
24

Runtime Optimization of System Utility with Variable Hardware

PAUL MARTIN, Electrical Engineering Department, University of California, Los Angeles
LUCAS WANNER, Computer Science Department, University of California, Los Angeles
MANI SRIVASTAVA, Electrical Engineering Department, University of California, Los Angeles

Increasing hardware variability in newer integrated circuit fabrication technologies has caused correspond-
ing power variations on a large scale. These variations are particularly exaggerated for idle power consump-
tion, motivating the need to mitigate the effects of variability in systems whose operation is dominated by long
idle states with periodic active states. In systems where computation is severely limited by anemic energy
reserves and where a long overall system lifetime is desired, maximizing the quality of a given application
subject to these constraints is both challenging and an important step toward achieving high-quality deploy-
ments. This work describes VaRTOS, an architecture and corresponding set of operating system abstractions
that provide explicit treatment of both idle and active power variations for tasks running in real-time op-
erating systems. Tasks in VaRTOS express elasticity by exposing individual knobs—shared variables that
the operating system can tune to adjust task quality and, correspondingly, task power, maximizing applica-
tion utility both on a per-task and on a system-wide basis. We provide results regarding online learning of
instance-specific sleep power, active power, and task-level power expenditure on simulated hardware with
demonstrated effects for several prototypical applications. Our results on networked sensing applications,
which are representative of a broader category of applications that VaRTOS targets, show that VaRTOS
can reduce variability-induced energy expenditure errors from over 70% in many cases to under 2% in most
cases and under 5% in the worst case.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys-
tems and embedded systems; D.4.1 [Operating Systems]: Process Management—Threads; C.3 [Special-
purpose and Application-Based Systems]—Real-time and embedded systems

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Variability, embedded operating systems, power consumption

ACM Reference Format:
Paul Martin, Lucas Wanner, and Mani Srivastava. 2015. Runtime optimization of system utility with variable
hardware. ACM Trans. Embedd. Comput. Syst. 14, 2, Article 24 (February 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2656338

1. INTRODUCTION

The emergence of low-power wireless systems in past decades was followed by attempts
at optimizing energy efficiency and power consumption to facilitate long lifetime sens-
ing deployments. In recent years, newer integrated circuit fabrication technologies
have introduced several additional variables into the energy management game; as

This work is supported in part by the NSF under grants CCF-1029030, CNS-0905580, CNS-0910706, and
CNS-1143667.
Authors’ addresses: P. Martin, Electrical Engineering Department, 420 Westwood Plaza, 56-125KK EEIV,
Los Angeles, CA 90095; email: pdmartin@ucla.edu; L. Wanner, Computer Science Department; email:
wanner@ucla.edu; M. Srivastava, Electrical Engineering Department; email: mbs@ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1539-9087/2015/02-ART24 $15.00

DOI: http://dx.doi.org/10.1145/2656338

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

http://dx.doi.org/10.1145/2656338
http://dx.doi.org/10.1145/2656338

24:2 P. Martin et al.

Fig. 1. ITRS predictions for processor power varia-
tion for years to come.

Fig. 2. Potential results of variability in terms of
system quality and lifetime.

feature sizes continue to shrink, power variation on a per-instance level has become a
nontrivial factor [Borkar et al. 2003; Gupta and Kahng 2003].

Per-instance power variations are particularly exaggerated for idle power consump-
tion, motivating the need to mitigate the effects of variability in systems whose opera-
tion is dominated by long idle states. Figure 1 provides more insight into the matter:
the International Technology Roadmap for Semiconductors (ITRS) predicts as much as
600% variation in static (idle) power and over 100% in total power by the year 2022
[ITRS 2010]. One domain that stands to benefit from research into combatting hard-
ware variation is that of low-power embedded systems and low-power sensors, where
the application is often that of sensing, routing, or processing data.

In systems where computation is severely constrained by anemic energy reserves
and where a long overall system lifetime is desired, maximizing the utility of a given
application subject to these constraints is both challenging and an important step
toward achieving high-quality deployments. Currently, developers assume some power
consumption model prior to deployment, and this can have several undesired effects.
Underestimation of system power consumption can lead to a reduction in lifetime,
which will eventually impact quality of service, while guardbanding against worst-
case power consumption by using overly conservative estimates can reduce application
quality for the entirety of the lifetime. The potential solution space is shown in Figure 2,
where the optimal solution is one that maximizes quality without decreasing lifetime.
Furthermore, the distribution of power in systems composed of multiple heterogeneous
tasks is oftentimes fixed in software prior to deployment as well, placing the burden
of optimizing energy usage on developers who may remain oblivious to variations in
power consumption altogether.

Perhaps the most widely used and most effective strategies for extending the life-
time of energy-constrained systems are those based on controlling the ratio of system
active time to total system time, or duty cycling a system. Duty-cycled systems take
advantage of the disparity between active and idle power consumption, greatly increas-
ing the lifetime of systems where latency and throughput constraints can be relaxed.
Because of temperature and instance dependencies in power consumption, however,
arriving at an optimal system-wide duty cycle ratio to achieve a lifetime goal given an
energy constraint is difficult to do without a priori knowledge of instance-specific power
models and temperature statistics for the target deployment location [Wanner et al.
2012]. Furthermore, applications involving more than one task necessitate notions of
fairness and utility—specifically, how should active processor time be distributed be-
tween each task so as to maximize the utility of the application and still meet the
desired lifetime goal?

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:3

In this work, we explore the interplay between variable active and idle power con-
sumption, deployment-specific temperature profiles, and multiple heterogeneous tasks.
Specifically, we seek an answer to the question posed earlier; in an environment where
power and temperature are measurable quantities, we seek an optimal strategy for
distributing energy between arbitrary tasks in order to maximize application utility.
In answering these questions, we introduce the notion of task knobs. These knobs offer
both a way for tasks to express elasticity in terms of utility and processing time and a
way in which an operating system can fine-tune task energy consumption. Developers
provide bounds on the values that each knob can assume and decide in what ways
each knob is used, but optimization of these knob values is offloaded to the operating
system and is done at runtime after accurate power and computational models have
been constructed. These operating system abstractions are implemented in VaRTOS, a
variability-aware operating system built as an extension to an open-source embedded
operating system. In order to evaluate the abstractions and architectures that make
up VaRTOS, we use custom variability extensions to a popular hardware simulation
suite.

Our contributions include the following:

—We develop an architecture for modeling and optimizing per-task energy consumption
at the operating system level, allowing for tunable quality and, correspondingly,
accurate lifetime achievement in the face of variability.

—We provide a tool for evaluating the effects of power variation, environmental tem-
perature, and additional constraints on the quality of user-defined applications com-
posed of multiple tasks prior to system deployment.

—We evaluate VaRTOS, a variability-aware embedded OS that requires a modest
6.8 kB of flash memory and 518 bytes of RAM

—We evaluate the effects of VaRTOS on several prototypical case studies, using a
modified version of the QEMU simulation suite [Bellard 2005]. Our results show
that VaRTOS can reduce energy consumption error to below 2% in most cases, while
strategies that assume worst-case power consumption have greater than 70% error
in many cases.

2. RELATED WORK

Hardware-level approaches to address variability have included statistical design
approaches [Neiroukh and Song 2005; Datta et al. 2005; Kang et al. 2006], postsilicon
compensation and correction [Gregg and Chen 2007; Khandelwal and Srivastava 2007;
Tschanz et al. 2002], and variation avoidance [Choi et al. 2004; Bhunia et al. 2007;
Ghosh et al. 2007]. Furthermore, variation-aware adjustment of hardware parameters
(e.g., voltage and frequency), whether in the context of adaptive circuits (e.g., [Borkar
et al. 2003; Ghosh et al. 2007; Agarwal et al. 2005]), adaptive microarchitectures (e.g.,
[Sylvester et al. 2006; Ernst et al. 2003; Meng and Joseph 2006; Tiwari et al. 2007]), or
software-assisted hardware power management (e.g., [Dighe et al. 2010; Chandra et al.
2009; Teodorescu and Torrellas 2008]), has been explored extensively in the literature.

