
Integrated Process Management in a Grid
Checkpointing Environment
John Mehnert-Spahn∗, Michael Schoettner†, Christine Morin‡

∗†Department of Computer Science
Heinrich-Heine University

Duesseldorf, Germany
Email: John.Mehnert-Spahn, Michael.Schoettner@uni-duesseldorf.de

†INRIA Rennes-Bretagne Atlantique
Email: Christine.Morin@irisa.fr

Abstract—For many businesses, the ability to manage dynamic
distributed environments has become a key success factor. Joint
industry and/or academic cooperations exploit resources spawn-
ing multiple administrative domains with millions of nodes and
thousands of users. In order to run the overall business effectively
Grid technologies can be applied. The EU-funded XtreemOS
project implements a grid operating system transparently ex-
ploiting resources of virtual organizations through the standard
POSIX interface. The application execution management uses
checkpointing and restart for migration and fault tolerance.
Grid checkpointing and restart requires to save and restore jobs
executing in a distributed heterogenous grid environment. The
latter consists of grid nodes (PCs, clusters, and mobile devices)
using different system-specific checkpointers saving and restoring
application and kernel data structures for all processes executing
on a grid node. In this paper we shortly describe the XtreemOS
grid checkpointing architecture and how we bridge the gap
between the abstract grid and the system-specific checkpointers.
Then we discuss how we keep track of processes and how
different process grouping techniques are managed to ensure that
all processes are checkpointed. Finally, we present how cgroups
shortly introduced in Linux can be used to address resource
isolation issues during the restart.

I. INTRODUCTION

A grid encompasses a huge number of heterogeneous
computer nodes. Computing capacity dramatically increases
and is available throughout the world. However, the node
failure probability increases as well. Consequently, distributed
applications running on these nodes are affected and must be
kept from failing.
Fault tolerance can be achieved using the Backward Error
Recovery (BER) strategy. Generally an application is halted
and a checkpoint is taken (covering application and system
states) that is sufficient to restart the application after a
failure. In coordinated checkpointing a coordinator causes
all application processes to be stopped to form a consistent
checkpoint. Messages in transit have to be taken into
account as well. In indepedent checkpointing no coordination
overhead exists, application processes can be checkpointed
individually. However, at recovery a consistent checkpoint
of the application has to be computed by analyzing taken
checkpoints. If no such checkpoint can be determined the
application will be restarted from the initial state. This is
known as domino effect.

In grid checkpointing one has to pay attention to the
grid topology, semantic differences on various topology levels
and grid node characteristics. Saving a job that is spread over
multiple grid nodes requires to save states on all involved
grid nodes. The grid topology in connection with coordinated
checkpointed requires to adapt the checkpoint/restart sequence
into modular pieces for checkpointing: stop all job units,
checkpoint all job units and resume all job units and for
restart: rebuild all job units and resume all job units. The
next phase of these sequences can begin just after all job
units have finished the current one for consistency reasons.
Furthermore existing checkpointers that are bound to the
native OS (executed on a cluster or single PC) are not aware
of the grid topology and semantics of an upper logical (grid)
level, the distributed grid OS. The most significant implication
is that existing checkpointers can not save states that belong
to a distributed grid OS.
Another major aspect is that existing checkpointers are
not aware of one application part residing on another
grid node then themselves. The methodology to assemble
processes into one logical unit and distribute them over
many grid nodes is not known to existing checkpointers.
Consequently a checkpointer on one grid node is not aware
of other checkpointers being involved. Thus, an upper
grid checkpointer must address multiple checkpointers on
multiple grid nodes. They have to be made working together,
especially in terms of consistently saving states of network
connections spawning multiple grid nodes, [1]. Depending on
the availability of checkpointers on grid nodes, checkpointers
of the same or of diverse types must be conducted. Thus, grid
checkpointing must provide an infrastructure to take diverse
checkpointers into account.
Snapshots of grid node states shall be taken in an application
transparent manner. A grid’s aim towards fault tolerance is
to support unmodified and legacy applications to seamlessly
switch from PCs or clusters to the grid.
Another requirement is that all process events must be
known. Otherwise the grid checkpointer may fail to take a
consistent checkpoint image. For example the SSi grid node
type requires additional efforts such that all process events



can be tracked.

Various grid environments exist. The vast majority is
middle ware related. Generally middle ware packages come
up as bundle of services, distributed and non-distributed,
offering functionality that merely can be realised in user
space. Since the underlying operating system keeps structures
that represent processes, network connections, memory
etc. only access to the kernel allows saving processes at
checkpoint time and rebuilding them after a failure. Thus,
access to kernel checkpoint/restart functionality is requried
to achieve comprehensive fault tolerance. A middle ware
approach can not meet this requirement. Thus, once failed
applications can only be restarted from an initial state.

