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Abstract
The function of a neuron can be described simultaneously at several levels of abstraction. For instance,
a spike train represents the result of a computation done by a single neuron with its inputs, but it also
represents the result of a complex function realized by the network in which the neuron is embedded.
When models of large parts of the brain are considered, it may be desirable to use computational
modules operating at a very abstract level. However, it is shown here that abstract neural functions
depend on detailed features of the single neuron model used in the network reproducing the abstract
function. Examples are given of the multiplicative function, motion detection, short-term memory and
timing. All these operations rely on one or another feature of the extended Leaky Integrate-and-Fire
neuron used in this paper, e.g. probabilistic synapses, post synaptic currents modelled with alpha
functions or partial reset of the somatic membrane. Consequently it is suggested that neural modelling
at an abstract level does not obviate the need for a clear statement on the nature of the underlying model
of biological neuron. In that sense, not many abstract functions are convincingly grounded, not even the
standard formal neurons used in most artificial neural networks.

1. Introduction

The biological neuron has numerous complex features which can be exploited in various
ways for computational purposes. For instance, non-linear interactions in dendrites can be
used to perform a series of logical functions (Shepperd and Brayton, 1987; Koch and Poggio,
1987).  In this paper short examples are given of the use of other features. In section 3, leaky
integration in the soma is used for multiplication. In section 4, the dependence of the time
course of dendritic currents on the electrotonic distance of the synapse from the soma is used
for motion detection. Partial reset of the somatic membrane potential after a spike is used to
control the gain of the neuron.

The computation performed by a neuron can be described at several levels. For
instance, although a single neuron may perform the multiplication of its inputs, its output
may represent the probability that a complex image is in the visual field. Therefore, the
computational meaning of the output of a neuron depends on the network in which the
neuron is embedded. In section 5, an example is given of a small network behaving as a
stochastic short term memory which can then be used within a larger network with a timing
function.

Currently there is an urge to simulate more and more complex neural systems. In the
past, the most complex models represented small parts of primary sensory systems. Recently,
new data provided by brain imagery techniques, such as PET (Corbetta, 1993) call for models
describing interactions between several brain areas (Taylor, 1994). To be computationally
tractable, such a task requires the use of computational modules whose functions are many
degrees abstracted from biological systems. However, to simulate these interactions, abstract
modules should be firmly grounded in biological plausibility. A possible approach to ensure
grounding is initially to construct a set of medium level functions representing medium size
clusters of neurons which are characterized by simulation or mathematical analysis. These
may be combined into more complex structures at a moderate computational cost, and so on.
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Generally, there has not been a careful verification that abstract computational units are
decomposable into simpler functions compatible with biological neurons.

A concern throughout this paper is to make clear that a number of functions of
neurons or a network of neurons are made possible only by the exploitation of detailed
physiological properties of biological neurons. Therefore, a relatively detailed model has
been used. It is an extension of the standard leaky integrator neurons, including in particular
a model of dendritic propagation, probabilistic synapses, and the partial reset of the
membrane potential (section 2). In each section the problem of grounding the formal neurons
is illustrated.

2. Extended Leaky Integrate-and-fire neuron model.
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Figure 1. Extended Leaky Integrate-and-Fire neuron. The features are
explained in the section 2. The simulation results shown in the paper are
obtained on a PC with the simulation package CORTEX-PRO.

The neuron model used in this investigation is an extended version of the standard Leaky
Integrate-and-Fire (LIF) neuron (Harmon, 1961; Bugmann, 1991). The detail of this model is
described in Bugmann (1995). In summary, the four basic differences with the LIF are
(starting with the input side of the neuron in figure 1):

1) Synapses have probabilistic transmission properties. An input spike generates a
postsynaptic response with a probability Pij. This is based on direct physiological
observations (Pun et al., 1986) and gives interesting decaying memory properties to self-
excitatory networks of spiking neurons (see section 5) (Bugmann and Taylor, 1997).

2) Input spikes do not cause a simple step-like increase in membrane potential as in
(Softky and Koch, 1993) but initiate a post-synaptic current (PSCij(t)) extended in time and
modelled by an alpha function which represents the dendritic current at its arrival into the
soma:
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where t0 is the arrival time of the spike. Tmax,ij is the time taken by the alpha function to reach
its maximum. This function reproduces qualitatively the current pulse widening effect of
dendritic propagation (see e.g. Stratford et al., 1989). The single parameter, Tmax,ij, allows to
simulate proximal inputs, which have a fast rise and decay of the PSC, e.g. by using Tmax,ij =
2 ms, or distal inputs which have a slow time course of the PSC, for instance by using Tmax,ij
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= 50ms. The main advantage of this feature is that temporal effects associated with synaptic
inputs at different electrotonic distances of the soma of the same neuron can be simulated.
The PSC's and their hardware version (Christodoulou et al., 1992) can be used to realise
motion detectors with realistic response properties (section 4), whereas with the standard LIF
model, all inputs are at the same electrotonic distance from the soma (Bugmann, 1991). In
principle, any form of postsynaptic current can be accommodated by the model, such as the
filter functions used in Bialek et al. (1991).

