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Linear Multichannel Blind Equalizers
of Nonlinear FIR \olterra Channels

Georgios B. Giannakissenior Member, IEEEand Erchin SerpedirGtudent Member, IEEE

Abstract— Truncated Volterra expansions model nonlinear physiological signals undergo nonlinear transformations. For

systems encountered with satellite communications, magnetic example, the auditory nervous system includes memoryless
recording channels, and physiological processes. A generalp,iinaarities [21, pp. 65-66], and the response of photorecep-
approach for blind deconvolution of single-input multiple-output . e T -
Volterra finite impulse response (FIR) systems is presented. It 1OrS IS moqe.led. as a \Volterra Series expansion [_21* pp. 81-90].
is shown that suchnonlinear systems can be blindly equalized Blind identification of such systems is attractive in cases where
using only linear FIR filters. The approach requires that the the design of the experiment (input sequence) may be difficult,
Volterra kernels satisfy a certain coprimeness condition and that 4, the input to the system is not accessible.

the input possesses a minimal persistence-of-excitation order. . .
No other special conditions are imposed on the kernel transfer So far, mostly input/output-based (I/O-based) system iden-

functions or on the input signal, which may be deterministic or tification methods have been developed for nonlinear channels
random with unknown statistics. The proposed algorithms are (see e.g., [29]), while the blind scenario has not been addressed

corroborated with simulation examples. in its generality. Only methods that assume that the channels
and the input signals satisfy special (and often restrictive)
|. INTRODUCTION conditions have been developed [26]-[28]. For example, the

model adopted in [27] consists of two linear subsystems
able practical interest, since many real-life systems exhi@ﬁparated by a polynomial-type zero-memory nonlinearity (the

nonlinear characteristics. Examples of such systems are ehimZMNL-LTI model), which represents a particular case

countered in satellite and microwave channels with nonlinef&fr a \olterra filter with factorizable kernels. In addition, the

amplifiers [17], underwater and magnetic recording channdfut sequence is required to be circularly symmetric, the first
[3], [11], and physiological modeling [21]. subsystem can -be fg!ly |Qent|f|§d only if it is of minimum

In digital communications, blind equalization approachd¥'ase, and the identification of linear subsystems is based on
are important for the following reasons: No training input ant® higher order output polyspectrum. Also, the zero-memory
no interruption of the transmission are necessary to equgpnlinear subsystem cannot be identified. This limits the use
ize the channel. Therefore, for channels exhibiting multipafif these algorithms for blind equalization of general nonlinear
phenomena, changing characteristics, or high data rates, bh@nnels.
methods are attractive. Satellite communication channels ardhe present paper describes a general approach for blind
modeled as a cascade of a linear filter (the uplink channefigconvolution (equalization) and identification of nonlinear
followed by a zero memory nonlinearity of polynomial typesingle-input multiple-output (SIMO) FIR Volterra systems. Al-
and by a linear filter (the downlink channel) [2, pp. 533-541}hough impossible with a single output, multiple outputs make
Although the zero-order memory nonlinearity appears to litepossible to deconvolve blindly multiple FIR Volterra chan-
time invariant in satellite links (and so there is no need taels. The approach requires only that a generalized Sylvester
blindly estimate it), the uplink and downlink linear channelsesultant, constructed from the channel coefficients, has maxi-
are time varying in mobile communications. In this case, mum column rank and that the input signal possesses a certain
training sequence has to be sent periodically to update {hersistence-of-excitation order—a requirement also encoun-
channel coefficients. Blind identification and equalization aéred with I/O-based methods. The input is allowed to be
such channels is potentially useful since no training sequerdgerministic or random with unknown color or distribution,
needs to be transmitted and, hence, there is no reductionttis estimation approach is not based on higher order statistics
the effective data rate. Identification of nonlinear dynamics & the input/output signals, and the channel can be any
also a subject of interest in biomedical research, since mamR \olterra channel, which satisfies a certain coprimeness

condition. Surprisingly, it is shown thabnlinearFIR Volterra
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symbol rate and/or by sampling at the symbol rate the outpuhere
of a sensor array. Diversity is also exploited in [8], [23], [31],

s1.p(0
and [33] for blind identification and equalization dhear S 1'1?( )
time-invariant FIR channels, and the present work generalizes Lr = : )
these ideas to the case mbnlinear FIR Volterra models. si.p(N —1)

The organization of this paper is the following. In Sectio

e . e o é{lote that S;.p must be full rank in order to guarantee
]Icl,ransi(l)irr: dersf/”ﬁt'?rn of tr][erL/O—ibas:ad |dnetn;[j|fl;:i?tltonsmet23 ||§I%/ertibility of the higher order matrixS{.,S1.p) in (3). Such
0 ho re1a t(') era jys © Sd.s P e;;se ed tsd egq t’a condition is met if the input is sufficiently rich in amplitudes
IS Shown how timeé and space diversity are Introduced in I&%d frequencies, and is referred to as persistence-of-excitation
nonlinear framework. Third, &near multi-input multi-output

. . . condition (see [24], [25], and the references therein). Com-
(MIMO) interpretation for thenonlinear SIMO FIR Volterra . - .
channels is described, over which the present approachpm"momjllly efficient orthogonal [15] and adaptive [18], [22]

built Section Il ts basi it . ts6 utions have been proposed for I/O Volterra identification.
ufit up. >ection presents basic results concerning qﬁ [16], closed-form expressions in the frequency domain for

existence and uniqueness of blind linear deconvolvers t(ﬁfe kernels are reported, without orthogonalizing the Wiener

Volterra channels. A general approach for deriving blind ”ne?trmctionals [29], but using Gaussian inputs. In all these meth-

FIR zero-forcing deconvolvers (equalizers) is described 8lis both input and output are required to solve (3). Our focus
Section IV. Simulations are presented in Section V, and Iaﬁterein is the blind set-up wher(n) is not available

comments and concluding remarks are made in Section VI.

B. Time and Space Diversity
Il. PRELIMINARIES AND PROBLEM STATEMENT . . .
) _ ) o Our approach for solving the blind problem exploits ad-
After a brief review of I/O Volterra identification methods,yitional information provided by time or spatial diversity

we show how by oversampling the continuous output of Gimjlar to the linear case [23], [31], in the nonlinear case,

single sensor or by (over)sampling data of an antenna array e and space diversity become available by oversampling
equivalent SIMO nonlmegr channe'l is obtained. The nonlinedye continuous output of a single sensor, and/or by considering
SIMO \olterra channel is then viewed as a linear MIMQampled outputs of a sensor array. Both possibilities can be
channel with specifically related inputs. At the end of Sectiofhst and treated in the common framework of SIMO channels.

