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This paper introduces a new tool for functional
neuroimage analysis: partial least squares (PLS). It is
unique as amultivariatemethod in its choice of empha-
sis for analysis, that being the covariance between
brain images and exogenous blocks representing ei-
ther the experiment design or some behavioral mea-
sure.What emergesare spatial patternsof brainactivity
that represent the optimal association between the
images and either of the blocks. This process differs
substantially from other multivariate methods in that
rather than attempting to predict the individual val-
ues of the image pixels, PLS attempts to explain the
relation between image pixels and task or behavior.
Data from a face encoding and recognition PET rCBF
study are used to illustrate two types of PLS analysis:
an activation analysis of task with images and a brain–
behavior analysis. The commonalities across the two
analyses are suggestive of a general face memory
network differentially engaged during encoding and
recognition. PLS thus serves as an important exten-
sion by extracting new information from imaging data
that is not accessible through other currently used
univariate andmultivariate imageanalysis tools. r 1996

Academic Press, Inc.

1. INTRODUCTION

Functional brain images are extraordinarily rich
data sets revealing participation of all parts of the
brain in a wide variety of perceptual and cognitive
operations. It is a substantial analytic challenge to
integrate the temporal, spatial, and statistical signals
making up these data. Every method currently avail-
able emphasizes certain aspects of these images while
deemphasizing or averaging over others. In this paper
we introduce a new emphasis that is embodied in a
novel computational strategy, partial least squares.
The method extracts spatial patterns of brain activity
that are optimally associated with aspects of the experi-

ment design or some behavioral measure. Its greatest
strength is the flexible treatment of images in the
context of simultaneous prediction of those images by
their causes (e.g., aspects of the task design) and
prediction by those images of their effects (e.g., mea-
sures of behavior). Partial least squares extracts cer-
tain features that are inaccessible by other methods,
while overlooking some complexities for which other
methods may be more suited.
Most of the contemporary techniques for analysis of

functional neuroimaging data are variations of univari-
ate analyses: either single image elements or contigu-
ous regions of voxels are treated as computationally
independent. Beyond these univariate methods, global
approaches that treat the set of image pixels as a whole,
rather than as a tessellation of regions, are potentially
well suited to analysis of brain-imaging data. This
latter class of multivariate analyses will typically pro-
duce weighted combinations of pixel contents, summed
all across the image, that relate to some variable of
interest, for example, experimental condition or behav-
ior. In this context, interdependency among areas is
used to differing degrees. For instance, methods intro-
duced to neuroimaging by McIntosh and Gonzalez-
Lima (1994) for network analysis and by Friston (1994)
for measures of functional and effective connectivity
(Aertsen et al., 1989; Gerstein et al., 1978) represent
the explicit use of interdependency as indices of neural
interactions.
This paper calls attention to a newer method origi-

nally developed for applications to one-dimensional
images from spectrographs, as in chemometrics or
remote sensing, or toxicology: partial least squares
(PLS). PLS operates on the covariation among two or
more ‘‘blocks’’ of variables and seeks to obtain a new set
of variables that optimally relate the blocks using the
fewest dimensions. ‘‘Optimal’’ as used here is in the
sense of maximal covariance, not maximal correla-
tion—a distinction quite important for the algebraic
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development. In the present applications, one block
contains the functional images for all subjects in
all experimental conditions, a second block is for vec-
tors of contrasts coding the experimental design, and a
third block collects the behavioral outcomes. Sepa-
rately analyzing the second and third blocks against
the first, we show how PLS can carry out image-wide
PET activation analysis or extract task-specific fea-
tures of brain–behavior covariances and correlations.
Within the space of image descriptors, the findings of
PLS are carried by singular images, computedmultivar-
iate optima somewhat related to the previously intro-
duced subscale profiles (Moeller et al., 1987) and eigen-
images (Friston et al., 1993). The singular images are
spatial patterns of pixel contents representing pixel-
by-pixel covariances with task or behavior. For a thor-
ough review of PLS, including a tour of its scientific
antecedents and a comparison with structural equa-
tions methods, see Streissguth et al. (1993) or Book-
stein et al. (1996). To our knowledge, this is the first
application of PLS to pixellated functional neuroimag-
ing data.
The method underlying the applications of PLS to

