
WEKA: The Waikato Environment
for Knowledge Analysis

Stephen R. Garner

Department of Computer Science, University of Waikato, Hamilton.

ABSTRACT

WEKA is a workbench designed to aid in the application of machine learning technology to real
world data sets, in particular, data sets from New Zealand’s agricultural sector. In order to do this
a range of machine learning techniques are presented to the user in such a way as to hide the
idiosyncrasies of input and output formats, as well as allow an exploratory approach in applying
the technology. The system presented is a component based one that also has application in
machine learning research and education.

1. Introduction

The WEKA machine learning workbench has grown out of the need to be able to
apply machine learning to real world data sets in a way that promotes a “what
if?…” or exploratory approach. Each machine learning algorithm implementation
requires the data to be present in its own format, and has its own way of
specifying parameters and output. The WEKA system was designed to bring a
range of machine learning techniques or schemes under a common interface so
that they may be easily applied to this data in a consistent method. This interface
should be flexible enough to encourage the addition of new schemes, and simple
enough that users need only concern themselves with the selection of features in
the data for analysis and what the output means, rather than how to use a machine
learning scheme.

The WEKA system has been used over the past year to work with a variety of
agricultural data sets in order to try to answer a range of questions. For example:
“Can you find a set of rules that model the factors in the decision to cull a dairy
cow from a herd?” The data sets that occur in the agricultural sector tend to be
bigger and of a lower quality than those in machine learning research. There are
normally more features in the data, lots of missing values, mixtures of integer
values and codes in an attribute and subjective measurements of attributes.
Application of WEKA to this sort of data has led to insight into how to apply
machine learning algorithms to this data, what extra work is required in working
with the data, and what tools are needed to the support machine learning in this
environment.

2. WEKA Design and Implementation

The WEKA system is not so much a single program as a collection of inter-
dependent programs bound together by a common user interface. Typically these
modules fall into three categories: data set processing, machine learning schemes,
and output processing. The processing of data sets involves extracting information
about a data set for the user, splitting data sets into test and training sets, filtering
out features in the data not required by the user, and translating the data set into a
form suitable for a machine learning scheme to work with. Machine learning
schemes are implementations of machine learning algorithms and typically take a
converted data set and produce some output, normally a rule set. Output
processing modules are concerned with taking the output from a machine learning
scheme performing some task with it, such as evaluating a rule set against a test
file or displaying the output in a window for the user.

Interaction by the user with WEKA will result in the modules being combined in
such a way as to produce the desired output. For example, a typical task might
involve selecting a data set to train on, selecting a data set to test with, excluding
features not required from the data sets, choosing a machine learning scheme,
running the scheme on the training data and then looking at the rules produced and
how well they did on the test data.

Figure 1. WEKA Workbench Main Screen

The WEKA workbench itself (Figure 1) is written using the TCL/TK [1] scripting
language and X window tool kit combination and runs on Sun Microsystems
UNIX systems using Solaris 2. The individual modules are typically written in C
or using standard UNIX utilities, such as lex, yacc and awk, and can be used
outside of the WEKA environment if required, for example in a shell script for

multiple data set feature filtering. The machine learning schemes are
implemented in a variety of programming languages, depending on the choice of
the programmer, and currently WEKA incorporates schemes written in C, C++ and
LISP. A simple rule evaluator has been written in C, while a more complete one,
PREval, has also been developed in PROLOG.

In the following sections the WEKA common data set format, the machine learning
schemes that have been incorporated, and the common WEKA rule format and
evaluator will be discussed.

Data Set Format

The WEKA system uses a common file format to store its data sets and thus
presents the user with a consistent view of the data regardless of what machine
learning scheme may be used. This file format, the Attribute-Relation File Format
(ARFF), defines a data set in terms of a relation or table made up of attributes or
columns of data. Information about the names of the relation, and the data types
of the attributes are stored in the ARFF header, with the examples or instances of
data being represented as rows of data in the body of the ARFF file. Attributes are
currently allowed to take on three different data types: integers, real or floating
point numbers and enumerations. With the numeric attributes an optional range
may be specified for range checking and Boolean attributes are treated as an
enumeration with two values. An example ARFF file is shown in Figure 2 below.