The XtreemOS project (supported by the European
Commision’s) aims at buidling a Linux-based operating
system to support virtual organizations (VOS) in next-
generation grids. In XtreemOS heterogeneous grid nodes are
single PC, SSI cluster and mobile device. Managing VOs on
these node types requires appropriate mechanims for load
balancing and fault tolerance. Both can be addressed by
checkpoint and restart.
In XtreemOS each grid node provides a common set of
services. These services interact with services on the same
and on remote grid nodes - distributed job and resource
management will be achieved. These services abstract from
the underlying grid node specific characteristics. Regarding
fault tolerance kernel checkpointer for SSI and singlePC grid
node types will be taken into account. Interfacing kernel
functionality from user space services bears challenges
referring semantic differences that must be mapped.
Generally one can classify SSI specific and all grid node
type specific challenges that influence consistent grid
checkpointing. Both will be referred to this paper.
The paper is organised as follows: ...

II. RELATED WORK

CoreGRID [2][3] aims at defining a high-level
checkpoint/restart grid service to locate it among other
grid services. In CoreGRIDs grid checkpointing architecture
(GCA) this grid service indirectly addresses a so called Core
Service. Bridging the high level grid service with the Core
Service has been realised by a translation service that exists
per Core Service. In former times existing and emerging
kernel checkpointer packages and library checkpointers were
used as the Core Service for saving and recovering jobs at
kernel level. The kernel checkpointers checkpointability of an
applications resources has been taken into account.
Resource conflicts at restart in connection with existing
kernel checkpointers seem to be the reason for focussing on
another approach - using Virtual Machine Managers (VMM).
A VMM can provide and manage Virtual Machines (VM). A
VMM dumps a VMs state that hosts a users jobs to persistent
storage and is able to resume it. The GCA’s Core service has
been replaced by VMM. According to that per VMM there

is a translation service. Within a separate Virtual Machnine
per job resources that were valid before checkpointing can be
assigned easily to a restarted job.
The Open Grid Forum (OGF) follows a different approach
as CoreGRID. Basically, OGF’s Grid Checkpoint and
Recovery (GridCPR) [4],[5] defines new grid services for
checkpoint and restart and a dedicated user level API. Future
applications shall take this API into account to allow jobs
being checkpointed and recovered in the grid. XtreemOS is
member of the OGF and in deep contact with its people.
The HPC4U project [6] that aims at enabling applications
to be migrated from a local to a remote cluster in case
of a failure. This happens in a transparent manner by
using virtualisation capabilities to be integrated in mainline
Linux kernel. The so called Ressource Management System
archestrates subsystems to provide requested level of fault
tolerance. The checkpoint subsystem interacts with the MPI
fault tolerance component (Scali MPI Connect of Scali AS)
to support fault tolerance for MPI applications.
Since our approach is based on existing kernel checkpointers
a survey of them will be given. Tools with diverse capabilites
to checkpoint/restart software resources (process hierarchy,
multiple threads, sockets, IPC, etc.) are available at user
and kernel level as well as a combination of both levels
(hybrid checkpointers). However, only kernel checkpointers
comprehensively enable to save and rebuild kernel states
and thus, transparently save and restore an application. An
important requirement in the context of checkpoint/restart
is to ensure all application resources such as PIDs, that
were valid before checkpointing, are available at restart.
Thus, process management, especially process isolation,
reservation and virtualisation, become a significant part of
(grid) checkpointing.
Zap [7] is a system that provides transparent migration
for several types of applications. It groups processes into
pods. A pods processes are decoupled from host operating
dependencies by an underlying virtualization layer. Thus, pods
can seamlessly be migrated, which includes checkpointing
and restart, between nodes. Virtualization is achieved by
using namespaces, virtual identifiers and intercepting system
calls. The mapping of real to virtual identifiers and vice versa
is realised via hashtables. Pods are not part of native Linux.
Cruz [8] is a distributed checkpoint-restart mechanism based
on ZAP. It allows checkpointing and restarting of resources
such as transient socket buffer states, socket options, TCP
state and by adding migratable IP and MAC addresses.
As well as ZAP, Berkely Lab’s Linux Checkpoint/Restart
(BLCR) [9] is a checkpoint/restart implementation at kernel
level based on loadable kernel modules. It can be used as
a component to save and rebuild parallel jobs running on
multiple nodes. LAM/MPI has been arranged to comply with
BLCR [10]. Furthermore BLCR has been integrated into
OpenMPI and SSS. BLCR does not take operating system
resources virtualisation e.g. by using containers into account.
CHeckPOinting for linuX (CHPOX) [11] is implemented
as a kernel module. It allows to dump linked libraries and



all process children into a checkpoit image. No process
management as described above is realised.
In Ckpt [12] process checkpointing is performed in user
space. It is implemented as a set of libraries and programs.
Programs need not to be relinked, this tool can be injected
inot running programs. No information is provided regarding
process isolation and reservation.
Condors [13] checkpointing mechanisms are based on ckpt.
Condor enables to checkpoint and restart on a different
machine since the process state can be written into a socket,
thus is independent of a distributed file system. Again, no
details can be given how to deal in case of process isolation
and upcoming resource conflicts when restarting.

