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Linear Multichannel Blind Equalizers
of Nonlinear FIR Volterra Channels

Georgios B. Giannakis,Senior Member, IEEE,and Erchin Serpedin,Student Member, IEEE

Abstract— Truncated Volterra expansions model nonlinear
systems encountered with satellite communications, magnetic
recording channels, and physiological processes. A general
approach for blind deconvolution of single-input multiple-output
Volterra finite impulse response (FIR) systems is presented. It
is shown that suchnonlinear systems can be blindly equalized
using only linear FIR filters. The approach requires that the
Volterra kernels satisfy a certain coprimeness condition and that
the input possesses a minimal persistence-of-excitation order.
No other special conditions are imposed on the kernel transfer
functions or on the input signal, which may be deterministic or
random with unknown statistics. The proposed algorithms are
corroborated with simulation examples.

I. INTRODUCTION

I DENTIFICATION of nonlinear systems is of consider-
able practical interest, since many real-life systems exhibit

nonlinear characteristics. Examples of such systems are en-
countered in satellite and microwave channels with nonlinear
amplifiers [17], underwater and magnetic recording channels
[3], [11], and physiological modeling [21].

In digital communications, blind equalization approaches
are important for the following reasons: No training input and
no interruption of the transmission are necessary to equal-
ize the channel. Therefore, for channels exhibiting multipath
phenomena, changing characteristics, or high data rates, blind
methods are attractive. Satellite communication channels are
modeled as a cascade of a linear filter (the uplink channel),
followed by a zero memory nonlinearity of polynomial type
and by a linear filter (the downlink channel) [2, pp. 533–541].
Although the zero-order memory nonlinearity appears to be
time invariant in satellite links (and so there is no need to
blindly estimate it), the uplink and downlink linear channels
are time varying in mobile communications. In this case, a
training sequence has to be sent periodically to update the
channel coefficients. Blind identification and equalization of
such channels is potentially useful since no training sequence
needs to be transmitted and, hence, there is no reduction in
the effective data rate. Identification of nonlinear dynamics is
also a subject of interest in biomedical research, since many
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physiological signals undergo nonlinear transformations. For
example, the auditory nervous system includes memoryless
nonlinearities [21, pp. 65–66], and the response of photorecep-
tors is modeled as a Volterra series expansion [21, pp. 81–90].
Blind identification of such systems is attractive in cases where
the design of the experiment (input sequence) may be difficult,
or the input to the system is not accessible.

So far, mostly input/output-based (I/O-based) system iden-
tification methods have been developed for nonlinear channels
(see e.g., [29]), while the blind scenario has not been addressed
in its generality. Only methods that assume that the channels
and the input signals satisfy special (and often restrictive)
conditions have been developed [26]–[28]. For example, the
model adopted in [27] consists of two linear subsystems
separated by a polynomial-type zero-memory nonlinearity (the
LTI–ZMNL–LTI model), which represents a particular case
of a Volterra filter with factorizable kernels. In addition, the
input sequence is required to be circularly symmetric, the first
subsystem can be fully identified only if it is of minimum
phase, and the identification of linear subsystems is based on
the higher order output polyspectrum. Also, the zero-memory
nonlinear subsystem cannot be identified. This limits the use
of these algorithms for blind equalization of general nonlinear
channels.

The present paper describes a general approach for blind
deconvolution (equalization) and identification of nonlinear
single-input multiple-output (SIMO) FIR Volterra systems. Al-
though impossible with a single output, multiple outputs make
it possible to deconvolve blindly multiple FIR Volterra chan-
nels. The approach requires only that a generalized Sylvester
resultant, constructed from the channel coefficients, has maxi-
mum column rank and that the input signal possesses a certain
persistence-of-excitation order—a requirement also encoun-
tered with I/O-based methods. The input is allowed to be
deterministic or random with unknown color or distribution,
the estimation approach is not based on higher order statistics
of the input/output signals, and the channel can be any
FIR Volterra channel, which satisfies a certain coprimeness
condition. Surprisingly, it is shown thatnonlinearFIR Volterra
channels can be perfectly and blindly equalized usinglinear
FIR equalizers.

The proposed blind deconvolution and identification method
of FIR nonlinear Volterra channels exploits the temporal
and/or spatial diversity offered in the form of multichannel
output time series. The latter is obtained by oversampling the
continuous output of a single sensor at a rate faster than the

1053–587X/97$10.00 1997 IEEE



68 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 1, JANUARY 1997

symbol rate and/or by sampling at the symbol rate the output
of a sensor array. Diversity is also exploited in [8], [23], [31],
and [33] for blind identification and equalization oflinear
time-invariant FIR channels, and the present work generalizes
these ideas to the case ofnonlinearFIR Volterra models.

