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ABSTRACT
3D multicore systems with stacked DRAM have the poten-
tial to boost system performance significantly; however, this
performance increase may cause 3D systems to exceed the
power budget or create thermal hot spots. This paper in-
troduces a framework to model on-chip DRAM accesses and
analyzes performance, power, and temperature tradeoffs of
3D systems. We propose a runtime optimization policy to
maximize performance while maintaining power and ther-
mal constraints. Our policy dynamically monitors workload
behavior and selects among low-power and turbo operating
modes accordingly. Experiments with multithreaded work-
loads demonstrate up to 49% energy efficiency improvements
compared to existing thermal management policies.

Categories and Subject Descriptors
C.4 [Performance of System]: Modeling techniques

General Terms
Design, Experimentation, Management, Performance

Keywords
energy efficiency, thermal management, 3D multicore system

1. INTRODUCTION
3D stacking is a promising technique to increase transistor

density per footprint without scaling the technology node,
and it also enables stacking different technologies into a sin-
gle chip. Using 3D stacking, it is possible to place a sizable
DRAM layer within the chip, reducing the delays associated
with accessing off-chip memory [1, 2]. On the other hand, 3D
systems exacerbate the already existing thermal challenges
because of higher thermal resistivities and power densities
per chip footprint. Thermal hot spots and large temporal
or spatial temperature variations adversely affect reliability
and performance while increasing the cooling costs [3]. In
addition to the temperature rise on the logic layers, temper-
ature of the DRAM layers substantially increases because
of the high memory access rate and the heat transfer from
the logic layer. High DRAM temperatures severely affect
memory reliability and performance [4, 5].
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The thermal challenges in 3D systems require a joint as-
sessment of performance, energy, and temperature trade-
offs. Also, as workload dynamics change during the life-
time of a system, it is imperative to have runtime opti-
mization techniques that monitor and actively manage the
interplay among performance, power, and temperature of
3D systems. Prior energy and temperature management
methods for 3D systems include workload scheduling, dy-
namic voltage-frequency scaling (DVFS), thermally-aware
floorplanning, and job allocation (e.g., [6, 7, 8, 3]). How-
ever, these techniques do not jointly evaluate and optimize
performance, power, and temperature profiles at run-time
for logic and DRAM layers in 3D systems simultaneously.

This paper focuses on optimizing the energy efficiency and
temperature of 3D multicore systems with on-chip DRAM.
We first model the performance, power, and thermal im-
pacts of the on-chip DRAM and analyze how the reduced
memory access latency changes runtime dynamics. We then
propose a novel optimization technique that dynamically
monitors application behavior through performance coun-
ters and adjusts the operating points for adapting to varying
application phases. Our policy selects among low-power and
high-performance, or “turbo”, execution modes from avail-
able voltage-frequency (V-F) settings by utilizing predic-
tions from a regression-based model. In this way, we maxi-
mize throughput while maintaining the power and temper-
ature constraints.

The optimization policy is motivated by two observations
derived from our analysis of 3D systems with on-chip DRAM.
First, we observe that memory-bound benchmarks have sig-
nificant performance improvements when running on 3D sys-
tems with on-chip DRAM compared to the 2D baseline with
off-chip memory. However, power and temperatures on both
logic and DRAM layers rise significantly. In this case, our
policy selects a low-power V-F setting to maximize through-
put under power and thermal constraints. Second, for CPU-
bound benchmarks, we observe limited performance improve-
ment compared to the 2D baseline. However, for CPU-
bound applications, stacking the DRAM layer with the logic
layer provides a temperature slack as the DRAM layer is
much cooler than the logic layer and helps maintain low
temperature. In this case, we boost system performance
using high-frequency turbo modes without creating thermal
problems. Our specific contributions are as follows:

• We design a simulation framework to model the on-chip
DRAM accesses and jointly analyze performance, power,
and temperature for both logic and memory layers on 3D
systems with stacked DRAM. Using the framework, we
analyze on-chip DRAM accesses at various bandwidths.
Enabling parallel access to the DRAM improves perfor-
mance by up to 86.9% compared to single-bus access.
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• We propose a novel runtime optimization policy for se-
lecting V-F settings to maximize system performance sub-
ject to power and thermal constraints. Our experiments
demonstrate that our policy achieves an average perfor-
mance improvement of 36.1% for a 16-core 3D system with
stacked DRAM compared to a statically optimized 3D sys-
tem with fixed V-F settings. We reduce the energy-delay
product (EDP) by up to 49.4% compared to a 3D system
managed by a temperature-triggered DVFS policy.