Adaptive grid checkpointing targets to efficiently checkpoint
a grid application by taking several aspects into account,
e.g. a grids dynamicity, checkpointing overhead, application
behaviour. The central challenge is to determine when to
take what kind of checkpoint. Beside strategies that figure
out a appropriate checkpointing interval such as Last Failure
Dependent Checkpointing (LFDC), Mean Failure Dependent
Checkpointing (MFDC) there are strategies that decide when
to replicate applications and those that combine replication
with checkpointing [14]. In the context of adaptive grid
checkpointing one of our future research activities deals with
investigating when it is best to use sequential and incremental
checkpointing.

III. GRID CHECKPOINTING ARCHITECTURE

As described before checkpointing and restart of a job is
a very important facility for grid job-unit migration and fault
tolerance. The major challenges in the grid for checkpointing
and restart are heterogeneity and scalability. The latter affects
checkpointing strategies, e.g. coordinated or independent and
how they scale with the number of nodes. For example, the
coordination of thousand of distributed grid nodes may cost
considerable time. Scalability is addressed by the XtreemOS
operating system but is beyond the scope of this paper.
We focus here on checkpointing and restart in a heteroge-
neous grid environment. This includes different hardware,
software, and different checkpointing implementations. The
latter are always customized for a specific platform as they
need to save and restore kernel data structures. Furthermore,
there are applications/libraries (e.g. MPI) linked against a
specific checkpointing implementation with specific features.
BCLR for example allows applications to register for being
informed about checkpoint/restart events. Thus, applications
can save/restore additional states under their own control.
Obviously, a grid checkpointing architecture cannot ignore all
these existing implementations and therefore we have designed
an architecture bringing together existing code.
The grid checkpointing architecture is integrated within the
XtreemOS Application Execution Management (AEM) [15],
[16] and [17]. AEM is responsible for executing, controlling,
and monitoring jobs and resources. In the grid a job, e.g. a
business, scientific or interactive application, may be spread

Fig. 1. Grid checkpointing architecture

over a huge number of grid nodes (PCs, clusters, and mobile
devices). Checkpointing and restarting such a job requires
saving/restoring the state of all processes running on all grid
nodes. The basic building blocks of our grid checkpointing
architecture are shown in 1.
The top-level AEM service is the distributed job checkpointer

running on all grid nodes. It keeps track of all grid nodes
running job units of a job. The job checkpointer extends the job
manager by providing checkpointing and restart functionality
for jobs. Using the job manager the job checkpointer can
localize and address all job units to checkpoint and restart
them. Below the job checkpointer resides the job unit check-
pointer. A job unit checkpointer is a local service running
within AEM. It is an extension of the execution manager which
controls the underlying processes on a grid node associated
with a job unit. The job unit checkpointer checkpoints and
restarts processes based on the execution manager’s process
knowledge. The job unit checkpointer addresses one out of
potentially several underlying kernel checkpointers in order
to checkpoint or restart processes belonging to a job unit.
A kernel checkpointer saves/restores kernel data structures
and is customized for a certain operating system version and
platform. To address multiple kernel checkpointers a common
kernel checkpointer API together with translation services (e.g.
for process grouping) is used by the job unit checkpointer.
The XtreemOS implementation uses a BCLR- (for PCs) and
a Kerrighed (for SSI clusters) checkpointing implementation.
Below we discuss selected aspects of our components. When
talking about checkpointer we always have in mind the restart
functionality, too.