While low-level treatment of hardware variation is a necessary step forward,
application- and process-level adaptations have proven to be effective methods for
combating variation as well. The range of actions that software can take in response
to variability includes altering the computational load by adjusting task activation;
using a different set of hardware resources (e.g., using instructions that avoid a faulty
module or minimize use of a power-hungry module); changing software parameters
(e.g., tuning software-controllable variables such as voltage/frequency); and changing
the code that performs a task, either by dynamic recompilation or through algorithmic
choice. Examples of variability-aware software include video codec adaptation [Pant

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:4 P. Martin et al.

et al. 2012], memory allocation [Bathen et al. 2012], procedure hopping [Rahimi et al.
2012], and error-tolerant applications [Cho et al. 2012]. In embedded sensing, Matsuda
et al. [2006] and Garg and Marculescu [2007] provide lifetime analyses for wireless sen-
sor networks when considering variability power models, offering insights into what
such systems stand to gain from explicit treatment of hardware variation. Garg and
Marculescu estimated that a 37% system lifetime improvement could be achieved
through redundancy efforts that totaled a 20% increased deployment cost.

This work attempts to mitigate and exploit variations in power consumption through
the management of elasticity in application quality by a variability-aware real-time
scheduler. Energy and longevity management in wireless sensor networks and low-
power embedded systems in general has long been an active area of research. Most
previous work in this field, however, ignores the effects of power variations. Of these
variability-agnostic techniques, many have focused on the tradeoff between energy and
utility or performance. For example, Baek and Chilimbi [2010] and Ghasemzadeh et al.
[2012] represent attempts at making quality energy proportional and tunable. Specif-
ically, Baek and Chilimbi [2010] introduce an architecture that allows developers to
specify multiple versions of functions whereby the operating system can sacrifice qual-
ity when possible to reduce computational costs. Similarly, Ghasemzadeh et al. [2012]
propose tunable feature selection for wearable embedded systems, where less accurate
feature computation can be used at the cost of inference quality. In real-time systems,
Liu et al. [1994] represent one of many efforts at using approximate computing to save
energy where marginal losses in quality can be afforded. In ECOSystem [Zeng et al.
2002] and Cinder [Rumble et al. 2009], energy resources are periodically distributed
to tasks that must spend the resources to perform system calls. In these systems, ap-
plications adjust their computational load according to energy availability. Our work
differs from previous approaches in that applications need not manage energy directly
but instead expose their elasticity in the form of a variable knob that is controlled by
the operating system scheduler. Power consumption characteristics for each individual
task are learned over time, and the system maximizes quality of service across tasks
in a variability-aware fashion.

This work is closely related to that of Wanner et al. [2012]. There, the authors
describe a method for calculating a system-wide optimal duty cycle ratio given known
models for active and idle power as well as probability density functions for deployment
temperatures. Here we provide an extension to the work in Wanner et al. [2012],
showing methods for online learning of power models and providing notions of utility
in multitask applications.

3. POWER VARIABILITY

As fabrication technologies improve and feature sizes decrease, hardware variation
plays an increasingly important role in determining the power consumption and there-
fore lifetime of computer systems. This variation can be attributed to manufacturing
(due to scaling of physical feature dimensions faster than optical wavelengths and
equipment tolerances [Bernstein et al. 2006; Cao et al. 2002]), environment (e.g., volt-
age and temperature), aging (e.g., due to negative bias temperature instability [Zheng
et al. 2009]), and vendors (multisourcing of parts with identical specifications from
different manufacturers).

Power consumption in an embedded processor can be classified as either active power
or sleep (idle) power. Active power includes switching and short circuit power and can
be modeled as in Rabaey et al. [1996] and Veendrick [1984]:

Pa = CV 2
dd f + η(Vdd − Vthn − Vthp)3 f , (1)

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:5

Fig. 3. Sleep (left) and active (right) power for three processor instances in 45nm representing the range of
variation for the technology.

where C is the switching capacitance, Vdd is the operating voltage, f is the clock fre-
quency, η is a technology- and design-dependent parameter, Vthn is the threshold voltage
for NMOS, and Vthp is the threshold voltage for PMOS. The threshold voltage Vthp is
subject to wearout due to negative bias temperature instability (NBTI) as described in
Chen et al. [2012], Bhardwaj et al. [2006], and Wang et al. [2007]. Sleep power can be
modeled as

Ps = Vdd(Isub + Ig), (2)
where Isub is the subthreshold leakage current and Ig is the gate leakage current.
Subthreshold leakage current models can be derived from the device model in UC
Berkeley Device Group [2013], and simplified to extract its temperature and voltage
dependency:

Isub = a1T 2
(

exp
(−a2Vthp

T

)
+ exp

(−a2Vthn

T

))
exp

(−a3Vdd

T

)
, (3)

where T is temperature in Kelvin and {a1, a2, a3} are empirically fitted parameters
that capture part-to-part variations. Gate leakage current is defined in Kim et al.
[2003] as:

Ig = a4V 2
dd exp(−a5/Vdd), (4)

where a4 and a5 are empirically fitted parameters.
While the large baseline in active power consumption relative to idle power consump-

tion amortizes variations to some degree (Wanner et al. [2012] cite a 10% variation in
active power while Balaji et al. [2012] cite between 7% and 17% variation), the low
baseline in idle power consumption renders it highly susceptible to fabrication-induced
variations (Wanner et al. [2012] report a 14 times range in measured idle power across
10 instances of ARM Cortex M3 processors in 130nm technology).

In this work, we use 45nm process technology and libraries as our baseline for evalu-
ation. Power model parameters are fitted to the SPICE simulation results of an inverter
chain using the device model given in the technology libraries. The final power values
are normalized to the measured data obtained from an M3 test chip using the same
technology. Figure 3 shows active and sleep power across temperature for three in-
stances representing the range of power variation for this technology (nominal, worst
case, and best case). At room temperature, there is approximately 6 times variation in
sleep power consumption between the worst- and best-case instances. This magnitude
of variation matches measurements with off-the-shelf embedded class processors fab-
ricated in 130nm shown in Wanner et al. [2012], and hence represents a conservative
estimation of the variation that may be found in processors in newer technologies.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:6 P. Martin et al.

Power consumption in energy-constrained embedded systems is often dominated
by time spent in an idle state. Consequently, the lifetimes of these systems can be
widely variant due to instance-to-instance variation in idle power, resulting in either
premature system death or suboptimal system quality and an energy surplus.

4. OPTIMIZING UTILITY WITH VARIABLE HARDWARE

One way to combat increasing power variability is for an application to decrease or
increase quality, thereby decreasing or increasing energy consumption. In this section,
we explore an architecture for adapting quality when applications have some degree
of elasticity—that is, when quality is not a hard constraint. This will be accomplished
by introducing task knobs—task-specific expressions of quality and power elasticity.

4.1. Task Modeling

We start by introducing an application as a set of N tasks denoted τi, i ∈ {1, . . . , N},
where each task represents a periodic application subprocess. We associate with each
task and with the application as a whole a utility ui (or usys for the entire application)
with the understanding that utility represents some notion of quality that the user is
interested in. While some efforts espouse an architecture wherein each ui is defined
by an arbitrary function (e.g., [Baek and Chilimbi 2010]), we advocate a simplified
model where the OS constructs ui based on a few key inputs from the developer. In
doing so, we assume that ui is a monotonically nondecreasing function of the active
computational time for τi denoted ta,i or, equivalently, the duty cycle ratio specific to τi
denoted di and defined as di = ta,i/(ta,i + ts,i), where ts,i is the amount of time that τi is
inactive. These variables along with additional key variables used throughout the text
are summarized in Table I.

Task Knobs: In order to tune the active time used per task and thus the task-specific
duty cycle ratio di, we introduce the notion of task knobs. In practical terms, a task knob
is a variable that will govern either (1) the period of a task or (2) the frequency with
which a task is activated. We argue that a large portion of tasks found in embedded ap-
plications will fall into one of these two classes, and those that require both frequency
and period modulation can often be divided into two legal subtasks coupled with inter-
process communications. For example, tasks that fall under class 1 include variable-
length sensing tasks, tasks that listen for inbound communication, and variable-length
processing chains. Those that fall under class 2 include variable frequency transmis-
sion, variable frequency sensor sampling, time synchronization handshaking, control
and actuation events, and more.

We define task knobs, denoted ki ∈ Z
+, such that increasing ki will increase ta,i, di,

and, consequently, ui. Task knobs are created by passing a variable address to the OS,
allowing direct manipulation of knob values by an optimization routine. In addition,
the developer specifies a minimum and maximum knob value, ki,min and ki,max. The
value ki,min specifies the minimum value of ki that yields a nonzero utility. Below this
value, a task offers no utility. The value ki,max specifies a value after which increasing
ki further will yield no added utility.