PET rCBF data is presented through four illustrations.
The first is a conceptual illustration presented in
graphical form. The second and third are more techni-
cally oriented descriptions that assume some knowl-
edge of multivariate statistics by the reader. Finally,
the Appendix presents a PLS analysis on a small
simulated data set. Readers who do not have a strong
statistical background may wish to read the conceptual
description and the Appendix before studying the two
real examples.

2. A FIRST CONCEPTUAL ILLUSTRATION OF PLS

Figure 1 presents an outline of the steps in a PLS
analysis for activation data. For this illustration there
are three scan conditions each with seven subjects.
Step 1 (top of Fig. 1): the experimental data are
represented as a design matrix X of contrasts and a
matrix Y of normalized PET rCBF images for each
subject in each condition. Assume that there are two
hypotheses of interest: the contrast between condition
1 (a baseline task) and the average of task 2 and 3, and
the contrast between 2 and 3. These can be expressed
as the orthogonal vectors (2, 21, 21) and (0, 1, 21). A
cross-correlation matrix S is computed for each con-
trast in X against each pixel of the normalized images.
Step 2 (middle of Fig. 1): the singular value decomposi-
tion of matrix S produces a series of paired ‘‘singular
vectors’’ or ‘‘latent variables’’ that generate successively
more accurate approximations of the matrix S. Here we

show only the first pair (A1, B1). A1 is the linear
combination of design contrasts that contributed opti-
mally to the reconstruction of the correlations in S; the
contents of the singular vector B1 indicate which pixels
are most sensitive to those contrasts. Remapped into
image space, as shown in the figure, the vector B1

becomes the singular image B1, elaborated below. The
singular value, d1, is the covariance between A1 and B1.
The square of this value, when divided by the sum of
squared correlations in S, yields the ‘‘proportion of the
sum of squared cross-block correlations explained’’ by
A1 and B1. Step 3 (bottom of Fig. 1): scores express the
original data in terms of components along the singular
vectors. As suggested in the figure, these are computed
as simple sums of products of corresponding elements.
For functional neuroimaging experiments, it is useful
to plot the scores on the singular images against
experimental condition. For our second example, relat-
ing brain activity and behavior, the score on the singu-
lar images would be plotted instead against the score
on the corresponding latent (singular) outcome.

3. THE ALGEBRA OF PLS
AND THE EXPLANATIONS IT SUPPORTS

Methods that summarize large covariance structures
with a smaller number of components, especially those
based on the singular-value decomposition (SVD), are
becoming familiar algorithmic tools in the postprocess-
ing of functional brain images. Applied to matrices of
pixel-specific, voxel-specific, or region-specific counts,
variously normalized, SVD produces eigenimages and
experiment-specific profiles combining the eigenim-
ages. The eigenimages are eigenvectors of the element-
by-element covariance or correlation matrix around the
baseline or average: spatial patterns of variation ac-
counting for successively maximal portions of that
covariance pattern. The profiles characterize the contri-
bution of each eigenimage to this finding or deviation of
each condition in the data set. In this paper, we use the
same SVD but apply it to a different matrix: a matrix of
covariances, not raw image contents. The covariances
relate the separate pixels of the normalized image to
any of a variety of exogenous blocks representing
separately measured causes or consequences of the
functional images.
In a technique that, by accident of history, bears the

quite uninformative name ‘‘partial least squares,’’ the
same singular-value decomposition now yields quanti-
ties that take on wholly different scientific interpreta-
tions. While the algebra and the computer implementa-
tion of the SVD are unchanged, the interpretation of
the singular images and corresponding profiles is com-