A. Job Checkpointer

As the job checkpointer and the job unit checkpointer
work on different levels - job unit and process, scalability
is improved when synchronizing processes. Each job unit
checkpointer synchronizes processes of one job unit on one
grid node (may be a cluster), while a job checkpointer synchro-



nizes job units of one job. This hierarchical approach reduces
synchronization overhead during coordinated checkpointing
and restart.
The job checkpointer is also involved during job submission
and identifies suitable kernel checkpointers with specific prop-
erties if specified by the user. This is done through an own
XML-based checkpointing properties file that is referenced
from the job description language (JSDL) file used by AEM.
All existing kernel checkpointers vary in their capabilities
to save and rebuild resources such as multiple processes,
multiple threads, sockets, shared segments etc. A suitable
kernel checkpointer has to be identified for a given job.
Otherwise a given job may not be saved or rebuilded correctly
and the restart could fail. A similar approach was proposed by
the CoreGRID checkpointing architecture [2], [3].
Additionally the job checkpointer performs checkpoint file
management. It manages directories and files used for check-
pointing. A garbage collection mechanisms controls disk space
needed for checkpoint files (may be a huge amount of mem-
ory). The user may influence the garbage collector in order
to keep checkpoints, e.g. for debugging purposes. Disk space
required for checkpoint files may be limited for the user and
may be specific before job submission. If however, AEM uses
checkpointing and restart for migration the system itself has
to provide the needed disk space; this will not be accounted
to the user.
Since checkpoints allow to rebuild an other users job state
(including all process states and kernel data structures) check-
points contain sensitive data that need to be protected. There-
fore, the job checkpointer incorporates authentication and
authorisation (optionally en/decryption) mechanisms provided
by XtreemOS [18].
To minimize the overhead during checkpointing or restarting
an appropriate checkpointing strategy has to be selected. Co-
ordinated checkpointing causes significant coordination over-
head especially, when a lot of processes need to be coordinated
[19]. On the other hand the last set of checkpoints always
form a consistent checkpoint and restart. Thus, it is very fast.
Independent checkpointing strategies avoid this coordination
overhead but a consistent set of checkpoints need to be calcu-
lated during restart time which can be time consuming. Due
to the domino effect the job can fall back to the initial state.
Message logging is known to solve the domino effect allowing
to recover single nodes but cause considerable overhead during
fault-free execution. We plan to implement an adaptive check-
pointing approach using monitoring information, e.g. fault
frequency, memory write behaviours to dynamically adapt to
the best checkpointing strategy. Similar approaches have been
described in the literature [20]. . Currently, we are implement-
ing the adaptive control of the checkpointing frequency that is
defined either statically by the user or dynamically depending
on the monitored fault frequency. Furthermore, the job/user
can explicitly force checkpoints at critical points of the job.
Another parameter we are currently studying is when to use
incremental checkpointing. The latter comes with some cost,
e.g. monitoring memory writes, book-keeping of memory page

versions, and its overhead costs depend on how many pages
have been modified since the last checkpoint. But often a huge
file is only modified at some small points and it is much
cheaper to save only these modifications. As written above
adaptive grid checkpointing is on our roadmap but not fully
implemented yet.

B. Job Unit Checkpointer

The job unit checkpointer provides an abstraction layer, the
common kernel checkpointer API, for the job checkpointer to
address several underlying, node bound, kernel checkpointers.
This API features an interface for checkpoint and restart
sequences for coordinated and independent checkpointing and
callback management.

C. Common Kernel Checkpointer API

For each kernel checkpointer there is a specific transla-
tion library CRTransLib that implements the common kernel
checkpointer API according to the semantic of one kernel
checkpointer. This library has to be implemented for each
kernel checkpointer that should be used within the XtreemOS
grid checkpointing facility. The CRTransLib bridges AEM
and kernel checkpointer specific semantics such as different
process control groups techniques described in section IV
and V. Furthermore, it detects job dependencies and together
with our cascading synchronization checkpoints and restarts
dependend jobs V.

IV. PROCESS EVENT TRACKING

Single System Image (SSI) clusters give the illusion of
one single powerful grid node. Thus, it is natural to execute
AEM only on one master node of such a SSI cluster in
order to keep the SSI illusion. Of course, for fault tolerance
reasons AEM is executed on some more cluster nodes that
take over the masters’ role in case the master fails. For grid
checkpointing and restart it is essential to know anytime all
processes belonging to a job unit executing on a SSI cluster.
As a consequence AEM must be able to detect relevant process
events such as process creation and process termination within
the cluster.
Process event detection is realised within XtreemOS by using
Linux native process event connectors (PEC) [21], a kernel-
user-kernel space communication system based on netlink
sockets. A user-space application can register itself for being
notified whenever certain kernel events occur. For standalone
PCs this is not difficult but in a SSI cluster two challenges
must be addressed: process creation on slave nodes and process
migration within the cluster. As AEM runs on the master node
only it is not informed about process events occuring on slave
nodes.
Furthermore, process events occuring during process migration
must be handled carefully, depending on the migration imple-
mentation. LinuxSSI uses do fork and exit system functions
within its process migration implementation. A migration
scenario is presented in figure 2. AEM is executing on the
master node. Process Pa is initially forked by AEM on the