@relation golf

@attribute outlook { sunny, overcast, rain}
@attribute temperature real [0.0,100]
@attribute humidity real
@attribute windy { true, false}
@attribute class { Play, 'Dont Play' }

@data
% 14 instances follow
sunny, 85, 85, false, 'Dont Play'
sunny, 80, 90, true, 'Dont Play'
overcast, 83, 78, false, Play
rain, 70, 96, false, Play
rain, 68, 80, false, Play
rain, 65, 70, true, 'Dont Play'
overcast, 64, 65, true, Play
sunny, 72, 95, false, 'Dont Play'
sunny, 69, 70, false, Play
rain, 75, 80, false, Play
sunny, 75, 70, true, Play
overcast, 72, 90, true, Play
overcast, 81, 75, false, Play
rain, 71, 80, true, 'Dont Play'

Figure 2. Sample ARFF Data Set

A variety of tools exist for processing ARFF files, most of which are based around
an library of functions that allow ARFF files to be accessed from C programs.
Some of these tools include facilities for splitting data sets up into test and training
sets, filtering out attributes, providing summary information such as missing value

frequencies, and a range of tools for converting an ARFF file to the input format
required by a machine learning scheme.

As well, work is continuing on converting the data sets to be found in the Machine
Learning Database Repository at the University of California, Irvine [2] into
ARFF format so that a set of standard data sets are available for users.

Machine Learning Schemes

WEKA currently incorporates a variety of machine learning schemes from the areas
of unsupervised and unsupervised learning.

The unsupervised learning schemes include Classweb, a variant of the COBWEB
conceptual clustering system [3], and AutoClass [4], a Bayesian classifier. These
schemes are useful for determining classes in data sets where no classes have been
identified in advance. In the case of Classweb, the output is a concept hierarchy
with the most general concept or class at the top and the most specific concept at
the bottom. AutoClass induces a number of classes and instances are assigned
probabilities of membership in those classes.

C4.5 [5] , FOIL [6] , Induct [7] , IBL [8], Kstar and 1R [9] make up the set of
supervised learning schemes available to the user. All these schemes work with
data sets where a classification has already been defined for each instance and this
classification may have been either assigned by a human expert or from a scheme
such as AutoClass. In the case of C4.5 the output will be a decision tree, with the
root and sub-ordinate nodes representing tests on an attribute and leaf node
representing the classification. Induct, FOIL and 1R all produce rules that
describe a classification based on combinations of attribute tests. Kstar and IBL
schemes are instance-based learning schemes that use similarity measures
(Kolmogorov complexity in Kstar, Euclidean distance in IBL) to match a new
instance to the most similar instances already seen to get a classification.

Figure 3. Parameter Selection Dialog for Induct

Adding a new scheme to WEKA involves two tasks: writing a ARFF to input
format translator and writing a TCL/TK module to allow the users to configure the
scheme’s parameters. The translator is typically written using the C library
routines for manipulating ARFF files, though some schemes such as Induct and
Kstar expect input in ARFF format. The parameter module expects a set of known
command line values from WEKA , including data file names and attributes to use,
prompts the user to configure the scheme (Figure 3), and then runs the appropriate
WEKA modules for filtering and translating the data sets before actually running

the scheme itself. The output from the scheme is then either passed back to WEKA
for display, or processed further, say by the rule evaluator, before being passed
back. When the scheme parameter module has been created an entry about the
module is made in a WEKA library file that is consulted upon start up.

