcs, user events; the rectangles,
the tasks the system executes; and the labels, the information
the system stores/retrieves during its execution. Tasks can be
grouped into containers called task chains that are executed
during the transitions. NiMMiT offers a library of predefined
tasks like selecting, moving or deleting a virtual object. Users
are also supported to create their own tasks by means of
the scripting language Lua. An important feature provided
by NiMMiT is the possibility to group events in order to
create composite events. A NiMMiT composite event consists
of a set of atomic ones and is triggered whenever all its
constituent events are triggered simultaneously. For illustrative

purposes, the well-known put-that-there interaction technique
(Bolt, 1980) is specified as shown in Fig. 7. Shortly speaking, the
put-that-there interaction technique specified in the right side of
Fig. 7 permits creating a system that allows moving an object
by using speech and mouse clicking. The end-user must utter
the sentence ‘put that there’ to move an object from its original
position to a new one. In order for the system to interpret the
meanings of the utterances ‘that’and ‘there’, the user must click
on an object and on any arbitrary position while pronouncing
these words, respectively.

Figure 7 contains one circle to represent every possible stage
of the interaction. Initially, when the system is loaded, it will
be in the state Start. The recognition of the utterance ‘put’ will
change the system state to a new one labeled as Put. Then, in
order to indicate the object to be moved, a voice command ‘that’
and a click on that object are both required. This multimodal
request can be easily specified by creating a composite event that
groups the events Voice.That and Mouse.ButtonPressed. When
CoGenIVE detects the occurrence of this composite event, it
will notify a client application to select the target object. After
this selection, the system will pass to a new state label Put-That.
Similarly, the simultaneous detection of a click and the utterance
‘there’ will make CoGenIVE require the client application to
move the selected object to the current mouse position and the
system will move to a final state indicating that the interaction
technique has been performed.

Models depicted with NiMMiT resemble state diagrams
where the actions to be executed during a transition are
explicitly unfolded; being abundant diagrams, the price to
pay for this explicitness. Another disadvantage of NiMMiT
is that the execution of the tasks contained in a task chain

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


12 Fredy Cuenca et al.

FIGURE 7. Left: The virtual world the end-user will interact with. Right: Specification of the put-that-there interaction technique.

is always sequential. The initial version of NiMMiT did not
allow modeling conditional and iterative execution of tasks, thus
restricting the computational capacity of task chains. In order to
solve this problem, its notation was extended with new symbols,
e.g. pass-through states (Vanacken, 2012), at the expense of
obstructing its semantics.

7.3. HephaisTK

HephaisTK (Dumas et al., 2009; Dumas, 2010) is a toolkit
designed to plug itself in a client application that wishes to
handle multimodal requests. The specification of the interaction
techniques expected for the client application has to be written
in a markup language, called Synchronized Multimodal User
Interfaces Modeling Language (SMUIML) (Dumas et al., 2010,
2013), for its subsequent interpretation by the HephaisTK’s
framework. SMUIML files are also used to specify the set of
recognizers the client application wants to support and other
parameters that regulate HephaisTK’s behavior. Since writing
XML-based files can be tedious and error-prone, SMUIML has
an alternative graphical representation.

The graphical editor of SMUIML allows the specification
of multimodal interaction techniques by drawing graphs that
resemble state diagrams. The ellipses and directed arcs represent
the states of the system and the state transitions, respectively.
The triggering events that cause a state transition and the actions
to be executed during such transition by a client application are
annotated in the arcs.

This language allows associating arcs not only to atomic
but also to composite events. The composite events that can
be defined in SMUIML are more complex than the ones that

FIGURE 8. Left: Notation used to specify composite events. Right:
Specification of the put-that-there interaction technique. [Images from
(Dumas et al., 2013), reproduced with permission.]

can be defined in NiMMiT. SMUIML’s composite events are
easily and compactly described by grouping atomic events into
nested containers that can belong to four types: containers Seq-
And indicate that their events are complementary and must be
triggered in consecutive order; Par-And, that their events are
complementary and must be triggered in any order; Seq-Or,
that their events are equivalent and thus any of them must be
triggered; and Par-Or, that a group of equivalent events must
be triggered simultaneously. For instance, the put-that-there
interaction technique (Bolt, 1980) can be concisely modeled
as shown in Fig. 8.