I, we state the problem. We now show how by oversampling (by a factdf) the
continuous output of a single sensor, it is possible to obtain
A. I/0O-Based Methods for Nonlinear Volterra Systems a set of M discrete subchannel outputs™(n), m =
Consider a general nonlinear time-invariant system dé-2, -, M.

scribed byz(n) = f[s(n), - -+, s(n — L)]. Its sampledPth- Consider the output of @th-order baseband continuous-
order truncated Taylor expansion has the form time Volterra channel given by

r Ly r Ly

z(n) =Y hy(ly, - 1) e(t) =ve(t) +
p=1 1y, -, 1,=0 p=1 11, 1p=0
cs(n—1y) - s(n—1,) +v(n) 1) chpe(t =0T, -t =1T)s(ly) -+~ s(l)

wherev(n) = z(n) — 2(n) describes unmodeled dynamicgvhereT" is the symbol period, and subscriptienotes contin-

and additive noise. Considering the vectsgén) andh,(n), UOUS time. This truncated Volterra model has been proposed in
which have as their entries(n — I;)---s(n — 1,), and, [2, pp. 58-61 and p. 541] as a baseband model for a bandpass

respectively, h,(I1, -+, Ip), for p = 1,---, P and 0 < nonlinear cha_nnel, andin [11] asamodel for the nonlinearities
li, -, 1, < Ly, (1) can be rewritten as encountered in a magnetic saturation recording channel. We
assume perfect synchronization (see e.g., [2, p. 292], for some
options for carrier and clock synchronization). Oversampling

h;
: ] +v(n) (2) by a rate of M/T yields

z(n) = [s1(n) -+ sp(n)] [ :
hp
~——— z(n) == xc(t)i=nz/Mm

‘=s1:p

:=h;.p L,

r

where prime denotes transpose. The linear-in-the-kemels (1) =vm+>_ > hpn—ULM, -, n—1,M)
can be viewed as a regression problem. fag [0, N — 1], p=ldy, e 1p=0
(2) can be solved using the least-squares (LS) approach in the ~s(ly) - - s(ly)
time or frequency domain [13], [14], [29], provided that the
input higher order moment matrices involved are invertib@here hp(ly, -+, 1) = hpe(LWT/M, ---, [,T/M) and
[25]. With x!,.y_, := [#(0)---z(N — 1)], the standard LS v(n) = v.(nT/M). Mimicking the derivation for linear
solution is given by _channels (g.g., [6]), .|t folloyvs easily that time ge_n@én)

is cyclostationary with periodd/. But upon defining the

hy.p =(Si.pS1p) "t Sh.pXon_1 (3) subprocesse&™ (n) := z(nM+m—1), m=1, ---, M, the
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A s1(n) = s(n)
Volterra § 1 > — 2((n) ™)

s2,00(n) = 6%(n)

plm) )

2,0:0
\ z(m)(n)

s(n)

- s2,11(n) = s(n)s(n — 1)
o B0
lv(M)(n) ' t ]
Volterraf M > (_D (M) (n) o X :
$2,1,:12(n) = s(n)s(n — L2}
Fig. 1. SIMO nonlinear Volterra channel. > hgf’;),:h(!)
M-channel procesg’(n) = [z (n) .- - z®™)(n)], becomes Fig. 2. Structure of thenth subchannelp = 2).
stationary, and for, =0, 1, ---, N — 1 is given by
r Ly with 0 = 49 < 4 < --- < 4p1 < Ly, and denoteh,; :=
x(n)=v(n)+> > by, 1) hy iy, @nd sy = 1 i,.,. Using the change of variables
p=1 1y, -, lp=0 l,=10414ip_1,forp=1,---, P, ip = 0, and definitions (5)
cstn=1p) -+ s(n—1,) (4) and (6), we can rewrite (4) as
r
Where X/(TL) :V/(TL) + Z Z

i) Lower (upper) bold is used for vectors (matrices).
i) M x 1 vectorh, corresponding to thgth-order kernel Ly—ip_1
is defined similar tox . Z 1

hp,iliip_l(l)spyil:ip—l(n - l) (7)
h;,(ll, .. -,lp)::[hél)(ll, o lp) e h;M)(ll, )] 1=0
Equation (7) allows us to view a nonlinear SIMO channel as

with h™ (1, v lp) = hp(WM+m—1, -+, [,M+ 3 |inear MIMO channel whose inputs are related (cf., (6)).
m — 1) denoting thepth-order kernel of themth pqp example, wherP = 2, (7) can be rewritten as’(n) =

_ channel. _ _ . () * s1)(n) + Effzo(hé’il:il * 82,44, )(n) + V/(n); ie., a
iii) The inaccessible scalar input(n) is allowed to be gym of multichannel linear filters (see Fig. 2). Hr= 2, we
either deterministic or a sample of a random procegs,e si(n) = s(n), s2.0:0(n) = $2(n), -+, $2.1,:0,(n) =

? 2 Ve ? ? 2 L2442

with unknown distribution. s(n)s(n — Ly); note also that, (n) and s, .0(n) are related

p=1 0<i1 <ove iy 1 <Ly,

iv) The range of (i,---,1,) is chosen such that,;, s2.0:0(n) = s2(n).
hS™(ly, -+, 1,) is defined over its nonredundant ’

region0 < /; < -+ < I, < L,. Note that, as usual, D, Problem Statement

the Volterra kernel is assumed to be symmetric without . Nel oopie s
loss of generality (w.l.o.g.) [29, pp. 41-43 and p. 80]{j Given the-channel system outpyi(n)},—, satisfying

) . . {i7), we want to blindly deconvolve the system; i.e., we wish
which explains why the Volterra kernels are define :
: : 0 recover both the input sequengg:) as well as the channel
over their nonredundant regions.

: o : : - kernelsh(m)(l ey, p =1, Pm =1,--- M

v is additive white Gaussian noise (AWGN p ULttty p)y P » T VT
) z/(gln)) = [pO(n)- - v (n)] with v(m)(ng — )from knowledge of the received datgn) only. Specifically,
v(nM +m — 1). we seek linear FIR equalizerg!? (k)1 of order K and

The structure of a SIMO nonlinear channel is depicted I(aelay d, Wh'Ch in the n0|se-f_ree_ case sa’g_sfy the so called
Fig. 1. zero-forcing (or perfect equalization) condition

K
(d) _
C. Linear MIMO Interpretation ZX/(” —k)gy (k) = s(n —d) (8)
k=0

We view the p-dimensional kernel; (i1, ---,1,) as a

collection of linear (one-dimensional) kernels defined as where the delay (shifif takes values i® < d < L, + K and

is nonidentifiable from output data only. Similar to the linear

iy (D =W Ty, o T i) FIR equalizer{g{®(k)}!<,, which deconvolves the linear
___héM)(l’ ot ip)] (5) kegg)el, we introduce thé(th—order andi-delay FIR equalizer
18,00, (F) K o, which deconvolves theth-order kernel
where0 < 4 < -+r iy < L,, ar_1dl =0,1,---,L, - hp,;l:z‘p:(l) via [cf., (8)]
ip—1. In order to compactify notation we, henceforth, use «
. . . . 4¢
i1 : ip—1 to denote the setiy, ---, ip—1) (for p = 2, we oo (d)
consideri; : i1 = i1). Similarly, we define the signals > X (n = kg, (k)

k=0

Spriviip_ () = s(D)s(l —d1) - s(l —ip_1) (6) stn—d)s(n—d—i1)---s(n—d—ip_1) 9)
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where the(p — 1)-tuple (41, ---, i,—1) and delayd satisfy channel matrixH are given respectively by
0<i <<y 1 <L,and0<d< L, + K —i,_1, _
respectively. : : ? g S:I(N -1 - S:P,LP:LP(N_ 1)
When possible to obtaing{* uniquely, (8) suffices to S .— SN =2) o Sprpr, (N = 2) (11)
recover the desired(n) in the noise-free case. However, : : :
because the outputs ggi) andg]f)‘f)mp_1 are related, relation L osi(K) o Shopg ()
(9) will be helpful Whenggd) is not uniquely identifiable from r Hy
(8). Such identifiability issues will be dealt with for the noise- H> 0.0
free case in the ensuing sections, deferring the noisy case to H:= :
the end of Sections IV and V. Hp ..o
- s ep.lip
The common dimension betweef and H, denoted by
1. EXISTENCEUNIQUENESS OFLINEAR EQUALIZERS D(Ly, -, Lp, K), depends, in general, oy, -, Lp
To study existence and uniqueness of the linear FIR equalénd K. Since the number of distinct sequenges - - -, 1)
erSg;‘f)il:ip_l, p=1,---, P, itwill be helpful to cast (7) in a that satisfy0 < 4; < .. <41 = i is equal to (Z;SQ)

matrix form. Toward this objective, define tiig, + K +1) x  [20, p. 17], and the matriH,, ;,.i,_, hasl, + K +1 -,
M(K +1), and respectively(L, + K +1—i,_1) x M(K +1) rows, it follows that
block Toeplitz matriced; andH,, ;,.;,_,, as shown in (9a),

