
Pessimistic decision tree pruningbased on tree sizeYishay MansourComputer Science Dept.Tel-Aviv UniversityTel-Aviv, ISRAELmansour@math.tau.ac.ilAbstractIn this work we develop a new criteria to per-form pessimistic decision tree pruning. Ourmethod is theoretically sound and is based ontheoretical concepts such as uniform conver-gence and the Vapnik-Chervonenkis dimen-sion. We show that our criteria is very wellmotivated, from the theory side, and per-forms very well in practice. The accuracy ofthe new criteria is comparable to that of thecurrent method used in C4.5.1 IntroductionThe phenomena of over�tting the data is well knownin machine learning, and refers to the case that thelearned hypothesis is so closely related to the train-ing examples such that its generalization capabilitieswould be penalized. Over�tting would usually occurwhen the class of hypotheses used is as complex as thegiven training sample. For this reason we would like,in many cases, to limit the hypothesis we generate tobe \less complex" than the training sample.In decision trees the over�tting phenomena can occurwhen the size of the tree is too large compared to thenumber of training examples. As an extreme case, fora given training sample consider an arbitrary decisiontree where each leaf contains at most a single examplefrom the training sample. By setting the value of theleaf to be the label of the example that reaches it, weare guarantee to have no error on the training sample.However, the generalization capabilities of such a treeare very doubtful. For this reason we are interestednot only in trees whose error on the training sampleis small, but also those whose size is small compare tothe sample size.

There are two general methods, in decision tree in-duction, to bound the size of the tree. The �rst isto have some criteria, called Early Stopping criteria,that would be used in order to decide whether or notto stop growing a given node. Such an early stoppingcriteria limits the size of the tree and avoids trying togrow unnecessary sub-trees. The risk in using an earlystopping criteria is that by not growing a sub-tree wemight be missing some real structure of the problemthat could be discovered only later.The second method is growing the initial tree until it�ts the sample perfectly. Then we use this tree as ourinitial starting point and start pruning it. Generally,pruning out performs early stopping, since it allowsus to discover some structure that is not immediate.There are a few di�erent methods of performing thepruning and they all output at the end of the pruningprocess a tree which is a pruned version of the originaltree.There are two di�erent methodologies for perform-ing pruning. The �rst is of generating a sequence ofpruned trees, and later to chose one of them. This ideais the core idea behind the Minimal Cost-ComplexityPruning proposed by Breiman et. al. [BFOS84]. Theyproposed using dynamic programming to �nd a se-quence of trees that minimizes a combination of the er-ror on the training sample and the tree size. Later, anindependent sample is used to chose the best tree outof the sequence. In [BB94] a simple dynamic program-ming algorithm is given to �nd the smallest pruneddecision tree that has a given error rate. Here again,one can generate a sequence of trees and use an inde-pendent sample to chose the best tree in the sequence.The second methodology for pruning tries to directlyprune the original decision tree. The pruning is doneby replacing the sub-tree rooted at a node by eithera leaf or by a sub-tree rooted at one of its children.



The approach of Reduced Error Pruning, proposedby Quinlan [Qui87], uses an independent sample totest the accuracy of each sub-tree compared to thecase when it is pruned. Mingers [Min87] suggestedthe Critical Value Pruning, which performs the deci-sion about pruning using on the \information-gain"that was achieved in growing the tree. (For each nodeit computes the maximum \information-gain" in itssubtree, and prunes a node if this value is less than acertain threshold.)Under the category of pessimistic pruning we includeall the pruning criterias that try to bound the trueerror of a sub-tree based on its training error. Weperform the pruning at a node when the reduction inthe error due to the sub-tree seems statistically in-signi�cant. The algorithmic bene�t of the pessimisticpruning methods is that they require only a single passover the tree to generate the pruned tree (compared tothe quadratic time of the dynamic programming basedmethods).The main question now is how do we decide if thechange in the error is signi�cant. We try to estimate(or at least to upper bound) the true error of a sub-tree, based on the number of examples it classi�es, thenumber of errors, the number of classes, and the sizeof the tree.One method that falls into our category of pessimisticpruning is Minimum error pruning [Nib87]. Thismethod tries to estimate the true error using the fol-lowing formula, e+ (r � 1)n+ rwhere r is the number of classes, n the number of ex-amples, and e is the number of errors. (The theoreticaljusti�cation for the formula is simple. Assuming a uni-form prior over the classes, the above is the expectederror over the posterior distribution, given that in nexamples there where e errors.)Pessimistic pruning of Quinlan [Qui86, Qui93] uses acomplex method based on the number of errors andthe size of the training sample. However, the theoret-ical justi�cation of this method is rather weak, or asQuinlan says in his book \: : : the reasoning should betaken with a large grain of salt" [Qui93]. This methodof pessimistic pruning is the method that is used cur-rently in C4.5.An excellent survey and empirical comparison ofthe di�erent pruning methods was done by Mingers[Min89], which also includes a survey of all the di�er-ent methods.