The rest of the paper starts with an overview of the related
work. Section 3 introduces the experimental methodology.
Sections 4 and 5 propose the runtime optimization policy
and present the experimental results, respectively. Section 6
concludes the paper.

2. RELATED WORK
Recent literature has studied the performance and energy

benefits of 3D systems with on-chip DRAM. However, most
prior work considers the evaluation of performance, power,
and temperature separately. Loi et al. analyze 3D system
performance with thermal considerations using a standard
heat flow model [9], and Loh explores 3D-stacked memory
architectures [2] with temperature analysis using HotSpot
[10]. However, their thermal simulations are based on coarse-
grained power estimates instead of using power traces ob-
tained from detailed performance statistics.

Prior research on 3D system energy and thermal manage-
ment includes design-time optimization methods and run-
time management polices based on task scheduling and DV-
FS techniques. Cong et al. introduce a thermally-aware
3D placement approach based on transformation techniques
[8]. Healy et al. propose a microarchitectural floorplanning
algorithm for 3D ICs using linear programming and simu-
lated annealing [11]. These static optimization methods are
implemented at design stage, and do not address dynamic
changes in workload profiles.

Dynamic power management on multicore 2D systems has
been well studied. Isci et al. present a runtime phase pre-
diction methodology to control DVFS based on frequency
of memory operations [12]. Cochran et al. propose a scal-
able method for determining the optimal V-F settings un-
der power constraints [13]. For dynamic management on 3D
systems, Zhu et al. propose a runtime thermal management
approach using task migration and DVFS [6]. Zhou et al.
introduce an OS-level scheduling algorithm for optimizing
3D system temperature using dynamic workload scheduling
[14]. These methods targeting 3D systems, however, do not
consider detailed performance analysis of the workloads.

Our research differentiates from prior work as we provide
a modeling and management methodology to jointly analyze
and optimize performance, power, and temperature for 3D
systems with on-chip DRAM. We analyze the performance
impact of 3D stacked DRAM for single-bus or parallel access
scenarios, and design a detailed on-chip DRAM performance
and power model. We then propose a runtime optimization
method that selects low-power or turbo operating modes
based on processor and DRAM utilization in the 3D stack.

3. METHODOLOGY
Our research targets 3D multicore processors with on-

chip DRAM. Figure 1 provides an illustration of the logic
layer of a 16-core 3D system with stacked DRAM. In the

3D system, all the processing cores and caches are on one
layer and a 3D DRAM layer is stacked below it. Through-
silicon vias (TSVs) are used for vertically connecting the
core and DRAM layers. We assume face-to-back, wafer-to-
wafer bonding for building the 3D systems. Wafer-to-wafer
bonding allows for reliably manufacturing larger 3D systems.
Both the target 3D system with on-chip DRAM and the 2D
baseline with off-chip memory have the same core architec-
ture and the same floorplan for the logic layer. The core
architecture of the target system is modeled based on the
AMD Family 10h microarchitecture used in AMD Magny-
Cours processors. Each core has multiple-issue and out-of-
order execution. The architectural parameters for cores and
caches are listed in Appendix S2. We assume the target
processor is manufactured with 45nm technology, has a to-
tal die area of 376mm2, and can be operated under five
different V-F settings, as listed in Table 2.

3.1 Modeling Memory Accesses
In order to accurately quantify the performance improve-

ments of our target 3D systems, we model the memory ac-
cess latency by examining the different components that
contribute to the latency. For multicore systems, there are
three main components of the memory access latency from
the last-level caches to main memory: the propagation de-
lay between last-level caches to memory controller (LLC-to-
controller delay), the data request time spent at the memory
controller (memory controller processing latency), and the
data retrieval time spent at the DRAM.