144 MCINTOSH ET AL.



pletely altered from the interpretation of eigenimages.
We also introduce a third class of descriptors, the
subject scores. These scores, not to be confused with
either of the quantities of the raw datamatrix decompo-
sition, characterize both the image contents and the
experimental tasks in a way quite different from the
profiles that arise in the application of SVD to raw data
matrices.
In the present setting, we apply PLS in two different

ways. In the first setting, the exogenous block is the
familiar design matrix of tasks for the original PET
data collection. The matrix of ‘‘covariances’’ becomes a
matrix of additive components of image covariation
with the design. In the second setting, the exogenous
block will be a set of quantities characterizing a behav-
ioral measure—reaction time. The interpretations of

the resulting quantities are quite different between the
two contexts, even though the means by which they are
produced are identical.
The scientist for whom PLS is designed is faced with

two lists of ordinary statistical variables; call them the
X’s and the Y’s. In the application here, the X’s will
sometimes be dummy variables for design features and
sometimes behavioral measures, and the Y’s will al-
ways be the contents of normalized pixels or voxels.
Number the X’s from X1 to Xm, the Y’s from Y1 to Yn.
Write S for the covariance matrix of the X’s by the Y’s,
m rows by n columns. (Actually, the data blocksX and Y
need not be mean centered, so that the matrix S could
be a raw cross product matrix instead of a covariance
matrix; we will not need this extension here). Its
element Sij is the covariance of Xi with Yj. This matrix

FIG. 1. Schematic illustration of the steps in the PLS analysis of activation effects. Step 1 represents the computation of the
cross-correlation between vectors coding the experimental design and the normalized ‘‘brain images’’ for all subjects across all tasks (though
represented as slices in the figure, the images used are actually multisliced volumes). Step 2: A singular value decomposition is performed on
the cross-correlation matrix S. This gives several pairs of singular vectors, the first of which is shown, that approximate matrix S. Step 3: The
raw brain images are multiplied through by the singular image B1, to obtain subject scores which are then plotted with respect to condition in
the design.
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does not have variances down the diagonal; usually it is
not even square.
Then a certain interesting computation can be

phrased in any of several different ways.All involve the
production of a column vector A ofm coefficients Ai, one
for each X, together with a column vector B of n
coefficients Bj, one for each Y. The elements of either
vector, A or B, are scaled so as to have squares that sum
to 1. There is a pair of vectors A, B, the first singular
vector pair for the matrix S, and a scalar d, the first
singular value of S, such that the following four asser-
tions (which are algebraically equivalent) are simulta-
neously true:

c The outer product ABt (where t indicates trans-
pose), them3 nmatrix whose ijth entry isAiBj, is, after
multiplication by d, the best (least-squares) fit of
all such matrices to the covariance matrix S between
the blocks. The goodness of this fit serves as a figure
of merit for the overall PLS analysis. It is the ordin-
ary explained sum-of-squares from the ‘‘model’’ Sij 5

dAiBj
t 1 error.

c The latent variables LVX 5 oi51
m AiXi and LVY 5

oj51
n BjYj have covariance d, and this is the greatest

covariance of any pair of such linear combinations for
which the coefficient vectors A and B both sum in
square to 1. LVX and LVY are also the scores defined in
the previous illustration in Section 2. Conceptually,
these latent variables differ somewhat from those of the
structural-equationmodels (cf. McIntosh andGonzalez-
Lima, 1994) in that they are ordinary linear combina-
tions of the observed data, not factors, and they have
exact values. The quantity PLS is optimizing is the
covariance between these paired LV’s, not the variance
explained in the course of predictions of the outcomes
individually or collectively. Also, PLS is remarkably
different from the similar-looking technique of canoni-
cal correlations analysis, which optimizes correlations
between composites rather than, as here, covariances.
These important differences are discussed in Bookstein
(1994) and Sampson et al. (1989).