Our starting point can be motivated as follows. As-sume you have a sub-tree that classi�es 200 trainingexamples and makes no error. We would very muchlike to di�erentiate the case that the sub-tree is of asmall size (say 3) or a huge size (say 100). In the for-mer case we expect that the true error would be verysmall, while in the latter case the true error might behuge. This is a most compelling argument why thesize of the decision tree should be incorporated in thepessimistic estimate.Our basic proposal it to estimate the error of a sub-treeon the training sample by the following quantity,en + c1 �rk logd+ c2n ;where n is the sample size that reaches the sub-tree, eis the number of incorrect classi�cations done by thesub-tree, k is the size of the sub-tree, d the number ofattributes and c1 and c2 are some constants. We show,using basic theoretical arguments, that the above ex-pression is an upper bound on the true error of thesub-tree.When considering pessimistic pruning one shouldquestion how \pessimistic" is it. The main point tokeep in mind is that the generated decision tree is notarbitrary, but rather the one that reduces the error onthe training examples. For example, say we have aset of functions all with the same true error. On anygiven set of examples, we expect to have some func-tion, from the set of functions, whose error on this setof examples is lower than the true error. This is whyour pessimistic estimates are really realistic estimatesin many cases.We have performed empirical tests to compare the cur-rent method of C4.5 and our new proposed method.We start with an arti�cial data on which we show thatour criteria is superior to the current method of C4.5(even when modifying C4:5's con�dence parameter).We then continue and perform an empirical evalua-tion of six datasets. Since our theory was design forboolean output, we concentrated on datasets wherethe output is boolean. The comparison shows thatthe accuracy of the new criteria is comparable to thatused in C4.5. (However, it enjoys being theoreticallysound.)We show that in our method we can use the parameterc to control the size of the pruned trees. A largervalue of c will cause more pruning, while a smallervalue would limit the pruning. (This is similar to thecon�dence parameter build in C4.5, which also controlsthe amount of pruning.)



From our empirical results it seems that very signi�-cant pruning generates much smaller decision trees andmaintains the accuracy. In [AHM95] the accuracy ofC4.5 was compared to an algorithm that generates de-cision trees of depth two. There it was observed thatdecision trees of depth two achieve remarkably goodresults compared to C4.5, although in some cases thelimitation to depth two forced reduced accuracy. Inthis work we observed that our criteria can be usedto perform extreme pruning of the decision tree whilemaintaining its accuracy. This might lead one to sus-pect that the complex decision trees, that are in manycases generated by the default setting of C4.5, havetheir predictive power concentrated in a small sub-tree.We may hope that by extreme pruning we will recoverthat sub-tree.This work is organized as follows. In Section 2 we de-rive the theoretical bounds. Section 3 describes ourcriteria in detail. In Section 4 we describe the empiri-cal results.2 Theoretical BackgroundIn this section we derive from basics the bounds thatjustify our criteria. More elaborate techniques maygive superior bounds, but we did not try to perusethat direction.We are interested in the maximum deviation of theerror when the hypothesis is a binary decision tree withk nodes. Given this we will be able to bound the trueerror by the error on the sample plus the maximumdeviation. The �rst technical lemma that we derivebounds the number of possible decision trees.Lemma 2.1 The number of binary decision trees overd binary inputs with boolean output and k = 2k0 � 1nodes is bounded by, isO(2k) � dk0�1 � 2k0 = O((4d)k) = O((4d)k):Proof: In a binary decision tree, each internal nodehas degree two (otherwise it is redundant). Therefore,a binary decision tree with k = 2k0 � 1 nodes, has k0leaves and k0�1 internal nodes. Each leaf can be labelby either zero or one, therefore the number of assign-ments to the leaves is at most 2k0 . Each internal nodecan be labeled by any of the inputs, therefore there areat most dk0�1 ways to label the internal nodes. Thenumber of di�erent binary trees can by bounded byO(2k) (proof omitted). Multiplying the three quanti-ties derives the lemma. 2