Fig. 2. SSI process migration

master node and is thus visible for AEM. Afterwards, the
system decides to migrate Pa to the slave node within the SSI
cluster. The migration module of LinuxSSI calls exit for Pa on
the master node which will be detected by AEM. Now Pa does
not longer exist for AEM. Shortly later the slave node will call
do fork in the Linux kernel to recreate Pa using the transferred
process image [22]. Unfortunately, the process creation event
on the slave node will not be detected by AEM because PEC
netlink socket messages are not forwarded to the master node.
Even if such events would be forwarded there would be a short
time interval where Pa vanishes before appearing again. If a
grid checkpointer would fire a checkpoint within this time
interval this process could be missed. Obviously, for AEM
only the initial fork and the real termination (not related to
migration) is of interest with respect to checkpointing and
restart. Of course for global job and resource management
other events are of interest, too. Subsequently, we discuss
different solutions including the one we have implemented.
LinuxSSI shares resources and meta data through the Ker-
righed Distributed Data Management (KDDM). Process infor-
mation is available on each cluster node by the pid KDDM set
(a set hosts shared objects of the same type). Pid KDDM set
objects are created on the node creating a new process. Thus,
the master node could periodically poll for new objects that
would be retrieved automatically over the network if new ones
appear. Of course polling is a bad approach wasting CPU time
and the event notification is delayed depending on the polling
freqeuency. Therefore, it would be better to enforce that all
pid KDDM set objects are allocated on the master node based
on the centralized manager algorithm [23]. Unfortunately, this
would slow-down process creation on all slave nodes and
would require complex kernel modifications.
An alternative would be to modify the standard Linux connec-
tors that inform user applications that have registered before
about kernel events. Several applications may register for
the same event but events cannot be distributed over the
network. In order to allow remote applications to register
for kernel events on other machines another communication
protocol, other than netlink (PF NETLINK), would be needed.
Although this would be possible we refrain from the necessary
kernel-code modifications because it is difficult to get kernel
changes accepted and integrated in the Linux kernel main-

Fig. 3. User-level approach: collector and delegators

stream.
Therefore, we have decided to develop a user-level approach
using two client applications: collector (running on the master
node, only) and delegator (running on the master and on all
slave nodes), see figure 3. The delegators register at the kernel
connector for process creation and termination events (and
some more events not relevant for checkpointing). All these
events are delegated to the collector (known by each delegator)
which notifies AEM. In order to use PEC each slave node must
be properly configured in advance. The delegator on each slave
node sets up a netlink connection to the local kernel connector.
Furthermore, it sets up a TCP connection to the collector.
The IP address and port number of the collector application
will be passed as arguments to each delegator. Every time the
delegator receives a local connector event it propagates it via
the TCP connection to the collector on the master node. The
collector in turn receives the delegator message and passes it
to the AEM ExecMng.
As decribed before special care is needed during migration as
AEM is only interested in process creation and termination
and not in intermmediate forks and exits used for migration.
This is achieved by masking the migration related fork and
exit events on each node.
Our implementation is able to keep track of all processes
belonging to a job unit with just minimal LinuxSSI kernel
modifications to mask migration related fork and exit events.

V. PROCESS GROUPING

During a coordinated checkpoint or a restart (independent
of the checkpointing strategy used) all processes belonging to
a job need to be checkpointed or restarted. AEM references
processes contained in a job unit (having parent-child rela-
tionship) by the root job-unit process. In section IV we have
described how we keep track of child process creation and
termination within a SSI cluster. Therewith, the root process
and all child processes of the job will be checkpointed or
restarted.
The root process of a job is created by AEM using the
execvp system call. According to the execvp semantic open



file descriptors (socket relation) will not be closed. Thus, the
root process of the job sees part of the AEM process context.
Checkpointing or restarting the job would result in saving
these descriptors and restoring them respectively. Especially,
the restart could cause AEM failures. Thus, we close all file
descriptors of the AEM process directly after the root process
creation of the job.