Generating Utility Curves: Changing each knob value ki will cause a corresponding
change in duty cycle ratio di based on the nature of τi. In general, utility functions
ui = f (di) can be arbitrary. In practice, however, increasing the duty cycle of a task
indefinitely will lead to diminishing returns on overall system utility. Because of this,
we use a general model of utility based on the convex portion of a logistic function. The
characteristic s-like curve of logistic functions offers a convenient form for modeling

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:7

Table I. Summary of Selected Variables

Variable Name Definition
τi Task i, i ∈ {1, . . . , N}
ta,i Active time for τi
ts,i Inactive time for τi
di D.C. ratio for τi
ddd The vector [d1 · · · dN]

dsys System-wide D.C.
ki Knob value for τi
kkk The vector [k1 · · · kN]
Ki Model of ki → di
ui Utility fcn. for τi
pi Priority scalar for τi
E Energy budget
L Desired lifetime

Fig. 4. Example utility curves. Task 1 has priority
scalar p1 = 1 with useful range d1 = [0.2, 0.7], task
2 with p2 = 2 and d2 = [0.1, 0.3], and finally task 3
with p3 = 1.5 and d3 = [0, 0.5].

diminishing returns on di. Given ki,min and ki,max as well as a mapping from ki to di (to
be discussed later), we can construct a utility function ui = f (di) as a modified logistic
(Sigmoid) function of the form f (di) = 1

1+e−ci di
, ci ≥ 0. The convex portion of the logistic

function can be isolated by choosing ui to be of the particular form

ui(di) = 2
1 + e−cidi

− 1, ci ≥ 0, di,min ≤ di ≤ di,max, (5)

where di,min and di,max are task duty cycles corresponding to ki,min and ki,max. Here, ci
governs the convergence rate of ui from the minimum utility to the maximum utility
and is calculated as a function of ki,min and ki,max such that 99% of the utility has been
reached by kmax. Increasing the percentage of ui,max realized by ki,max has the effect of
steepening the utility curve and thus increasing the rate at which returns diminish.
For nonadaptable tasks (i.e., di,min = di,max or where ki is unused), ui is no longer a
function of di and is therefore set to a constant value. When di,min �= di,max, the constant
ci can be calculated from Equation (5) by enforcing ui(di,max) − ui(di,min) to be ε = 0.99
as shown here:

ci = − log
(2

ε+1 − 1
)

(di,max − di,min)
, ε = 0.99. (6)

Finally, each utility curve can be arbitrarily increased or decreased by a priority
scalar pi ∈ R

+ for tasks with intrinsically higher or lower utility than others. This
offers a level of customizability in addition to specifying ki,min and ki,max, allowing the
developer to give preference to one task over another. Figure 4 shows three example
utility curves corresponding to three tasks with various priorities and duty cycle ranges
(resulting from various ki,min and ki,max).

LearningKi, theki → di Relation: Because the developer is free to use the knob ki for each
task as desired, the function mapping ki to active time ta,i and thus di is not known
a priori. Instead, the transformation Ki that maps ki to di is assumed linear and is
learned through regression at runtime. Should the developer misuse ki in a way that is
nonlinear or that results in nonincreasing values of ta,i, the linear model will introduce
errors that will affect the optimization process. Dividing active time accumulated per
task by a fixed supervisory time interval tsuper yields task-specific duty cycle ratios, di.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:8 P. Martin et al.

4.2. Maximizing Application Utility

Given the set of tasks {τ1, . . . , τN}, our ultimate goal is to optimize usys = ∑N
i=1 ui, the

overall system utility. That is, we seek a solution to the convex optimization problem

u∗
sys = max

kkk

N∑
i=1

2
1 + e−ciKi [ki]

− 1, (7)

subject to:
Tmax∑

T =Tmin

fTL[kkk, T] ≤ E
L

= P̄,

where Tmin and Tmax are the minimum and maximum temperatures for a given location,
respectively; kkk = [k1 · · · kN] is the vector of task knobs; and L is a mapping from kkk to
power consumption. This mapping is assumed linear for a given temperature T . The
parameters E and L are the energy budget and desired lifetime as specified by the user
and resulting in an average power goal, P̄. In general, L is a function of temperature,
and thus summing over the range of temperatures [Tmin Tmax] and scaling by the
probability mass function of each temperature fT (obtained by discretizing temperature
T into bins a priori as described in Section 5.4) give the predicted power consumption
corresponding to the knob vector kkk. When using external peripherals (such as radios,
analog-to-digital converters, and flash storage), L incorporates both external power
and internal power (i.e., power consumed by the processor). In the remainder of this
article, we will focus on optimizing utility when L includes the power consumption of
the processor alone. We leave inclusion of peripheral power models as a natural and
straightforward extension to the proposed architecture.

We shift our focus now from that of optimizing utility with a power constraint to that
of optimizing utility with a duty cycle constraint. In other words, power consumption
of the system as a whole can take on values in the range [Ps(T)Pa(T)] for a given
temperature T dictated by the overall system duty cycle ratio, dsys = ∑N

i=1 di: P =
(1 − dsys)Ps + dsys Pa. Again, both Ps and Pa are functions of temperature so that,
replacing L with the processor power models, the optimization problem becomes

u∗
sys = max

ddd

N∑
i=1

2
1 + e−cidi

− 1, (8)

subject to:
Tmax∑

T =Tmin

fT

[
N∑

i=1

di Pa,i(T) +
(

1 −
N∑

i=1

di

)
Ps(T)

]
≤ E

L
= P̄.

Here we have replaced the knob vector kkk with the duty cycle vector ddd similarly
defined. The system-wide duty cycle can be arrived at if we know a priori the future
environmental temperatures, the function mapping temperature to sleep power Ps(T),
and the function mapping temperature to active power for a given task Pa,i(T). For
most embedded class processors, active power consumption does not vary significantly
across instructions so that the task-specific Pa,i(T) can be replaced by a system-wide
Pa(T). Following from Equation (8), the optimal (maximum) system-wide duty cycle
d∗

sys ∈ [0, 1] can be formulated as a maximization over a variable d:

d∗
sys = max d (9)

subject to:
∑

T

fT
[
dPa(T) + (1 − d)Ps(T)

] ≤ E
L

= P̄.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:9

ALGORITHM 1: Greedy Utility Optimization
Input: System duty cycle, d∗

sys, linear functions {K1, . . . ,KN}, and utility curves {u1, . . . , uN}
Output: The optimal task duty cycles ddd∗ = {d∗

1 , . . . , d∗
N}

τττ ← sort({τ1, . . . , τN}) by decreasing pi
dremaining ← d∗

sys.
// Assign minimum knob values for tasks that can be scheduled:
τττ scheduled ← {˜} // empty set
for i ∈ τττ do

if Ki[ki,min] < dremaining then
di = Ki[ki,min]
dremaining ← dremaining − di
append τi to τττ scheduled

else
stop

end
end
// Allocate remaining duty cycle fairly:
while dremaining > 0 do

// Find highest marginal utility max mu and the set τττmax of tasks yielding max mu:
[max mu, τττmax] ← Find Maximum Marginal Utility(τττ scheduled)
drequested ← min{δ · |τττmax|, ˜dremaining}
for i ∈ τττmax do

di ← di + 1
|τττmax | drequested

end
end
ddd∗ ← {d1, . . . , dN}

Under practical conditions as outlined in Wanner et al. [2012], a close approximation
for the optimal solution to Equation (9) can be obtained algebraically using Equa-
tion (10), where we have introduced the temperature-averaged power quantities P̄s
and P̄a:

d∗
sys = E − LP̄s

L(P̄a − P̄s)
. (10)

Given d∗
sys, we now seek an efficient solution to Equation (8). Because we have chosen

ui to be a logistic function, we can use a greedy approach when optimizing utility. The
optimization routine will be a two-step process: (1) attempt to assign the minimum
duty cycle di,min = Ki[ki,min] needed for each task in order of decreasing priority, and
(2) continue distributing computational time in small increments to those tasks yielding
the largest marginal utility until no active computational time is left. This process is
outlined in Algorithm 1. Duty cycle is incrementally added by a small fraction δ (chosen
sufficiently small to ensure accuracy) to those tasks with the largest marginal utility
defined as

max mu = max{mu1, . . . , muN}, mui = ui[di + δ] − ui[di]
δ

(11)

until d∗
sys as calculated from Equation (10) is exhausted. Figure 5 shows an example of

the utility maximization algorithm for two example tasks with the total system duty
cycle on the x-axis and utility on the y-axis. At point (a), k1,min is met and task 1 begins
to receive active time. At point (b), task 1 begins to plateau as mu1 diminishes. At point
(c), both k1,min and k2,min can be met; starting with task 1 with the highest mu, utility is

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:10 P. Martin et al.

Fig. 5. Maximizing utility for two tasks and differ-
ent values of system duty cycle, d∗

sys.