P Ly
shown at the bottom of the page. Define glée + K +1) x 1 DLy, Lp,K) =L + K +1+ Z
and(L;, + K 41 —1,_1) x 1 vectorss;(n) ands, ;,.;,_, (n) 7= =0
through the relations itp—2
< - )(Lp—i—K—i—l—i). (12)
si(n):=[s(n) -+ s(n—Li—K)],
S;’, il:ip—l(n) = [Spyil:ip—l(n) o 'Spyil:ip—l FO; P = 2' we ObtainD(L17 L27 K) = (L2 + 2)(K + 1) +
(n =L — K 4+ (L3 + L2 + 2Ly)/2.
(n =Ly +ip-1)] We adopt the following assumptions:
where0 < iy < -+ < i,y < Ly, ands, ;,.;,_, (n) as in (6). (@0.1) v(n) = 0, i.e., we consider first noise-free data (see
The noise-free input-output relation (7) can now be rewritten the end of Sections IV and V for the noisy case).
requirement is introduced to assure more equations
X — SH (10) (data) than unknowns in subsequent equations (22)

and (30). This condition is easily met in practice
by collecting sufficient number of sampléé (note

where the(N — K) x M(K + 1) block Hankel matrixX is
( ) x M(K +1) At K,d M, P < N).

i b o
given by (al.1l) RankH) = D(Ly, ---, Lp, K), which implies
X(N-1) - ¥(N-1-K) that there are nho common zeros among the one
X o : : : dimensional kernel transfer functionsH\™(z),
X/(.f() i i X/&O) HQ(%)O(Z)’ HQ(Tq)l(Z)’ T H}T;)/I)/P:LP (Z)} across
all M channels, WhereH]()f';z:ip_l(z) denotes
the(N—-K)x D(Ly, ---, Lp, K) block Hankel input matrix the Z-transform of sequencdzéi”i)l:ip_l(l), I =
S, and theD(Ly, ---, Lp, K) x M(K + 1) block Toeplitz 0,---, L, —4,_1. An alternative characterization of
R AOE %
Hl = hll(Ll) hll(Ll —K) 5
L O hi(L1)
h;), iliip_l (0) T 0/
Hp, iriip_y v ;),il:ip_l(LP - ip—l) T ;),il:ip_l(LP - ip—l - K) . (9a)
L 0/ T ;), il:ip_l(LP - Zp_l)
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(al.1) in terms of the rank of a generalized Sylvester We want to show next that Assumption (al.2) is not overly

resultant is provided in Appendix A. Also, note thatestrictive. Note that givenl;, ---, Lp, one can choose
(a1.1) implies thaiH is a wide (or fat) matrix; i.e., M and K such that (13) holds. From (12), it follows that
(M, Ly, ---, Lp, K) obey for fixed L, ---, Lp, the dimensionD(Ly, ---, Lp, K)

depends linearly or. We can writeD(L;, ---, Lp, K) =
M(K+1)>D(Ly, -, Lp, K). (13) «(Ly, -+, Lp)K + Do(Ly, -++, Lp). In order for (al.2)
to hold, we need equality in (13); i.eM(K + 1) =
(@l.2) H is square; i.e., (13) is satisfied with equality.  «(L;, ---, Lp)K + Do(Ly, ---, Lp), or (K + DM —

(@2.1) with L := max{Ly, ---, Lp}, input s(n) is such «(L;,---, Lp)] = Do(Ly, -, Lp) — oLy, -+, Lp).
that the matrixS(©- Z+K) defined through Hence, ifM and K are chosen such that the previous relation
holds, then (al.2) is satisfied. There is no loss of generality in
SOLHE) —[S(L+K+1:N-K, ) assuming equality instead of strict inequality. In all cases when

"S(1:N—-2K—L, )] (14) strict inequality holdsM (K +1) > D(Ly, ---, Lp, K), we
can obtain the equality of (al.2), by decreaskigthe number

has maximum column rank; i.e., of antennas) and by varyinfl (the linear equalizer order).
For M = 1, (13) is not satisfied, which indicates the vital role
rank[S L) = 2D(Ly, -+, Lp, K) = C of diversity in our blind approach.

Considering the case of a second-order systém= 2),
where C' equals the number of pairs of identicarelation (13) implies that the minimum number of channels

columns of S L+K), required isM,,i, = L2 + 3, which depends on the memory of
(@2.2) matrixS in (15) is full column rank the nonlinearity. Hence, for a memoryless quadratic nonlinear-
ity, we requireM,,;, = 3 channels and a minimum equalizer
s(N—1) $2(N—-1) - s (N-1) orderKin = L1 —1 (recall that for linear channel/,,;,, = 2
_ S(N=2) $2(N-2) .. sT(N-2) and K,;, = L; — 1). Although the number of antennas (and
S:= : : . : © thus complexity) increases in the nonlinear case, the possibility
S(k) SQ(IK) SPZ'(K) to equalize nonlinear channels with linear FIR filters is very

5) attractive, since the stability of inverse \olterra systems is
difficult to check.

Due to the structure a$(% Z+5)  assumption (a2.1) implies _ _ _
Having stated and characterized some of the assumptions

that matrixS in (11) is full column rank; i.e., the inpui(n)

is persistently exciting (p.e.) of ordet, > D(Ly, -+, Lp). for.the multi(?hannel model (1Q), we now turn.to ex.istence ano!
White noise is p.e. of any order, bud(Ly, ---, Lp, K) uniqueness issues of the multichannel equalizers mtrod_uced in
modes in the spectrum of(n) may not guarantee p.e. as in(szi and (%)z') ConS|de([i)(8) fon = N —1, ..., K, and define
the linear cases(n) must also have sufficient amplitude/phas&:  := 81 (0)"-- & (K)']' to obtain the matrix equation
levels [24], [25]. Note that if, e.g.s(n) = 0, 1, matrices J J
SO L+K) and S are rank deficient becausén) = s*(n) = Xg = S(, d+1) & SHg® =S(, d+1). (16)

- = s(n). As a result, in (4) the kernelh,(0, ---, 0),
p=1,.--, P, can be combined. Hence, a violation of the p.&Jnder (a2.1), (16) holds if and only H g§d> = ey441, Where
condition does not allow identification of all kernels, but onlg,; is a D(Ly, ---, Lp, K) x 1 vector with unity in its

of their sum. In Section IV, we will see that the blind identi{d + 1)st entry and zero elsewhere. From (16), we deduce:
fication algorithm of linear equalizers requires, in general, anProposition 2: Let H be given and assume that
additional p.e. condition for the input sequenge), namely, (a0.1)—(al.1) hold true. The pseudoinverBE exists, it
(a2.2). The next proposition establishes a characterizationi®inique, it coincides witdH—! under (al1.2), and its columns
(a2.2). __constitute the linear FIR equalizers of the chanHel
Proposition 1: A necessary and sufficient condition f8r For arbitrary second-order systems and for systems with
to be full column rank is that the input signaln), for ordersP > 2, which satisfyL, = ... = Lp = L, itis possible
n=K, -+, N -1, takes at leasP? distinct nonzero values. to blindly determine the order&;, L, and, respectivelyL.
Proof: Proposition 1 follows from the VandermondeTo show the order determination approach, we first establish
structure ofS. Indeed, ifs(n), forn = K, .-, N—1takes at the following:
most P2 — 1 distinct values, thei® will have at mostP? — 1 Proposition 3: Under (a0)—(a2.1), matriX in (10) has
distinct rows. SoS will have rank less thaP?; i.e., S will
be column rank deficient. O px :=rankKX) = D(Ly, -+, Lp, K). (17)
In Appendix B, Assumption (a2.1) is shown to hold with

probability one, provided that input signal constellation has at  proof: Relation (17) follows from (10) and Sylvester's
least P + 1 distinct points andV is large enough. theorem:

Lin writing (14), we adopted Matlab’s notatioK(i; : ia, j1 : j2) tO rank(S) + rank(H) — D(L1 ... Lp K) < rank(X)
denote the submatrix oK formed by thei; throughio rows and thej; ’ ’ ’ -

throughj» columns ofX. < min{rank(S), rankKH)}. O
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Consider now the case of a linear-quadratic system, and Egiminating s(n) from the previous two equations we find
(L1, L) be known upper bounds foiL,, L), i.e., L, >

i K K
L,, p = 1, 2. With M given, choose distinck;, K, such Yo — e () — / d— el (. 19
that for eactp = 1, 2 the triplet(L,, Lo, K,) satisfies (13). kz_ox (n = k)i (k) = kz_:ox (n+ Jer (k). (19)

With K, in place of K, form matricesX,, p = 1, 2, as in

(10). From Proposition 3, it follows that From the block Hankel structure &f[see (11)], relation (19),
forn=N-d-1,---, K, can be written as
Px, i=rank(Xp) = D(Ly, Lz, Kp) 18 X(@41:N-K 9 =X1:N—K —d, )g¥ (20)

forp =1, 2. Knowing K1, K>, and evaluatings; ’s fromthe - whereg” := [g{”(0) .- - g{” (KY], and similarly forg(®.
singular value decomposition (SVD) &,,, we deduce from Upon defining

(12) and (18) a system of equations that yiglds, L.). The ©,4) . . . . .
ordersLy, L, are given byLy = (px, —px,)/(K1—K2)-2, A =[Xd+1:N-K,:) -X(1:N-K—d,:)]

and Ly = pg, — (L2 +2)(K1 + 1) — (L3 + Ly)/2. For the (21)
case whenl; = ... = Lp = L, the equation that determines .

L is similar to (18). ForP > 2, (18) does not allow the we obtain from (20)

determination of all orderd, ---, Lp. This is due to the 20, d)g§0, 9 _p (22)
fact that the dependence @(L,, ---, Lp, K) on K, for ) )

fixed L, ---, Lp, is linear [see (12)]. Hence, relation (18whereg{"? := [g{” g!*']'. The pair of equalizers ig{"?
provides only two independent equations foe 1, ---, P, belongs to the null spadlef[X((J: d)]. Equation (20) relates first

which permit determination of only one or two unknowns. order equalizers of delay@l;, d2) = (0, d). It is possible to
In general, the question of determining the orderstart from (9) and derive relations similar to (20) amanb-

Ly,---, Lp, as well asP, blindly, is an open problem. order equalizers of different delays. Following the notational
The orders of nonlinearities encountered with satellitgonvention in (9), it follows thag” ¥ := [g;oz),_o g;}d%,_o]/

communications and magnetic recording channels are legsy satisfies (22), and thus belongs\ax (*: 9], for anyp =
than or equal to 7, and, respectively, 3. In general, these orders ., P. Identifiability of the vectoygo’ 9 from (22) depends

have been determined experimentally [2, p. 543 and 56% the nullity of (% @) Specifically, ifdim {N[X((J: d)]} -1

[11, p. 2126]. From now on we assume that, ---, Lp and ¢, o e € [0, L + K], then ¢{*® will be uniquely

P are known and choosk to satisfy (al.2) for a givedl. ;o vifiaple (within a scale) as the null eigenvectorAf: 4
in (22).

IV. DIRECT BLIND EQUALIZERS Two factors will determine the nullity oft(%<: i) how

. . L . any kernels in (7) achieve the maximum order (or memory)
In this section, we propose a method for estimating dlrectE .= max{Ly, ---, Lp}; and ii) the delayl adopted in (22)

the linear multichannel equalizer from knowledge of the vector 't_his subsection, we suppose tHais attained by only one
output x(n) only. First, we focus on Volterra systems foh ermnel say thq;th—’order one;i.e.L,=L,andL; < L, for
which there is only one kernel with maximum memdry.= " _ {’1 e p—1lp+1 P]f) It turns OUZt thatp;/vhen

max{Ly, - -+, Lp}, and then on models having more than ong, . delayd increases, the dimension of the null space of

kernel with maximum memory. X0, d) decreases. In order to show this, let us consider the
maximum delayl = L + K and decompose the matrix in (22)

A. One Kernel with Maximum Memory as X (0 L+K) — S(0. L+K)9y, “or in block form [see also (21)
Substituten = n + d into (8), to obtain and (10)] as follows:
X X OO (L4 K+1: N-K,:)S(1: N-2K~L,:)]
d
Sox(n+d =Bl (k) = s(n) [ o] (23)
k=0 0 —-H
and rewrite (8) withd = 0 as Under (@l.1)2D(Ly, -+, Lp, K)x2M(K+1) matrixH, in

(23) has full row rank, and thus the rgak® “+%)] depends
K upon the rank ofS© L+5) To find rankS©: L+5)] let us
ZX’(n — B)gl2(k) = s(n). zoom in 8@ L+K) which, based on (11), can be written as
k=0 shown in (24) at the bottom of the page.

siV=L—-K-1) - sppp,(N-L-K-1) si(N=-1) - spp.,(N-1)
SO0 = : : : : . (@9

s1 (&) S, Ly () 1K +L) - spp,,2K+1)
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From (24), it turns out thas(®: Z+5) has only two identical B. Many Kernels with Maximum Memory

columns (s, 0.0+ 5p,0:0(K)]" is common to bothS(L + In this subsection, we treat the case when
K+1:N-K:)andS(1 : N = 2K - L)), while g3, (pArv©. 245y 5 1 first for the case of second-

the other columns are, in general, independent of each othgher nonlinear channels, and then for nonlinearities of
From (a2.1), it follows thatlim NS F+5} = 1; hence, arbitrary order. We will see that complexity increases, but
dim {N[X* FHO]} = 1. When delayd decreases, the e can siil identify multichannel FIR equalizers, provided

i i i 50 d) j : - - . g
number of pairs qf identical columns "(150((1)? INCTEASes; an additional p.e. condition, namely (a2.2), is also satisfied
hence, the dimension of the null spaceXf: ¢ increases. by the input signals(n). Henceforth, w.l.o.g. we suppose

Theorem 1: Suppose that (a0.1)~(a2.1) are satisfied. ¥ ot 1, — 1, = ... = L, = L. Using (a2.1) and following
max {Ly, ---, Lp} ('05) attamechEJz()a singlel,,, \{vherep € the same steps used to derive (22), we find that the pairs
{.1., e P} theng, 4.0 andg, o~ can be unllquely iden- of equalizerSgéo’ L+B)7 p = 1,---, P, also, satisfy (22);
tified (within a scale) from (22) as the null eigenvector ofience dim {NTX©O. L+ = P. Suppose that the null
(0, L+K) ' '

_ _ space N[X(OL+K)] is spanned by the columns of the
For P> = 2, it follows from Theorem 1, thatiLy > Lo, 0nly  9p7(k 4 1) x P matrix U, which can be easily obtained

a single SVD (for (22)) solves the blind equalization problenby performing an SVD ot (% L+K) Considering the SVD