The next step is to bound the deviation of a �xedfunction from its expectation. This can be derived byusing the Cherno� inequality.Lemma 2.2 (Cherno�) Let x1; : : : ; xn be indepen-dent identically distributed random variables, wherexi 2 f0; 1g and Prob[xi = 1] = p. Let p̂n =Pni=1 xi=n, then:Prob[jp̂n� pj � �] � 2e�2�2nBy combining the two we can derive the following the-orem,Theorem 2.3 Let H be the class of binary decisiontrees over d binary inputs with boolean output and atmost k nodes. Let f be any boolean function and D beany probability distribution. For h 2 H let e(h; f) =Probx�D[h(x) 6= f(x)]. Given z1; : : : ; zn let ê(h; f) bethe fraction of zi's for which f(zi) 6= h(zi).Probz1;:::;zn�D [9h 2 H : je(h; f) � ê(h; f)j> crk log d+ log 1=�n ] � �for some constant c.What the above theorem is saying can be interpretedas follows. For any decision tree with k nodes, whentested on n examples, the deviation between the ob-served error (on the sample) and the true error isbounded by O(qk logdn ), where we take � to be a con-stant. Such a result, in the theory terminology, is auniform convergence result, since the error of all thehypotheses in H converge simultaneously. This meansthat if a given decision tree h with k nodes has an errorê(h; f) on a set of n examples, its true error, e(h; f),with high probability, is bounded by,e(h; f) < ê(h; f) + crk log d+ log 1=�nWe would like to stress that Theorem 2.3 can be ap-plied to any node in the tree, and not only to the root.This is due to the nature of uniform convergence re-sults, that derives worst case bound on the error, andthe bound holds for any distribution. Therefore, nomatter how we chose the path to the node (even adver-sarially), the bound would still hold. This is due to theobservation, that no matter how we restrict the distri-bution (by the path to the node, in this case), when weconsider only examples that have this property, they



algorithm databaseaustralian diabetes german heart adult IonosphereNo-Pruning 143:2� 12:3 56:2� 9:0 370:4� 15:0 61:0� 7:2 8742:6� 207:9 17:8� 4:2c4.5 -c 1 5:2� 3:5 10:2� 6:2 2:6� 2:6 10:0� 4:0 41:6� 5:8 12:6� 1:9c4.5 -c 10 13:6� 8:5 42:2� 6:1 47:0� 10:4 27:6� 5:9 180:8� 10:2 17:0� 3:2c4.5 -c 25 39:8� 17:0 49:8� 9:4 110:4� 18:7 43:0� 7:2 675:0� 133:2 17:8� 4:2c = 0.5 3:0� 0:0 3:4� 0:6 1:0� 0:0 3:8� 0:3 22:0� 3:2 3:0� 0:0c = 0.2 6:4� 5:4 31:0� 8:0 47:0� 24:8 14:0� 6:0 50:4� 14:9 6:2� 1:0c = 0.15 48:8� 4:6 47:4� 11:5 149:0� 14:0 35:0� 7:6 214:4� 55:9 10:2� 2:6c = 0.1 69:8� 17:0 51:8� 11:0 240:2� 8:7 46:8� 8:2 768:6� 140:7 14:6� 2:9c = 0.05 98:4� 16:3 55:4� 8:3 344:2� 21:0 58:2� 5:8 3368:6� 95:5 17:8� 4:2Figure 1: The average tree size of each of the criterias.are drawn independently and identically from the re-stricted distribution.In this section we used very basic techniques to boundthe deviations. More involved techniques may be used,and they could be based on the Vapnik Chervonenkis(VC) dimension [VC71]. For decision trees we wherenot able to determine the exact VC dimension as afunction of their size, but we can show that it is be-tween 
(k) and O(k logd), for a binary decision treeover d inputs with at most k nodes (proof omitted).Generally, the smaller the VC dimension is the smallerthe maximum deviation would be.3 Our CriteriaOur criteria builds directly on the theory developed inSection 2. We would like, given an observed error onthe training data, to derive a \pessimistic" estimateof the true error. The \pessimistic" indicates that wewould like our estimate to be an upper bound of thetrue error. As we seen in the previous section, thetheory suggests that the deviation can be bounded byO(qk logdn ), where k is the size of the tree, d the num-ber of attributes and n is the number of examples thatthe tree classi�es.Our pessimistic estimate would simply add O(qk logdn )to the observed error, and this would be our pessimisticestimate of the error. This would guarantee that withhigh probability our estimate is an upper bound of thetrue error. One issue that needs to be resolve is theconstant that hides in the big O notation. Rather thantrying to derive the exact theoretical constant, we keptit as a free parameter of our program, denoted by c.In our experiments we used di�erent values for c. Bycontrolling c one can control the size of the resultingtree, the larger c the more likely we are to prune.