The organization of this paper is the following. In Section
II, a short description of the I/O-based identification methods
for nonlinear Volterra systems is presented first. Second, it
is shown how time and space diversity are introduced in the
nonlinear framework. Third, alinear multi-input multi-output
(MIMO) interpretation for thenonlinear SIMO FIR Volterra
channels is described, over which the present approach is
built up. Section III presents basic results concerning the
existence and uniqueness of blind linear deconvolvers of
Volterra channels. A general approach for deriving blind linear
FIR zero-forcing deconvolvers (equalizers) is described in
Section IV. Simulations are presented in Section V, and last,
comments and concluding remarks are made in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

After a brief review of I/O Volterra identification methods,
we show how by oversampling the continuous output of a
single sensor or by (over)sampling data of an antenna array, an
equivalent SIMO nonlinear channel is obtained. The nonlinear
SIMO Volterra channel is then viewed as a linear MIMO
channel with specifically related inputs. At the end of Section
II, we state the problem.

A. I/O-Based Methods for Nonlinear Volterra Systems

Consider a general nonlinear time-invariant system de-
scribed by . Its sampled th-
order truncated Taylor expansion has the form

(1)

where describes unmodeled dynamics
and additive noise. Considering the vectors and ,
which have as their entries , and,
respectively, , for and

, (1) can be rewritten as

... (2)

where prime denotes transpose. The linear-in-the-kernels (1)
can be viewed as a regression problem. For ,
(2) can be solved using the least-squares (LS) approach in the
time or frequency domain [13], [14], [29], provided that the
input higher order moment matrices involved are invertible
[25]. With , the standard LS
solution is given by

(3)

where

...

Note that must be full rank in order to guarantee
invertibility of the higher order matrix in (3). Such
a condition is met if the input is sufficiently rich in amplitudes
and frequencies, and is referred to as persistence-of-excitation
condition (see [24], [25], and the references therein). Com-
putationally efficient orthogonal [15] and adaptive [18], [22]
solutions have been proposed for I/O Volterra identification.
In [16], closed-form expressions in the frequency domain for
the kernels are reported, without orthogonalizing the Wiener
functionals [29], but using Gaussian inputs. In all these meth-
ods both input and output are required to solve (3). Our focus
herein is the blind set-up when is not available.

B. Time and Space Diversity

Our approach for solving the blind problem exploits ad-
ditional information provided by time or spatial diversity.
Similar to the linear case [23], [31], in the nonlinear case,
time and space diversity become available by oversampling
the continuous output of a single sensor, and/or by considering
sampled outputs of a sensor array. Both possibilities can be
cast and treated in the common framework of SIMO channels.
We now show how by oversampling (by a factor ) the
continuous output of a single sensor, it is possible to obtain
a set of discrete subchannel outputs

.
Consider the output of a th-order baseband continuous-

time Volterra channel given by

where is the symbol period, and subscriptdenotes contin-
uous time. This truncated Volterra model has been proposed in
[2, pp. 58–61 and p. 541] as a baseband model for a bandpass
nonlinear channel, and in [11] as a model for the nonlinearities
encountered in a magnetic saturation recording channel. We
assume perfect synchronization (see e.g., [2, p. 292], for some
options for carrier and clock synchronization). Oversampling
by a rate of yields

where and
. Mimicking the derivation for linear

channels (e.g., [6]), it follows easily that time series
is cyclostationary with period . But upon defining the
subprocesses , the
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Fig. 1. SIMO nonlinear Volterra channel.

-channel process , becomes
stationary, and for is given by

(4)

where

i) Lower (upper) bold is used for vectors (matrices).
ii) vector corresponding to theth-order kernel

is defined similar to

with
denoting the th-order kernel of the th

channel.
iii) The inaccessible scalar input is allowed to be

either deterministic or a sample of a random process
with unknown distribution.

iv) The range of is chosen such that
is defined over its nonredundant

region . Note that, as usual,
the Volterra kernel is assumed to be symmetric without
loss of generality (w.l.o.g.) [29, pp. 41–43 and p. 80],
which explains why the Volterra kernels are defined
over their nonredundant regions.

v) is additive white Gaussian noise (AWGN)
with

.

The structure of a SIMO nonlinear channel is depicted in
Fig. 1.

C. Linear MIMO Interpretation

We view the -dimensional kernel as a
collection of linear (one-dimensional) kernels defined as

(5)

where , and
. In order to compactify notation we, henceforth, use

to denote the set (for , we
consider ). Similarly, we define the signals

(6)

Fig. 2. Structure of themth subchannel (P = 2).

with , and denote
, and . Using the change of variables

, for , , and definitions (5)
and (6), we can rewrite (4) as

(7)

Equation (7) allows us to view a nonlinear SIMO channel as
a linear MIMO channel whose inputs are related (cf., (6)).
For example, when , (7) can be rewritten as

; i.e., a
sum of multichannel linear filters (see Fig. 2). For , we
have

; note also that and are related
via .