To model the LLC-to-memory controller delay, we assume
that all the private L2 caches are connected to the mem-
ory controllers through a shared bus. Figure 1 illustrates
the physical layout of the logic layer. We assume that the
global bus interconnect is routed around the chip in a ser-
pentine fashion. For modeling the bus interconnect, we use
energy-optimized repeater-inserted pipelined channels to re-
duce the global wire delay. The wire propagation delay is
linear with respect to the wire length, owing to the repeaters
that are inserted to partition the wire into smaller segments.
Each pipeline stage is designed using predictive technology
model for 45nm and has a propagation delay of 183ps per
mm. We estimate the average distance from an L2 cache to
a memory controller block as 9.4mm based on the layout.
Thus, the round trip LLC-to-memory controller latency is
4ns (rounded up).

Memory access latency is strongly governed by the mem-
ory controller processing time. Modern memory controllers
typically consist of a memory request queue that buffers the
pending requests waiting to get scheduled, and a scheduler
that selects the next request to be serviced. The memory
controller processing latency, thus, refers to the time spent
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Figure 1: The layout for the logic layer of target 3D system.
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Table 1: DRAM access latency

2D-baseline design 3D system with regular memory access
memory 4ns LLC-to-controller delay, 4ns LLC-to-controller delay,

controller 48ns memory controller processing time 24ns memory controller processing time
main memory off-chip DRAM, tRAS = 36ns, tRP = 15ns on-chip DRAM, tRAS = 36ns, tRP = 15ns
memory bus off-chip bus, 200MHz, 8-Byte bus width on-chip bus, 2GHz, 64-Byte bus width
total delay 103ns 79ns

by a memory request waiting to get scheduled. We set the
overall memory controller processing latency as 100 cycles
from the simulation results reported in prior work [15], where
the memory controller latency of a 16-core processor with 4
memory controllers running PARSEC benchmark suite is
studied. For the 3D system, we assume that the memory
controller latency is reduced by 50% [16].

We use the same DRAM structure for the off-chip DRAM
in 2D baseline and for the DRAM layer in 3D system, where
we consider a 1GB DRAM consisting of 4 ranks, each of
which has 4 banks (16 banks total). We use the row active
time tRAS = 36ns and row precharge time tRP = 15ns as
reported by MICRON’s DDR3 SDRAM. We use the same
timing parameters for the DRAM layer of the target 3D
system, which is consistent with the assumptions used in
earlier studies [2, 9]. Table 1 summarizes the memory access
times for 2D and 3D systems.

To simulate the data transfer between logic layer and
DRAM layer, we consider regular memory access and par-

allel memory access, both with a fast memory bus at 2G-
Hz. As illustrated in Figure 2, the parallel memory ac-

cess allows the four on-chip memory controllers to access
the four DRAM ranks at the same time. We deploy 512
TSVs on each memory controller, which provide a 64-Byte
bus width for each memory controller with only 0.2% chip
area overhead. From our simulation results for the NAS
and PARSEC benchmarks, we observe the accesses to the
main memory are evenly distributed among the four ranks,
as shown in Appendix S3. Therefore, we assume the mem-
ory access latency with parallel access is one-fourth of
the latency of regular access. Note that this is a conser-
vative assumption as the simultaneous accesses also enable
faster processing at the memory controller because of fewer
pending requests in the request queues.

3.2 Performance Simulation
We use M5 full-system simulator [17] to conduct the per-

formance simulation for our target systems. We use the Al-
pha instruction set architecture (ISA) as it is the most stable
ISA currently supported in M5. The full-system mode in M5
models a DEC Tsunami system to boot Linux OS. We model
the 3D system with on-chip DRAM in M5 by configuring the
main memory access latency and the bus width/speed be-
tween L2 caches and main memory to mimic the high data

Figure 2: An illustration of the 3D system with DRAM
stacking that has (a) regular memory access and (b) par-
allel memory access.

transfer bandwidth provided by the TSVs. The architec-
tural configuration parameters and memory access latencies
are shown in Appendix S2 and in Table 1, respectively.

We select parallel applications from the PARSEC [18] and
NAS Parallel Benchmarks (NPB) suite [19] as our target
workloads. We run PARSEC benchmarks in M5 with sim-
large input sets and NAS with class B problem sets. For each
benchmark, we fast-forward to get past the serial initial-
ization phase. Then, we execute each benchmark with the
out-of-order CPUs with detailed memory access simulations,
and collect statistics at every 100 million instructions for 100
sampling steps. In order to collect the access statistics for
the 3D stacked DRAM, we track the memory accesses to
each DRAM bank by observing the least significant bits for
the physical memory addresses at every interval. The per-
formance statistics collected from M5 simulations are used
as inputs for the processor and DRAM power models.