To be more speci�c, assume we chose some value for c.Assume we are given a sub-tree of size k, that classi�esn examples (each with d attributes), e of which it clas-si�es incorrectly. If we prune the sub-tree, and replaceit by a leaf, the leaf will make ` errors out of the nexamples. Our test whether to prune the sub-tree isthe following:̀n � en + crk logd+ log20n :(In C4.5 the pruning process also includes comparinga sub-tree to the sub-trees of its children. We performa similar test for that case.) Note that the modi�ca-tion in the error is based only on the tree size and thesample size and not on the number of errors, in con-trast to the current method of C4.5 that uses e and nbut not k.4 Empirical ResultsWe have implemented our new criteria for pessimisticpruning in C4.5 and compared it with the existingmethod of C4.5. (We used C4.5 version 8.) Firstwe did the comparison on an arti�cial data set, thisexperiment demonstrates the bene�t of incorporatingthe tree size into the pruning criteria.We chose the following arti�cial data. Each exampleshas 100 binary attributes. The classi�cation is done asfollows. With probability 0.9 we chose a random clas-si�cation and with probability 0.1 we chose the valueof the �rst attribute. The distribution over the inputsis uniform (i.e. each attribute is independent, and hasequal probability of being zero or one). Clearly, thebest classi�er is simply to use the �rst attribute, andit has error 0.45.We chose 10000 random examples, and ran C4.5 with



algorithm databaseaustralian diabetes german heart adult IonosphereNo-Pruning 20:3� 7:2? 27:0� 5:0 31:8� 3:0 22:6� 4:1 15:2� 0:2? 14:0� 7:2c4.5 -c 1 16:4� 4:9y 24:6� 5:6 30:6� 1:7 22:6� 4:1 14:4� 0:2 ? y 12:8� 7:4c4.5 -c 10 15:9� 5:5y 27:5� 4:0 29:2� 2:4 23:7� 4:1 13:9� 0:2y 14:2� 7:4c4.5 -c 25 17:1� 5:7y 26:4� 5:4 30:1� 2:1 21:1� 3:9 13:9� 0:2y 14:0� 7:2c=0.5 15:8� 5:6y 27:5� 3:0 30:0� 2:4 26:7� 4:9 ? y 15:1� 0:1? 20:5� 9:2 ? yc=0.2 15:9� 5:5y 25:7� 4:4 28:5� 1:2y 23:0� 5:8 14:5� 0:2 ? y 14:8� 7:9c=0.15 16:7� 6:1y 25:8� 5:4 29:4� 3:1 21:9� 3:4 14:0� 0:3y 14:2� 7:4c=0.1 18:3� 6:0 26:4� 5:4 28:7� 2:8y 21:9� 4:0 13:9� 0:2y 12:5� 7:2c=0.05 19:7� 6:3 27:0� 5:0 31:2� 2:6 23:0� 3:9 14:5� 0:2 ? y 14:0� 7:2Figure 2: The average percentage error rate of each of the criterias. We marked by ? signi�cant di�erences fromthe standard C4.5 (c4.5 -c 25) and by y signi�cant di�rences from the unprunned tree. (The signi�cance levelis 0.9 and it uses a di�erence of proportions test [Die96])the parameter -m 1 and -c 1. The unpruned tree hadsize 4567 (and zero error on the training set). Weran C4.5 with the default con�dence parameter (-c25) which generated a pruned tree of size 3685 (andonly 244 mislabels on the training set). Even whenwe chose a very low con�dence level (-c 1) it gener-ated a pruned tree of size 551 (with 3201 errors on thetraining set). In contrast, when we used our criteria,with c=0.7, as the theory recommends, we recoveredthe best tree (of size 3!). (This best pruned tree is alsoachieved using c=0.5.)We continued and checked the hypotheses generatedusing 40000 examples as a test set, in order to testthe generalization error. For our criteria we know theexact error, forty �ve percent. We tested the hypothe-ses generated by C4.5, and they had error 49.5% (for-c 25) and 47.1% (for -c 1). As expected, the resultsshow that the superuous nodes only increase the gen-eralization error. Using test of proportions [Die96], a95% con�dence interval around the best error (45%)gives the interval [44:3; 45:7], which implies that thedeviations, as expected, are very signi�cant.We did not limit ourself to arti�cial data, but consid-ered also a variety of real databases. In order to per-form the comparisonwe chose six databases, four takenfrom the project StatLog [Sta] and two databases fromUCI Repository [MA94]. Since we are interested infunctions with boolean output, the databases all haveto predict a boolean output. The databases are:1. australian { Australian Credit database. Theaim is to decide whether to approve a credit cardapplication. There are 690 examples. Each ex-ample has fourteen attributes, six continuous andeight categorical.