D. Problem Statement

Given the -channel system output satisfying
(7), we want to blindly deconvolve the system; i.e., we wish
to recover both the input sequence as well as the channel
kernels ,
from knowledge of the received data only. Specifically,
we seek linear FIR equalizers of order and
delay , which in the noise-free case satisfy the so called
zero-forcing (or perfect equalization) condition

(8)

where the delay (shift) takes values in and
is nonidentifiable from output data only. Similar to the linear
FIR equalizer , which deconvolves the linear
kernel, we introduce the th-order and -delay FIR equalizer

, which deconvolves theth-order kernel
via [cf., (8)]

(9)
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where the -tuple and delay satisfy
and ,

respectively.
When possible to obtain uniquely, (8) suffices to

recover the desired in the noise-free case. However,
because the outputs of and are related, relation

(9) will be helpful when is not uniquely identifiable from
(8). Such identifiability issues will be dealt with for the noise-
free case in the ensuing sections, deferring the noisy case to
the end of Sections IV and V.

III. EXISTENCE-UNIQUENESS OFLINEAR EQUALIZERS

To study existence and uniqueness of the linear FIR equaliz-
ers , it will be helpful to cast (7) in a
matrix form. Toward this objective, define the

, and respectively,
block Toeplitz matrices and , as shown in (9a),
shown at the bottom of the page. Define also
and vectors and
through the relations

where , and as in (6).
The noise-free input-output relation (7) can now be rewritten

in a matrix form as

(10)

where the block Hankel matrix is
given by

...
...

...

the block Hankel input matrix
, and the block Toeplitz

channel matrix are given respectively by

...
...

...
(11)

...

The common dimension between and , denoted by
, depends, in general, on

and . Since the number of distinct sequences
that satisfy is equal to
[20, p. 17], and the matrix has
rows, it follows that

(12)

For , we obtain
.

We adopt the following assumptions:

(a0.1) , i.e., we consider first noise-free data (see
the end of Sections IV and V for the noisy case).

(a0.2) . This
requirement is introduced to assure more equations
(data) than unknowns in subsequent equations (22)
and (30). This condition is easily met in practice
by collecting sufficient number of samples (note

).
(a1.1) Rank , which implies

that there are no common zeros among the one
dimensional kernel transfer functions ,

, , across

all channels, where denotes

the -transform of sequence
. An alternative characterization of

...
...

...

...
...

...

...
...

...

...
...

...

(9a)
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(a1.1) in terms of the rank of a generalized Sylvester
resultant is provided in Appendix A. Also, note that
(a1.1) implies that is a wide (or fat) matrix; i.e.,

obey

(13)

(a1.2) is square; i.e., (13) is satisfied with equality.
(a2.1) with , input is such

that the matrix defined through1

(14)

has maximum column rank; i.e.,

where equals the number of pairs of identical
columns of .

(a2.2) matrix in (15) is full column rank

...
...

...
...

(15)

Due to the structure of , assumption (a2.1) implies
that matrix in (11) is full column rank; i.e., the input
is persistently exciting (p.e.) of order
White noise is p.e. of any order, but
modes in the spectrum of may not guarantee p.e. as in
the linear case; must also have sufficient amplitude/phase
levels [24], [25]. Note that if, e.g., , matrices

and are rank deficient because
. As a result, in (4) the kernels ,
, can be combined. Hence, a violation of the p.e.

condition does not allow identification of all kernels, but only
of their sum. In Section IV, we will see that the blind identi-
fication algorithm of linear equalizers requires, in general, an
additional p.e. condition for the input sequence , namely,
(a2.2). The next proposition establishes a characterization of
(a2.2).

Proposition 1: A necessary and sufficient condition for
to be full column rank is that the input signal , for

, takes at least distinct nonzero values.
Proof: Proposition 1 follows from the Vandermonde

structure of . Indeed, if , for takes at
most distinct values, then will have at most
distinct rows. So, will have rank less than ; i.e., will
be column rank deficient.

In Appendix B, Assumption (a2.1) is shown to hold with
probability one, provided that input signal constellation has at
least distinct points and is large enough.

1In writing (14), we adopted Matlab’s notationX(i1 : i2; j1 : j2) to
denote the submatrix ofX formed by thei1 through i2 rows and thej1
throughj2 columns ofX.

We want to show next that Assumption (a1.2) is not overly
restrictive. Note that given , one can choose

and such that (13) holds. From (12), it follows that
for fixed , the dimension
depends linearly on . We can write

. In order for (a1.2)
to hold, we need equality in (13); i.e.,

, or
.

Hence, if and are chosen such that the previous relation
holds, then (a1.2) is satisfied. There is no loss of generality in
assuming equality instead of strict inequality. In all cases when
strict inequality holds, , we
can obtain the equality of (a1.2), by decreasing(the number
of antennas) and by varying (the linear equalizer order).
For , (13) is not satisfied, which indicates the vital role
of diversity in our blind approach.

