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Abstract

In this work we develop a new criteria to per-
form pessimistic decision tree pruning. Our
method is theoretically sound and is based on
theoretical concepts such as uniform conver-
gence and the Vapnik-Chervonenkis dimen-
sion. We show that our criteria is very well
motivated, from the theory side, and per-
forms very well in practice. The accuracy of
the new criteria is comparable to that of the
current method used in C4.5.

1 Introduction

The phenomena of overfitting the data is well known
in machine learning, and refers to the case that the
learned hypothesis is so closely related to the train-
ing examples such that its generalization capabilities
would be penalized. Overfitting would usually occur
when the class of hypotheses used is as complex as the
given training sample. For this reason we would like,
in many cases, to limit the hypothesis we generate to
be “less complex” than the training sample.

In decision trees the overfitting phenomena can occur
when the size of the tree is too large compared to the
number of training examples. As an extreme case, for
a given training sample consider an arbitrary decision
tree where each leaf contains at most a single example
from the training sample. By setting the value of the
leaf to be the label of the example that reaches it, we
are guarantee to have no error on the training sample.
However, the generalization capabilities of such a tree
are very doubtful. For this reason we are interested
not only in trees whose error on the training sample
is small, but also those whose size is small compare to
the sample size.

There are two general methods, in decision tree in-
The first is
to have some criteria, called Farly Stopping criteria,

duction, to bound the size of the tree.

that would be used in order to decide whether or not
to stop growing a given node. Such an early stopping
criteria limits the size of the tree and avoids trying to
grow unnecessary sub-trees. The risk in using an early
stopping criteria is that by not growing a sub-tree we
might be missing some real structure of the problem
that could be discovered only later.

The second method is growing the initial tree until it
fits the sample perfectly. Then we use this tree as our
initial starting point and start pruning it. Generally,
pruning out performs early stopping, since it allows
us to discover some structure that is not immediate.
There are a few different methods of performing the
pruning and they all output at the end of the pruning
process a tree which is a pruned version of the original
tree.

There are two different methodologies for perform-
ing pruning. The first is of generating a sequence of
pruned trees, and later to chose one of them. This idea
is the core idea behind the Minimal Cost-Complexity
Pruning proposed by Breiman et. al. [BFOS84]. They
proposed using dynamic programming to find a se-
quence of trees that minimizes a combination of the er-
ror on the training sample and the tree size. Later, an
independent sample is used to chose the best tree out
of the sequence. In [BB94] a simple dynamic program-
ming algorithm is given to find the smallest pruned
decision tree that has a given error rate. Here again,
one can generate a sequence of trees and use an inde-
pendent sample to chose the best tree in the sequence.

The second methodology for pruning tries to directly
prune the original decision tree. The pruning is done
by replacing the sub-tree rooted at a node by either
a leaf or by a sub-tree rooted at one of its children.



The approach of Reduced Error Pruning, proposed
by Quinlan [Qui87], uses an independent sample to
test the accuracy of each sub-tree compared to the
case when it is pruned. Mingers [Min87] suggested
the Critical Value Pruning, which performs the deci-
sion about pruning using on the “information-gain”
that was achieved in growing the tree. (For each node
it computes the maximum “information-gain” in its
subtree, and prunes a node if this value is less than a
certain threshold.)

Under the category of pessimistic pruning we include
all the pruning criterias that try to bound the true
error of a sub-tree based on its training error. We
perform the pruning at a node when the reduction in
the error due to the sub-tree seems statistically in-
significant. The algorithmic benefit of the pessimistic
pruning methods is that they require only a single pass
over the tree to generate the pruned tree (compared to
the quadratic time of the dynamic programming based
methods).

The main question now is how do we decide if the
change in the error is significant. We try to estimate
(or at least to upper bound) the true error of a sub-
tree, based on the number of examples it classifies, the
number of errors, the number of classes, and the size
of the tree.

One method that falls into our category of pessimistic
This

method tries to estimate the true error using the fol-

pruning is Minimum error pruning [Nib87].

lowing formula,
e+ (r—1)
n+r

where r is the number of classes, n the number of ex-
amples, and e is the number of errors. (The theoretical
Jjustification for the formula is simple. Assuming a uni-
form prior over the classes, the above is the expected
error over the posterior distribution, given that in n
examples there where e errors.)