Fig. 6. Example optimal duty cycle points for
three example tasks with different values for
{kmin, kmax, pi}.

increased until point (d), where task 2 and 1 go back and forth bidding for active time.
The dashed curve illustrates the total system utility, usys = u1 + u2.

Each point in Figure 5 represents a different environmental setup—that is, a dif-
ferent d∗

sys (x-axis) resulting from, perhaps, different values for E, L, and fff T . At each
d∗

sys, all tasks are assigned a specific duty cycle ratio di. For example, Figure 6 shows
the resulting duty cycles {d1, d2, d3} for three tasks when d∗

sys = 0.2. The vector ddd that
maximizes Equation (8) is denoted ddd∗ = {d∗

1 , . . . , d∗
N}.

With a method in hand to calculate an optimal d∗
sys offline, we seek a method for

both calculating d∗
sys and achieving di ∈ {d1, . . . , dN} in an efficient, online manner. Our

implementation of this architecture is called VaRTOS and is the subject of the following
section.

5. VARTOS, THE VARIABILITY-AWARE REAL-TIME OPERATING SYSTEM

In this section, we outline the implementation of the architecture and algorithms
presented in Section 4 as a series of extensions to an existing real-time operating
system (RTOS). The results shown use a modified version of the FreeRTOS operating
system [FreeRTOS Project 2013], though the architecture is easily applied to other
embedded operating systems as well. The design of VaRTOS must accomplish several
key aspects of Section 4 while remaining lightweight and energy efficient. In particular,
VaRTOS includes the following functionality: (1) a method for online modeling of Ps(T)
and Pa(T), (2) a method for online modeling of Ki, (3) OS-level control over task knobs
{k1, . . . , kN}, and (4) a tool for evaluating the effects of user inputs {ki,min, ki,max, pi, E, L}
as well as deployment location (temperature profile). We will describe each of
these subsystems in detail next, with various prototypical case studies discussed in
Section 8.

5.1. Online Modeling of Sleep and Active Power

As discussed in Section 3, both sleep power and active power are nonlinear functions
of temperature. The vast majority of this nonlinearity comes from leakage and sub-
threshold currents that dominate in Ps. In general, modeling these nonlinear curves
could prove difficult with limited resources and without, in many cases, fully fledged
math libraries. For example, nonlinear regression is often performed as an optimiza-
tion problem using a specialized library such as NLopt, requiring more than 300kB of
program space in order to do even rudimentary optimization routines [NLopt Project
2013] and prohibiting its use in many low-power platforms. Fortunately, the models in
Section 3 describing Ps result in a function that is very closely exponential. Knowledge

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:11

Fig. 7. Modeling sleep and active power through linearization.

of the shape of this function allows us to linearize the model, which in turn allows the
use of linear regression to accurately model Ps. Specifically, linear regression is run on
log(Ps), giving offset bs and slope ms. The desired sleep power model is likewise com-
puted as Ps(T) ≈ exp(bs + msT). After Ps(T) has been computed, Pa(T) can be modeled
by subtracting Ps(T) from active power measurements and continuing with a second
linear fit.

The error between the models described in Section 3 and the linear approximation
methods described earlier is shown in Figure 7 for three separate power instances
representing the best case (BC), nominal case (NC), and worst case (WC) for a 45nm
Cortex M3 processor—(a) shows the sleep power model with the corresponding error
in (b), and (c) shows the active power model with the corresponding error in (d). For
the linear approximation of Ps on the temperature range [−20◦C, 100◦C], the worst-
case error is around −15%, while on a temperate range of [0◦C, 80◦C], the worst-case
error is around 5%. For most temperature profiles, this accuracy will be adequate, but
deployments in extreme environments can experience the detriments of errors in the
linear model of Ps. Because of the added baseline in Pa, the corresponding prediction
error is drastically reduced—less than 2% across [−20◦C, 100◦C] for the best-case and
nominal instances and less than 5% for worst case. These errors can be further reduced
using nonlinear regression methods if the computational resources are not a limiting
factor; for VaRTOS, we have chosen a lightweight design so that resource-constrained
low-power processors—those that are likely to be used in long lifetime sensing tasks—
can easily perform the necessary computations.

Models for both Ps and Pa take some time to converge, before which an accurate
prediction for the optimal duty cycle d∗

sys cannot be calculated. Convergence is aided by
variations in temperature, giving a variety of points on the T → {Ps, Pa} curves, and
hurt by noise variance in power sensors. For example, if our sensor for Ps takes hourly
measurements with additive white Gaussian noise ∼ N (0, 5μW), the percentage error
of our model has reached a reasonable accuracy after 40 hours and is nearly fully
converged after 60 hours. This is shown in Figure 8 for 190 different locations within

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:12 P. Martin et al.

Fig. 8. Error convergence for sleep power model-
ing. Shown are the mean errors, 90% confidence,
and 99% confidence intervals for errors versus the
steady-state models.

Fig. 9. Error in average power estimation for tem-
perature models constructed from varying numbers
of training years (x-axis) and with a set number of
histogram bins.

the United States with between 1 and 9 years of hourly data in all locations and for
processor instances with best-case, nominal-case, and worst-case power consumption.
For the results that follow, both sleep and power models will be fit after 40 points
(40 hours) of data have been collected.

5.2. Online Modeling of Task Computation

Active time per task ta,i can be measured in a number of ways (e.g., using hardware
timer snapshots at the context swap level). Given a method for measuring ta,i, Ki is
arrived at by systematic perturbation of ki within the range [ki,min, ki,max]. Specifically, ki

is repeatedly increased by � = ki,max−ki,min
n , where n is the number of points in the regres-

sion, kept sufficiently low (n = 4 in our case) to minimize memory footprint. Between
each perturbation in ki, the task is allowed to run for a time period sufficiently long
enough to accurately model tasks with infrequent activity or control-flow-dependent
variations in execution time. In the applications presented here, this supervisory pe-
riod is set at tsuper = 1 hour, meaning the mappings Ki are calculated after 4 hours. Task
duty cycles are calculated as di = (

∑
ta,i)/tsuper. Note that Ki is a linear transformation

from ki to di and thus ki should translate linearly into active time for that task. In
Section 8, we explore the effects of violating this assumption.

Many tasks are likely to make heavy use of interrupt subroutines (e.g., for analog-
to-digital conversion, radio transmission, serial communication, etc.). In order for this
time to be accounted during the supervisory period, we provide functionality for assign-
ing each subroutine to a particular task using a handle provided during task creation.
For example, on entering a subroutine, the taskEnterISR(taskHandle) command is
invoked with a matching taskExitISR upon finishing the subroutine. Again, as men-
tioned in Section 4.2, in some cases additional peripheral power will be expended during
these subroutines. The metric ta,i reflects only processor power expenditure, and thus
peripheral power usage must be modeled separately by modifying Li.

5.3. Controlling Task Active Time

In the same way that ki is perturbed to model Ki in the previous section, ki is also
commanded by the operating system to achieve d∗

i as calculated by Algorithm 1. Knob
control is passed from user to operating system at task creation, making the full task
creation call using the modified FreeRTOS kernel:

xTaskCreate(TaskFunction, ‘‘name’’, StackSize, Priority, &TaskHandle,

&TaskKnob, k_min, k_max, p_i);

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:13

By its nature, TaskKnob serves as a discrete representation of ki and therefore intro-
duces quantization errors into the optimization routine. In particular, the smaller the
difference between ki,min and ki,max, the coarser the granularity of TaskKnob becomes
and therefore the poorer the achievable resolution of di becomes. As an extreme ex-
ample, if ki,min = 1 and ki,max = 2, then TaskKnob can only take on one of two values
and thus one of two di values, perhaps far away from d∗

i . Similarly, even if TaskKnob is
constructed in such a way that it has fine granularity, d∗

i might not be within the range
[Ki[ki,min],Ki[ki,max]]. When d∗

i is less than Ki[ki,min], task τi consumes more energy than
it is allotted and the system is likely to die prematurely. If d∗

i is greater than Ki[ki,max],
however, it may simply mean that even though additional energy can be allotted to
task τi, no additional utility would be gained and so achieving a lifetime greater than
L is acceptable.