Considering the case of a second-order system ( ),
relation (13) implies that the minimum number of channels
required is , which depends on the memory of
the nonlinearity. Hence, for a memoryless quadratic nonlinear-
ity, we require channels and a minimum equalizer
order (recall that for linear channels
and ). Although the number of antennas (and
thus complexity) increases in the nonlinear case, the possibility
to equalize nonlinear channels with linear FIR filters is very
attractive, since the stability of inverse Volterra systems is
difficult to check.

Having stated and characterized some of the assumptions
for the multichannel model (10), we now turn to existence and
uniqueness issues of the multichannel equalizers introduced in
(8) and (9). Consider (8) for , and define

to obtain the matrix equation

(16)

Under (a2.1), (16) holds if and only if , where
is a vector with unity in its
st entry and zero elsewhere. From (16), we deduce:

Proposition 2: Let be given and assume that
(a0.1)–(a1.1) hold true. The pseudoinverse exists, it
is unique, it coincides with under (a1.2), and its columns
constitute the linear FIR equalizers of the channel.

For arbitrary second-order systems and for systems with
orders , which satisfy , it is possible
to blindly determine the orders and, respectively, .
To show the order determination approach, we first establish
the following:

Proposition 3: Under (a0)–(a2.1), matrix in (10) has

rank (17)

Proof: Relation (17) follows from (10) and Sylvester’s
theorem:

rank rank rank

rank rank
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Consider now the case of a linear-quadratic system, and let
be known upper bounds for , i.e.,

. With given, choose distinct such
that for each the triplet satisfies (13).
With in place of , form matrices , as in
(10). From Proposition 3, it follows that

(18)

for . Knowing , and evaluating ’s from the

singular value decomposition (SVD) of , we deduce from
(12) and (18) a system of equations that yields . The
orders are given by ,
and . For the
case when , the equation that determines

is similar to (18). For , (18) does not allow the
determination of all orders . This is due to the
fact that the dependence of on , for
fixed , is linear [see (12)]. Hence, relation (18)
provides only two independent equations for ,
which permit determination of only one or two unknowns.

In general, the question of determining the orders
, as well as , blindly, is an open problem.

The orders of nonlinearities encountered with satellite
communications and magnetic recording channels are less
than or equal to 7, and, respectively, 3. In general, these orders
have been determined experimentally [2, p. 543 and 566],
[11, p. 2126]. From now on we assume that and

are known and choose to satisfy (a1.2) for a given .

IV. DIRECT BLIND EQUALIZERS

In this section, we propose a method for estimating directly
the linear multichannel equalizer from knowledge of the vector
output only. First, we focus on Volterra systems for
which there is only one kernel with maximum memory

, and then on models having more than one
kernel with maximum memory.

A. One Kernel with Maximum Memory

Substitute into (8), to obtain

and rewrite (8) with as

Eliminating from the previous two equations we find

(19)

From the block Hankel structure of [see (11)], relation (19),
for , can be written as

(20)

where , and similarly for .
Upon defining

(21)

we obtain from (20)

(22)

where . The pair of equalizers in
belongs to the null space . Equation (20) relates first
order equalizers of delays . It is possible to
start from (9) and derive relations similar to (20) amongth-
order equalizers of different delays. Following the notational
convention in (9), it follows that
also satisfies (22), and thus belongs to , for any

. Identifiability of the vector from (22) depends
on the nullity of . Specifically, if ,
for some , then will be uniquely
identifiable (within a scale) as the null eigenvector of
in (22).

Two factors will determine the nullity of : i) how
many kernels in (7) achieve the maximum order (or memory)

; and ii) the delay adopted in (22).
In this subsection, we suppose thatis attained by only one
kernel, say the th-order one; i.e., , and , for

. It turns out that when
the delay increases, the dimension of the null space of

decreases. In order to show this, let us consider the
maximum delay and decompose the matrix in (22)
as , or in block form [see also (21)
and (10)] as follows:

(23)

Under (a1.1), matrix in
(23) has full row rank, and thus the rank depends
upon the rank of . To find rank let us
zoom in which, based on (11), can be written as
shown in (24) at the bottom of the page.

...
...

...
... (24)
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From (24), it turns out that has only two identical
columns ( is common to both

and ), while
the other columns are, in general, independent of each other.
From (a2.1), it follows that ; hence,

. When delay decreases, the
number of pairs of identical columns in increases;
hence, the dimension of the null space of increases.

Theorem 1: Suppose that (a0.1)–(a2.1) are satisfied. If
is attained by a single , where

, then and can be uniquely iden-
tified (within a scale) from (22) as the null eigenvector of

.
For , it follows from Theorem 1, that if , only

a single SVD (for (22)) solves the blind equalization problem.
Two questions arise at this point: When does hold in
practice, and what if ? Condition requires
memory domination of the linear part, which is expected in
some practical cases. In magnetic recording applications, we
have or 3, but ; hence,

, which allows us to combine the quadratic kernel
(of order ) with the linear one , leaving the

remaining kernels with orders , .
In this case too, Theorem 1 applies because there is a single
kernel attaining the maximum order.