Figure 8 specifies that the framework (HephaisTK) will
begin in the start state and after detecting that the user is
trying to move an object, it will indicate the client application
to execute the put_that_there_action subroutine. Then, the
framework will go back to its initial state and wait for new
user requests. The composite event put-that-there is specified

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 13

FIGURE 9. Left: When implementing the put-that-there interaction technique with CoGenIVE (Fig. 7), it will notify the client application at three
moments: t1, t2 and t3. With HephaisTK (Fig. 8), it will only notify once, at t3, after all the events between t1 and t3 have been recognized and
interpreted as a request for moving the object on (x, y) to (x′, y′). Right: Considering that user-events are detected one by one, the put-that-there
interaction technique can be specified, in IMBuilder, by depicting all the possible permutations of the quasi-simultaneous events—received at
around t2 and t3—in one state diagram.

with three containers. One of them, the outermost one (white),
indicates the sequential triggering of three events: command
voice put, the simultaneous detection of voice command ‘that’
and a mouse click, and the simultaneous detection of voice
command ‘there’ and a mouse click. These last two couples
of simultaneous events are encapsulated into two containers
(yellow) to indicate their parallelism.

SMUIML’s graphical notation facilitates the prototyping of
a fusion engine. By grouping events in appropriate containers
and nesting them appropriately, the framework is told what
sequences of events will be triggered because of a user’s
request. That information enables the framework to release a
client application from handling series of atomic events that are
meaningless by themselves. Rather, the client application will
be only notified after the identification of the user’s request,
thus facilitating the development at the client side. HephaisTK
also supports the prototyping of the dialog manager. The user
of this toolkit only has to depict the states and state transitions
of a multimodal system and then the current system state will
be automatically identified, by HephaisTK, after any arbitrary
sequence of events.

Finally, note that the same interaction technique that was
described with four states in NiMMiT can be described with
only one state in SMUIML. This influences the frequency of
communication between their frameworks and their associated
client applications (Fig. 9). On the other hand, one commonality
of state-based models is that, unlike flow-based ones, they do
not include symbols to represent the recognizers of the system.
Rather, the events that can be triggered by these recognizers are
included in the arc annotations.

In order to wrap up this section, the support provided by the
studied toolkits to the development of multimodal systems will
be commented.

7.4. Comparing the scopes of state-based toolkits

Based on the toolkits presented in this section, the following
observations have been made:

TABLE 3. Components whose implementation can be
facilitated through the use of a state-based toolkit.

Fusion Dialog Fission

engine manager component
Mengine

√ √ ×
CoGenIVE

√ √ ×
HephaisTK

√ √ ×

• The fusion engine must identify user requests, which
are expressed across a series of user actions. Each of
these actions will cause a recognizer to trigger an event.
Consequently, the presence of composite events in a model
is indirectly indicating to the framework those sets of user
actions that must be interpreted as a single request. By
including composite events in a NiMMiT or SMUIML
diagram, the responsibility of detecting user requests is
delegated to their supporting frameworks. Similarly, every
model depicted in IMBuilder is the specification of a
composite event that has to be detected by MEngine. The
detection of composite events unveils the user’s intent.

• Tracking the state of a system is the responsibility of the
dialog manager. The implementation of this functionality
usually requires maintaining a set of flags and global
variables (Samek, 2009). However, when using a state-
based toolkit, its users only have to specify the states and
state transitions of the system in a visual model. This model
will be enough to permit the framework to identify the
current state of the system after any arbitrary sequence of
events.

• In order to render multimodal output, a fission component
may require the simultaneous execution of several
subroutines; each one controlling one synthesizer.
Unfortunately, state-based toolkits only allow modeling
systems that can execute one subroutine at a time (because
state-diagrams only experience one transition at a time).
Of course, one subroutine can be programmed so that it

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


14 Fredy Cuenca et al.

can handle concurrent computation but this would put the
burden of flow control on the programmer instead of on
the framework. In short, state-based toolkits do not reduce
the programming effort involved in the implementation of
a fission component.

These observations are summarized in Table 3.

8. TOKEN-BASED TOOLKITS

A token-based toolkit is one whose underlying notation offers
one symbol to depict the state variables that describe a system
and another symbol to denote the values assigned to each state
variable. In the remainder of this article, any diagram that can be
depicted with these toolkits will be called a token-based model.
By representing the state variables rather than the states of a
system, more concise models can be obtained. In this section,
we study PetShop and a language proposed in Hinckley et al.
(1998).

8.1. PetShop

The Interactive Cooperative Objects formalism, a.k.a. ICO
(Navarre et al., 2006; Navarre et al., 2009; Palanque and
Schyn, 2003) is an approach that conceives the operation of an
interactive system as a group of objects communicating among
them by requesting and/or responding to the services they offer.
The behavior of these cooperative objects is not specified by
algorithms, but by OPNs that can be edited in a toolkit called
PetShop. Petshop supports the specification, prototyping and
validation of interactive software (Navarre et al., 2009).