Two questions arise at this point: When ddgs> L, hold in y(0, L+K) _ V12V, matrix U is given by the columns of

practice, and what if.; = L,? ConditionL; > L, requires v, corresponding to the null singular values [9, p. 18]. Also,

memory do_mlnatlon of the Imear_ part, Wh_lch is expe_cted iBonsider that the pairs of equalizeyg’ L+Is)7 p=1,---, P,

some practical cases. In magnetic recording applications, we, given by the columns of the matrix

have L; = Ly, = L = 2 or 3, buts(n) = 0, 1; hence,

s(n) = s2(n), which allows us to combine the quadratic kernel G =gl ) QLD L gl0 L]

hy o.0(l) (of order L) with the linear oneh, (), leaving the _

remaining kerneld, ; .;, () with ordersL — i1, 4, € [1, L]. Based on (a2.1), it follows from (22) th&(G) = R(U) =

In this case too, Theorem 1 applies because there is a sindfie¥ (” “™)], whereR denotes the range space of a matrix.

kernel attaining the maximum ordér. SinceG and U are full column rank and both span the same
Now consider the situation when the linear kernel is absefRace, there exists a nonsingufar< P matrix A such that

(i.e., homogeneous model) for a second-order Volterra channel. G=UA (26)

We again finddim {V[X, 14+x)]} = 1, and the equalizer '

gg%:o is uniquely identifiable although of limited value sinceConsidering only the firs#/ (K + 1) rows of (26), we obtain

its outputs?(n) can be used to recovefn) only when the

0 — . i
sign ambiguity is not a problem (e.g., when there is no°180 GV =Ull: MK +1),]A (27)
phase shift ambiguity in the input sequence). where
Upon defining GO = [ggo) gg?)o:o gg)o:o .
X@ .=X(d+1:N - K, ) Since U is available from the data matrix’(®: L+5),

our goal is to identify A. ldentification of thepth column
A(:, p) yields thepth column of G (see (27)); i.e., the
pth-order equalizelgé%:o. In order to findA, we take into

XOd . =X(1:N-K—d,:)

and X4 ;= [X@ —X© 9], we infer from (22) account the dependence between the outputs of the equalizers
corresponding to the first angth-order kernels. Equality
0,d) . (0,d) d 0.d g(o) [s(n)]? = sP(n) can be rewritten as
200D _ x(@  _x0. >]{ %d)} —o
g1 K

S ¥ (n- k>g§°><k>] S (0= k)g k)

It is possible to collect all pairs of equalizers corresponding to L:o P
all possible shifts in a vector and solve or, equivalently,

(XN —n, )" =X(N —n, Jgibo (28)
—p. Using (10) and (27), we can rewrite (28) as
(25) {S(N=n, )HU[1: M(K +1), ] AG;, )}

Under the assumptions of Theorem 1, it can also be shown =SV —n, )HUL: M(K +1), ] AG;, p). (29)

that (25) has a unique solution. Simulations have shown thatignote thes-fold Kronecker product of a matri with itself
terms of accuracy of estimates, both estimation procedures (§2)wlxl — w ®---@W, and recall tha({W, WQ)[k} _

XO  _x01 ... 0 ] gl

X (L+K) 0 X0, L) g(L'+K)

and (25) have similar performance. In terms of computationg{; (] Wk Considering relation (29) for alh = N —
effort, solving (22) requires less flops. In additi38 ! 2

, the same p.e. condition for the input sequenr¢e) is
required by both approaches. A, API(:; 1) =B A(;, p) (30)

1,---, K, we obtain
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where A, and B are defined, respectively, as identifiability of A from (30). Our first method applies only
- sl ) to linear-quadratic channels and is presented next.
S[p](2’ :) 1) Second-Order NonlinearitiesFor p = P = 2, (30) can
A, = o be rewritten as
SE(N - K, 3) AL, 2)
- ’ B A =0. 35
CHPIU[L : M(K + 1), ¥ B Aol B 1) (35)
r Xk, )
XPI(2, ) Matrix [B A.] is rank deficient because the Kronecker product

= . “U[l: M(K +1),:]”] (31) has introduced redundant entries that must be removed before
5 solving (35) for A. Define asA, the matrix obtained from

Xl K, ) A, by removing its third column (i.e., by eliminating the
[ SEL 1; redundancies from\, introduced by the Kronecker product),
S(2, : and similarly, letAl2(:, 1) denote the vector obtained from
B:= : -HU[L: M(K +1), ] APRI(:, 1) by removing its third entry. An equivalent form for
[S(N - K, 3) (35) is
r XEL :; ( %)
X(2,: D| = 36
= : SUL: M(K+1), 1] (32) [ AQ( )} o
LX(N - K, )

whereD := [B A,]. To establish identifiability, we wish to
where in deriving the second equalities in (31) and (323how thatdim [M(D)] = 1. Considering (33) withp = 2, it
we used (10) and the previously mentioned property of thgllows that A, can be factorized as

Kronecker product. Since matric&s, A, B can be obtained
from the data, we will show subsequently how to identXy
from (30). From (27) we hav®J[1 : M(K +1), ;] = GO A,
whereA = A~!. Note that the first row ofA,, can be rewritten
as

2 (N-1) $3(N-1) s¥{N-1)
AQ _ . . .

2(K)  SEK) sMK)

62 6116 62
N . i [p] 11 11012 12
Al ) = {80 ')HU%:M(BHL Y X [2 611021 611022 + 012001 2612 522] (37)

=[S(1, )HG® AL, 831 621 622 83

. 0 = -
Also note thatS(1, )H G sip(NV = 1), Where by i A = [5.1,1 < 4, < 2. From (34) and (37), we have
definition L T
the following factorization forD:
sip(n) := [s(n) s*(n) -+~ sP(n)] V.

It turns out thatA,(1, =) = [si,(N — ) AJPl = s (v -
1) APl Similar decompositions can be obtained for the other
rows of A,. So we have

=S A (38)

whereS is the Vandermonde matrix defined(ihs) for P = 2,
and A is given by

A, =S, Al (33)
sEp}(N _1) A 021 622 62, 011 612 62,
S[Iﬁ(N _9) 0 0 26110621 011022+ 06120621 26120622
Spi=| " 0 0 61 621 622 835
5[11;1(}() Since A is an invertible matrix, it follows easily that
o . rank(A) = 4. Also, since S is full-column rank by
Similarly, we factorizeB as (a2.2), it follows from (38) thaidim [R(D)] = 4. Hence,
B=8S:A (34) dim[NV(D)] = 1. The latter implies thafA’(:, 2) —A/m(:
where , 1)] can be uniquely determined as the null eigenvector of
sip(N —1) D. Having determined\, we can go back to (27) to recover
s1p(N —2) the desired matrix of equalizeG(®.
Sy = : . For P > 2, a similar construction leads tim [V(D)] >

1, which does not allow unique determination @A'(:
s1p(K) , P) —Al"I(:,1)] from (36). In what follows, we show

Factorizations (33) and (34) will be useful in the ensuing general solution for determiningk, which is valid for

subsections where we propose two methods for establishmanlinearities of any order (including the cage= 2).
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C. Nonlinearities of Arbitrary Order

In this subsection, we will determine first théth-order
equalizer (i.e.G©)(:, P)) which, according to (27), requires
identification of A(:, P). The latter will be recovered from
(30) as the intersection of the range spaced&gf andB. To
show this, consider the notation

ép = [SP(N_l)Sp(K)]Iv p=1--, P (39)
We establish first a relation between the range spaces
matricesA, andB in (33) and (34).

Proposition 4: Under (a0.1)—(a2.2), the following relations

hold:

dim[R(A,)) N R(B)| =P —-p+1,
R(A,) NR(B) = spaiis,, - -+, $p).

Proof: SinceA is full rank, it follows from (33) and (34)
thatR(A,) = R(S,), andR(B) = R(S:). From (a2.2)S is
full column rank. Hencedim [R(S,) NR(S1)] =P —p+1,
and this intersection is spanned by the vect®ys---, sp,

which establishes Proposition 4. O
For p = P, we have from Proposition 4:
R(Ap)NR(B) = spansp]. (40)

From (40), an approach for determining”1(:, 1) and A(:
, P) can be derived. The steps are listed below.