Now consider the situation when the linear kernel is absent
(i.e., homogeneous model) for a second-order Volterra channel.
We again find , and the equalizer

is uniquely identifiable although of limited value since
its output can be used to recover only when the
sign ambiguity is not a problem (e.g., when there is no 180
phase shift ambiguity in the input sequence).

Upon defining

and , we infer from (22)

It is possible to collect all pairs of equalizers corresponding to
all possible shifts in a vector and solve

...
...

...
...

...

(25)
Under the assumptions of Theorem 1, it can also be shown
that (25) has a unique solution. Simulations have shown that in
terms of accuracy of estimates, both estimation procedures (22)
and (25) have similar performance. In terms of computational
effort, solving (22) requires less flops. In additi38

, the same p.e. condition for the input sequence is
required by both approaches.

B. Many Kernels with Maximum Memory

In this subsection, we treat the case when
, first for the case of second-

order nonlinear channels, and then for nonlinearities of
arbitrary order. We will see that complexity increases, but
we can still identify multichannel FIR equalizers, provided
an additional p.e. condition, namely (a2.2), is also satisfied
by the input signal . Henceforth, w.l.o.g. we suppose
that: . Using (a2.1) and following
the same steps used to derive (22), we find that the pairs
of equalizers , also, satisfy (22);
hence, . Suppose that the null
space is spanned by the columns of the

matrix , which can be easily obtained
by performing an SVD on . Considering the SVD

, matrix U is given by the columns of
corresponding to the null singular values [9, p. 18]. Also,

consider that the pairs of equalizers ,
are given by the columns of the matrix

Based on (a2.1), it follows from (22) that
, where denotes the range space of a matrix.

Since and are full column rank and both span the same
space, there exists a nonsingular matrix such that

(26)

Considering only the first rows of (26), we obtain

(27)

where

Since is available from the data matrix ,
our goal is to identify . Identification of the th column

yields the th column of (see (27)); i.e., the
th-order equalizer . In order to find , we take into

account the dependence between the outputs of the equalizers
corresponding to the first andth-order kernels. Equality

can be rewritten as

or, equivalently,

(28)

Using (10) and (27), we can rewrite (28) as

(29)

Denote the -fold Kronecker product of a matrix with itself
by , and recall that

. Considering relation (29) for all
, we obtain

(30)
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where and are defined, respectively, as

...

...
(31)

...

...
(32)

where in deriving the second equalities in (31) and (32),
we used (10) and the previously mentioned property of the
Kronecker product. Since matrices can be obtained
from the data, we will show subsequently how to identify
from (30). From (27) we have ,
where . Note that the first row of can be rewritten
as

Also note that , where by
definition

It turns out that
Similar decompositions can be obtained for the other

rows of . So we have

(33)

where

...

Similarly, we factorize as

(34)

where

...

Factorizations (33) and (34) will be useful in the ensuing
subsections where we propose two methods for establishing

identifiability of from (30). Our first method applies only
to linear-quadratic channels and is presented next.

1) Second-Order Nonlinearities:For , (30) can
be rewritten as

(35)

Matrix is rank deficient because the Kronecker product
has introduced redundant entries that must be removed before
solving (35) for . Define as the matrix obtained from

by removing its third column (i.e., by eliminating the
redundancies from introduced by the Kronecker product),
and similarly, let denote the vector obtained from

by removing its third entry. An equivalent form for
(35) is

(36)

where . To establish identifiability, we wish to
show that . Considering (33) with , it
follows that can be factorized as

...
...

...

(37)

with . From (34) and (37), we have
the following factorization for :

(38)

where is the Vandermonde matrix defined in for ,
and is given by

Since is an invertible matrix, it follows easily that
Also, since is full-column rank by

(a2.2), it follows from (38) that . Hence,

. The latter implies that
can be uniquely determined as the null eigenvector of

. Having determined , we can go back to (27) to recover
the desired matrix of equalizers .

For , a similar construction leads to
, which does not allow unique determination of

from (36). In what follows, we show
a general solution for determining , which is valid for
nonlinearities of any order (including the case ).
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C. Nonlinearities of Arbitrary Order

In this subsection, we will determine first theth-order
equalizer (i.e., ) which, according to (27), requires
identification of . The latter will be recovered from
(30) as the intersection of the range spaces of andB. To
show this, consider the notation

(39)

We establish first a relation between the range spaces of
matrices and in (33) and (34).

Proposition 4: Under (a0.1)–(a2.2), the following relations
hold:

span

Proof: Since is full rank, it follows from (33) and (34)
that , and . From (a2.2), is
full column rank. Hence, ,
and this intersection is spanned by the vectors ,
which establishes Proposition 4.