Pessimistic pruning of Quinlan [Qui86, Qui93] uses a
complex method based on the number of errors and
the size of the training sample. However, the theoret-
ical justification of this method is rather weak, or as
Quinlan says in his book “... the reasoning should be
taken with a large grain of salt” [Qui93]. This method
of pessimistic pruning is the method that is used cur-
rently in C4.5.

An excellent survey and empirical comparison of
the different pruning methods was done by Mingers
[Min89], which also includes a survey of all the differ-
ent methods.

Our starting point can be motivated as follows. As-
sume you have a sub-tree that classifies 200 training
examples and makes no error. We would very much
like to differentiate the case that the sub-tree is of a
small size (say 3) or a huge size (say 100). In the for-
mer case we expect that the true error would be very
small, while in the latter case the true error might be
huge. This is a most compelling argument why the
size of the decision tree should be incorporated in the

pessimistic estimate.

Our basic proposal it to estimate the error of a sub-tree
on the training sample by the following quantity,

klogd
€ gy [Hlogdter
n n

where n is the sample size that reaches the sub-tree, e
is the number of incorrect classifications done by the
sub-tree, k is the size of the sub-tree, d the number of
attributes and ¢; and ¢y are some constants. We show,
using basic theoretical arguments, that the above ex-
pression is an upper bound on the true error of the
sub-tree.

When considering pessimistic pruning one should
question how “pessimistic” is it. The main point to
keep in mind is that the generated decision tree is not
arbitrary, but rather the one that reduces the error on
the training examples. For example, say we have a
set of functions all with the same true error. On any
given set of examples, we expect to have some func-
tion, from the set of functions, whose error on this set
of examples is lower than the true error. This is why
our pessimistic estimates are really realistic estimates
in many cases.

We have performed empirical tests to compare the cur-
rent method of C4.5 and our new proposed method.
We start with an artificial data on which we show that
our criteria is superior to the current method of C4.5
(even when modifying C4.5’s confidence parameter).
We then continue and perform an empirical evalua-
tion of six datasets. Since our theory was design for
boolean output, we concentrated on datasets where
the output is boolean. The comparison shows that
the accuracy of the new criteria is comparable to that
used in C4.5. (However, it enjoys being theoretically
sound.)

We show that in our method we can use the parameter
A larger
value of ¢ will cause more pruning, while a smaller
value would limit the pruning. (This is similar to the

¢ to control the size of the pruned trees.

confidence parameter build in C4.5, which also controls
the amount of pruning.)



From our empirical results it seems that very signifi-
cant pruning generates much smaller decision trees and
maintains the accuracy. In [AHM95] the accuracy of
C4.5 was compared to an algorithm that generates de-
cision trees of depth two. There it was observed that
decision trees of depth two achieve remarkably good
results compared to C4.5, although in some cases the
limitation to depth two forced reduced accuracy. In
this work we observed that our criteria can be used
to perform extreme pruning of the decision tree while
maintaining its accuracy. This might lead one to sus-
pect that the complex decision trees, that are in many
cases generated by the default setting of C4.5, have
their predictive power concentrated in a small sub-tree.
We may hope that by extreme pruning we will recover
that sub-tree.

This work is organized as follows. In Section 2 we de-
rive the theoretical bounds. Section 3 describes our
criteria in detail. In Section 4 we describe the empiri-
cal results.

2 Theoretical Background

In this section we derive from basics the bounds that
justify our criteria. More elaborate techniques may
give superior bounds, but we did not try to peruse

that direction.

We are interested in the maximum deviation of the
error when the hypothesis is a binary decision tree with
k nodes. Given this we will be able to bound the true
error by the error on the sample plus the maximum
deviation. The first technical lemma that we derive
bounds the number of possible decision trees.

Lemma 2.1 The number of binary decision trees over
d binary inputs with boolean output and k = 2k’ — 1
nodes is bounded by, is

O(2F) -d*' 1. 2F" = 0((4d)*) = O((4d)*).