An OPN is a mathematical modeling tool whose graphical
counterpart consists of a digraph composed of elliptical nodes,
called places, connected to rectangular ones, called transitions.
There are also dots, called tokens, which can flow through the
places by obeying a so-called transition rule (Fig. 10). When
used for modeling multimodal systems, the tokens represent the

relevant objects of the system to be modeled, and the transitions
represent events the system can detect. The distribution of
tokens among the places indicates the state of the system,
and their flow through the net reflects the dynamics of the
interaction. When a transition is fired, functions that use the
data embedded in the tokens can be called. For instance, the
main functionality of the put-that-there interaction technique
(Bolt, 1980) can be modeled with the OPN shown in Fig. 10
(an alternative model that uses two interrelated diagrams can be
seen in Palanque and Schyn, 2003). In this net, transition put
is enabled, which means that when the user utters the word
put, this transition will fire, thus placing one token into p1
and p2 in order to indicate that the system is now awaiting
the recognition of a click and the utterance that. After both
events have been triggered (in any order), places p3 and p4 will
contain tokens, thus causing the immediate firing of a transition
bypass that will redirect tokens from p3 and p4 to p5 and p6,

respectively, indicating that the system is now awaiting a click
and utterance of ‘there’. When the user utters the command
‘there’and clicks the mouse (in any order), the transition named
notification is fired and the method ‘putThatThere’ will move
the object over from (x, y) to (nx, ny). The arrangement of
symbols that goes from transition put to places p7 and p8
can be seen as the definition of a composite event put-that-
there. For the sake of readability, the wiring required to avoid
the potential inconsistencies caused by unexpected sequences
of events has been hidden (Fig. 11). In OPNs, the state of
a dialog can be tracked, but not with a dedicated symbol
like in the case of state-based languages. For instance, in the
put-that-there example, the presence of tokens in p1 and p2
indicate that the command put has been uttered. Similarly,
the presence of tokens in p5 and p6 indicates that the user
has already uttered ‘put-that’ and clicked on an object. This
decentralized representation of system states prevents Petri nets
from the explosion of states. Unfortunately, this also makes Petri
net models more difficult to create and read than state-based
models.

FIGURE 10. Left: Outgoing arcs from p1, p2 are called regular arcs; those from p3 and p4 are called test and inhibitor arcs, respectively. The
transition rule for OPNs (Sy et al., 1999) takes into account the type of the arcs. For t1 to be enabled for firing, there must be one, three and one
token in places p1, p2 and p3, respectively, and less than two tokens in p4. Right: After the firing of t1, one and three tokens are consumed from
p1 and p2, respectively, and no tokens from p3 or p4 (test and inhibitor arcs do not consume tokens). Also, four and one token are placed in p5
and p6, respectively. During the firing, the number of tokens that are taken out from the input places and put into the output places is specified in
the arc annotations.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 15

FIGURE 11. Event click and voice commands ‘put’, ‘that’ and ‘there’ are triggered by the user. For the first mouse click, the position of the mouse
is stored in the variables x and y that will flow downstream and be attached to the variables nx and ny that are assigned during the second mouse
click. These values are needed to address the put-that-there command. Label [0] in transitions bypass and notification indicates that these transitions
will fire immediately after being enabled.

FIGURE 12. Left: Transition preconditions allow OPNs to express conditional flow. In the figure, for every token placed in the source, its data
will be assigned to a variable x whose value will determine the transition to be executed and, consequently, the function that will transform the
data. Right: The data embedded in the token placed in p1 will be iteratively transformed until a stop condition is met.

FIGURE 13. Left: After detecting the events provided by three different devices, the fusion engine will be called, decipher user’s request and
encapsulating it in an object meaning that will keep flowing towards other sections of the net. Right: The system can print a text in the console
and/or utter a voice command. The output channel(s) chosen will depend on the context and user profile that can be determined inside the method
run of the object f ission_comp. Note that PetShop allows specifying delay time before firing a transition.

Furthermore, the method putThatThere, executed during the
firing of transition notification, is identifying the selected object
and updating its position. This method has to be implemented
in a textual language.