5.4. Temperature Models

Equations (9) and (10) require that we know the temperature distribution fff T in order
to calculate d∗

sys and the individual task ratios {d∗
1 , . . . , d∗

N}. We performed several sim-
ulations with results indicating that learning fff T online is infeasible, as it takes the
entirety of a year to develop an accurate histogram of the temperature values seen at
a given location. Fortunately, similar simulations show that a very coarse representa-
tion of the temperature profile suffices for accurate calculations of d∗

sys, and furthermore
temperature profiles change very little from year to year for a given location. Figure 9
shows how certain temperature models affect the error in predicting average power
consumption for Ps across the lifetime of the system (in this case, 1 year). The x-axis
here represents the number of years of temperature data used to train the model before
testing on a single year. Each line represents a certain number of bins used in a his-
togram representing fff T for a given location. This figure makes two noteworthy points:
first, the decreasing estimation error indicates that temperature profiles change very
little from year to year, and because of this using multiple years to build fff T only serves
to decrease the prediction error in years to come; second, while a three-bin histogram is
inadequate to fully represent the temperature profile for a given location, there is very
little benefit in representing fff T with more bins than five and even less so with more
than 10. Because of this, for a given location we train with as many previous years as
are available and we use a 10-bin histogram to represent fff T .

5.5. User Programming Model

Much of the effort in creating VaRTOS is in making the process transparent to the
developer and easing the burden of accounting for variable task power consumption.
In addition to the challenges that come with embedded programming in general, de-
velopers need only provide the following information: (1) energy budget E measured in
joules; (2) lifetime goal L measured in hours; (3) deployment location if it belongs in the
VaRTOS database or corresponding coarse fff T if not; and (4) ki,min, ki,max, and priority
scaling factors pi.

Information required from the developer is therefore very minimal, though in many
circumstances it is not readily apparent how different user inputs—particularly for
knob values and priorities—will affect the operation of the system. In order to provide
more intuition regarding the various parameters the developer is tasked with supply-
ing, we have developed a simple tool in MATLAB as shown in Figure 10. This tool
allows the developer to specify an energy budget and lifetime goal to guide the opti-
mization process. Developers further specify clock frequency, instance type, a certain
geographical location, and the various tasks to be scheduled. Perhaps the most difficult
part of this tool is in estimating how many cycles each task will take per knob value.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:14 P. Martin et al.

Fig. 10. A tool for guiding developers using VaRTOS. Users input various system specifications along with
task prototypes and a geographical location, and the corresponding optimal duty cycle d∗

sys and knobs k∗
i are

displayed.

Fig. 11. VaRTOS state chart, showing model convergence and optimization states.

This tool only gives a rough estimate of how the true deployment will behave, but it
helps guide the developer’s choices along the way.

5.6. Operation

In this section, we discuss the operation of VaRTOS from a broader perspective, us-
ing the state chart depicted in Figure 11. To begin, the system is initialized with
task creations, energy and lifetime specifications, and a location-specific temperature
model. If at least one task has been created, the scheduler begins operation and we
enter a model convergence state. While in this state, hourly temperature and power
measurements are collected and knob values are incremented every tsuper seconds (see
Section 5.2) to construct Ki. The optimization routine cannot complete until both mod-
els have converged, after which linear regression and linearization are used to fit the
knob-to-duty-cycle and temperature-to-power curves, respectively. This brings us to
the optimization state. Here the various d∗

i are calculated as per Algorithm 1, and the
corresponding knob values (calculated by inverting Ki) are assigned to the appropriate

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:15

tasks. At this point, we begin steady-state operation in the “Scheduler Running” state.
Potential reasons for leaving this state include task creation (necessitating learning
the new task’s Ki and reoptimizing) or task deletion (requiring only reoptimization).
Because the modeling tasks only run on an as-needed basis, these are implemented as
OS tasks with null-valued knobs. This allows for easy suspension and resumption of
these tasks as necessary.

The dashed line in Figure 11 represents an optional feedback error-checking mech-
anism that can help for online readjustment of poor initial power model construction
(e.g., for cases where measurement of Ps and Pa is particularly noisy). This can be done
by comparing true energy expenditure with predicted expenditure, if such a sensor ex-
ists, and using the error to apply proportional feedback, though we present no results
regarding this extension in this article.

6. EXPERIMENTAL SETUP

We implemented VaRTOS as a series of architecture-independent extensions to
FreeRTOS [FreeRTOS Project 2013], a popular open-source real-time operating sys-
tem. FreeRTOS provides typical operating system abstractions such as preemptive
scheduling of multiple tasks, synchronization primitives, and dynamic memory alloca-
tion with low overhead and small memory footprint. For our evaluation, we use the TI
Stellaris LM3S6965 port of FreeRTOS. The LM3S6965 is a microcontroller based on
an ARM Cortex-M3 core and is representative of the low-power platforms targeted by
VaRTOS.

VaRTOS relies on a temperature- and instance-dependent power model to perform its
optimizations and requires appropriate sensors from its underlying hardware platform
to build this model. Temperature sensors are typically embedded into most sensing plat-
forms. Energy consumption and power in various processor modes may be measured
directly (e.g., as in McIntire et al. [2006]) or indirectly estimated from remaining bat-
tery capacity (e.g., with a “smart” battery or as in Lachenmann et al. [2007]). Low-cost
probes for variability vectors (including aging, frequency, and leakage power) may be
embedded into processor cores and exposed to software as digital counters [Chan et al.
2012].

We evaluate VaRTOS with a series of case study applications under different hard-
ware instances and deployment scenarios (temperature profiles) across a lifetime of
1 year. Because it would be impractical to physically deploy these applications, we rely
on VarEMU [VarEMU Project 2013], a variability-aware virtual machine monitor.

VarEMU is an extension to the QEMU virtual machine monitor [Bellard 2005] that
serves as a framework for the evaluation of variability-aware software techniques.
VarEMU provides users with the means to emulate variations in power consumption
in order to sense and adapt to these variations in software. In VarEMU, timing and
cycle count information is extracted from the code being emulated. This information is
fed into a variability model, which takes configurable parameters to determine energy
consumption in the virtual machine. Through the use (and dynamic change) of param-
eters in the power model, users can create virtual machines that feature both static
and dynamic variations in power consumption. A software stack for VarEMU provides
virtual energy monitors to the operating system and processes. With the exception
of the driver that interfaces with the VarEMU energy counters, VaRTOS running in
VarEMU is unmodified from its version that runs on physical hardware.

When starting VarEMU, we provide a configuration file with parameters for the
power model described in Section 3. For most test cases, we evaluate the system with
three instances (nominal, best case, and worst case) as shown in Figure 3. When neces-
sary for the evaluation, further instances are generated according to SPICE simulation
results as described in Section 3. We also provide a trace of temperature based on hourly

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:16 P. Martin et al.

Fig. 12. Error in energy consumption for various optimal duty cycles and for mild, medium, and harsh envi-
ronments. From left to right, figures represent the best-case, nominal-case, and worst-case power instances
in 45nm.

temperature data from the National Climactic Data Center [(USCRN) 2012] for three
locations: Mauna Loa, HI (“best case”: mild temperature, very little variation), Sioux
Falls, SD (“nominal case”: average temperature and variation), and Death Valley, CA
(“worst case”: extreme temperature and variation). For every hour elapsed on the vir-
tual machine, VarEMU reads a new line from the temperature trace file and changes
the temperature parameter in the power model accordingly. In order to accelerate the
simulation (which would otherwise run in real time), we use a time scale of 1:3,600,
resulting in a total simulation time of approximately 2.5 hours for a lifetime of 1 year.

7. EVALUATION

In this section, we present results regarding the ability of VaRTOS to maximize util-
ity by modification of task knob values as well as the corresponding error in energy
consumption versus the specified energy budget. Finally, we evaluate the VaRTOS
architecture in terms of both energy and memory overheads.

7.1. Minimizing Energy Consumption Error

In order to achieve accurate energy consumption to meet a lifetime goal, VaRTOS needs
to be able to accurately achieve the overall system duty cycle d∗

sys. To test this, we con-
structed a simple application with only a single task containing a knob with fine granu-
larity values. Then, using the tool shown in Figure 10, we specified various values for E
and L that would ideally lead to a particular d∗

sys for each of the power instance models
(best, nominal, and worst case) as well as three temperature profile instances (harsh,
medium, and mild). The target duty cycles were d∗

sys ∈ {0.002, 0.005, 0.01, 0.05, 0.1}, or
from 0.2% up to 10%, and the resulting errors in energy consumption are shown in
Figure 12. Note that errors are larger in harsher environments, where any errors in
the power models will be magnified. In the worst case, an error of 4.9% in energy con-
sumption is seen for a harsh environment and for the worst-case power instance (far
right plot in Figure 12). This means that, in the worst case, a 5% guard band in lifetime
or in energy is necessary if the lifetime goal is to be treated as a hard constraint.