c The elements Ai of the vector A are proportional to
the covariances of the corresponding X-block variable
Xiwith the latent variable LVY representing the Y’s, the
other block in the analysis; similarly, the elements Bj of
the vector B are proportional to the covariances of the
corresponding Y-block variable Yj with the latent vari-
able LVX representing theA’s. When it is known a priori
that there is a causal relation between the X’s and the
Y’s, as in most PET experiments, these coefficients may
be called saliences. Each Ai is the salience of the
variable Xi for the latent variable representing the
Y-block, and each Bj is the salience of the variable Yj for
the latent variable representing the X-block.

c The vector A is the first, uncentered, unstandard-
ized principal component of the columns of thematrix S

considered as if it were raw data, and the vector B is
similarly the first uncentered, unstandardized princi-
pal component of the rows.
Let us translate all this into the specific context of the

data sets under discussion here. The block Y is an array
of normalized pixel contents. (The normalization rules
are crucial to the computations that follow; a careful
consideration of rules for their imposition is the subject
of another paper. For a very simple example, a single
contrast between groups, see Bookstein, 1996.) Then
the vector B will always be an image of unit amplitude
(sum-of-squares) representing variation of normalized
pixels around the grand mean image. Because these
images are singular vectors of the SVD, they can be
called singular images. When X is a design matrix of
dummy variables, S is just a ‘‘matrix’’ of image con-
trasts: design effects around the grand mean. Then B is
the single image that best captures the variation of the
mean target images about their grand mean; A is a
profile of the covariances of the elements of the design
block Xwith this singular image; the scores LVY are the
components of the singular image B in each of the
experimental runs; and the scores LVX are proportional
to the components of this same image in each of the
design conditions.
The eigenimages obtained by Friston (1994) can be

thought of as a special case of this algorithm when the
two blocks involved are identical—when the covari-
ances of the matrix S are of the image elements among
themselves. We will pursue differences between eigen-
images and these singular images further underDiscus-
sion (Section 7 below).
When X is instead a vector of behavioral measure-

ments, as in the second example, exactly the same
computations result in a matrix S of covariances be-
tween image content and behavioral scores. This pro-
duces a set of three interlinked PLS descriptors as
follows: B is still an image of unit amplitude; the score
vector LVY still represents the component of the singu-
lar image B in the individual images of the data set.
However, A is the profile of covariances of the X-block
measures with the component of B in each image of the
data set—their separate saliences for predicting the
score LVY or being predicted by it—and the scores LVX

now characterize the individual experimental runs of
the data set by their profiles on the particular pattern
given by the saliences A.
What has just been described is the first step in an

algorithm that ends after the lesser of m or n steps.
(When Y is a full image, this will be the count m of the
exogenous block). The singular-value decomposition of
S is actually an exhaustive reconstruction S 5 ADBt,
whereA is an orthogonal matrix of orderm of which the
vector A of the preceding discussion is the first column,
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B is an orthogonal matrix of order n of which the vector
B of the preceding discussion is the first column, and D
is anm 3 n diagonal matrix of which the scalar d of the
preceding discussion is the upper left entry (see Mardia
et al., 1979). This can be written more explicitly as the
reconstruction S 5 ADBt 5 d1A1DB1

t 1 d2A2B2
t 1 . . . .

The interpretation in terms of explained sums-of-
squares of the matrix S begins with the rank-1 approxi-
mant A1d1B1

t and improves by adding in successive
additional terms A2d2B2

t , etc. All singular vectors, not
just the first, come in pairs Ak, Bk, and each pair is
accompanied by a singular value dk. The total number
of these is no greater than min(m,n). It is in this
decomposition, not the eigenanalysis of the Y-block per
se, that a threshold of significance is appropriately
imposed for relevance of image contents to the experi-
mental design or to behavioral measures (see Streiss-
guth et al., 1993, for a two-dimensional example). The
number of terms that prove significant in this decompo-
sition typically is small.
APLS analysis thus combines the elements of two (or

more) blocks of variables into systems of parameters,
separately block by block, that sort contrasts/behavior
and functional images (by saliences Ai or Bj), and
individual tasks (by scores LVX 5 oi51