Unlike flow-based toolkits, the data flow of a PetShop’s
model can be conditioned by boolean expressions set by the
user. This is achieved by using the transitions’ prerequisites as
shown in Fig. 12. Finally, the fusion and fission of modalities can

be naturally modeled by taking advantage of the fact that OPNs
offer constructs for synchronization and concurrency. At a high
level of abstraction, the fusion and fission of data would have the
patterns shown in Fig. 13. The subroutines to be executed at the
client side are specified in the annotations within the transitions.
Unlike state-based models, the annotations, associated with
a transition, can contain programming instructions as seen in
Figs. 12 and 13.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


16 Fredy Cuenca et al.

FIGURE 14. Left: Two-handed interaction technique on a tablet. Right: Solid and dashed arcs represent the events generated by the pencil and
puck, respectively. The black token can only be in solid states (b0, b1, b2 or bg3) and the gray one, in dashed states (g0, g1, g2 or bg3). States g0,
g1 and g2 indicate the puck’s possible situations: off the tablet, in contact with the tablet or being clicked, respectively. States b0, b1 and b2 have
an analogous interpretation for the pen. [Images from (Hinckley et al., 1998), reproduced with permission.]

8.2. Hinckley’s language

A graphical language for modeling systems was proposed
by Hinckley et al. (1998). Hinckley’s language does not
have a supporting toolkit because it was specifically created
to specify bimanual interaction techniques for whiteboard
sessions. Despite this, the existence of a framework that can
interpret the semantics of this language will be assumed. In
the end, the capabilities of a toolkit depend on (and can be
inferred from) the expressiveness of its underlying language, i.e.
a framework can only perform those tasks that can be specified
in its visual language.

Models created with Hinckley’s language are directed graphs
composed of circular nodes, tokens and directed arcs. Circular
nodes can be solid or dashed. These two types are provided to
distinguish the states of each hand device. With regard to arcs,
they may also be solid or dashed, thus allowing a visual way to
represent the hand that raised an event. Finally, models always
contain exactly two tokens -gray and black- whose flow among
the graph enables tracking the state of each device.

In order to illustrate the semantics of this language, we will
study the specification of an interaction technique described in
(Hinckley et al., 1998). The interaction technique makes use of
a tablet that is navigated upon with a puck and a pen stylus. The
navigation on the tablet is reflected on a map whose sectors can
be panned or zoomed depending on the actions performed on
the tablet. More precisely, clicking and dragging with the puck
only allows panning the map. Pressing down and dragging only
the pen draws a free-form shape in the map. Finally, clicking the
puck while pressing the pen on the tablet allows zooming the
map. The interaction technique is modeled as shown in Fig. 14.
Once the pen and the puck come into contact with the tablet,
the tokens initially placed in b0 and g0 will move to b1 and g1,

respectively. In that situation, a click on the puck will move
the gray token from its new state g1 to g2 as indicated by
transition Puck Down. Then, if the pen is pressed, the event

Pen Down will be triggered causing two changes. First, the
gray token will move from state g2 to bg3. Secondly, the black
token will move from state b1 to b2, and then immediately to
state bg3 (because the puck’s button is still down). Two tokens
in state bg3 indicate that both devices are being pressed and,
consequently, the map can now be zoomed by moving both
hands. A framework capable of interpreting the semantics of
this diagram could automatically recognize when the user is
requesting a zoom on the map, thus releasing programmers
from hard-coding the identification of user’s request, which is
a function of the fusion engine.

It is important to note that the presence of tokens allows
a natural and economical representation of the intrinsic
parallelism involved in two-handed interaction. Furthermore,
the fact that one event may cause two simultaneous transitions
(e.g. if the system is in bg3, the occurrence of Pen Release
will cause two transitions: from bg3 to g2 and from bg3 to b1)
suggests that it would be possible for a framework to execute
simultaneous subroutines if the model would associate one
action to each arc as in state-based or Petri net models.

In order to wrap up this section, the scope of the studied
toolkits for prototyping a multimodal system will be mentioned.

8.3. Comparing the scopes of token-based toolkits

Since some authors consider two-handed interaction techniques
as a special case of multimodal interaction (Roope, 1999), the
language proposed by (Hinckley et al., 1998) was included in
this comparative study. The main observations regarding the
toolkits supporting these languages are: First, the semantics
of their underlying languages allow a natural representation of
parallel interactions. Secondly, both languages can represent
synchronization and concurrency, which are indispensable to
implement the fusion and fission components, respectively.
Thirdly, the set of possible states and the potential transitions

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 17

TABLE 4. Components whose implementation can be
facilitated through the use of a token-based toolkit.

Fusion Dialog Fission

engine manager component
PetShop

√ √ √
Hinckley

√ √ √

a system may experience are visually identifiable, which
facilitates the development of a dialog manager (Table 4).