To give more intuition into what this error in energy consumption means, we com-
pared energy consumption for tasks running in VaRTOS (modeling power on a per-
instance basis) with those assuming “worst-case” power consumption. True worst-case
power consumption is difficult to define, due to the long tail distribution for power
across temperature. Because of this, we define worst-case power as the average power
consumption for the worst-case instance from Section 6 across the temperature range
[0◦C, 45◦C], particularly Ps = 330μW and Pa = 1.187mW. Figure 13 shows the dispar-
ity between the two. Without per-instance power modeling, energy consumption is in
some cases over 70% off, and in only one case is it below 10% error. With per-instance
power modeling using VaRTOS, the error has dropped to below 2% in most cases and
around 5% in the worst case. Note that a positive percent error means a surplus in

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:17

Fig. 13. Errors in energy consumption for a
single-task application for worst-case power as-
sumptions and per-instance power modeling.

Fig. 14. Average duty cycles of a single-task ap-
plication for worst-case power assumptions and
per-instance power modeling.

energy after the lifetime has been met while a negative means an energy deficit (and
likewise a premature death). Energy errors are mostly positive here because of the
worst-case power assumption.

Similarly, Figure 14 shows the cause of this energy error disparity—the duty cycle
ratio remains constant if worst-case power is assumed while it is allowed to vary when
instance-specific power modeling is introduced. This will translate into an increase in
the quality of service for a particular application (e.g., more data collected, a higher
communication rate) by using what would have been surplus energy.

7.2. Utility and Oracle Comparison

The results in the previous section showed that VaRTOS is able to meet a given energy
budget with low error, resulting in an accurate system lifetime. In Section 4, we argued
that spending would-be surplus energy will increase system utility. In this section,
we substantiate this claim by comparing the utility of the single task app running
in VaRTOS to that of an all-knowledgeable oracle system. Unlike the true VaRTOS
system, the oracle system is allowed the following privileges: (1) complete knowledge
of the temperature profile for the test year, (2) perfect knowledge of task behavior
(i.e., Ki), (3) full accuracy models for Ps and Pa, and (4) zero overhead for optimization
routines. Figure 15 shows the utilities for both the oracle and VaRTOS. In most cases,
VaRTOS achieves within 10% of the oracle utility and is as much as 20% off in the worst
case. Note that this comparison is specific to the construction of utility ui as defined in
Equation (5), and other utility curves may cause variations in this metric.

7.3. Energy and Memory Overhead

Energy consumption by the various VaRTOS subsystems must be minimized in order
to prevent worsening the very thing we are trying to correct. Similarly, the memory
required for VaRTOS must be kept reasonably low in order to make it a viable option
for resource-constrained platforms.

Memory Overhead: The amount of program memory (.text, .data) and volatile memory
required for VaRTOS depends on the application that the developer is designing. As
a baseline, VaRTOS requires a modest increase in the “.text” section over the vanilla
FreeRTOS framework from 2.29kB to 6.80kB (a 4.51kB increase). This includes a
lightweight library for math functions required for optimization routines (including
exponential, logarithmic, and square root functions) as well as a preemptive scheduler.
If a full math library needs to be used for the application itself, these functions can
be replaced and the overhead amortized. In terms of volatile memory, an additional

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:18 P. Martin et al.

Fig. 15. Total utility, usys, for VaRTOS versus the oracle system.

508 bytes baseline is required (480 bytes of this is due to the power learning procedure
and, if the developer is so motivated, can be reused after the models have converged). An
additional 46 bytes per task is also required for knob modeling and other parameters.
Finally, the temperature profile is stored in program ROM as a constant array and
consumes only 10 additional bytes.

Energy Overhead: The largest energy overhead in VaRTOS comes from the scheduler
itself, which, if context swaps occur every 10ms, causes a baseline system duty cycle of
0.1%. This ratio can be decreased if coarser granularity context swaps are acceptable.
The power consumption attributed to this 0.1% depends on the power consumption of
the processor and the environmental temperature, but in the worst case, it consumes
Pos = 0.001 ·(1.187mW)+0.999 ·(330μW) = 331μW ≈ Ps. In other words, the scheduler
adds only marginal power consumption on top of the baseline sleep power.

Other potential energy-consuming processes attributed to VaRTOS, include knob
modeling, power measurement and fitting, finding the optimal d∗

sys, and finding the
optimal knob values. The amount of processing time spent in these tasks is negligible:
reading power and temperature takes 250μs and occurs only 40 times over the course
of a deployment (10ms total); knob perturbations take 48μs and occur 4·N times (for
N tasks); performing a 40-point linear regression (for power curves and as an upper
bound for modeling Ki) takes 40ms and occurs twice (Ps and Pa) per deployment and
once per task; finding d∗

sys takes 54ms and occurs once unless tasks are deleted and
created after the initial optimization; and finally, finding optimal d∗

i and k∗
i values

takes 345μs. In total, these added tasks consume less than 1mJ in the worst case for
a 1-year deployment, a negligible overhead if our energy budget is 12,960 joules (two
AAA batteries) as in the following section. Note, however, that (1) taking power and
temperature measurements is likely to consume additional power for analog-to-digital
conversions and (2) a more difficult calculation in energy overhead comes from the
result of perturbing knob values in the modeling phase for Ki. The latter depends on
the nature and number of tasks, as well as the length of tsuper.

8. CASE STUDIES

We have shown in Section 7 that VaRTOS can accurately achieve a desired lifetime
goal given an energy budget, and we made the claim that using would-be surplus
energy will increase application performance. Here we provide several simulated case
studies to illustrate this, using the same experimental setup described in Section 6 with
additional virtual peripherals as needed. For these case studies, the energy budget is
set at a constant 12,960 joules, corresponding roughly to that of two AAA batteries. In
addition, the lifetime goal is set at 8,760 hours, or 1 year.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:19

Fig. 16. Multiagent localization application: the square nodes with known location attempt to localize the
unknown circle node through consensus.

8.1. Multiagent Applications

Oftentimes, a system is composed of multiple nodes connected by either wired or wire-
less communication. As an example, consider a network of eight nodes with wireless
radio capabilities. Each node is capable of sensing a noisy measurement that corre-
sponds roughly to the distance of some unknown object to the node, whose location is
known. For example, these nodes could be taking audio measurements and inferring
the distance of a vehicle traveling around a track. From these distance measurements,
we would like to estimate the (x, y) coordinate of the unknown vehicle. This system is
illustrated in Figure 16, where the unknown object makes a counterclockwise path and
the known sensor nodes take noisy measurements if the object is within their radius of
observation, shown with dashed circles. Here the unknown object is traveling on a track
of 300m circumference at the speed of 0.4km/h. The eight known nodes can “observe”
a linear distance to the unknown node if it is within 80m. Each node operates two
tasks: (1) a radio with a variable-frequency transmission and (2) a sensor that samples
a variable number of points and averages the samples. Allowing the radio more active
time will reduce the latency in reported estimates of the unknown node, while allowing
the sensing task more time will generate more reliable estimates. The task priorities
pi along with the tool described in Section 5.5 would help a developer give preference
to one or the other. For the sake of our comparison, we keep the priorities the same and
choose knob ranges to allow the sensor to average between 1 and 100 samples and to
allow the radio to transmit anywhere from 10Hz to 0.1Hz. Because these peripherals
are simulated, each task has been padded with NOP instructions in order to simulate
work that an actual system might be doing. If we look at a 1,000-minute time slice
of the estimation process as shown in Figures 17 and 18, we see that the variance of
the estimation error is much greater if we assume worst-case power and thus average
fewer samples and much less if we use VaRTOS with instance-specific power models.
When many samples are averaged, the noise is reduced and each estimate is the re-
sult of consensus between more reliable measurements. In other words, for the same
lifetime specifications, the system using VaRTOS greatly outperforms the system that
assumes worst-case power consumption. While the deployment assuming worst-case

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:20 P. Martin et al.

Fig. 17. Reduced error variance for multiagent
localization using instance power modeling with
VaRTOS.

Fig. 18. Increased error variance for multiagent lo-
calization assuming worst-case power.

Table II. Task Performance for Multiagent Localization With and Without VaRTOS
With a Harsh Temperature Profile

Node ID #1 #2 #3 #4 #5 #6 #7 #8
VaRTOS # Avgs. 35 34 31 30 28 27 23 10
WC # Avgs. 6 6 6 6 6 6 6 6
VaRTOS Freq (Hz) 1.798 1.719 1.583 1.527 1.459 1.380 1.176 0.525
WC Freq (Hz) 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287

consumption suffers from an average error variance of 59.7, the VaRTOS deployment
has an average error variance of only 26.9, a 54.9% improvement. The periodic nature of
the high-variance peaks in estimation error for both Figures 17 and 18 can be attributed
to the circular nature of the application setup (Figure 16). When the unknown object
comes within view of nodes with less reliable measurements, the estimation error is
much poorer.