Proof: In a binary decision tree, each internal node
has degree two (otherwise it is redundant). Therefore,
a binary decision tree with & = 2k’ — 1 nodes, has k'
leaves and k' — 1 internal nodes. Each leaf can be label
by either zero or one, therefore the number of assign-
ments to the leaves is at most 2% . Each internal node
can be labeled by any of the inputs, therefore there are
at most dF ~1 ways to label the internal nodes. The
number of different binary trees can by bounded by
O(2*) (proof omitted). Multiplying the three quanti-
ties derives the lemma. a

The next step is to bound the deviation of a fixed
function from its expectation. This can be derived by
using the Chernoff inequality.

Lemma 2.2 (Chernoff) Let zq,..
dent identically distributed random wvariables, where
z; € {0,1} and Problz; = 1] = p. Let p, =
S zi/n, then:

., &y be indepen-

Probllpn —pl > A] < 2¢ A"

By combining the two we can derive the following the-
orem,

Theorem 2.3 Let ‘H be the class of binary decision
trees over d binary inputs with boolean output and at
most k nodes. Let f be any boolean function and D be
any probability distribution. For h € H let e(h, ) =
Probz.plh(z) # f(z)]. Given z1,...,2, let é(h, f) be
the fraction of z;’s for which f(z;) # h(z;).

[FheH : |e(h, f)—é(h, )

klogd +logl
>cw—Og + 108 /J]SJ
n

What the above theorem is saying can be interpreted

Prob,,,. . ,.~D

for some constant c.

as follows. For any decision tree with k& nodes, when
tested on n examples, the deviation between the ob-
served error (on the sample) and the true error is

bounded by O( klogd

n
stant. Such a result, in the theory terminology, is a

uniform convergence result, since the error of all the

), where we take § to be a con-

hypotheses in ‘H converge simultaneously. This means
that if a given decision tree h with k nodes has an error
é(h, f) on a set of n examples, its true error, e(h, f),
with high probability, is bounded by,

e(h, f) < &(h, f) + [klogd+logl/é

We would like to stress that Theorem 2.3 can be ap-
plied to any node in the tree, and not only to the root.
This is due to the nature of uniform convergence re-
sults, that derives worst case bound on the error, and
the bound holds for any distribution. Therefore, no
matter how we chose the path to the node (even adver-
sarially), the bound would still hold. This is due to the
observation, that no matter how we restrict the distri-
bution (by the path to the node, in this case), when we
consider only examples that have this property, they



algorithm database
australian | diabetes german heart adult Ionosphere

No-Pruning || 143.24+12.3 | 56.2+9.0 | 370.4+ 15.0 | 61.0+ 7.2 | 8742.6 + 207.9 17.8 +4.2
c4.5 ¢ 1 5.2+3.5 10.2 + 6.2 2.6 +2.6 10.0 + 4.0 41.6 +5.8 12.6 +1.9
c4.5 -c 10 13.6 + 8.5 42.2+6.1 47.0+10.4 | 27.6 +5.9 180.8 +10.2 17.0+ 3.2
c4.5 -c 26 39.8+17.0 49.8+9.4 | 110.4+18.7 | 43.0+ 7.2 | 675.0+133.2 17.8 +4.2
c=0.5 3.0+ 0.0 3.44+0.6 1.0+ 0.0 3.84+0.3 22.0+ 3.2 3.04+0.0
c =0.2 6.4+5.4 31.0£8.0 47.0+24.8 | 14.0+ 6.0 50.4 + 14.9 6.2+ 1.0
c =0.156 48.8 + 4.6 4744+ 11.5 | 149.0+14.0 | 35.0+ 7.6 214.4+55.9 10.2 + 2.6
c=0.1 69.8+17.0 | 51.8+11.0 | 240.2+8.7 | 46.8+8.2 | 768.6 + 140.7 14.6 +2.9
c =0.05 98.44+16.3 | 55.4+8.3 | 344.2+21.0 | 58.2+ 5.8 | 3368.6+ 95.5 17.8 4+ 4.2

Figure 1: The average tree size of each of the criterias.

are drawn independently and identically from the re-
stricted distribution.