9. DISCUSSION

Developing a multimodal system is time-consuming and
therefore expensive. In order to alleviate this cumbersome
situation, many toolkits intended for rapid prototyping of
multimodal systems have been created. These toolkits include
a framework and a graphical editor that together are able to
equip a client application with a multimodal interface. Since the
functionalities provided by a framework can only be exploited
by means of its visual modeling language, a strong emphasis was
placed on explaining the semantics of these languages through
detailed descriptions of running examples.

Estimating the reduction of programming workload that can
be achieved through the use of a toolkit is not an easy task since
toolkits are exclusively described in terms of their low-level
technicalities, e.g. implementation details and fancy features of
their user interfaces, in the existing literature. The present article
defined the scope of a toolkit (Section 3) and its measurement
procedure (Section 4) in order to address this challenge.

By measuring and comparing the scope of several graphical
toolkits, we observed that they can be clustered into three
groups that are called flow-based, state-based and token-based
toolkits (Section 5). All these toolkits release their users
from incorporating and configuring recognizers in their client
applications. Besides this, state-based toolkits also free their
users from interpreting user requests and detecting the current
state of their prototypes. Finally, token-based toolkits provide
the additional gain of preventing their users from programming
multiple threads in the client application. As seen in Section 6–
8, the visual models of flow-based, state-based and token-based
toolkits resemble block diagrams, state diagrams and Petri net
graphs, respectively.

The fact that visual languages based on Petri nets exhibited
the highest expressiveness among all the studied languages
does not mean that the inclusion of Petri nets editors has
to be mandatory when designing a new toolkit with such
high expressiveness. Any new visual language including
constructs for describing composite events, system states and
synchronization of concurrent processes may have the same
power as Petri nets when it comes to modeling multimodal
human–machine interaction.

Table 1 has to be interpreted carefully. The fact that token-
based toolkits can facilitate the implementation of a higher

number of components does not necessarily mean that they
are always the best choice. There is a trade-off between the
scope of a toolkit and the semantic simplicity of its visual
language; and this brings about that each class of toolkits may
be better suited to a specific domain. If the intended multimodal
system is not required to convey context-dependent responses,
the use of flow-based toolkits may be enough to model its simple
behavior. Transformational systems (Harel and Pnueli, 1985)
are examples of such systems where the context is irrelevant;
they always produce the same output for a given set of inputs.
Using state-based or token-based toolkits for specifying these
systems will entail the depiction of more complex visual models
in return for an unproductive benefit: tracking the state of a state-
less system. For prototyping multimodal dialogue systems that
convey unimodal output, the use of state-based toolkits may be
the most convenient option. GUIs supporting multimodal input
are examples of these systems. They almost always respond the
user through the visual modality, e.g. by presenting summary
reports or pop-up message boxes. The concurrent computation
performed on the framework side of a token-based toolkit is
not necessary to render unimodal output. Finally, a system
supporting not only multimodal input and context-dependent
dialogs but also intensive multimodal output (e.g. through
avatar animations) can benefit more from token-based toolkits.
These can generate and synchronize the multiple output streams
involved in the multimodal feedback provided by these systems.

The aforementioned correlation between the class of a toolkit
and its application domain must be taken into account before
choosing/designing a toolkit. In order to avoid choosing a toolkit
that is unnecessarily complicated, users must consider the
characteristics of the systems they want to prototype. Similarly,
software developers must take into account the needs of their
target users before creating a new toolkit.

This work has identified the extent to which toolkits can
reduce the amount of programming code involved in the creation
of multimodal prototypes (Table 1), but the ease of use of the
toolkits has not been extensively commented. Supplementary
studies may explore in this direction by evaluating additional
features of the toolkits such as the configuration effort required
to start a new project (e.g. need for speech or gesture
grammars), the extent of user assistance (e.g. software wizards,
contextual help), the necessary steps to extend their predefined
set of recognizers (e.g. configuration file), the variety of
their debugging tools (e.g. log files, system dump, interactive
debugging), the type of exceptions they can cope with (e.g.
compilation, runtime errors), their range of detectable events
(e.g. input hardware events, client application custom events),
the learning curve of their visual languages, the number of
applications they can manage (e.g. one or multiple, distributed
client applications), the type of client application they target
(e.g. stand-alone, web, mobile), etcetera.