Furthermore, the reduction in error variance when using VaRTOS does not come
at the price of increased radio latency; the radio latency on the average will improve
by using VaRTOS as well, as shown for the case of harsh temperature profiles in the
resulting optimal task performance in Table II. The errors in energy consumption for
this application are equivalent to those shown in Figure 13, and thus we omit them
here for the sake of brevity.

8.2. Prediction-Type Applications

We now move away from wireless sensor network applications and look at systems of
just a single node. In particular, we consider an application where we would like to
predict one quantity from another correlated but noisy quantity: in our case, we will
predict velocity from position, perhaps again on a vehicle of some kind. Here our tool
of choice will be the Kalman filter, as it has become such a widely used tool even for
resource-constrained applications. We are interested in calculating an estimate v̂ of
the velocity v from measurements of the position, y, at various frequencies controlled
again by a knob. The system evolves according to the simple state space recursion:

xk+1 = Akxk + Bkuk; yk = Ckxk; Ak =
[
1 �t
0 1

]
Bk = [0 1] Ck = [1 0].

For our case, uk will be a sinusoidal velocity input, and the goal is for v̂ to track
this input. Intuitively, a faster sample rate for yk (meaning �t changes in A as well)
should give more accurate predictions of v̂, because it is easier to predict states within
the near future than it is to predict them in the distant future. The Kalman recursion

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:21

Fig. 19. Kalman filter prediction of velocity from
noisy position measurements.

Fig. 20. Error (RMSE) in Kalman predictions
when assuming worst-case power consumption
and when using VaRTOS.

Table III. Processor Cycle Counts for a Multiblock Signal Processing Application

Block # 1 2 3 4 5
Sensor 1 Block Cycles 20,000 5,000 10,000 25,000 6,000
Sensor 2 Block Cycles 14,000 9,000 15,000 24,000 8,000

itself is omitted here, but we note that the Kalman gain and error covariance matrices
(commonly denoted Kp,k and Pk+1|k, respectively) have to be modified on a per-instance
basis in order to accommodate the varying sampling period, �t.

Figure 19 shows an example of the velocity input, uk, as well as the estimated
velocity as calculated by the Kalman filter on position yk. Here the position readings
are subjected to additive white Gaussian noise ∼N (0, 50m), and likewise the Kalman
estimation of velocity contains some noise as well. If we allow �t to assume values
within the range �t ∈ [0.1 s, 10 s] by letting our knob vary as before, the quality
of the estimate v̂ will increase or decrease in accordance with energy surpluses and
deficits, respectively. Figure 20 shows the error (RMSE) in estimating the velocity
from noisy position measurements for systems assuming worst-case power and for
those using instance-specific modeling with VaRTOS. As before, the x-axis represents
combinations of power instances (best, nominal, and worst case) as well as temperature
profiles (mild/best, medium/nominal, and harsh/worst). While the worst-case system
has a constant error across all combinations, the VaRTOS results show a reduction in
prediction error when additional work can be performed without sacrificing lifetime
(i.e., those cases where weather and power instance result in a reduction in energy
consumption over the worst case). This improvement can be as much as 42.5% in many
cases.

8.3. Block Processing Applications

In some cases, a developer may have a number of signal processing (or similar) rou-
tines that would help to clean up or extract data from a particular signal. In most
cases, the total number of potential sensor processing blocks is likely to be small, and
more importantly, it is unlikely that each of these blocks will take the same time and
thus the same power to complete. In other words, the functions Ki that map knob
values into duty cycles are no longer a very good fit, as the curve ki → di is no longer
linear. As an example, consider a system with two sensor streams, each with five po-
tential sensing blocks that all increase the quality of the application as a whole. These
tasks each take a distinct number of computer cycles to complete, as summarized in
Table III.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:22 P. Martin et al.

Fig. 21. Energy consumption errors for a multiblock signal processing application.

The cycles here have been arbitrarily chosen in part to show how VaRTOS responds
to violations in architecture assumptions (linearity and granularity of task knobs). If
we try to schedule these two tasks using VaRTOS with E = 12,960J and L = 8,760h
as before, the resulting errors in energy consumption will be those shown in Figure 21.
In this case, the number of blocks executed using VaRTOS is on average 2.8 for sensor
1 and 3.5 for sensor 2, while worst-case power assumption resulted in one block be-
tween both sensors combined. In other words, while VaRTOS gives over a 64% signal
processing improvement in this application, the errors in energy expenditure are on
average much larger than the errors shown in Figure 13; indeed, they would be even
larger had our cycle counts shown in Table III varied even more or had the number
of blocks been even fewer than five. While VaRTOS can help reduce energy errors to
some extent in applications similar to this multiblock signal processing example, care
should be taken to ensure that the assumptions made in Section 4 are not completely
ignored.

9. CONCLUSION

We developed an architecture for maximizing application quality while meeting life-
time and energy constraints in the face of power and temperature variation. We achieve
this through application elasticity as defined by a knob—a tunable variable that in-
creases the quality of a given task at the expense of increased power consumption. This
knob serves to shape the utility curve of each task as well as offer a means by which
the operating system can control the amount of active time and thus power given to
individual tasks. We implemented online per-instance power modeling and task mod-
eling in VaRTOS, a series of kernel extensions to the FreeRTOS operating system.
Our simulations using VaRTOS show that we can accurately meet a specified lifetime
goal with less than 2% error in most cases and less than 5% error in the worst case,
whereas had we assumed worst-case power consumption, errors would range from 5%
to over 70%. We further demonstrated the ease with which a developer can adopt the
VaRTOS architecture; very minimal user input is required, and the effects of these
inputs can be tested using a graphical task modeling tool. Finally, we presented case
studies for multinode localization applications using wireless sensor networks, estima-
tion problems using Kalman filtering, and multiblock signal processing applications,
illustrating how VaRTOS can increase application quality while maintaining lifetime
requirements. Knobs in VaRTOS represent flexible notions of elasticity—we make the
assumption in this work that they have a linear relationship with computational time,
but in general the only assumption required is that an increase in knob value will

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

Runtime Optimization of System Utility with Variable Hardware 24:23

increase utility. In other words, if more advanced modeling techniques are used, we
can extend this notion of knobs to adapting many other system parameters, not just
task frequency and duration. The VaRTOS architecture allows traditional, nonadap-
tive tasks to coexist with adaptable tasks, and it is therefore suitable for a large class of
applications where a notion of elasticity in quality exists. Finally, all software developed
in this project is open source and can be found at https://github.com/nesl/vartos.

ACKNOWLEDGMENT

The authors would like to thank Supriyo Chakraborty for help with the initial problem formalization,
Liangzhen Lai for valuable input regarding power variation models, and Puneet Gupta for help with the
VarEMU project and additional prior work. This material is based in part on work supported by the NSF
under awards CCF-1029030, CNS-0905580, CNS-0910706, and CNS-1143667. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the NSF.

REFERENCES

A. Agarwal, B. C. Paul, S. Mukhopadhyay, and K. Roy. 2005. Process variation in embedded memories:
Failure analysis and variation aware architecture. IEEE Journal of Solid-State Circuits 40, 9 (2005),
1804–1814.

W. Baek and T. M. Chilimbi. 2010. Green: A framework for supporting energy-conscious programming using
controlled approximation. Special Interest Group on Programming Languages Notices 45, 6 (June 2010),
198–209.

B. Balaji, J. McCullough, R. K. Gupta, and Y. Agarwal. 2012. Accurate characterization of the variability in
power consumption in modern mobile processors. In Proceedings of the USENIX Conference on Power-
Aware Computing and Systems (HotPower’12). 8–8.

L. A. D. Bathen, N. D. Dutt, A. Nicolau, and P. Gupta. 2012. VaMV: Variability-aware memory virtualization.
In Proceedings of the Design, Automation Test in Europe Conference (DATE’12). 284–287.

F. Bellard. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual
Technical Conference (ATEC’05). 41–41.

K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and
N. J. Rohrer. 2006. High-performance CMOS variability in the 65-nm regime and beyond. IBM Journal
of Research and Development 50, 4.5 (2006), 433–449.

S. Bhardwaj, W. Wenping, R. Vattikonda, Yu Cao, and S. Vrudhula. 2006. Predictive modeling of the NBTI
effect for reliable design. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC’06).
189–192.