2. diabetes { Pima Indians Diabetes database. Theaim is to predict whether a patient shows signs ofdiabetes. There are 768 examples. Each examplehas eight continuous attributes.3. german { German Credit database. There are1000 examples. Each example has twenty at-tributes, seven numerical and thirteen categorical.4. heart { Heart Disease database. There are 270examples. Each example has thirteen continuousattributes.5. adult { US Census Bureau database. The aim isto predict whether the salary of a person is greateror less than 50,000$. There are 48842 examples.Each example contains fourteen attributes (sixcontinuous and eight nominal).6. Ionosphere { Radar data about the free electronsin the ionosphere. The aim is to predict if thestructure is \good" or \bad". There are 351 ex-amples. Each example has thirty four continuousattributes.In the experiment we performed a 5-fold cross vali-dation. (Namely we split the input to 5 equal parts,trained on four parts and tested on the �fth. We didthis �ve times, one for each combination.)In Figure 1 we have the mean tree size that the variouscriteria have generated. We considered the unprunedtree, the di�erent con�dence parameters to C4.5 (1, 10and 25) and four settings of our criteria (denoted byc= #, where # is the constant we used for c).It is very clear that in our criteria, as we increase theparameter c we are getting smaller and smaller trees,



and by very signi�cant factors. Initially, when c=0.05,there is very little pruning. As we get the parameterto c=0.5 the trees that are generated are extremelysmall. In Figure 3 we plot the average tree size as afunction of c for the database adult.The error rate of the di�erent criteria appears in Fig-ure 2. In order to test the signi�cance of the resultswe used the test of proportions [Die96] with con�dence90%. We compared the results to the unpruned treeand the C4.5 with the default setting (i.e., c4.5 -c25. The results show that the setting of our param-eter to c=0.5 is too pessimistic, and it over-prunes.The other inferior criteria is the unpruned tree, hereclearly we see that pruning helps. All the others seemcompetitive with each other.In Figure 4 we plotted the error as a function of theparameter c used in our criteria. As expected, thebehavior is as follows. Initially, the unpruned tree,has a large error, then, as more pruning is performed,the error drops to some minimal value (around c=0.1,in our case). From this minimum value, as we performmore pruning, the error starts to increase as we prunemore and more.AcknowledgementsI would like to thank Willian W. Cohen and ThomasG. Dietterich for pointing me to the relevant literature.This research was supported in part by a grant fromthe Israel Science Foundation.References[AHM95] Peter Auer, Robert C. Holte, and WolfgangMaass. Theory and applications of agnosticPAC-leaning with small decision trees. InThe 12th Internetional Conference on Ma-chine Learning, pages 21{30. Morgan Kauf-mann, 1995.[BB94] Marco Bohanec and Ivan Bratko. Trad-ing accuracy for simplicity in decision trees.Machine Learning, 15:223{250, 1994.[BFOS84] LeoBreiman, Jerome H. Friedman, Richard A.Olshen, and Charles J. Stone. Classi�cationand Regression Trees. Wadsworth Interna-tional Group, 1984.[Die96] Thomas G. Dietterich. Statistical tests forcomparing supervised classi�cation learn-ing algorithms. manuscript, 1996.
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Figure 3: The average tree size as a function of the parameter c for the database adult.
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Figure 4: The average error as a function of the parameter c for the database adult.