m AiXi and LVY 5

oj51
n BjYj). In the initial application below, the scores

LVX are invariant across design subcategories, but not
the scores LVY, which vary from run to run within a
design category. In more general contexts, both blocks,
the X’s as well as the Y’s, contain values that are
unique across the experiments of a data set. The
resulting systematic summary of the pattern of cross-
block correlation links characterization of images with
characterization of their causes or effects, whether
designed or behavioral.
Acomplete list of parameters for the principal hypoth-

esis includes the saliences A of the design features, the
saliences B of the singular images (do they regionalize?
do they conform to models of neural circuitry?), and the
values for scores on both latent variables over the
experiments of a data set. This totals i(m 1 n 1 2 2 i)
parameters, where i is the number of pairs of singular
vectors (singular images and the corresponding singu-
lar vectors for design and behavior) retained. Partial
least squares computes all these parameters at once in
a single matrix decomposition, and it treats them all
with equal seriousness: there are many algebraic con-
straints relating these sets of descriptors, and there is
only one statistical test (realized below as a permuta-
tion test on the explained variance of the task design)
for the entire procedure. The scientific leverage af-
forded by such highly structured but arithmetically
simple multivariate approaches is relatively unfamil-
iar to the applied statistician and deserves to be better
known.

Statistical Significance

The statistical significance of a PLS analysis can be
assessed using any of the quantities that characterized
the computation—the saliences of either set of singular
vectors or the scores that characterize the experimental
tasks. In this application we use a permutation test
(Edgington, 1980; Good, 1994) to assess the extent to
which the scores characterize tasks. The test involves
randomly reordering the rows of the design matrix (i.e.,
destroying the association of experimental conditions
with images) and, for each new ordering, computing a
new SVD and a newANOVAon the analogous scores.At
each permutation, the statistic is compared to the
obtained statistic for the original data. The obtained
statistic is assigned a probability value based on the
number of times a statistic from the permuted data
exceeds the obtained value. Using this method, the
significance of a particular LV can be assessed without
relying on the distributional assumptions underlying
most conventional parametric statistical methods. A
univariate version of permutation tests for functional
mapping has recently been introduced (Holmes et al.,
1996).
The test used in this application was a multiple

regression approach to ANOVA (Pedhazur, 1982). The
collected condition contrast vectors were used as predic-
tor variables and the scores from each singular image
were used as dependent variables. The computation of
the test statistic is straightforward in matrix notation.
The regression weights (b) are computed by b 5 Rx

21r,
where Rx is a matrix of correlations among the predic-
tor variables and r is the cross correlation of the
predictor variables (the contrasts, which are orthogo-
nal) and the particular set of scores. As an indication of
the significance of the regression, R2 (the proportion of
variance explained in the LV scores by the predictor
variables) can be computed as R2 5 bTr.
The significance of our ANOVA was determined sim-

ply by calibrating theR2 value actually obtained against
the distribution of these R2’s arising from random
permutations. Data were permuted 10,000 times to
assign a probability for the obtained R2. For the PLS
analysis using behavioral measures, a multiple regres-
sion was performed on the scores and the measures
(which in this case are not orthogonal) and the R2 from
this regression was assessed through permutation. The
principal computation load of our procedure is incurred
in the course of this loop. But each iteration is only
linear in n, the number of pixels in the images. (The
SVD itself is roughly cubic in the length of the smaller
data set; in these and similar applications, that part
will be trivial.) Hence a loop over sufficiently many hun-
dreds of iterations is handled with dispatch by a modern
workstation. Using an interpreted code, MATLAB,
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permutation tests for all singular images were run
simultaneously and completed over a weekend. It is
anticipated that conversion to a compiled code, such as
C, will greatly enhance the computation speed.
A similar resampling method can be employed for the

saliences themselves. In this case, bootstrap estimates
of standard errors provide a relatively simple method
to determine the precision of the saliences within a
given LV (Efron and Tibshirani, 1986; see also Sampson
et al., 1989 for an application in PLS). In this paper, we
simply interpret the saliences as images of spatial
pattern—the apparent concentrations in Figs. 2–4 are
a guide to neurophysiological interpretation.