3) Successive PSCs on the same synapse do not integrate temporally but saturate at a
maximum value Aij (used in conjunction with Tmax,ij to set the synaptic weight). However,
PSCs from different synapses are integrated in the soma (the RC circuit of standard LIFs).
Saturating synapses are biologically plausible and allow neurons to operate as coincidence
detectors despite long membrane time constants (Bugmann, 1992). Excitatory synapses are
simulated with Aij > 0, and hyperpolarizing inhibitory synapses with Aij < 0.

4) The membrane is partially reset after a spike has been produced. The membrane
potential V is not reset to zero but to a value Vr = βVth intermediate between zero and the
threshold potential Vth = 15 mV. This increases the gain of the neuron and enables it to
produce spike trains with an irregularity similar to that of biological spike trains (Bugmann,
1995, Bugmann, Christodoulou and Taylor, submitted). When values of β are close to one, as
in section 4 and 5, the membrane potential stays initially close to the threshold just after a
spike. If a strong input current persists, a response in the form of bursts of spikes results (see
figures 4 and 5).

3. Multiplication

Multiplication is based on a coincidence detection operation (Bugmann, 1991). It depends
crucially on the leaky nature of biological integration, which make the LIF neuron sensitive
to spike timing. It also requires a neural code made of discrete pulses with a probabilistic
behaviour: Assume that a neuron with n inputs fires a spike during the time window ∆t only
if one input spikes arrives at that time from one of the inputs and if n-1 input spikes have
already arrived beforehand during a larger time window, τ, from each of the other inputs (see
figure 2). This means that the n-1 spikes have incremented the membrane potential in such a
way that the nth spike causes the firing. It requires weights to be set in a narrow range
(Bugmann, 1991).

τ

∆ t

Time

Figure 2. Illustration of the time windows used to develop the multiplication
equations [2] and [3].

If the input spike trains are random, as produced by a Poisson process, then the probability
P(n,τ,∆t) that a spike be fired during ∆t is given by:
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Where fi is the firing rate of the ith input. Hence the output firing rate fout is:
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This expression2 shows that the output firing rate is proportional to the product of the input
firing rates, under the stated conditions. Especially, each input must be able to provide at
most one spike within a time window τ . This condition is impossible to satisfy with random
inputs, but can be approached when the input firing frequencies are small and the value of τ
is small, for instance due to short decay time RC of the membrane and the use of PSCs of
short duration (proximal synapses). Under these conditions, the average input current to a
neuron is small. As a result, "multiplicative behaviour" is generally observed in the lower
part of the transfer function. In this region a relatively linear plot of the output frequency as a
function of the product of the input frequencies can be observed (Bugmann, 1991, 1992).
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Figure 3. Low firing frequency part of the transfer function of the extended
LIF neuron, for 3 values of the reset parameter β. The reset parameter controls
the gain of the neuron.  Full lines: The average input current is scanned by
progressively increasing the input firing frequency of all 50 inputs from 150 Hz
to 400 Hz. Dotted lines: The average input current is varied by progressively
increasing the number of active inputs up to 50, all inputs firing at 400 Hz.
Simulation conditions: A refractory time of Tr=1ms and the simulation time
steps of 1 ms result in a saturation firing rate of 500Hz. Aij = 0.05, Tmax,ij =2
ms, Pij = 1, Vth = 15.

A perfect multiplier should stop firing when one of its inputs is silent. This is only observed
in finely tuned models (Bugmann, 1991, 1992). However, in general, LIF neurons show a
great sensitivity to the number of active inputs in the lower part of the transfer function. It
can be seen in figure 3 that the response to a given average input current is larger when all
inputs are actively contributing to that current.

This points to one of the differences between models of biological neurons and
formal neurons. In formal neurons with sigmoidal transfer functions3 , the weighted sum of
the inputs carries no information about the number of active inputs, which therefore can not

                                                          
2This expression corrects equation 4.4 in (Bugmann, 1991).
3A formal neuron i produces a real number between 0 and 1 as its output yi by realizing following
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be reflected in the output firing rate. For a better reproduction of the multiplicative behaviour
one may attempt to use an artificial "Π-neuron" with a multiplicative transfer function, but
this would not reproduce the behaviour of the upper parts of the curves (not shown in figure
3), first linear in the input current, and then saturating. A full analytical expression for the
neuronal transfer function does not exist yet, even for the simplest LIF model (for further
references see Lansky and Rospars, 1995).