For over ten years researchers have been proposing new
toolkits and suggesting that these newer ones are more effective
because they exhibit some features that the older ones do not

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


18 Fredy Cuenca et al.

have. We think these innuendos are misleading and obstruct the
way towards better toolkits: the more effective toolkit is the one
that minimizes the programming effort at the client side because
this will lead to faster creation of prototypes. This is the ultimate
goal of a toolkit.

Similarly to (Dumas et al., 2013), we consider that
determining the extent to which the combination of a framework
and a visual language can represent multimodal dialogues is a
significant issue. We strongly believe that this paper has been a
major step in tackling this issue.

10. CONCLUSIONS

This article has surveyed and compared a series of graphical
toolkits for rapid prototyping of multimodal systems. The
novelty of this work is the proposal of an indicator, herein called
scope, which helps one to estimate how well an arbitrary toolkit
accomplishes its goal of shortening the prototyping phase.
Since multimodal systems share common functionalities, we
measured the scope of a toolkit by determining which of these
functionalities are incorporated in its framework so that they can
be invoked through the depiction of visual models and without
the need of programming code.

When observing their technical aspects, the studied toolkits
seem rather different from one another. However, when
comparing their scope, they can only be classified into three
groups, called flow-based, state-based or token-based toolkits.
The frameworks of the toolkits within each group can perform
similar tasks, which do not have to be programmed by their
users anymore.

FUNDING

This research was supported by the Special Research Fund
(BOF) of Hasselt University.

REFERENCES

Ait-Ameur, Y. and Kamel, N. (2004) A Generic Formal Specification
of Fusion of Modalities in a Multimodal HCI, pp. 415–420. IFIP
World Computer Science, Kluwer Academic Publishers.

Beaudouin-Lafon, M. and Mackay, W. (2003) Prototyping Tools and
Techniques. The Human–Computer Interaction Handbook, pp.
1006–1031. ACM.

Bolt, R. (1980) Put-That-There: Voice and Gesture at the Graphics
Interface. Proc. 7th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 262–270. ACM.

Bourguet, M. (2002) A Toolkit for Creating and Testing Multimodal
Interface Designs. Posters and Demos from the 15th Annual
ACM Symposium on User Interface Software and Technology,
pp. 29–30. ACM.

Bourguet, M. (2003) Designing and Prototyping Multimodal Com-
mands. Human–Computer Interaction INTERACT’03, pp. 717–
720. IOS Press.

Bui, T.H. (2008) Multimodal Dialogue Management—State of theArt.
CTIT Technical Report Series, No. 06-01, University of Twente
(UT), Enschede, The Netherlands.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little,
R., Merson, P., Nord, R. and Stafford, J. Documenting Software
Architectures: Views and Beyond (2nd edn). Addison–Wesley.

Dargie, W., Strunck, A., Winkler, M., Mrhos, B., Thakar, S. and
Enkelmann, W. (2007) A Model-Based Approach for Developing
Adaptive Multimodal Interactive Systems. 2nd International
Conference on Software and Data Technologies. ICSOFT.

De Boeck, J., Vanacken, D., Raymaekers, C. and Coninx, K. (2007)
High level modeling of multimodal interaction techniques using
NiMMiT. J. Virtual Real. Broadcast., 4.

De Boeck, J., Raymaekers, C. and Coninx, K. (2009) CoGenIVE:
Building 3D Virtual Environments Using a Model Based User
Interface Design Approach. Computer Vision and Computer
Graphics: Theory and Applications, Springer, ISBN 978-3-642-
10225-7, ISSN 1865-0929.

Dragicevic, P. and Fekete, J. (2002) ICON: Input Device Selection and
Interaction Configuration, Demonstration. UIST 2002 Companion,
pp. 47–48.

Dragicevic, P. and Fekete, J. (2004) Support for Input Adaptability in
the ICON Toolkit. Proc. 6th Int. Conf. on Multimodal Interfaces
(ICMI04), State College, PA, USA, 212–219.

Dumas, B., Lalanne, D. and Ingold, R. (2009) HephaisTK: A Toolkit
for Rapid Prototyping of Multimodal Interfaces. Proc. Int. Conf.
on Multimodal Interfaces and Workshop on Machine Learning for
Multi-modal Interaction (ICMI-MLMI 2009), pp. 231–232. ACM.

Dumas, B. (2010) Frameworks, description languages and fusion
engines for multimodal interactive systems. PhD Thesis, University
of Fribourg.

Dumas, B., Lalanne, D. and Ingold, R. (2010) Description languages
for multimodal interaction: a set of guidelines and its illustration
with SMUIML. J. Multimodal User Interfaces 3, 237–247.