3.3 Power Model
We use McPAT 0.7 [20] for 45nm process to obtain the

run-time dynamic power of the cores. In our McPAT sim-
ulations for 2D baseline, we set Vdd to 1.1V and operating
frequency to 2.1GHz. For our target 3D system, we use five
V-F settings as shown in Table 2 (see Appendix S4 for av-
erage core power results). The L2 cache power is calculated
using Cacti 5.3 [21], where the dynamic L2 power is scaled
using L2 access rates. The average L2 cache power is 0.62W.

We calibrate the McPAT run-time dynamic core power us-
ing measurements that we collect on an AMD Magny-Cours
processor. We derive the average dynamic core power val-
ues from power simulation across the benchmark suite, and
compute the calibration factor, R, to translate the McPAT
raw data to the target power scale. Then, we use R to scale
dynamic core power consumption. A similar calibration ap-
proach has been introduced in prior work [22]. At nominal
temperature of 343K, we assume the leakage power for the
cores is 35% of the total core power, which matches the mea-
surements on the AMD Mangy-Cours system. We also take
the temperature and voltage impact on leakage power into
account. The impact of temperature on leakage power is ex-
ponentially dependent on the temperature [23]. Prior work
shows close-to linear relation between Vdd and leakage when
variation of Vdd is small [24]. As voltage change is limited to
10% of the default setting in our system, we model leakage
dependence on Vdd as linear.

The DRAM power in the 3D system is calculated using
MICRON’s DRAM power calculator [25], which takes the
memory read and write access rates as inputs. We obtain
detailed DRAM power traces for each of the DRAM banks at
every sampling interval. The average on-chip DRAM bank
power across all the benchmarks in 3D system with parallel
access is 1.44W. The on-chip memory controller power for
both 2D and 3D systems is estimated based on Intel’s 48-
core single-chip cloud computer as 5.9W [26]. We assume the
system interface and I/O power as well as the on-chip bus
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Figure 3: IPS for PARSEC and NAS benchmarks running
on 2D baseline and the 3D system with parallel access.

power are negligible with respect to the total chip power. It
has been shown that the total on-chip bus power for running
PARSEC and NAS workloads is less than 2.0W even for a
64-core system [27].

3.4 Thermal Model
We use HotSpot 5.0 [10] for thermal simulations. We ex-

tend HotSpot (see Appendix S1) to account for the TSVs in
3D systems by utilizing the methodology for modeling the
interlayer material heterogeneity introduced in prior work
[3]. Appendix S5 provides the thermal parameters for the
HotSpot simulations.

Our simulation framework is able to periodically sample
runtime events at every fixed time interval or at a certain
number of instructions. In this way, we observe the dynam-
ically changing performance patterns that cannot be cap-
tured by average or coarse-grained performance estimates.
For each benchmark and for each V-F setting, we record the
power and performance data at every 100 million instruc-
tions into a database. Thermal simulator polls this database
to gather power traces based on a fixed or dynamically set V-
F setting, as determined by the policy running. Instruction-
based intervals are converted to time-based samples as re-
quired by thermal simulations. This approach enables de-
coupling thermal simulation from lengthy performance-power
simulations and achieves significant speedups. Even when
applying DVFS policies, we are able to maintain accuracy
due to two main reasons: (1) we change V-F settings of all
the cores together; (2) for all the benchmarks in our eval-
uation set, the distribution of executed instructions among
all the cores is very similar when running at different V-F
settings, which allows the runtime V-F setting changes in
our modeling methodology.

4. RUN-TIME OPTIMIZATION POLICY
The goal of our runtime optimization policy is to select

operating points maximizing performance while maintain-
ing the power and temperature constrains for both logic and
DRAM layers. Our optimization policy is motivated by the
observations of running PARSEC and NAS benchmarks on
our simulation framework under different V-F settings. Fig-
ures 3, 4, and 5 present the performance, temperature, and
power results of the 2D baseline and the target 3D system
with stacked DRAM, respectively.