For , we have from Proposition 4:

span (40)

From (40), an approach for determining and
can be derived. The steps are listed below.

Step 1) Find the common vector that spans
. This step requires two QR-

factorizations (for finding two orthonormal basis for
and ) and one SVD (for determining

the common vector, see [9, pp. 429–430], [5], and
[32]).

Step 2) Solve for , and use
(27) to compute the equalizer corresponding to
the th-order kernel using

.
Step 3) Solve equation

(41)

for . In general, matrix in (41) is
rank deficient, even after the elimination of the
redundancies introduced by the Kronecker product.
A way to overcome this is to consider the equation
obtained by taking the th root of both sides of
(41). This alternative is presented in the next step.

Step 4) Solve , for . This equa-
tion can be solved as a standard LS equation. The
solution will be correct provided that there is no
ambiguity in taking the th root of . Having
computed , we obtain by using (27).

We have thus established the following result.
Theorem 2: If (a0.1)–(a2.2) holds true, then the equalizers

corresponding to the th-order kernel and to all possible
delays can be uniquely identified (within a scale factor).

Fig. 3. Structure of the deconvolver (P = 2).

Proof: From the above derivations, it follows that
can be uniquely determined. Using a similar relation to (20)
for th-order equalizers, it follows that we can retrieve the
equalizers corresponding to theth-order kernel and to all
possible delays.

Note also that Step 4 determines the equalizer provided
that there is no ambiguity in taking theth-root of

, where denotes a constant); i.e., no ambiguity exists
in recovering uniquely from . Such unambiguous
recovery is guaranteed, for example, in the case of a
input signal with constellation points such that ( ) are
coprime; can be uniquely recovered from since
a rotation of by a factor , brings the constellation
points of at distinct locations. Assuming that we can
find uniquely from , the determination of all other
equalizers is possible since the problem reduces to an I/O
identification problem. However, there are cases when
cannot be recovered uniquely from ; e.g., a input
signal with not coprime.

In this case, we proceed to recover uniquely (up to a
constant) the equalizer . Knowledge of equalizers
corresponding to the st and th-order kernels implies
access to their outputs , and, respectively, .
Selecting samples and taking the ratio of these two
outputs, we obtain the input sequence .
Hence, the problem is solved if we can find . Toward
this goal, we apply again Proposition 4 for , to
infer that

span

Consider to be a basis for
. It follows that there exists a nonsingular matrix

such that

(42)
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Define the vectors and through the relations

(43)

(44)

Using the relation between the
outputs of equalizers and , it is shown in

Appendix C that the equalizer can be found as a

linear combination of and .

By equalizing the channel with , and, respec-

tively, , we obtain sequences and , which
uniquely identify . We summarize these results in the
following theorem.

Theorem 3: If (a0.1)–(a2.2) hold true, then the equalizers
corresponding to all kernels and all possible delays can be
uniquely identified (within a scale factor).

D. Noisy Case and Kernel Identification

Now we consider briefly the noisy case together with
the blind identification of Volterra kernels. Assume that the
AWGN is present in (4). For high SNR’s, the entire
analysis carries over heremutatis mutandis. In this case, only
slight modifications have to be adopted in order to establish
identifiability and, thus, feasibility of the algorithms devel-
oped. has to be estimated from the noisy null space of

, by considering the SVD of . Similarly,
a basis for , for , is obtained
by considering the pairs of principal vectors corresponding
to the smallest angles between and [5]. For
low SNR, the performance of the proposed algorithm may be
significantly affected by noise, since the proposed method does
not take into account the noise statistics. Also, the computation
of a basis for may be very sensitive to
noise perturbations. In this case, a suboptimal solution may
consist in using a combination of the proposed method with a
subspace-based method [23], [30]. Using the present approach
an estimate of can be found. With a subspace-based
method, we can estimate . From an estimate for , an
estimate for , can be obtained. The
rest of channel coefficients

can be obtained using a subspace fitting approach
[30].

For the proposed method, once all the equalizers corre-
sponding to all possible delays are available, we can align
their outputs and average them in order to obtain an averaged
estimate of the input via (cf., (8))

Averaging may improve the equalization performance but
thorough analysis is due before definitive conclusions can be
reached.

If blind channel identification is the objective, the estimated
equalizers can be used to recover , from which can
be obtained by solving (7), using (batch or recursive) linear
regression methods or by simply inverting the matrix whose

Fig. 4. RMSE curves for Example 1.

Fig. 5. Eye-patterns for Example 1.

columns are the equalizers, since (see (16)).
Finally, note that the equalizer can be implemented as a
set of linear FIR filter banks. Fig. 3 depicts the structure
of the multichannel equalizer for a second-order system.
This structure of the multichannel deconvolver is derived by
considering a graphical interpretation of (8) and (9). In order
not to complicate the notation, only the equalizers of zero delay
are presented, and the superscript for each equalizer refers to
the channel to which the equalizer is associated with and not
to the delay. The zero delay is not represented in Fig. 3.