4. PET DATA

The data were obtained from a PET rCBF study that
compared encoding and recognition of faces in 10 young
subjects (Haxby et al., 1996). The experiment had four

conditions: (1) simultaneous match-to-sample of faces
(face matching), (2) encoding of faces, (3) two-alterna-
tive recognition of faces, and (4) a sensorimotor control
task. For the face-matching task, subjects were pre-
sented with three faces simultaneously. They indicated
which of two choice faces at the bottom of the stimulus
array corresponded to the sample face at the top of the
array by pressing a button on the side corresponding to
the correct choice with the thumb. During encoding,
subjects were presented with a series of faces one at a
time and instructed to memorize them, and during
recognition they were presented with two faces and
asked to indicate which one they had seen during the
encoding phase by pressing the response button as in
the face-matching task. The order of the tasks were as
follows: control task, encoding 1, matching, recognition
of faces from 1, encoding 2, matching, recognition 2,
and control task. New faces were used in the first and
second encoding tasks, and different faces were used in

FIG. 2. Singular images and subject scores from dominant latent variable representing experimental variance. The singular images (top)
present orthogonal projection plots of a ‘‘glass brain’’ showing positive and negative saliences separately. Saliences greater than an arbitrary
threshold of 0.15 are shown. Scores for each subject are plotted by condition. The scores have been transformed to standard space.
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both matching tasks. This paper does not consider data
from the control task.
The behavioral data acquired from all subjects were

reaction time (RT) measures during face matching and
recognition. Reaction time data were not obtained for 3
subjects owing to equipment failure; the analysis of
rCBF-RT correlation is based on 7 subjects of 10.

5. ANALYSIS

PETdatawere analyzed using twomethods: a conven-
tional univariate voxel-by-voxel analysis using SPM
(Version 4) and the PLS analysis. Because the data sets
under study here had already been processed before the
methods of anatomically driven image warping (e.g.,
Bookstein, 1996) became widely available, spatial nor-
malization of the PET images was performed using
algorithms that are part of the SPM package (Friston et

al., 1989, 1991). Changes in the method of registration
would alter the findings here to some unknown extent.
Both SPM analyses were run using a combination of
C-code and PRO-MATLAB (Version 4, Mathworks) and
the PLS analyses were run completely in MATLAB.
Computations were performed on a Sun Sparc 20
workstation.
The SPM comparisons were performed to determine

if there were brain regions specifically activated in
encoding or recognition relative to face matching. The
average of the two encoding tasks and the average of
the two recognition tasks were each compared to the
average of the two matching tasks.
Two PLS analyses were performed: one regarding the

condition effects (activation analysis) and the other the
correlation of RT with rCBF (brain–behavior analysis).
The analyses used the same spatially transformed
subject images that were used for SPM, but with a

FIG. 3. Singular images and subject scores from second latent variable representing experimental variance. The singular images (top)
present orthogonal projection plots of a ‘‘glass brain’’ showing positive and negative saliences separately. Scores for each subject are plotted by
condition.
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smaller filter (15 mm instead of 20 mm) to reduce the
possible confound of spatial autocorrelation. Slight
differences in the stereotaxic location of some local
maxima between the SPM and the PLS analyses will be
partly a result of different smoothing filters (cf. Tables 1
and 2). Pixel intensities for individual images were
adjusted for global CBF by dividing each image voxel by
the within-task within-subject whole-image mean. The
transformed images were then stacked together for all
subjects and all conditions so the resulting data matrix
had n 3 k rows (n, number of subjects; k, number of
scans; the two scans for each of three tasks were not
averaged so k 5 6) and one column for each voxel in an
image. The design matrix also had n 3 k rows and two
columns for the orthogonal condition contrasts. In the
order (encoding, matching, recognition), contrast 1 is