We notice that, for most of the benchmarks, the average
IPS of 3D systems running at 0.8GHz are sufficiently high to
match the performance of the 2D baseline. We also observe
that applications dramatically differ in their performance
behavior. For the memory-intensive benchmarks, such as

streamcluster and mg, the high memory access rates re-
sult in significant performance improvements when running
on 3D systems with stacked DRAM in comparison to 2D
baseline; however, the peak temperature also considerably
increases. Thus, we run such benchmarks at the low-power
mode by exploiting the performance slack. Figure 3 shows
that, even at low-power mode, the memory-intensive bench-
marks running on the 3D system still have significant perfor-
mance improvements in comparison to running on 2D base-
line. For CPU-intensive workloads, on the other hand, the
low memory access rate result in a cooler DRAM layer that
shares the temperature of the hotter core layer. For bench-
marks such as blackscholes, we switch to the turbo mode
with higher V-F settings for boosting the performance by
taking advantage of the temperature slack.

The basic concept of our optimization method is presented
in Equation (1), where (F, V ) is the set of available V-F set-
tings. Our goal is to maximize throughput (instructions per
second, IPS) under power and thermal constraints. Pcap

is the power budget of the target system, and Tthld is the
peak temperature threshold to ensure reliable operation. As
shown in Figure 4, we set Tthld at 85oC. Figure 5 shows
three Pcap settings. Our policy satisfies Tthld and Pcap at
the same time. For example, at a loose Pcap of 200W, Tthld

at 85oC dominates the optimization decisions. A more strict
Pcap at 175W or 155W requires taking peak power into ac-
count. Peak power management is an increasingly important
feature owing to power supply limitations and potential en-
ergy cost reduction opportunities at large computer clusters.

maximize
(f,v)∈(F,V )

IPS(f, v) (1)

subject to power(f, v) ≤ Pcap, temperature(f, v) ≤ Tthld.

Our runtime optimization policy is illustrated in Figure
6. We start running the application with the lowest V-F
setting to ensure reliable operation, and collect the perfor-
mance statistics at regular intervals of 100 million instruc-
tions. Based on a model we construct offline, we predict
the highest V-F setting satisfying the constraints using the
performance statistics as inputs. We continue running the
application with the predicted V-F setting. This process is
repeated at every interval.

We choose instructions per cycle (IPC) and memory ac-
cess per instruction (MA) to construct a regression-based
model for selecting the V-F settings. This is because IPC is
a good indicator of the power of the logic layer and MA is a
good indicator of the power of the DRAM layer. Power
densities on both layers affect chip peak temperature on
the 3D system. Our V-F prediction model is in the form
of V F = c0 + c1·MA + c2·IPC + c3·MA∗IPC. We train
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Figure 5: Total chip power on the 3D system with parallel
access running at different V-F settings.

the regression model with power and performance statistics
from simulations across all benchmarks. Note that we need
to use different coefficients in the model depending on the
current V-F setting, as MA and IPC vary with the V-F
setting. As an example of the V-F prediction for a 3D sys-
tem with 85oC/175W constraints, we list the coefficients of
the regression-based model for all the V-F settings in Ta-
ble 2. The regression model provides accurate prediction as
shown in Figure 10, and can be refined at runtime if needed.
The overhead of the run-time prediction is negligible, since
computing a simple equation at every interval has very low
computational cost.

Table 2: Regression coefficients for a target 3D system with
85oC/175W constraints for all the V-F settings.

V-F setting c0 c1 c2 c3
2.1GHz/1.1V 3.68 -147.95 -0.059 0.19
1.7GHz/1.06V 3.74 -141.77 -0.071 0.23
1.4GHz/1.02V 3.76 -145.71 -0.075 0.36
1.1GHz/1.0V 3.80 -147.08 -0.087 0.41
0.8GHz/0.98V 3.87 -152.01 -0.072 0.58

5. EXPERIMENTAL RESULTS
This section evaluates our technique on 3D systems with

parallel access, and compares our optimization policy against
using static V-F settings, a temperature-triggered DVFS
policy, and a DVFS policy guided by memory accesses.