Output Processing

In the current version of WEKA any output that is created by a machine learning
scheme is passed back to WEKA in text form that is able to displayed in a
scrollable text viewer. This view allows text to be copied to other X applications,
printed or save to a file. If the user selected external evaluation in one of the
schemes that allows it then the output will be passed back as per normal but it will
also be converted into the WEKA rule format and evaluated using the WEKA
PROLOG rule evaluator, PREval. This output translation varies for the schemes.
In FOIL it is simply a matter of converting FOIL rules to PREval rules, and Induct
provides an option to produce its output directly in the appropriate format. In the
case of C4.5 both decision trees and rules have to be converted into PREval rules.
Figure 4 has an example decision tree converted to PREval format.

C4.5 Decision Tree 'outlook' = 'overcast': 'Play' (4.0)
'outlook' = 'sunny':
| 'humidity' <= 75 : 'Play' (2.0)
| 'humidity' > 75 : 'Dont Play' (3.0)
'outlook' = 'rain':
| 'windy' = 'true': 'Dont Play' (2.0)
| 'windy' = 'false': 'Play' (3.0)

WEKA Rules % Rule 1 - Length 1
'class'('Play') :- ('outlook'('overcast')).
% Rule 2 - Length 2
'class'('Play') :- ('humidity'(X_2), X_2 =< 75),

('outlook'('sunny')).
% Rule 3 - Length 2
'class'('Dont Play') :- ('humidity'(X_4), X_4 > 75),

('outlook'('sunny')).
% Rule 4 - Length 2
'class'('Dont Play') :- ('outlook'('rain')),

('windy'('true')).
% Rule 5 - Length 2
'class'('Play') :- ('outlook'('rain')),

('windy'('false')).

Figure 4. C4.5 Decision Tree and its Mapping in PREval Form

PREval itself takes an rule file and an ARFF file and evaluates how well the rules
cover the classifications in the data file. It provides figures for classification
accuracy, including percentages correctly classified, incorrectly classified,
classified by multiple rules and not classified at all, as well as confusion matrices
to show the distribution of miss-classifications and statistics on how each rule
does. Recent improvements to PREval include the addition of entropy measures
for calculating the complexity of rule sets and data sets with respect to a rule set.

3. Applications

The WEKA system has been applied successfully in a variety of areas including the
areas of agriculture, machine learning research and education.

Agricultural

The most significant project so far carried out using the WEKA workbench has
been the analysis of dairy herd data for the purposes of isolating rules that
describe factors that farmers might use for culling decisions [10]. This involved
working with a large data set of 19 103 records containing 705 attributes spread
across 10 herds and 6 years. About 40 new attributes were derived, including
attributes like age and production index relative to herd, and these were added to
the original data set which was then processed by various machine learning
schemes. The high level of missing values in the data adversely affected the
results, though experts consulted concurred that the rules produced appeared
plausible. A decision tree produced by C4.5 using 30% of the data as training
data and which classified with an accuracy of 95% is shown in Figure 5.

<= -10.8

Age

<= 2 > 2

Retained Payment BI
relative to herd

> -10.8

RetainedMilk Volume PI
relative to herd

> -33.93

Retained

<= -33.93

Culled

Figure 5. Cow Culling Decision Tree.

Other project in progress currently is the analysis of data pertaining to apple
bruising and the prediction of when a cow will be in heat. In the case of the
apples a variety of factors affect the size of an apple’s bruise during the storage
and packing stages of processing. Using these factors, which include apple
temperature and the height it may fall, a set of rules that describe what factors
results in larger bruises is being sought. A set of rules is also being sought with
respect to predicting when a cow will be in heat based upon information contained
in a herd milking database. This involves using information such as the volume of
milk produced, its conductivity and the order the cow came into the shed, as well
as recognizing temporal patterns in the data as the event in question is cyclical.

Research

The WEKA system has also proved to be a valuable in machine learning research.