S. Bhunia, S. Mukhopadhyay, and K. Roy. 2007. Process variations and process-tolerant design. In Proceed-
ings of the 20th International Conference on VLSI Design. 699–704.

S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. 2003. Parameter variations and
impact on circuits and microarchitecture. In Proceedings of the Design Automation Conference (DAC’03).
ACM, 338–342.

Y. Cao, P. Gupta, A. B. Kahng, D. Sylvester, and J. Yang. 2002. Design sensitivities to variability: Extrap-
olations and assessments in nanometer VLSI. In Proceedings of the IEEE International ASIC/SOC
Conference. 411–415.

T.-B. Chan, P. Gupta, A. B. Kahng, and L. Lai. 2012. DDRO: A novel performance monitoring methodology
based on design-dependent ring oscillators. In Proceedings of the International Symposium on Quality
Electronic Design (ISQED’12). 633–640.

S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey. 2009. Variation-tolerant dynamic power management
at the system-level. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17, 9 (2009),
1220–1232.

X. Chen, Y. Wang, Y. Cao, Y. Ma, and H. Yang. 2012. Variation-aware supply voltage assignment for simulta-
neous power and aging optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
20, 11 (2012), 2143–2147.

H. Cho, L. Leem, and S. Mitra. 2012. ERSA: Error resilient system architecture for probabilistic applications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 31, 4 (2012), 546–558.

S. H. Choi, B. C. Paul, and K. Roy. 2004. Novel sizing algorithm for yield improvement under process variation
in nanometer technology. In Proceedings of the Design Automation Conference (DAC’04). ACM, 454–459.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

24:24 P. Martin et al.

A. Datta, S. Bhunia, S. Mukhopadhyay, N. Banerjee, and K. Roy. 2005. Statistical modeling of pipeline
delay and design of pipeline under process variation to enhance yield in sub-100nm technologies. In
Proceedings of the Design, Automation and Test in Europe (DATE’05), Vol. 2. 926–931.

S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard, J. Tschanz, V. Erraguntla,
N. Borkar, V. De, and S. Borkar. 2010. Within-die variation-aware dynamic-voltage-frequency scaling
core mapping and thread hopping for an 80-core processor. In Proceedings of the IEEE Solid-State
Circuits Conference (ISSCC’10). 174–175.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge. 2003. Razor: A low-power pipeline based on circuit-level timing speculation. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture (MICRO-36). 7–18.

FreeRTOS Project. 2013. FreeRTOS. http://www.freertos.org. (2013).
S. Garg and D. Marculescu. 2007. On the impact of manufacturing process variations on the lifetime of

sensor networks. In Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis. ACM, 203–208.

H. Ghasemzadeh, N. Amini, and M. Sarrafzadeh. 2012. Energy-efficient signal processing in wearable em-
bedded systems: An optimal feature selection approach. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED’12). ACM, 357–362.

S. Ghosh, S. Bhunia, and K. Roy. 2007. CRISTA: A new paradigm for low-power, variation-tolerant, and
adaptive circuit synthesis using critical path isolation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26, 11 (Nov. 2007), 1947–1956.

J. Gregg and T. W. Chen. 2007. Post silicon power/performance optimization in the presence of process vari-
ations using individual well-adaptive body biasing. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 15, 3 (March 2007), 366–376.

P. Gupta and A. B. Kahng. 2003. Quantifying error in dynamic power estimation of CMOS circuits. In
Proceedings of the International Symposium on Quality Electronic Design. 273–278.

ITRS. 2010. The international technology roadmap for semiconductors. http://www.itrs.net.
K. Kang, B. C. Paul, and K. Roy. 2006. Statistical timing analysis using levelized covariance propagation

considering systematic and random variations of process parameters. ACM Transactions on Design
Automation of Electronic Systems 11 (Oct. 2006), 848–879.

V. Khandelwal and A. Srivastava. 2007. Variability-driven formulation for simultaneous gate sizing and
post-silicon tunability allocation. In Proceedings of the International Symposium on Physical Design
(ISPD’07). ACM, New York, NY, 11–18.

N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan.
2003. Leakage current: Moore’s law meets static power. Computer 36, 12 (2003), 68–75.

A. Lachenmann, P. Marrón, D. Minder, and K. Rothermel. 2007. Meeting lifetime goals with energy levels.
In Proceedings of the International Conference on Embedded Networked Sensor Systems (SenSys’07).
131–144.

J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. 1994. Imprecise computations. Proceedings of
the IEEE 82, 1 (1994), 83–94.

T. Matsuda, T. Takeuchi, H. Yoshino, M. Ichien, S. Mikami, H. Kawaguchi, C. Ohta, and M. Yoshimoto. 2006.
A power-variation model for sensor node and the impact against life time of wireless sensor networks.
In Proceedings of the International Conference on Communications and Electronics (ICCE’06). 106–111.

D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser. 2006. The low power energy aware pro-
cessing (LEAP) embedded networked sensor system. In Proceedings of the International Conference on
Information Processing in Sensor Networks. 449–457.

K. Meng and R. Joseph. 2006. Process variation aware cache leakage management. In Proceedings of the
2006 International Symposium on Low Power Electronics and Design (ISLPED’06). 262–267.

S. Neiroukh and X. Song. 2005. Improving the process-variation tolerance of digital circuits using gate sizing
and statistical techniques. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE).

NLopt Project. 2013. NLopt. http://ab-initio.mit.edu/wiki/index.php/NLopt. (2013).
A. Pant, P. Gupta, and M. van der Schaar. 2012. AppAdapt: Opportunistic application adaptation in presence

of hardware variation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20, 11 (2012),
1986–1996.

J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic. 1996. Digital Integrated Circuits. Vol. 996. Prentice-Hall.
A. Rahimi, L. Benini, and R. Gupta. 2012. Procedure hopping: A low overhead solution to mitigate variability

in shared-L1 processor clusters. In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED’12). 6.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

http://www.freertos.org
http://www.itrs.net
http://ab-initio.mit.edu/wiki/index.php/NLopt

Runtime Optimization of System Utility with Variable Hardware 24:25

S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich. 2009. Apprehending joule thieves with
Cinder. In Proceedings of ACM MobiHeld. ACM, 49–54.

D. Sylvester, D. Blaauw, and E. Karl. 2006. ElastIC: An adaptive self-healing architecture for unpredictable
silicon. IEEE Design and Test of Computers 23, 6 (2006), 484–490.

R. Teodorescu and J. Torrellas. 2008. Variation-aware application scheduling and power management for chip
multiprocessors. In Proceedings of the International Symposium on Computer Architecture (ISCA’08).
363–374.

A. Tiwari, S. R. Sarangi, and J. Torrellas. 2007. ReCycle: Pipeline adaptation to tolerate process variation.
The ACM Special Interest Group on Computer Architecture News 35, 2 (June 2007), 323–334.

J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De. 2002. Adaptive body
bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency
and leakage. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC’02), Vol. 1.
422 –478.

UC Berkeley Device Group. 2013. BSIM. Retrieved from http://www-device.eecs.berkeley.edu/bsim/.
U. S. Climate Reference Network (USCRN). 2012. Hourly Temperature Data. Retrieved from www.ncdc.

noaa.gov/crn/.
VarEMU Project. 2013. An Emulation Testbed for Variability-Aware Software. Retrieved from

https://github.com/nesl/varemu.
H. J. M. Veendrick. 1984. Short-circuit dissipation of static CMOS circuitry and its impact on the design of

buffer circuits. IEEE Journal on Solid-State Circuits 19, 4 (1984), 468–473.
W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, T. Liu, and Y. Cao. 2007. The impact of NBTI

on the performance of combinational and sequential circuits. In Proceedings of the Design Automation
Conference 364–369.

L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava. 2012. Hardware variability-aware duty cycling
for embedded sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 6 (2012),
1000–1012.

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. 2002. ECOSystem: Managing energy as a first class
operating system resource. ACM Special Interest Group on Operating Systems 36, 5 (October 2002),
123–132.

R. Zheng, J. Velamala, V. Reddy, V. Balakrishnan, E. Mintarno, S. Mitra, S. Krishnan, and Yu Cao. 2009.
Circuit aging prediction for low-power operation. In Proceedings of the IEEE Custom Integrated Circuits
Conference (CICC’09). 427–430.

Received June 2014; revised April 2014; accepted July 2014

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 24, Publication date: February 2015.

http://www-device.eecs.berkeley.edu/bsim/
http://www.ncdc.noaa.gov/crn/
http://www.ncdc.noaa.gov/crn/