Figure 7 demonstrates the performance improvement of
the 3D system with parallel on-chip DRAM access running
at 2.1GHz and 0.8GHz. We show that enabling parallel
access to the 3D DRAM layer improves IPS by up to 86.9%
compared to using regular access. streamcluster and mg

show higher IPS improvements than the other benchmarks,
since they have higher memory access rates and thus benefit
more from reduced average memory access time.

Table 3 presents the performance and energy-efficiency
improvements for 3D systems running our runtime optimiza-
tion policy compared to using static V-F settings. We notice
that the peak temperatures go over the thermal constraint

Figure 6: The flowchart of our runtime optimization policy.
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Figure 7: Performance improvement on 3D system with par-
allel access compared to 3D system with regular access.

of 85oC for applications running on the 3D systems with
frequency settings higher than 1.1GHz. With a loose power
constraint of 200W, we compare our policy with the static
V-F setting at 1.1GHz/1.0V which maintains temperature
below 85oC for all the benchmarks. Our policy achieves an
average IPS improvement of 24.6% and EDP reduction of
22.4% across all the benchmarks.

We present the runtime V-F selection process of our op-
timization policy in Figure 8. For ua, 1.4GHz/1.02V is the
reliable static operating point, maintaining the temperature
below 85oC. However, the phase change of ua creates a tem-
perature slack periodically. Our policy takes advantage of
the temperature slack and switches to 1.7GHz during peri-
ods of low temperature.

We demonstrate the advantage of our runtime optimiza-
tion policy over applying temperature-triggered DVFS in
Figure 9. Temperature-triggered DVFS is a well-known pol-
icy for thermal management on 2D systems [10, 28]. It tracks
chip peak temperature and selects the operating point based
on temperature sensor readings. For safe operation while
maintaining system performance, we choose two tempera-
ture thresholds as 80oC and 70oC. Temperature-triggered
DVFS reduces/increases the V-F setting when temperature
goes above/below 80oC/70oC. Our policy improves EDP
by up to 61.9% and IPS by 32.2% on average across all
the benchmarks in comparison to the temperature-triggered
DVFS policy. The performance of blackscholes and is does
not differ between our policy and the temperature-triggered
DVFS policy. This is because they have low temperature
while running at 2.1GHz/1.1V. The benchmarks that have
high temperatures when running on 3D systems with stacked
DRAM, such as streamcluster, show larger performance im-
provement using our runtime policy. Our policy selects the
highest V-F settings to operate at safe temperatures, while
temperature-triggered DVFS may oscillate around the high
temperature threshold.

We also compare our optimization policy against mem-
ory access driven DVFS, in which V-F selections are mainly
guided by the memory access rate (e.g., [29]). For im-
plementing memory access driven DVFS, we construct a
regression-based model for selecting V-F setting with only
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Table 3: Comparison of our runtime optimization policy against 3D systems with static settings.
Policy Static V/F settings (GHz/V ) Runtime optimization

0.8/0.98 1.1/1.0 1.4/1.02 1.7/1.06 2.1/1.1 85oC/155W 85oC/175W 85oC/200W

Peak P (W ) 154.72 161.53 193.37 236.79 279.25 154.85 168.63 189.62
Peak T (oC) 78.10 79.46 85.85 94.65 103.39 77.97 80.81 83.32
EDP∗? (J ·s) 246.42 167.63 135.18 132.19 119.82 185.67 145.11 130.03

IPnS∗∗? 10.63 12.86 15.73 16.93 18.93 14.47 15.68 16.02
∗ EDP per 10billion instructions, ∗∗ IPnS stands for instructions per nanosecond, ? Average across all benchmarks.
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Figure 9: 3D system with runtime management policy in
comparison to temperature-triggered DVFS policy.

MA. We show the V-F prediction for 3D system with 85o/
175W constraints in Figure 10. By only using MA, three
out of twelve benchmarks end up with different V-F set-
tings than the optimal ones; while the predictions are all
accurate using both IPC and MA as in our policy. The
benchmarks that are predicted incorrectly using only MA
are blackscholes, is, and mg. blackscholes has low MA but
high IPC, is has both low MA and low IPC, and mg has
high MA and relatively higher IPC than the other memory-
bound benchmarks. Our policy provides accurate prediction
as we take the power and temperature constraints on both
logic and DRAM layers into account on 3D systems with
stacked DRAM, where both high IPC and memory access
rate could result in high chip power and peak temperature.
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Figure 10: Prediction accuracy of our runtime management
policy versus memory access (MA) driven DVFS.