Step 1) Find the common vectorry, p that spans

75

1) s1(n)

"4

52,0:0(n)

=((n)

"4

L 52,Ly:L(7)

[

A 4

»lD)

of

M
g

M
5%,0:)0

(M)
82,L,L,

Fig. 3. Structure of the deconvolveP (= 2).

Proof: From the above derivations, it follows tfg&?)&o
can be uniquely determined. Using a similar relation to (20)
for Pth-order equalizers, it follows that we can retrieve the
equalizers corresponding to théth-order kernel and to all
possible delays. O
Note also that Step 4 determines the equa@g@r provided
that there is no ambiguity in taking thth-root ofr 4, g(=
c¢sp, wherec denotes a constant); i.e., no ambiguity exists

R(Ap) N R(B). This step requires two QR-in recovering uniquelys(n) from s”(n). Such unambiguous
factorizations (for finding two orthonormal basis forrecovery is guaranteed, for example, in the case ¢t
R(Ap) andR(B)) and one SVD (for determining input signal with@ constellation points such thaf)( P) are
the common vector, see [9, pp. 429-430], [5], an@oprime; s(n) can be uniquely recovered frosf’(n) since
[32]). a rotation of s(n) by a factor P, brings the constellation
Step 2) Solve BA(:, P) = r4, p for A(:, P), and use points of s”’(n) at distinct locations. Assuming that we can

(27) to compute the equa]izer Corresponding tﬂnd uniquelys(n) from SP(TL), the determination of all other

the Pth-order kernel usingG(®(;, P) = U(1 : equalizers is possible since the problem reduces to an I/O

M(K + 1), :)A(:, P). identification problem. However, there are cases whken)
Step 3) Solve equation cannot be recovered uniquely frasf' (n); e.g., aPSK input
signal with (@), P) not coprime.

In this case, we proceed to recover uniquely (up to a
constant) the equalizegﬁ?llyozo. Knowledge of equalizers
for Al”I(:, 1). In general, matrixAp in (41) is corresponding to théP — 1)st and Pth-order kernels implies
rank deficient, even after the elimination of theiccess to their outputs”~!(n), and, respectivelys”(n).
redundancies introduced by the Kronecker producelecting samples(n) 7 0 and taking the ratio of these two
A way to overcome this is to consider the equatioRUtputs, we obtain the input sequenge) = s”(n)/s"~*(n).
obtained by taking thePth root of both sides of Hence, the problem is solved if we can fig 21 00 Toward
(41). This alternative is presented in the next stejphis goal, we apply again Proposition 4 fpr= P — 1, to
Step 4) Solve BA(:, 1) = rh/:B, for A(:, 1). This equa- infer that

tion can be solved as a standard LS equation. The
solution will be correct provided that there is no
ambiguity in taking thePth root ofr 4, p. Having

computedA(:, 1), we obtaing!” by using (27).

ApAPl( 1) =r4, 5 (41)

R(Ap-1) NR(B) = spansp—1, sp].
Consider[rgi_hB, rff})j_hB] to be a basis qu(Ap_l) n
We have thus established the following result. R(?). It foIIOV\;]stratt there exists 2 x 2 nonsingular matrix
Theorem 2:If (a0.1)—(a2.2) holds true, then the equalizerg = [fij] such tha

corresponding to thePth-order kernel and to all possible
delays can be uniquely identified (within a scale factor).

1) (2)
[rAP—h B Tap ,,B

| =[sp-1, sp]F. (42)
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Define the vector@ﬁ?ll 0:0 andéﬁ@_l 0.0 through the relations  ¢.12

~ (0 n Ay 0t N
ng’)—l,O:O :rfh)a_l,B (43) § 01
A (0 2y AN 00BN
ng))—l,o:o :rfh)a_l,B' (44) :o.oa :
Sooel N\ SNR=20dB
Using the relation[s”~1(n)]” = [s(n)]"~! between the 3% '
N
outputs of equalizergﬁ?ﬂ1 0.0 and g§9)0,0, it is shown in ‘g004f N
E E o ;
Appendix C that the equalizggg)_1 0.0 €an be found as a ooz yﬁ”ﬁ?‘-‘-’-dﬁ -----------
linear combination o@ﬁ?ﬂl 0.0 and §§9>_1 0:0° 0 s b :
. T L) [} 500 1000 10 20 30 40 50
By equalizing the channel witlgy”, ,,, and, respec- No. of samples SNR (dB)
: 0 . _ .
tively, g}7)0:0, we obtain sequenced’~!(n) ands”(n), which Fig. 4. RMSE curves for Example 1.
uniquely identifys(n) ¥ n. We summarize these results in the
following theorem.

Before Equalizati After Equalizati
Theorem 3:1f (a0.1)—(a2.2) hold true, then the equalizers 3 i i o1 Equelzefon

3
corresporjdlng_ to all _ke_rnels and all possible delays can be,|s ws # & et A C
uniquely identified (within a scale factor). g :
% ] SRR Wi % Ll L e TR O
. o . ++ . ++ :
D. Noisy Case and Kernel Identification A DA SR TRARS - NORUNE SO
Now we consider briefly the noisy case together wittg_1 +t¢,+..f.f....+.__.; o AEEE §_1 ............... ....................
the blind identification of Volterra kernels. Assume that the ; i
. . . y . -2} . S P L R R
AWGN v(n)_ls present in (4?. For hlgh SNR's, the entire R VN SNR=40dB
analysis carries over herautatis mutandisin this case, only -3 s 0 -3 = i
slight modifications have to be adopted in order to establish Time index Time Index

identifiability and, thus, feasibility of the algorithms devel-
oped.R[G(O)] has to be estimated from the noisy null space of
X (0. L+K) py considering the SVD of’(%: L+EK)  Similarly,

a basis forR(A,) N R(B), for p = P — 1, P, is obtained columns are the equalizers, sinbbggd) = eyy1 (see (16)).

by considering the pairs of principal vectors correspondiriginally, note that the equalizer can be implemented as a
to the smallest angles betwedt(A,) and R(B) [5]. For set of linear FIR filter banks. Fig. 3 depicts the structure
low SNR, the performance of the proposed algorithm may loé the multichannel equalizer for a second-order system.
significantly affected by noise, since the proposed method doEss structure of the multichannel deconvolver is derived by
not take into account the noise statistics. Also, the computaticansidering a graphical interpretation of (8) and (9). In order
of a basis forR(A,) N R(B) may be very sensitive to notto complicate the notation, only the equalizers of zero delay
noise perturbations. In this case, a suboptimal solution mase presented, and the superscript for each equalizer refers to
consist in using a combination of the proposed method withtlae channel to which the equalizer is associated with and not
subspace-based method [23], [30]. Using the present approthhe delay. The zero delay is not represented in Fig. 3.

an estimate ofG(® can be found. With a subspace-based

Fig. 5. Eye-patterns for Example 1.

method, we can estimafe(H'). From an estimate ch(O), an V. SIMULATIONS
rei'tmoitecggglrféilég (é)f)f{czi)e:t; T (2)) can_bf obta|2)e(;I€. Ihe To illustrate the proposed algorithms and study their perfor-
. pyinip\N)y P = Ly vt By = ance in noise, we resorted to simulations summarized in the
1, .-, L can be obtained using a subspace fitting approag : .
ollowing five examples.