Firstly it is useful in the area of supporting the development of new machine
learning algorithms from both the stand point of implementation and evaluation.
The presence of defined data set file formats and tools to access and manipulate
the contents of data sets reduces the effort required in getting data into a new
scheme. The presence of a common output format which can be evaluated using
the PREval tool also takes the effort of evaluation away from the development
process. Provided the new scheme supports the ARFF and PREval formats then is
reasonably simple to then include the scheme in the WEKA system and evaluate it
in the same context as the other machine learning schemes present. Machine
learning schemes that have recently been implemented this way include Kstar and
IB1 instance based learners, a new version of Induct that copes with both
symbolic and numeric attributes and produces ripple-down rules, and a version of
the simple 1-R rule inducer 1R.

Secondly WEKA allows the reproduction of previously published experiments for
the purpose of evaluation and verification. An example of this is the recent use of
WEKA to reproduce the results of simple 1-rule performance against C4.5. This
experiment which involved multiple runs across 16 data sets was able to be
performed relatively easily using the WEKA tools and was extended to include the
schemes FOIL, Induct, IB1 and Kstar.

Education

WEKA has also been used in a limited role to introduce students of an advanced
undergraduate course on machine learning to the subject and to the capabilities of
the different sorts of schemes.

4. Extensions

Current extensions on WEKA involve two main projects, an Attribute Editor and
an Experiment Editor, as well as continuing work on PREval.

The attribute editor is a tool designed to allow direct manipulation of ARFF files.
Much of the work done with data sets before applying machine learning schemes
to them is based on pre-processing the data in such a way as to create a data set
with the appropriate features in it. This often includes creating new attributes that
have been derived from other existing attributes (often either as concatenations of
attributes, attributes based on conditions, and attributes derived from formulae).
A prototype attribute editor has been developed that is accessible from WEKA and
allows simple operations on ARFF files to be performed.

The prototype experiment editor allows a user to set up an experiment based on a
selection of parameters including schemes, data sets, number of runs and training
percentages. Once these parameters have been set a script is built that combines
the WEKA tools appropriately and then the experiment is scheduled to run in the
background. When the experiment is complete the user is notified by email, and
results are recorded in the output file the user specified. Results records in this
output file are also processed to present summary information, and may be

merged with results records from previous experiments if required. Experiment
settings may also be saved or printed out by the user as required.

5. Summary

WEKA has proved itself to be a useful and even essential tool in the analysis of real
world data sets. It reduces the level of complexity involved in getting real world
data into a variety of machine learning schemes and evaluating the output of those
schemes. It has also provided a flexible aid for machine learning research and a
tool for introducing people to machine learning in an educational environment.

Acknowledgments

This work is supported by the New Zealand Foundation for Research, Science and
Technology. I would like to thank Professor Ian Witten and the other staff and
students in the Waikato machine learning group for their contributions to WEKA
and its associated research projects.

References

[1] Ousterhout, J. K. TCL and TK toolkit, Addison-Wesley, (1994).

[2] Murphy, P.M. and Aha, D.W. UCI repository of machine learning databases. For
information contact ml-repository@ics.uci.edu, (1994).

[3] Fisher, D. Knowledge Acquisition Via Incremental Conceptual Clustering. Machine
Learning, 2: 139-172, (1987).

[4] Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. AUTOCLASS: A
Bayesian classification system. Proceedings of the Fifth International Conference on
Machine Learning, Ann Arbor, MI: Morgan Kaufmann, 54-64, (1988).

[5] Quinlan, J.R. C4.5: Programs for Machine Learning, Morgan Kaufmann, (1992).

[6] Quinlan, J.R. Learning Logical Definitions from Relations. Machine Learning, 5: 239-266,
(1990).

[7] Gaines, B.R. The tradeoff between knowledge and data in knowledge acquisition in
knowledge discovery in databases, AAAI Press, 491-505, (1991).

[8] Aha, D.W. Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms. Int. J. Man-Machine Studies, 36: 267-287, (1992).

[9] Holte, R.C. Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets. Machine Learning, 11: 63-91, (1993).

[10] McQueen, R.J., Garner, S.R., Nevill-Manning, C.G. and Witten, I.H. Applying Machine
Learning to Agricultural Data. To be published in Computers and Electronics, Elsevier
Science Publishers, Amsterdam.