6. CONCLUSION
In this paper, we have provided a methodology to eval-

uate 3D systems with stacked DRAM and proposed a run-
time management policy for dynamically selecting operat-
ing points. We have evaluated various access bandwidths
to DRAM and demonstrated up to 86.9% performance im-
provement using parallel access to the DRAM layer com-
pared to regular memory access. Our experiments show that
our optimization policy achieves performance improvement
of 36.1% for 3D systems with stacked DRAM in compari-
son to using static V-F settings and EDP reduction of up to
49.4% compared to a temperature-triggered DVFS policy.
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SUPPLEMENTAL MATERIAL

S1. Modeling the Thermal Impact of TSVs on
3D Systems with Stacked DRAM

Figure 11: An illustration of the 3D multicore processor
with stacked DRAM. TSVs are used to connect the on-chip
DRAM layer with the logic layer.

We extend HotSpot to enable the modeling of TSVs in
3D multicore systems with stacked DRAM. The HotSpot
extension utilizes the methodology for modeling the inter-
layer material heterogeneity introduced in prior work [3].

HotSpot 5.0 [10] has the functionality of modeling stacked
3D chips through a layer configuration file which provides
the set of layers and the physical properties for each layer.
In the default HotSpot tool, the properties across a single
layer of the chip are homogenous with same resistivity and
capacitance values for all the units. Each layer of the 3D
chip is resolved to a grid and the temperature responses are
calculated for each grid cell using the parameters from the
layer configuration file.

In order to model the thermal effect of the TSVs in 3D
stacked systems, our HotSpot extension allows the user to
model the heterogeneity in the layer by modifying the resis-
tivity and capacitance for any unit on the chip. For model-
ing this heterogeneity, we add an additional data structure
to each grid to hold grid-specific resistivity and capacitance
values. When the temperature responses are being calcu-
lated, the tool then uses the grid-specific parameters rather
than the layer-specific ones.

Figure 11 provides an illustration of the 3D multicore pro-
cessor with stacked DRAM. The TSVs connect the on-chip
DRAM layer with the logic layer in the 3D multicore sys-
tems. Note that TSVs go through both the DRAM and
thermal interface layers to connect the active regions of the
DRAM and the logic layers. In our target 3D system with
parallel access, there are 512 TSVs on each memory con-
troller block. The TSVs have a diameter of 10µm and a
center-to-center pitch of 20µm. To calculate the thermal re-
sistivity of the blocks with TSVs, we assume that the TSVs
are evenly spread throughout the memory controller. As
we know the dimensions of a single Copper TSV, we can
calculate the area the TSVs cover in the memory controller
block (AreaTSV ) as well as the area of the memory controller
block without TSVs. The joint parallel resistivity (of Cop-
per and thermal interface material, TIM) can be calculated
as follows:

Figure 12: A flow chart for illustrating the HotSpot exten-
sion for modeling 3D systems with TSVs by enabling the
interlayer material heterogeneity.

RJoint =
Area

Area−AreaTSV

RTIM
+
AreaTSV

RCopper

(2)

where Area is the area of a memory controller block where
TSVs are located at, AreaTSV is the area of the memory
controller block with TSVs, RTIM is the thermal resistiv-
ity of TIM, and RCopper is the thermal resistivity of Cop-
per. Thus, we get the thermal resistivity for the memory
controller block with TSVs as 0.156mK/W , which is lower
than the original TIM resistivity of 0.25mK/W . We also
model the TSVs going through the DRAM layer, and com-
pute the joint thermal resistivity of silicon and Copper as
0.0098mK/W .

We present a flow chart for the implementation of our
HotSpot extension in Figure 12. The black boxes are based
on the default HotSpot implementation, while the red boxes
indicate changes made in the HotSpot tool. In addition
to reading the parameters from the layer configuration file,
the tool also reads unit-specific parameters from each of the
floorplan files. We use the resistivity and capacitance values
specified in the floorplan file and assign them to specific grids
on each layer. The addition of grid-specific values changes
the heuristic initial temperature for steady-state tempera-
ture computations. HotSpot will set the initial tempera-
ture using only the layer-specific vertical resistance for each
layer while ignoring any lateral resistances. Our extension
will find the weighted mean of all the vertical resistances
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in each grid in the layer. When calculating the initial tem-
perature for each layer, the extension will use this weighted
mean instead of using the layer-specific vertical resistance.
The Hotspot extension described above has been recently re-
leased by our group at: http://lava.cs.virginia.edu/HotSpot-
/links.htm.