In this section we used very basic techniques to bound
the deviations. More involved techniques may be used,
and they could be based on the Vapnik Chervonenkis
(VC) dimension [VC71]. For decision trees we where
not able to determine the exact VC dimension as a
function of their size, but we can show that it is be-
tween Q(k) and O(klogd), for a binary decision tree
over d inputs with at most k nodes (proof omitted).
Generally, the smaller the VC dimension is the smaller
the maximum deviation would be.

3 Our Criteria

Our criteria builds directly on the theory developed in
Section 2. We would like, given an observed error on
the training data, to derive a “pessimistic” estimate
of the true error. The “pessimistic” indicates that we
would like our estimate to be an upper bound of the
true error. As we seen in the previous section, the

theory suggests that the deviation can be bounded by

O(4/ kIOgd), where k is the size of the tree, d the num-

n

ber of attributes and n is the number of examples that
the tree classifies.

Our pessimistic estimate would simply add O(4/ kl;—gd)

to the observed error, and this would be our pessimistic
estimate of the error. This would guarantee that with
high probability our estimate is an upper bound of the
true error. One issue that needs to be resolve is the
constant that hides in the big O notation. Rather than
trying to derive the exact theoretical constant, we kept
it as a free parameter of our program, denoted by c.
In our experiments we used different values for c. By
controlling ¢ one can control the size of the resulting
tree, the larger ¢ the more likely we are to prune.

To be more specific, assume we chose some value for c.
Assume we are given a sub-tree of size k, that classifies
n examples (each with d attributes), e of which it clas-
sifies incorrectly. If we prune the sub-tree, and replace
it by a leaf, the leaf will make £ errors out of the n
examples. Our test whether to prune the sub-tree is
the following:

é < i—|—c /klogd+log20.
n-n n

(In C4.5 the pruning process also includes comparing
a sub-tree to the sub-trees of its children. We perform
a similar test for that case.) Note that the modifica-
tion in the error is based only on the tree size and the
sample size and not on the number of errors, in con-
trast to the current method of C4.5 that uses e and n
but not k.

4 Empirical Results

We have implemented our new criteria for pessimistic
pruning in C4.5 and compared it with the existing
method of C4.5. (We used C4.5 version 8.) First
we did the comparison on an artificial data set, this
experiment demonstrates the benefit of incorporating
the tree size into the pruning criteria.

We chose the following artificial data. Each examples
has 100 binary attributes. The classification is done as
follows. With probability 0.9 we chose a random clas-
sification and with probability 0.1 we chose the value
of the first attribute. The distribution over the inputs
is uniform (i.e. each attribute is independent, and has
equal probability of being zero or one). Clearly, the
best classifier is simply to use the first attribute, and
it has error 0.45.

We chose 10000 random examples, and ran C4.5 with



algorithm database

australian | diabetes german heart adult Ionosphere
No-Pruning 20372+ | 27.0+5.0 | 31.8+3.0 22.6+4.1 15.2 4+ 0.2x 14.0+ 7.2
c4.5 ¢ 1 16.4+ 4.9t | 24.6+5.6 | 30.6+1.7 22.6+4.1 144+ 0.2%1 12.8+ 7.4
c4.5 -c 10 15.9+ 5.5t | 27.5+4.0 | 29.2+2.4 23.7+4.1 13.9+ 0.2 142+ 7.4
c4.5 -c 26 171+ 5.7t | 26.4+5.4 | 30.1+2.1 21.1+3.9 13.9+ 0.2 14.0+ 7.2
c=0.5 15.8+ 5.6t | 27.5+3.0 | 30.0+2.4 | 26.7+ 4.9+t 15.1+0.1% | 20.5+9.2%+¢
c=0.2 15.9+ 5.5t | 25.7+4.4 | 28.5+ 1.2¢ 23.0+5.8 145+ 0.2% ¢ 14.8+ 7.9
c=0.156 16.7+ 6.1t | 25.8+5.4 | 29.4+3.1 21.9+34 14.0 + 0.31 142+ 7.4
c=0.1 18.3 + 6.0 26.4+ 5.4 | 28.7+ 2.8¢ 21.9+4.0 13.9+ 0.2 125+ 7.2
c=0.05 19.7+ 6.3 27.0+£5.0 | 31.2+2.6 23.0+3.9 145+ 0.2% ¢ 14.0+ 7.2