A. Hetereogenous kernel checkpointers

Passing a job unit root process to the underlying kernel
checkpointer to reference a job units processes however may
cause undefined behaviour. Since the kernel checkpointer
is unaware of the job unit semantic it may checkpoint too
many or not all processes. In the worst case the root process
exits and its children are reparented to init, in that case the
kernel checkpointer would not save any process. One has
to take into account that different kernel checkpointer may
use a different process grouping concept to define the set of
processes belonging together.
In native Unix there are concepts to group processes into
process groups (identified by a process group ID) and sessions
(identified by a session ID). A session consists of at least
one process group. One process is the session leader and the
leader of one process group at the same time. BLCR can use
a Unix session (identified by a session identifier, SID) and a
Unix process group (identified by a process group identifier,
PGID) to reference one or multiple processes [24], [25], [26].
BLCR can also be applied to a process tree consisting of a
process and all its non-orphaned descendants.
The LinuxSSI checkpointer [22] uses a specific frontier
calculation algorithm [27] to determine a process
group (referenced by application id, APPID) to be
checkpointed/restarted on demand taking into account
indirect process dependencies. The recursive transitive closure
calculation stops each time it reaches a process that has
not set the CHECKPOINTABLE cabability flag. The latter
indicates if a process can be checkpointed or not.
Of course there are further state-of-the art kernel checkpointers
like Cruz [8], Zap [], Condor [13] etc. that use similar or
different grouping techniques. Of course future emergin kernel
checkpointers may come with different process grouping
concepts that do not correspond to the one used so far.
Thus, AEM cannot be hardcoded against one specific process
grouping mechanism and within a grid environment we do
not want to restrict our architecture to a specific kernel
checkpointer. Furthermore, independent of the used process
grouping scheme, AEM itself should be kept out of process
groups that constitute a job unit in order to avoid interferences
(e.g. like described above).
To avoid checkpointing/restarting to much or to less processes
we need to bridge the gap between grid jobs and specific
process grouping solutions. This translation service is located
within the CRTranslib tailor-made for each specific kernel
checkpointer, see section 3. In the following subsection we
discuss our solution for resource isolation that solves also
the problem of how to reference process groups in a abstract

way.

B. Lightweight virtualization for job-unit isolation

There may be multiple job units running on a single grid
node (PC, cluster, mobile device) that need to be isolated to
avoid resource conflicts, especially during process restarts. If
job A is about to be restarted requiring process Pa (PID=54)
to be restarted it may happen that a process of job B on the
same node forks a new process getting the just freed PID=54
assigned. As a consequence the restart of job A will fail
because Pa cannot associated with its previous PID.
A straigtforward solution is to use virtual machine technology
running each job unit on a grid node in its own virtual
machine. Although there are applications where this approach
makes sense it comes with considerable resource costs during
fault-free execution (here we would use it for resource ID
isolation, only).
Therefore, we have decided to use the new lightweight
virtualization (LWV) [28] coming with Linux (2.6.24). LWV
introduces control groups (cgroups) (formerly known as task
containers). Cgroups are a generic framework that allows
to define hierarchical groups of processes. Each cgroup
can be associated with one or more control subsystems,
e.g. namespaces, resource management. Namespaces tied
to cgroups can be used to isolate processes of one cgroup
from those in a different cgroup. Tasks can be inserted into
cgroups from user space by using the cgroup file system.
Isolation is realized by virtualizing the underlying kernel
resource instead of providing a full-size virtual-machine. So
far we have shown how cgroups help to isolate processes
(ipc, network etc. to be supported soon) in order to allow a
correct restart.
Another important feature of cgroups is that they can
help bridging the gap between AEM’s and specific kernel
checkpointers process grouping mechanisms in a kernel
checkpointer transparent way - without the need to hard-code
AEM against one specific kernel checkpointer, see section
V-A.
AEM sets up a cgroup per job unit and takes care that all
job unit related processes are contained in the same cgroup
accordingly. When AEM initiates checkpointing it passes the
cgroup name to the underlying kernel checkpointer. Before
this call reaches the real kernel checkpointer the intermediate
CRTransLib checks if the provided cgroup name can be
translated into a specific process grouping ID the underlying
kernel checkpointer uses for referencing processes. If a
process grouping ID has been found that exactly references
all, not more and not less processes, in the cgroup contained
processes, the job unit can be checkpointed without any
further restrictions.
However, it is the CRTransLib’s responsibility to intercept
relevant system calls (e.g. setsid and setgrp) used by the job
unit to be checkpointed with the library associated kernel
checkpointer. Due to a job unit’s semantic the session (SID)
or process group (PGID) of a subset of processes may be



Fig. 4. Job dependency scenarios

changed by calling setsid or setpgrp. This can lead to having
multiple sessions (SID) or process groups (PGID). If thenall
processes in the cgroup cannot be referenced using a single ID
the associated kernel checkpointer cannot checkpoint/restart
a job unit.
The basic challenge is to consistently save and rebuild shared
structs used by multiple process groups. Shared structs refer
to C structures that represent shared software resources
in the kernel such as file descriptors, memory segments,
semaphores, etc. We plan to establish a book keeping for
identifying process groups that need to be checkpointed and
rebuilded serially. The method to save is then: synchronize all
processes, checkpoint serially all process groups via multiple
calls to a kernel checkpointer passing a different process
group identifier each time, resume all process groups.
Shared resources need special handling to avoid unncessary
overhead, e.g. for huge shared files, and to avoid deadlocks,
e.g. when saving/restoring shared structures multiple times.