S2. Target System Modeling Parameters

We model the core architecture of our target system based
on the AMD Family 10h microarchitecture used in AMD
Magny-Cours processors. Each core has multiple-issue, out-
of-order execution, and a 512 KB private L2 cache. All the
L2 caches are located on the same layer as the cores and
connected by a shared bus. MESI cache coherence protocol
is used for communication. The architectural parameters for
cores and caches are listed in Table 4. These parameters are
used for the target system configuration in our performance
simulations, as described in Section 3.2.

Table 4: Core Architecture Parameters

Architectural Configuration
CPU Clock 2.1 GHz
Branch Predictor tournament predictor
Issue out-of-order
Reorder Buffer 84 entries
Issue Width 3-way
Functional Units 3 IntALU, 1 IntMult,

3 FPALU, 1 FPMultDiv
Physical Regs 128 Int, 128 FP
BTB size 2048 entries
RAS size 24 entries
Load Queue 32 entries
Store Queue 32 entries
L1 I/DCache 64 KB @2 ns, 2-way, 64B block

16 private L2 Caches, each L2:
L2 Cache(s) 16-way set-associative, 64B block

512 KB @6 ns

S3. Additional Details for Parallel Memory
Access Modeling

We consider both regular memory access and parallel

memory access to simulate the data transfer between logic
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Figure 13: Average memory accesses per 10ms on different
DRAM ranks on the 3D system with stacked DRAM.

layer and DRAM layer in our target 3D system. The par-

allel memory access allows the four on-chip memory con-
trollers accessing the four DRAM ranks at the same time.
We deploy 512 TSVs on each memory controller, and these
TSVs provide a 64-Byte bus width for each memory con-
troller. In our experiments, we consider TSVs with a diam-
eter of 10µm and a center-to-center pitch of 20µm. Thus
the total TSV area only takes up less than 0.2% of the chip
area overhead. From our simulation results for the NAS and
PARSEC benchmarks as shown in Figure 13, we observe the
main memory accesses are evenly distributed between the
four ranks. This provides the justification for assuming the
memory access latency with parallel access is one fourth
of the latency with regular access.

S4. Power Modeling Parameters

We use five V-F settings in our power model for the tar-
get 3D system, matching the five V-F settings in AMD 10h
processors. The V-F settings and the corresponding average
core power across all the benchmarks for the 3D system with
parallel access are shown in Table 5.

Table 5: V-F settings and average per core power values for
the 3D system with parallel access.

Frequency(GHz) 2.1 1.7 1.4 1.1 0.8
Voltage(V) 1.10 1.06 1.02 1.0 0.98
Core Power(W) 10.57 8.98 6.98 5.30 4.86

S5. Temperature Modeling Parameters

We provide the thermal parameters used in the HotSpot
simulations for 2D and 3D architectures in Table 6. In
HotSpot, we set chip thickness at 0.1mm, DRAM thickness
at 0.05mm, thermal conductivity of DRAM at 100W/mK
(thermal conductivity of silicon), and sampling interval at
1ms. All the other parameters are the same as the de-
fault HotSpot configuration to represent efficient packages
in high-end systems. The power traces are the inputs for the
thermal model. All simulations use the HotSpot grid model
for higher accuracy and are initialized with the steady-state
temperatures.

Table 6: Thermal simulation configurations in HotSpot.

Parameters Values
Chip thickness 0.1mm
Silicon thermal conductivity 100 W/mK
Silicon specific heat 1750 kJ/m3K
Sampling interval 0.001s
Spreader thickness 1mm
Spreader thermal conductivity 400 W/mK
DRAM thickness 0.05mm
DRAM thermal conductivity 100 W/mK
Interface material thickness 0.02mm
Interface material conductivity 4 W/mK
Heatsink thickness 6.9mm
Heatsink resistance 0.1K/W
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