Figure 2: The average percentage error rate of each of the criterias. We marked by * significant differences from
the standard C4.5 (c4.5 -c 25) and by 1 significant diffrences from the unprunned tree. (The significance level

is 0.9 and it uses a difference of proportions test [Die96])

the parameter -m 1 and -¢ 1. The unpruned tree had
size 4567 (and zero error on the training set). We
ran C4.5 with the default confidence parameter (-c
25) which generated a pruned tree of size 3685 (and
only 244 mislabels on the training set). Even when
we chose a very low confidence level (-c¢ 1) it gener-
ated a pruned tree of size 551 (with 3201 errors on the
training set). In contrast, when we used our criteria,
with ¢=0.7, as the theory recommends, we recovered
the best tree (of size 3!). (This best pruned tree is also
achieved using ¢=0.5.)

We continued and checked the hypotheses generated
using 40000 examples as a test set, in order to test
the generalization error. For our criteria we know the
exact error, forty five percent. We tested the hypothe-
ses generated by C4.5, and they had error 49.5% (for
—c 25) and 47.1% (for —c 1). As expected, the results
show that the superfluous nodes only increase the gen-
eralization error. Using test of proportions [Die96], a
95% confidence interval around the best error (45%)
gives the interval [44.3,45.7], which implies that the
deviations, as expected, are very significant.

We did not limit ourself to artificial data, but consid-
ered also a variety of real databases. In order to per-
form the comparison we chose six databases, four taken
from the project StatLog [Sta] and two databases from
UCI Repository [MA94]. Since we are interested in
functions with boolean output, the databases all have
to predict a boolean output. The databases are:

The
aim is to decide whether to approve a credit card
application. There are 690 examples. Each ex-

1. australian — Australian Credit database.

ample has fourteen attributes, six continuous and
eight categorical.

2. diabetes — PimaIndians Diabetes database. The
aim is to predict whether a patient shows signs of
diabetes. There are 768 examples. Each example
has eight continuous attributes.

3. german — German Credit database. There are
1000 examples. FEach example has twenty at-

tributes, seven numerical and thirteen categorical.

There are 270
examples. Each example has thirteen continuous

4. heart — Heart Disease database.

attributes.

5. adult — US Census Bureau database. The aim is
to predict whether the salary of a person is greater
or less than 50,0008. There are 48842 examples.
Each example contains fourteen attributes (six
continuous and eight nominal).

6. Ionosphere — Radar data about the free electrons
in the ionosphere. The aim is to predict if the
structure is “good” or “bad”. There are 351 ex-
amples. Each example has thirty four continuous
attributes.

In the experiment we performed a 5-fold cross vali-
dation. (Namely we split the input to 5 equal parts,
trained on four parts and tested on the fifth. We did
this five times, one for each combination.)

In Figure 1 we have the mean tree size that the various
criteria have generated. We considered the unpruned
tree, the different confidence parameters to C4.5 (1, 10
and 25) and four settings of our criteria (denoted by
c= #, where # is the constant we used for c).

Tt is very clear that in our criteria, as we increase the
parameter ¢ we are getting smaller and smaller trees,



and by very significant factors. Initially, when ¢=0.05,
there is very little pruning. As we get the parameter
to ¢=0.5 the trees that are generated are extremely
small. In Figure 3 we plot the average tree size as a
function of ¢ for the database adult.

The error rate of the different criteria appears in Fig-
ure 2. In order to test the significance of the results
we used the test of proportions [Die96] with confidence
90%. We compared the results to the unpruned tree
and the C4.5 with the default setting (i.e., c4.5 -c
25. The results show that the setting of our param-
eter to ¢=0.5 is too pessimistic, and it over-prunes.
The other inferior criteria is the unpruned tree, here
clearly we see that pruning helps. All the others seem
competitive with each other.

In Figure 4 we plotted the error as a function of the
parameter ¢ used in our criteria. As expected, the
behavior is as follows. Initially, the unpruned tree,
has a large error, then, as more pruning is performed,
the error drops to some minimal value (around ¢=0.1,
in our case). From this minimum value, as we perform
more pruning, the error starts to increase as we prune

more and more.
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Figure 3: The average tree size as a function of the parameter c for the database adult.
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Figure 4: The average error as a function of the parameter c for the database adult.