V. SIMULATIONS

To illustrate the proposed algorithms and study their perfor-
mance in noise, we resorted to simulations summarized in the
following five examples.

Example 1. Blind Equalization of a Magnetic Recording
Channel with : We generated two-
level pulse amplitude modulated (PAM) independent identi-
cally distributed (i.i.d.) data ( ) and passed them
through FIR channels ( ) to obtain the data

The impulse response vectors were ,
, ,

, . Such a channel has
form similar to that used in magnetic recording models [3],
[11]. Theorem 1 applies to this channel ( ),
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Fig. 6. RMSE curves for Example 2.

Fig. 7. Eye-patterns for Example 2.

and using one SVD, we computed the vector equalizer
of order by solving (22) with . According
to Theorem 1, note that Assumption (a2.2) is not necessary
for this example. Fig. 4(a) depicts root mean-square error
(RMSE) between the true and estimated equalizer coefficients
for lengths at SNR 20 dB and 40 dB;
RMSE versus SNR is shown in Fig. 4(b) for
(averages were computed based on 100 Monte Carlo runs).
Interestingly, with as little as symbols, it is possible
to equalize linear-quadratic channels with RMSE
at SNR 20 dB. A typical eye-diagram of one channel’s
output is plotted in Fig. 5(a) along with its equalized version
in Fig. 5(b).

Example 2. Blind Equalization of a Real Channel with
: A similar simulation was carried

with four-level PAM data [ ] and
channel outputs were generated according to the model
( )

with the kernels

. Figs. 6 and 7 show that about
an order of magnitude more data are required to achieve
performance similar to that in Figs. 4 and 5, a consequence
of the fact that two SVD’s are required for this model (note
that here , , ). To illustrate

Fig. 8. Eye-patterns—linear approximations.

Fig. 9. RMSE curves for Example 3.

the importance of incorporating nonlinearities over adopting
linear approximations, we supposed that the data come from
a linear channel of order , and using outputs
we designed an order linear equalizer by inverting
the channel estimate of [33]. The equalized eye-patterns
for the two- and four-level PAM data are shown in Fig. 8.
The importance of adopting the correct model is evident if
one compares Figs. 5 and 7 with Fig. 8(a) and, respectively,
Fig. 8(b). In both simulations, the SNR was 40 dB. We
also tested the procedure for order selection. By choosing

, , and an appropriate threshold for selecting
the dominant singular values, we found
from where we correctly estimated .

Example 3. Blind Equalization of a Baseband Complex
Channel with : In this case, the
simulation was carried with a quadrature PSK (QPSK) input
signal and with channels. The channels included
only odd-order kernels. This model belongs to the class of
narrowband Volterra channels that has only odd order kernels
[2, p. 58]. The th channel is given by

with

, and
representing the complex conjugation operation. Again only
one SVD is sufficient in order to determine all the equalizers



78 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 1, JANUARY 1997

Fig. 10. Eye patterns for Example 3.

Fig. 11. Linear kernels for Example 4.

Fig. 12. Quadratic kernels for Example 4.

since . In Figs. 9 and 10, the performance
of the equalizer with order is shown. As in the
above examples, the rmse values were computed using 100
Monte Carlo simulations.

Example 4. Blind Identification of a Real Channel with
: The same channel as in Example

2 was used in this experiment, the only difference being that
instead of a 2-PAM signal we used a pseudorandom sequence
with normal distribution . We wanted to study the
capability of the present approach to identify the channel.
We performed the study for different SNR’s. For relatively
high SNR’s (e.g., 40 dB) the estimated frequency responses
for the linear/quadratic kernels were almost identical with the
true ones (see Figs. 11 and 12). When we decreased the SNR
below 30 dB the performance diminished significantly. We
used 1000 samples and one Monte Carlo simulation.

Example 5. Blind Equalization of a Real Channel with
: In this case we considered

channels with , and

. The th channel is described by

where

We first considered a pseudorandom
sequence with normal distribution as an input
sequence. Only 500 samples were used to estimate a -
order equalizer. A comparison between the true input
and the equalizer output waveforms for SNR 30 dB,
and respectively, SNR 40 dB is shown in Fig. 13. In
Fig. 14, the eye-patterns, when the input signal is a nine-level
PAM signal and there is no noise present, are shown. The
experiment was repeated with an eight-level PAM signal, but
the equalizer failed to work properly. This is justifiable, since
the input signal must take at least nonzero distinct
values in order to satisfy the conditions of Theorems 2 and 3.
Note that the received signal eye diagram looks completely
different from the eye diagram of a nine-level PAM signal,
even in the absence of noise, while the eye diagram of the
equalized output shows nine distinct levels.