Dumas, B., Signer, B. and Lalanne, D. (2013)A Graphical UIDL Editor
for Multimodal Interaction Design Based on SMUIML. Science of
Computer Programming.

Engel, R. and Schutt, R. (2013) The Practice of Research in Social
Work (3rd edn), Chapter 4. SAGE Publications, Inc.

Flippo, F., Krebs, A. and Marsic, I. (2003) A Framework for
Rapid Development of Multimodal Interfaces. Proc.f ICMI 2003,
Vancouver, BC, November 5–7, pp. 109–116.

Gibbon, D., Mertins, I. and Moore, R. (2000), Handbook of
Multimodal and Spoken Dialogue Systems. The Springer
International Series in Engineering and Computer Science.

Harel, D. and Pnueli, A. (1985) On the Development of Reactive Sys-
tems. In Apt, K.R. (ed.) Logics and Models of Concurrent Systems,
NATO ASI Series, Vol. F-13, pp. 477–498. Springer, New York.

Hinckley, K., Czerwinsky, M. and Sinclair, M. (1998) Interaction and
Modeling Techniques for Desktop Two–Handed Input. Proc. ACM
UIST98, pp. 49–58. ACM.

Jensen, K., Kristensen, L. and Wells, L. (2007) Coloured Petri Nets
and CPN Tools for modelling and validation of concurrent systems.
Int. J. Softw. Tools Technol. Transf., 9, 213–254.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/


Graphical Toolkits for Rapid Prototyping of Multimodal Systems 19

Johnston, M., Bangalore, S., Vasireddy, G., Stent, A, Ehlen, P., Walker,
M., Whittaker, S. and Maloor, P. (2002) MATCH: An Architecture
for Multimodal Dialogue Systems. Proc. 40th Annual Meeting
of the Association for Computational Linguistics, pp. 376–383.
Association for Computational Linguistics.

Kaltenbrunner, M., Bovermann, T. Bencina, R. and Constanza, E.
(2005) TUIO—a Protocol for Table-Top Tangible User Inter-
faces. Proc. 6th Int. Workshop on Gesture in Human–Computer
Interaction and Simulation. Springer.

Lakos, C. (1991) Language for Object-Oriented Petri Nets. Depart-
ment of Computer Science, University of Tasmania.

Lalanne, D., Nigay, L., Palanque, P., Robinson, P., Vanderdonckt,
J. and Ladry, J. (2009) Fusion Engines for Multimodal Input: A
Survey, ICMI–MLNI09. Proc. 2009 Int. Conf. on Multimodal
Interfaces, pp. 153–160. ACM.

Lawson, J.-Y., Vanderdonckt, J. and Macq, B. (2008) Rapid Prototyp-
ing of Multimodal InteractiveApplications Based on Off-The-Shelf
Heterogeneous Components. Adjunct Proc. 21st Annual ACM
Symposium on User Interface Software and Technology, UIST08,
pp. 41–42. ACM, New York, NY.

Lawson, L., Al–Akkad, A., Vanderdonckt, J. and Macq, B (2009) An
Open Source Workbench for Prototyping Multimodal Interactions
Based on Off-the-Shelf Heterogeneous Components. Proc. 1st
ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS09. ACM.

Len, B., Clements, P. and Kazman, R. Software Architecture in
Practice (3rd edn). Addison-Wesley.

Luyten, K., Clerckx, T., Coninx, K. and Vanderdonckt, J. Derivation
of a Dialog Model from a Task Model by Activity Chain Extrac-
tion. Proc. of DSV-IS 2003, Lecture Notes in Computer Science,
Vol. 2844, pp. 191–205. Springer.

Mitra, S. and Acharya, T. (2007) Gesture recognition: a survey. IEEE
Trans. Syst. Man Cybern.-Part C: Appl. Rev., 37.

Monwar, M. and Gavrilova, M. (2011) Markov Chain Model for
Multimodal Biometric Rank Fusion. Signal, Image and Video
Processing. Springer.

Murata, T. (1989) Petri Nets: Properties, Analysis And Applications.
Proceedings of the IEEE, Vol. 77.

Navarre, D., Palanque, P., Dragicevic, P. and Bastide, R. (2006) An
approach integrating two complementary model-based environ-
ments for the construction of multimodal interactive applications.
J. Interact. Comput., 18, 910–941.

Navarre, D., Palanque, P., Ladry, J. and Barboni, E. (2009) ICOs:
A model-based user interface description technique dedicated to
interactive systems addressing usability, reliability and scalability.
ACM Trans. Comput.–Hum. Interact., 16, 1–56.