C. Cascading synchronization supporting job dependencies

Job dependencies occur in workflow systems if processes
of a jobA and processes of another job job B share a common
resource, e.g. shared file, SYSV IPC segment segment, or are
connected by sockets. Obviously, it is dangerous to check-
point/restart only one of these dependent jobs. To avoid incon-
sistencies and failures job dependencies need to be detected
and taken into account by AEM during checkpoint/restart op-
erations. Fortunately, the kernel checkpointers have an explicit
view on kernel data-structures representing shared resources
and know what processes are using which resources. Any
dependency detection must be sent to AEM.
Figure 4 shows several possible process dependencies scenar-
ios. Scenario 1 shows inner job unit dependencies. In scenario
2 job unit X of jobA and job unit Y of jobB reside on the
same grid node both sharing a file. In case of a restart the file
will be reset what requires to restart both affected jobs: jobA
and jobB. Scenario 3 and 4 demonstrate that inner and intra
job dependencies will affect more than one grid nodes when

synchronizing the units.

Fig. 5. Cascade synchronisation

Cascading synchronization is a generic mechanism to identify
dependent jobs (units) based on dependent processes detected
by the kernel checkpointers in order to consistently check-
point/restart them.
Figure 5 shows the steps of cascade synchronization. A kernel
checkpointer receives a cgroup name, that encapsulate job
(unit) As processes, from AEM in order to checkpoint them.
If the kernel checkpointer detects dependent processes not
sharing the same cgroup (and thus the job unit / job), it informs
AEM. After receiving the cgroup name of the local dependent
job unit B1 AEM identifies the dependent job and initiates the
synchronization of all (local and remote) job units B1 and B2

belonging to job B (see scenarios 3 and 4) of this dependent
job. This procedure is finished until no dependency needs to
be resolved anymore. Afterwards a snapshot can be taken.
At restart all dependent job units must be identified. Thus, it
requires to save a dependency graph of the involved jobs at
checkpoint time.

VI. CONCLUSION

Grid checkpointing and restart is a mandatory facility for
a grid operating system like XtreemOS. It is required for
migration and fault tolerance. The first is required by the grid-
wide resource scheduler which decides when a job or a job
unit needs to be migrated to another grid node. The latter
is essential to cope with the increasing node/process failure
propability in a dynamic grid environment.
In this paper we have briefly described the XtreemOS grid
checkpointing architecture, especially how different kernel
checkpointers for different platforms or even on the same
grid node can be integrated. A common kernel checkpointer
API is necessary to manage all these different existing check-
pointer implementations in an uniform fashion. Customized
translation services must be provided for each specific kernel
checkpointer. The XtreemOS project provides two: BCLR for
PCs and Kerrighed for SSI clusters.
Beyond many challenges we have described in this paper our
approach to keep track of all processes belonging to a job
/ job unit. Especially, for SSI clusters this is not a trivial
task as these grid nodes appear as one powerful machine
coming with their own cluster operating system transparently
managing the cluster nodes. In order to keep track of all
processes belonging to a job unit independent on which cluster
node they are created we have implemented a process event



propagation system based on the process event connectors. The
latter have been extended to forward events over the network
to the master node where AEM is running. The proposed user-
level approach avoids complex kernel modifications.
Furthermore, we have discussed process grouping techniques
and how they can be integrated to enable the grid checkpointer
to checkpoint all processes belonging to a job and not more
or less. Our implementation is based on Linux cgroups, a
recently in the Linux kernel introduced lightweight virtual-
ization technology. Linux cgroups solve restart issues related
to resource conflicts, e.g. PIDs that are no longer available
and at the same time they allow a mapping of cgroup names
to indivudual process grouping identifiers, depending on the
underlying kernel checkpointer interface.
The source code of XtreemOS has just been released. The
grid checkpointing and restart facility will be released for the
public soon.
Beyond process tracking and grouping discussed in this paper
there are a lot of further challenges to be solved, e.g. further
kernel checkpointser need to be studied, communication chan-
nels between nodes running different kernel checkpointers,
adaptive checkpointing strategies, etc. We are aware that the
Linux kernel community is currently discussing about a poten-
tial native checkpoint and restart functionality to be integrated
into the Linux kernel. If such a facility will be available it
will simplify things and we will immediately integrate it into
our architecture. Nevertheless, there are a lot of applications
and libraries linked against specific kernel checkpointers with
specific capabilities requiring a flexible grid checkpointing
architecture like the one presented in this paper.