4. Motion detection

Figure 4. Motion detector. Left: This example is based on the neuron model of
figure 1. A moving stimulus is assumed to activate successively the synapses 1
and 2. The graphs EPSC_1 and EPSC_2 show a slow EPSC (Tmax,1  = 65ms, A1
=1.4, P1=1) triggered first at synapse 1, then, 40 ms later, a fast EPSC (Tmax,1
= 2ms, A2=3, P2=1) being triggered at synapse 2. Both EPSCs integrate in the
soma and result in a potential increase, shown in the graph
output_node_potential, such that a burst of spikes is fired. The production of a
burst is due to partial reset with a reset parameter β = 0.98 (Bugmann, 1995).
Right: Number of spikes in the burst produced for different time differences
between initiation of EPSC_1 and EPSC_2. This curve is similar to the one
observed in the cell H1 of the visual system of the fly (Franchescini, 1985). The
simulation is done with 1ms time steps. Vth = 15 mV.

This model for motion detection implements the correlation principle (Poggio and Reichardt,
1973) which is based on the product between the input signal and a delayed version of the
input signal from a shifted retinal position. Here the delays are produced internally by
exploiting the different time-to-maximum Tmax,ij associated with different electrotonic
distances of the synapse from the soma (figure 4). Multiplication is done by coincidence
detection, by setting weights (Aij) in such a way that only signals adequately delayed can
cause firing.
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As the delay due to the dendritic propagation causes a widening of the EPSC, the
motion detector has a wide response curves as shown in figure 4 and cannot give precise
information regarding velocity. Although this scheme does not require inhibition for
direction selectivity, apparently in contradiction with biological motion detectors (Hildreth
and Koch, 1987), it accurately reproduces the shape of the response curve as measured in the
fly (figure 4, right).

In this example, the neural information is in form of a burst of spikes in which the
number of spikes depends on the velocity of the stimulus. Formal neurons have no temporal
properties which would allow them to exhibit such a function. It is not clear at present how to
define an abstract analytical function describing this motion detector, especially since it has
not yet been characterized with more general repeated stimuli, for instance emulating the
movement of a random dot pattern.

5. Short-term memory and a neuronal timer

In this example (figure 5), the response of the neuron reflects the network dynamics. Lateral
connections cause a sustained prolonged firing, which is a form of short-term memory of the
initial stimulus having activated the network. The neurons in a recurrent network "Cluster"
are activated by a stimulus taking the form of random firing of neurons in the layer "Input".
The recurrent connections in "Cluster" sustain the activity of the network after the stimulus
has disappeared. Due to the probabilistic nature of the synaptic transmission, there is a
gradual decrease of the total activity in "Cluster" and of the firing rate of each neuron. Thus,
the firing frequency indicates the delay since stimulus termination.

The temporal decay of the activity in "Cluster" depends critically on the duration of
the PSCs and the lateral synaptic transmission probability. For instance, using shorter EPSCs
leads to a more abrupt termination of the sustained activity, although it can still be of long
average duration. In the limit of very short EPSCs, no information about the offset time of the
stimulus is carried by the firing rate of individual neurons or the activity of the network as a
whole, both having only two states, active or silent. In these cases, a population of such
networks, having probabilistic durations of sustained firing, is needed to extract timing
information (Bugmann and Taylor, 1997). In the example shown here, prolonged EPSCs are
used and the decaying activity of a single network carries sufficient timing information.