Neal, J., Thielman, C., Dobes, Z., Haller, S. and Shapiro, S. (1989)
Natural Language with Integrated Deictic and Graphical Gestures.
Proc. Workshop on Speech and Natural Language, pp. 410–423.
Association for Computational Linguistics.

Nise, N. (2011) Control Systems Engineering (6th edn). Wiley E-text,
ISBN 978-1-1180-0618-4.

Oviatt, S. (1999). Ten Myths of Multimodal Interaction. Commun.
ACM, 42. ACM Press, New York, pp. 74–81.

Oviatt, S. (2003). Multimodal Interfaces. The Human–Computer
Interaction Handbook: Fundamentals, Evolving Technologies and
Emerging Applications. Lawrence Erlbaum Assoc., Mahwah, NJ.

Palanque, P. and Schyn, A. (2003) A Model-Based Approach for
Engineering Multimodal Interactive Systems. INTERACT 2003.

Pineux, A. (2012) Runtime models extension for SKEMMI, a
component–based graphical authoring tool for multimodal
interactions. MSc. Thesis, Ecole Polytechnique de Louvain.

Rabiner, L. (1989) A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE, 77, 257–285.

Rajman, M., Bui, T.H., Rajman, A., Seydoux, F. and Trutnev, A.
(2004) Assessing the Usability of a Dialog Management System
Designed in the Framework of a Rapid Dialogue Prototyping
Methodology. Acta acustica united with acustica, 90, 1096–1111.

Roope, R. (1999) Multimodal Human–Computer Interaction: a con-
structive and empirical study. PhD Thesis, University of Tampere,
Finland.

Samek, M. (2009) A crash course in UML state machines. Embed-
ded.com.

Sharma, R., Pavlovic, V. and Huang, T. (1998) Toward multimodal
human–computer interface. Proc. IEEE, 86, 853–860.

Stevens, S. (1946) On the theory of scales of measurement. Science
7, 103, 677–680.

Sushmita, M. (2007) Gesture Recognition: A Survey. IEEE Trans.
Syst. Man Cybern.-Part C: Appl. Rev., 37.

Sy, O., Navarre, D., Le, D., Palanque, P. and Bastide, R. (1999) Formal
definition of Interactive Cooperative Objects. ESPRIT Reactive
LTR 24963 Project, L.I.H.S., University of Toulouse.

Trung, B. (2008) Toward affective dialogue management using
partially observable Markov decision processes. PhD Thesis,
University of Twente.

Vanacken, L. (2009) Multimodal Selection in virtual environments:
enhancing the user experience and facilitating development. PhD
Thesis, UHasselt Diepenbeek.

Vanacken, D. (2012) Touch-based interaction and collaboration
in walk-up-and-use and multi–user environments, Universiteit
Hasselt, PhD thesis, UHasselt Diepenbeek.

Vanacken, D., De Boeck, J., Raymaekers, C. and Coninx, K. (2006)
NiMMiT: A Notation for Modeling Multimodal Interaction
Techniques. Proc. Int. Conf. on Computer Graphics Theory and
Application (GRAPP06).

Vo, M. and Wood, C. (1996) Building an Application Framework
for Speech and Pen Input Integration in Multimodal Learning
Interfaces. Int. Conf. on Acoustics, Speech and Signal Processing.

Wahlster, W., Reithinger, N. and Blocher, A. (2001) SmartKom: Mul-
timodal Communication with a Life–Like Character. 7th European
Conf. on Speech Communication and Technology. ISCA.

Wagner, F., Schmuki, R., Wagner, T. and Wolstenholme, P. (2006)
Modeling Software with Finite State Machines. A Practical
Approach, Auerbach Publications.

Werner, K., Raedle, R. and Harald, R. (2010) Interactive design
of multimodal user interfaces—reducing technical and visual
complexity. J. Multimodal User Interfaces, 3, 197–213.

Interacting with Computers, 2014

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

 

http://iwc.oxfordjournals.org/

	Introduction
	Architecture of a multimodal system
	Scope of a graphical toolkit for rapid prototyping of multimodal systems
	Methodology
	Evaluation
	Flow-based toolkits
	Input Configurator
	OpenInterface
	Squidy
	Comparing the scopes of flow-based toolkits

	State-based toolkits
	MEngine
	CoGenIVE
	HephaisTK
	Comparing the scopes of state-based toolkits

	Token-based toolkits
	PetShop
	Hinckley's language
	Comparing the scopes of token-based toolkits

	Discussion
	Conclusions