ACKNOWLEDGMENT

The authors would like to thank Marko Novak (XLABS,
Slowenia) for working together in the context of LinuxSSI
process tracking.

REFERENCES

[1] K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol. 3,
no. 1, pp. 63–75, 1985.

[2] G. Jankowski, R. Januszewski, R. Mikolajczak, and J. Kovacs,
“Grid checkpointing architecture - a revised proposal,”
Institute on Grid Information, Resource and Workflow
Monitoring Systems, CoreGRID - Network of Excellence,
Tech. Rep. TR-0036, May 2006. [Online]. Available:
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-
0036.pdf

[3] G. Jankowski, R. Januszewski, R. Mikolajczak, M. Stroinski, J. Kovacs,
and A. Kertesz, “Grid checkpointing architecture - integration of low-
level checkpointing capabilites with grid,” Institute on Grid Information,
Resource and Workflow Monitoring Services, CoreGRID - Network
of Excellence, Tech. Rep. TR-0075, May 2007. [Online]. Available:
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-
0075.pdf

[4] N. Stone, D. Simmel, and T. Kilemann, “An architecture for grid
checkpointing and recovery (gridcpr) services and a gridcpr application
programming interface,” Sept 2005.

[5] P. Stodgehill, “Use cases for grid checkpoint recovery,” 2004.
[6] G. Schneider, H. Kohmann, and H. Bugge, “Fault tolerant checkpointing

solution for clusters and grid systems,” 2007-08.
[7] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and im-

plementation of zap: a system for migrating computing environments,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 361–376, 2002.

[8] G. Janakiraman, J. Subhraveti, and D. Turner, “Cruz: Application-
transparent distributed checkpoint-restart on standard operating sys-
tems,” in 2005 International Conference on Dependable Systems and
Networks (DSN’05), 2005, pp. 260–269.

[9] J. Duell, “The design and implementation of berkeley labs linux check-
point/restart,” Ernest Orlando Lawrence Berkeley NationalLaboratory,
Berkeley, CA (US), Tech. Rep. LBNL–54941, 2005.

[10] S. Sankaran, J. M. Squyres, B. Barrett, and A. L. adn J. Duell et al, “The
lam/mpi checkpoint/restart framework: System initiated checkpointing,”
2003.

[11] Checkpointing for linux. [Online]. Available:
http://www.cluster.kiev.ua/eng/?chpx

[12] ckpt. [Online]. Available: http://pages.cs.wisc.edu/ zandy/ckpt/
[13] Condor. [Online]. Available: http://www.cs.wisc.edu/condor/
[14] M. Chtepen, F. Claeys, B. Dhoedt, F. DeTurck, P. Vanrolleghem, and

P. Demeester, “Providing fault-tolerance in unreliable grid systems
through adaptive checkpointing and replication,” 2007.

[15] J. Corbalan, G. Pipan, and T. Cortes, “Requirements and specification
of xtreemos services for job execution management d3.3.1,” 2006.

[16] ——, “Design of the architecure for application execution management
in xtreemos d3.3.2,” 2007.

[17] J. Corbalan, G. Pipan, T. Cortes, M. Artac, A. Cernivec, E. Milosev, and
U. Jovanovic, “Basic services for application submission, control and
checkpointing d3.3.3 - basic service for resource selection, allocation
and monitoring d3.3.4,” 2007.

[18] A. Quin, H. Yu, Y. Jegou, and L. P. Prieto, “Design and implementation
of node-level vo support d2.1.2,” 2007.

[19] D. Buntinas, C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita,
E. Rodriguez, and F. Cappello.

[20]
[21] Process events connector. [Online]. Available:

http://lwn.net/Articles/157150/
[22] J. Mehnert-Spahn and M. Schoettner, “Design and implementation of

basic checkpoint/restart mechanisms in linuxssi d2.2.3,” 2007.
[23] K. Li and P. Hudak, “Memory coherence in shared virtual memory

systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359, 1989.
[24] P. L. Métayer, “Design and implementation of basic checkpoint/restart

mechanisms in linux d2.1.3,” 2007.
[25] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr)

for linux clusters,” in In Proceedings of SciDAC 2006, June 2006.
[26] J. Duell, P. Hargrove, and E. Roman, “The design and implementation

of berkeley lab’s linux checkpoint/restart,” Berkeley Lab Technical
Report, Tech. Rep. LBNL-54941, 2003. [Online]. Available:
http://ftg.lbl.gov/CheckpointRestart/CheckpointPapers.shtml

[27] T. M.-P. P. A. C. in Kerrighed, “M. fertre and c. morin,” November
2005.

[28] Notes from container. [Online]. Available:
http://lwn.net/Articles/256389/