A simple network architecture is shown which can produce a burst of spikes when
the activity in the short-term memory "Cluster" has decayed sufficiently. As shown in figure
5, an excitatory and an inhibitory neuron receive projections from the same sub-population of
neurons in "Cluster" (see caption for details). Both neurons have the same  input weights and
duration of the EPSCs. They excite the neuron "Timer" with long EPSCs and inhibit it with
short IPSCs. When the "Cluster" is sufficiently active, "Excit" and "Inhib" produce their first
spike and the fast IPSC initially dominates the potential in "Timer". When the activity of the
"Cluster" diminishes, "Excit" and "Inhib" become silent, but the long EPSCs are still active
and cause the "Timer" to fire. As in section 4, the neuron "Timer" is using a partial reset
(with β=0.9) to produce bursts of spikes.
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Figure 5. A neuronal timer. Short-term memory component (Input and
Cluster): The graph "Total_act" represents the total number of neurons firing
at each time step (1ms). The dots correspond to the layer "Input". The activity
ends after 100ms. The crosses correspond to the layer "Cluster". The activity
persists and decays slowly after the input ends. The graph "Raster" shows spike
trains of 40 neurons in "Cluster". Their firing rate decreases progressively after
end of the input. The jitter in starting time is due to the stochastic arrival of
input spikes and the probabilistic recurrent synaptic transmission. Timer
component (Excit, Inhib and Timer): The neurons "Excit" and "Inhib"
received inputs from the same neurons in Cluster and fire at the same time. The
neuron "Timer" receives short IPSCs (Tmax = 5ms) from "Inhib" and long
EPSCs (Tmax = 25ms) from "Excit". The graph "Timer potential" shows the
somatic membrane potential of "Timer". When the activity in "Cluster"
becomes too small to fire "Inhib" and "Excit", the slow EPSCs are still active
and raise the potential to the firing threshold. A burst is produced due to partial
reset. Sometimes a second burst occurs which explains the two peaks of the
distribution of firing times shown in the graph "Timer_histogram". This timer
fires approximately 180ms after stimulus offset. Simulation parameters:
Input: 10x10 units firing random spikes with a probability p0=0.105 per time
step, between step 1 and 100. One time step represents 1 ms. In all other layers,
neurons of the type shown in figure 1 are used, with β=0, except for Timer
where β=0.9. Cluster: 10x10 neurons receiving projections form input units
selected at random with a connection probability = 0.1. Same scheme for the
recurrent connections within Cluster. No self connections. Idem for
connections from cluster to Inhib and Excit with the constraint of having
identical source neurons for both neurons. Connection details: Input->Cluster:
Aij=5, Pij=0.1; Tmax=5; Cluster->Cluster: Aij=3, Pij=0.055; Tmax=5; Cluster-
>(Inhib, Excit): Aij=0.27, Pij=1; Tmax=5;  Inhib->Timer: Aij=-1.8, Pij=1;
Tmax=5; Excit->Timer: Aij=1.8, Pij=1; Tmax=25.
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Regarding the design of an abstract model of the timer, the decaying curve of the
memory activity of Cluster can be reproduced with a single formal neuron with a self-
feedback loop with gain < 1. The timer based on the decaying activity of this "neuron" would
be precise and reproducible, unlike the timer based on our network, which shows a
distribution of firing times (Timer_histogram in figure 5). However, biological timers are
also stochastic (Jasselette et al., 1990) and can therefore not be modelled using formal
neurons. A simple random number generator with a given probability distribution could
constitute an acceptable abstract timer module within a more complex biological model,
because it can be traced back to a network of biological neurons. However, the fact that
animal timing behaviour follows stochastic rules, does not alone justify the use of a
stochastic timer, since other mechanisms could possibly also lead to a stochastic timing
behaviour. Theoretical models which produce timing probabilities instead of stochastic
behaviours are not models of the subject but models of the hybrid system comprising the
subject and the off-line data evaluation process, which produces average responses in form of
probabilities.

Conclusion

A number of examples have been shown of functions depending crucially on detailed
features of the model of biological neurons. The biological brain does not necessarily use
these functions, but it may do so. In each of these examples, the output spike trains encode
information in a different way: The product of input frequencies is encoded in the firing
frequency, or the probability of observing a spike within a given time window. Motion
velocity is encoded by the number of spikes in a burst. Elapsed time since an event is
encoded in a firing rate, or in a binary code signalling that the event has happened or not
(with short EPSCs). The timer produces a burst with a binary signification at a given time.
This multiplicity of codes makes it unlikely that a unique and simple coding scheme may be
designed for the communication between abstract computational modules.

Such modules can be implemented in ways avoiding the computational costs of a
direct simulation of a network of biological neuron models. A simple implementation is
suggested in the case of the timer. In general, the analysis of detailed simulations of a module
is needed to provide the justification for a more abstract form of implementation.

Concerning formal neurons, it is shown that their function is not an abstraction of
any of the functions of the biological neuron model described here (section 2). 

Nevertheless it is tempting to use formal neurons because they are computationally
less costly to simulate than extended LIF neurons. However, the number of formal neurons
needed to emulate a given biological network may be much larger than the number of
biological neurons. For instance, it is expected that a network of formal neurons reproducing
the motion detection function described in section 4 would be of large size. It can not be
excluded however that there may be a critical size for a larger network of biological neurons
for which formal neuron based models may become more economical. It is generally assumed
that formal neurons reproduce the average response of a large number of biological neurons
(Amit, 1989), but it is not yet clear for which range of network architectures and neuronal
parameters this assumption holds. Further comparative studies along these lines are needed.
Therefore, despite some interesting learning results with formal neurons (Zipser and
Anderson, 1988) it is currently difficult to justify their use in biological models.

In general, the effort of establishing the biological grounding of an abstract neural
function may be rewarding in itself: It would increase our understanding of the algorithmic
constraints faced by the brain, and clarify the computational significance of the brain
circuitry.
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