[30]. . Example 1. Blind Equalization of a Magnetic Recording
For_the proposed _method, once all the equalizers COMEr - nnel withdim (VX I+ = 1: We generated two-
sponding to all possible delays are available, we can a“?env | pulse amplitude modulated (PAM) independent identi-

their outputs and average them in order to obtain an avera%eﬁ@ distributed (i.i.d.) datas{n) = 0, 1) and passed them

. . > a
estimate of the input via (cf., (8)) throughM = 3 FIR channels#: = 1, 2, 3) to obtain the data

L+K [ K
1 / (d) 2 1
s\nN) = +———5—- x(n+d-k k). m m m
W= x| e >] o) = 3 Wstn =+ Y0
=0 =0
Averaging may improve the equalization performance but . 11 1 (m)
thorough analysis is due before definitive conclusions can be s(n Js(n =D+ v (n).
reached. The impulse response vectors wekg(0) = [1, 0.5, 2,
If blind channel identification is the objective, the estimated; (1) = [-2.5,3,0], hi(2) = [1,5,2], hy1(0) =

equalizers can be used to recowgr), from which H can [2, 0.3, —=0.7]’, h, 1(1) = [0.7, 1.2, 3]’. Such a channel has
be obtained by solving (7), using (batch or recursive) linedorm similar to that used in magnetic recording models [3],
regression methods or by simply inverting the matrix whoq&1]. Theorem 1 applies to this channély(= 2 > Ly ; = 1),
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Fig. 7. Eye-patterns for Example 2. Fig. 9. RMSE curves for Example 3.

and using one SVD, we computed tBe< 1 vector equalizer the importance of incorporating nonlinearities over adopting
of order K = 2 by solving (22) withd = L; 4+ K. According linear approximations, we supposed that the data come from
to Theorem 1, note that Assumption (a2.2) is not necessarjinear channel of ordef = 3, and usingM = 2 outputs

for this example. Fig. 4(a) depicts root mean-square ernoe designed an ordeK = 2 linear equalizer by inverting
(RMSE) between the true and estimated equalizer coefficietite channel estimate of [33]. The equalized eye-patterns
for lengths N = 100, ---, 900 at SNR= 20 dB and 40 dB; for the two- and four-level PAM data are shown in Fig. 8.
RMSE versus SNR is shown in Fig. 4(b) fé&f = 50, 100 The importance of adopting the correct model is evident if
(averages were computed based on 100 Monte Carlo rurg)e compares Figs. 5 and 7 with Fig. 8(a) and, respectively,
Interestingly, with as little asV = 200 symboals, it is possible Fig. 8(b). In both simulations, the SNR was 40 dB. We
to equalize linear-quadratic channels with RMSED(10~2) also tested the procedure for order selection. By choosing
at SNR= 20 dB. A typical eye-diagram of one channel'sk; = 12, K, = 14, and an appropriate threshold for selecting
output is plotted in Fig. 5(a) along with its equalized versiothe dominant singular values, we fou;€|§:1 =41, px, =47

in Fig. 5(b). from where we correctly estimateth = L, = 1.

Example 2. Blind Equalization of a Real Channel with Example 3. Blind Equalization of a Baseband Complex
dim {N[x© L+E)]} = 2: A similar simulation was carried Channel withdim {NV[X©® “+/)]} = 1: In this case, the
with four-level PAM data §(n) = +£3, £1] and M = 4 simulation was carried with a quadrature PSK (QPSK) input
channel outputs were generated according to the moda&nal and withAf = 3 channels. The channels included

(m =1,2,3,4) only odd-order kernels. This model belongs to the class of
narrowband Volterra channels that has only odd order kernels
(m) Zh(m) )+ Zh(m) (n—1) [2, p. 58]. Themth channel is given by
3 1
+h<’">( 0)s (n—l)s(n)—i—v(m)(n) 2 (n) = 3" A Oa(n - 1) + 0 (n Z
=0
with the kernels h;(0) = [1,0.5,2,0.1), h;(1) = (m) _ . g
[-2.5,3,0, =11, hyo(0) = [0.01,0.5,0.2, 0.003], Hha pr(n = Da(n == 1)a(n = 1-2)
hy o(1) = [0.2,03, 0.7, =0.001], hy1(0) = with hy(0) = [1+14,0.5+0.4i, =1 + 4], hy(1) = [-2.5+

[0.007, 0.001, 0.3, —0.15])’. Figs. 6 and 7 show that about2:, 3+2¢, 1—2¢]", hy(2) = [1+¢, —1+1¢, 2+ 1.3¢], h;(3) =
an order of magnitude more data are required to achiepet+0.3¢, 5414, —3+1.3{]’, h3 1.2(0) = [2, 0.340.2¢, —0.74
performance similar to that in Figs. 4 and 5, a consequene&i]’, hs 1.2(1) = [0.7 — 0.8, 1.2 + ¢, 3 4+ 0.1¢]’, and *
of the fact that two SVD’s are required for this model (noteepresenting the complex conjugation operation. Again only
that hereL; = Ls o = 1, L1 = 0, K = 1). To illustrate one SVD is sufficient in order to determine all the equalizers
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sinceL; =3 > L3 1.2 = 1. InFigs. 9 and 10, the performance
of the g§0> equalizer with ordetX’ = 3 is shown. As in the

L = 1. Themth channel is described by

1

#™(n) = SR Dstn = 1) + 3RS (D) (n = 1)
=0

=0
1
+ Z hl(’)r;:))o(l)sg(n — l) —+ U(m) (7’L)
=0

where h;(0) = [1,0.5,2,-0.3],h;(1) = [-2.5,3,0.,0.9],

hy 0(0) = [0.01,0.5,0.2, 1], hy o(1) = [0.2,0.3, —0.7,0.02],
h300(0) = [-0.6,0.2,0.9,0.76] ,hs 00(1) = [-0.9,
-0.7,0.1,0.02). We first considered a pseudorandom
sequence with normal distributiotv (0, 1.4) as an input
sequence. Only 500 samples were used to estimdfe-a2-
order equalizer. A comparison between the true ingut)

and the equalizer output waveforms for SNR 30 dB,
and respectively, SNR= 40 dB is shown in Fig. 13. In
Fig. 14, the eye-patterns, when the input signal is a nine-level
PAM signal and there is no noise present, are shown. The
experiment was repeated with an eight-level PAM signal, but
the equalizer failed to work properly. This is justifiable, since
the input signal must take at leas? = 9 nonzero distinct
values in order to satisfy the conditions of Theorems 2 and 3.
Note that the received signal eye diagram looks completely
different from the eye diagram of a nine-level PAM signal,
even in the absence of noise, while the eye diagram of the
equalized output shows nine distinct levels.

VI. CONCLUDING REMARKS

We proposed a linear multichannel equalizer for a nonlinear
FIR \olterra channel. The approach required only that the
input sequence satisfies a p.e. condition and the channel
transfer matrix has full row rank. The equalization of nonlinear
channels with linear FIR equalizers is appealing and can be
justified intuitively if one views the vector equalizer as a
beamformer which, thanks to its diversity, is capable of nulling
the nonlinearities and equalizing the linear part.

A number of open questions arise: analytic performance
evaluation, comparisons with Cramer—Rao bounds, selection
of the optimum equalizer delay, explicit inclusion of the noise

above examples, the rmse values were computed using L§Ghq the linear prediction formulation (see for the linear

Monte Carlo simulations.

case [30]), and thorough study of determining the structure

Example 4. Blind Identification of a Real Channel witland order of the Volterra model from output data only. We
dim {N X L+ = 2: The same channel as in Exampleenvision a solution based on the minimization of an Akaike-
2 was used in this experiment, the only difference being thiype criterion by varying the ordeP in a certain interval, and
instead of a 2-PAM signal we used a pseudorandom sequehyeestimatingZ from a relation similar to (18)f; = --- =
with normal distribution N (0, 1). We wanted to study the Lr = L). The linear equations involved in the derivation
capability of the present approach to identify the channdf the equalizers suggest an adaptive version of the proposed

We performed the study for different SNR’s. For relativel
high SNR’s (e.g., 40 dB) the estimated frequency respons
for the linear/quadratic kernels were almost identical with the
true ones (see Figs. 11 and 12). When we decreased the Sﬁé’

Igorithm, at least for the case whéim {N[X (0 L]} = 1.