VI. CONCLUDING REMARKS

We proposed a linear multichannel equalizer for a nonlinear
FIR Volterra channel. The approach required only that the
input sequence satisfies a p.e. condition and the channel
transfer matrix has full row rank. The equalization of nonlinear
channels with linear FIR equalizers is appealing and can be
justified intuitively if one views the vector equalizer as a
beamformer which, thanks to its diversity, is capable of nulling
the nonlinearities and equalizing the linear part.

A number of open questions arise: analytic performance
evaluation, comparisons with Cramer–Rao bounds, selection
of the optimum equalizer delay, explicit inclusion of the noise
along the linear prediction formulation (see for the linear
case [30]), and thorough study of determining the structure
and order of the Volterra model from output data only. We
envision a solution based on the minimization of an Akaike-
type criterion by varying the order in a certain interval, and
by estimating from a relation similar to (18) (

). The linear equations involved in the derivation
of the equalizers suggest an adaptive version of the proposed
algorithm, at least for the case when .
The computation of a basis for may be very
sensitive to noise perturbations. Especially, for low SNR, a
new optimal and general solution that avoids such intersections
and takes into account noise statistics is desirable.

The proposed deterministic approach works well in the
case of high SNR and requires a reduced number of sam-
ples/computational effort in comparison with a higher order
statistics based approach [26] and [27]. For communication
channels with varying nonlinearities (e.g., in mobile radio
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Fig. 13. True and equalized inputs.

Fig. 14. Eye-patterns for Example 5.

communications), the present approach may exhibit good
tracking properties. The complexity of the algorithm is rel-
atively high, which makes difficult the implementation of
an efficient on-line version. The computational complexity
increases significantly with the order and the memory of the
nonlinear channel; for example, for a LTI–ZMNL–LTI channel
of order 3 and memory , the number of antennas and the
equalizer order have a quadratic and, respectively, cubic
dependence on memory. As in linear case, the issue of how
often a real channel satisfies the coprimeness condition is not
known.

APPENDIX A
CHARACTERIZATION OF ASSUMPTION (a1.1)

An alternative characterization of Assumption (a1.1) is
possible. It can be easily shown that an equivalence exists
between the full row rank of the block Toeplitz matrix
and the maximum column rank of a generalized Sylvester
resultant of two polynomial matrices (see [1] and [4]).
The resultant is obtained by permuting the columns of

and adding a certain number of columns with only zero
entries to . From [4, Th. 1] a characterization in terms of
the dual dynamic indices of a pair of polynomial matrices can
be deduced. In general, this characterization does not bring
too much, except in the particular case when the channels
(associated to the linear MIMO interpretation, i.e., )
have the same length. In this case, no zero column has to be
appended to for obtaining the generalized Sylvester resul-
tant , and (a1.1) reduces to the coprimeness condition
of a pair of polynomial matrices.

APPENDIX B
CHARACTERIZATION OF ASSUMPTION (a2.1)

We provide a short justification for the result: if the input
signal constellation has at least distinct points and is
large enough, then Assumption (a2.1) holds with probability
1. Indeed, if is the matrix obtained from
by eliminating redundant columns (i.e., does not
have any pair of identical columns), then (a2.1) is equivalent
to having full column rank. Suppose does
not have full column rank, then there exists a vector ,
such that

(45)

Note that the entries of any row of are distinct and
have the form , with ,

. Equation can be
rewritten as a th-order recursive equation

(46)

where are dependent on , and
. Equation (46) admits at most roots. The probability that

for any , takes a value from the set of points,
which is a root of (46) is less than or equal to ,
assuming equal probability distribution for the input values.
So considering (46) for all rows of , it follows that
the probability for not to be full column rank is less
than or equal to , and it converges to
zero as .

APPENDIX C
PROOF OF THEOREM 3

Using (39) and (42)–(44), we obtain

(47)

(48)

We want to show that can be found as a linear

combination of and . Let and be
two constants chosen such that and

. It follows from (47) and (48), that
satisfies

. So the problem of finding reduces to finding
constants and . Because we know the output of equalizer

, the identity will be used to
recover and

(49)

So we obtain from (47)–(49)

(50)
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Defining and
, and using the binomial expansion,

(50) reduces to

and for , in the matrix form relation
,

...
...

...
... ...

...
(51)

We wish to show that matrix is full column rank if the
input , for takes at least distinct
values. Indeed, considering the determinant of submatrix

, we have

...
...

...
...

or

From the definitions of and , we obtain

Because is nonsingular, it turns out easily that if
then . So if
are distinct, then , and so is full
column rank. Having established that is nonsingular, from
(51) we can recover uniquely. Indeed, taking the ratio of
its first two entries, it follows that can be uniquely
determined. Hence, the equalizer can be uniquely
determined (up to a constant).
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