He computation of a basis foR(A,) N R(B) may be very
sensitive to noise perturbations. Especially, for low SNR, a
optimal and general solution that avoids such intersections
takes into account noise statistics is desirable.

below 30 dB the performance diminished significantly. We 1o proposed deterministic approach works well in the

used 1000 samples and one Monte Carlo simulation.

case of high SNR and requires a reduced number of sam-

Example 5. Blind Equalization of a Real Channel withyes/computational effort in comparison with a higher order

dim {N[X O L+ = 3: In this case we considered = 4

channels withdim [N(XQ;),)] =3, andLl = L270 = L37 0:0 =

statistics based approach [26] and [27]. For communication
channels with varying nonlinearities (e.g., in mobile radio
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APPENDIX B
CHARACTERIZATION OF ASSUMPTION (a2.1)

We provide a short justification for the result: if the input
signal constellation has at leaBt+ 1 distinct points andV is
large enough, then Assumption (a2.1) holds with probability
1. Indeed, ifS'% “+%) is the matrix obtained frong(®: £+
by eliminatingC redundant columns (i.eS"> “*) does not
have any pair of identical columns), then (a2.1) is equivalent
to S5 L5 having full column rank. Suppossie %) does
not have full column rank, then there exists a vedtot # 0,

40 50 o il

20 2 0
Tima Index Time Index Such that
Fig. 13. True and equalized inputs.
SO L+ ¢ — 0. (45)
Before Equalizati SNR-=i After Equalizati SNR=inf. . O ..
o ey —— o or Equelzaten SRR Note that the entries of any row &f “+*) are distinct and
+ + : . . .
-200 *+ * : ) *:‘; : +4T++ 8:—+..+ -H—:H:- Hr.+.. o have the forrnsP: il:i?—l(n)’ V\gtl} 0 S 1 S U S tp—1 S LP'
+E : - <
0 ol e R o |+ P 1<p <P Equation S +‘)(N —n,:)t = 0 can be
3 e b T ¥ 3 AR e rewritten as aPth-order recursive equation
% -800 + R % + + + *+
§ T +..+f.+.$ ............ SN 53 4*'::* ++: +++' +:* w1 Sp(n)—‘rUJQ Sp_l(ﬂ)+"'+wP s(n)+wpy; =0 (46)
N ,
S SO ] R S e
1000 ; wwiss v+ + 4+ +es | Wherewy, -+, wpy; are dependent os(n—m), m > 1, and
-1200; "0 100 % o 0 t. Equation (46) admits at mogt roots. The probability that
Time Index Time index for any n, s(n) takes a value from the set df + 1 points,
Fig. 14. Eye-patterns for Example 5. which is a root of (46) is less than or equal &/(P + 1),

assuming equal probability distribution for the input values.

o o So considering (46) for all rows Qf,(,g’ L“‘), it follows that
communications), the present approach may exhibit gomﬂe probability forS,(,g’ L+K) 1ot to be full column rank is less
tracking properties. The complexity of the algorithm is re't'han or equal tP/(P + 1)](N_2K_L) and it converges to
atively high, which makes difficult the implementation ofZero asN — oo '

an efficient on-line version. The computational complexity
increases significantly with the order and the memory of the
nonlinear channel; for example, for a LTI-ZMNL-LTI channel
of order 3 and memory, the number of antennag and the
equalizer orderK have a quadratic and, respectively, cubic Using (39) and (42)—(44), we obtain

dependence on memoldy. As in linear case, the issue of how

often a real channel satisfies the coprimeness condition is not X(N —n, :)é§911,0:0 = fus"7Hn) + fus"(n) (47)

known. X(N —n, :)éﬁ?ll,w = f128" 7 (n) + fa2s"(n). (48)

APPENDIX C
PROOF OF THEOREM 3

We want to show thagﬁ?lum can be found as a linear

combination of§§9)_170:0 and §§9>_170:0. Let a; and oy be
two constants chosen such that fi; + asfi2 = 1 and
An alternative characterization of Assumption (al.l) i§; fo; + asfes = 0. It follows from (47) and (48), that
[ i i ist®) O 42(0) iofi (0) _
o o o ol S = 181 g+ 28 g SAUSTESKL
and the maximum column rank of a generalized SyIvesth_l' So the problem of finding,_, o, reduces to finding
. X & nstantsy; andas. Because we know the output of equalizer
resultantR ;1 of two polynomial matrices (see [1] and [4]). (o) the identitvis?=L(m)17 — [s”(n 12— will b dt
The resultanR x4 is obtained by permuting the columns of>7; 0:0° € identity[s (m)]” = [s"(n)] will be used to
H’ and adding a certain number of columns with only zero cOVern and o
: y L
entries toH'. Fr.om [4, Th. 1] a c_:haractenzatlpn in tgrms of [X(N —n, :)ggg)—l,O:O]P = [X(N —n, :)gg)o:o]l’—l
the dual dynamic indices of a pair of polynomial matrices can - (0) 2 (0) »
be deduced. In general, this characterization does not brinta[X(NV —n, H8p2 1 g.0] + @ X(N —n, )8pL; o0l}
too much, except in the particular case when the channels — ("("=1)(p), (49)
(associated to the linear MIMO interpretation, iRy, i .i,_,)
have the same length. In this case, no zero column has toSxe we obtain from (47)-(49)
appended td’ for obtaining the generalized Sylvester resul- o1 P
tant Ryc,1, and (al.1) reduces to the coprimeness condition  {@1[fiis” " (n) + fars" (n)]
of a pair of polynomial matrices. + aslfiasT () + farsT ()M = TPV (n). (50)

APPENDIX A
CHARACTERIZATION OF ASSUMPTION (al.1)
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Defining a, := fus’'(n) + fausf(n) and b, =

f128771(n) + f225"(n), and using the binomial expansion,

(50) reduces to
<€>afa5 + <}1)>af_la5_la2bn 44 <]€>a5b5
_ SP(P—l)(n)

and forp = N —1,---
Aa = Spp_1),

, K, in the matrix form relation

_<P>a{) -
ag_l ag:ile_l bé\}_l ?)
an_y Gn_3bN—2 b2 <1 )04{)_1062
af{, aﬁfle bﬁ, <P> :P
@
\P /)2 i
sPP=(N — 1

sPP—(N - 2) (51)

SP(P—Il)(K)
We wish to show that matribA is full column rank if the
inputs(n), forn = K, ---, N—1, takes at leasP+1 distinct

values. Indeed, considering the determinant of submatfik:
P +1,:), we have

det[AQ: P41, )] =b5_1 - bN_p_y
F r T3
a]\f_l P a]\f_l
<bN—1> <5N—1>
r
()" ()
bN_Q bN—Q

<CLN—P—1>P <GN—P—1>

L\ bnv—p_1 by—p_1 1)
@ a5
b b )

[

[

x det

[

or

det[A(1: P+1, )] =bk_; -

bf\)f—P—l H

>4
From the definitions ofi; and b;, we obtain

ai _ fu+ fas(@)
b fia+ f2s(i)

BecauseF is nonsingular, it turns out easily thatsifi) £ s(j)
thenai/bi 75 aj/bj. So if S(L), t=N-1,---, N—-P-1
are distinct, therdet [A(1 : P 4+ 1, :)] # 0, and soA is full
column rank. Having established thAt is nonsingular, from
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