(21, 2, 21)—the average of encoding and recognition
versus matching, and contrast 2 is (1, 0, 21)—encoding
versus recognition.
The association of the images with reaction time was

tested by a separate cross-correlation matrix of two
columns representing an orthogonal rotation of the
separate vectors of correlations of pixel by RT within
the two tasks from which RT measures were obtained.
The first column of this design matrix is the sum of the
correlations of RT with rCBF in the two tasks sepa-
rately, and the second column is the difference of those
correlations. Because PLS is invariant against rotation
of either block separately (Bookstein, 1991), this could
as well have been represented as the unrotated matrix
of the two task-specific correlations separately, followed
by a rotation in the course of reporting the results.

FIG. 4. Singular images from PLS analysis of brain–behavior relations. Top projections display regions showing a common correlation
with behavior in both face matching and recognition conditions. The subject scores are plotted against the corresponding scores from the
X-block containing the RTmeasures and the task by RT interaction. The relative continuity across the plot suggests the singular image depicts
a common relation between RT and rCBF across task. The bottom projections are regions where the correlation with behavior differed between
tasks, along with the plot of the subjects scores and the X-block. The clustering in the plot is suggestive of a differential relation across the two
tasks.
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6. RESULTS

SPM Results

For a full exposition of the SPM results, the reader is
referred to papers by Grady et al. (1995) and Haxby et
al. (1996). The essential findings from the activation
results are that encoding of faces led to greater rCBF,
compared to matching, in the left inferior and middle
prefrontal cortex, right hippocampal gyrus, and left
inferior temporal cortex. Decreased rCBFwas observed
in the dorsal medial occipital cortex. Recognition of
faces, compared to matching, resulted in rCBF in-
creases in right inferior and middle prefrontal, anterior
cingulate, left and right parietal, and ventral posterior
cortical and cerebellar regions and in decreases in
dorsal medial occipital and superior temporal cortices.
The local maxima and stereotaxic coordinates for these
areas are presented in Table 1.

PLS Results—Activation Analysis

Projection plots of the two singular images (SI’s)
identified by the PLS analysis are presented in Figs. 2
and 3 and local maxima in Table 2. Figure 2 depicts a
singular image with positive saliences extending from
bilateral anterior temporal lobe to the right hippocam-
pal gyrus and into posterior cingulate. Ventral aspects
of the anterior cingulate have positive saliences on the
first SI, as has a large part of the limbic system. The

pattern follows the classic ‘‘C-shape’’ extending from
anteriormedial temporal lobes, posterodorsal hippocam-
pus into retrosplenial, posterior, and ventral anterior
cingulate. Regions showing negative saliences were the
right prefrontal, dorsal anterior cingulate, inferior pari-
etal, and ventral posterior regions and thalamus. Note
that the appropriate confidence intervals around these
regions, which do not concern us here, would be set by
bootstrap analysis pixel by pixel rather than bymanipu-
lation of a ‘‘threshold.’’ There is thus no analogue to the
overall false positive and false negative rates of the
computations in univariate methods.
The singular value for this was 27.51, accounting for

60.88% of the summed squared cross-block correlation.
The saliences for the two task contrasts were 0.445 for
the comparison of the average of encoding and recogni-
tion versus perceptual matching and 0.895 for the
comparison of encoding versus recognition. Both con-
trasts are salient on this SI, but the contrast between
encoding and recognition is dominant. The contrast
that actually predicts this first SI can, in fact, be
computed from the saliences: it is 0.445(21, 2, 21) 1

0.895(1, 0, 21) 5 (0.45, 0.891, 21.341), which is partly
a contrast of encoding against recognition.
The plot of scores for the first SI (bottom of Fig. 2)

shows the clustering of scores in encoding and match-
ing apart from recognition. The multiple regression on

TABLE 1

Local Maxima in Areas of Significant Relative Activation
and Deactivation in SPM Comparison of Encoding and Re-
trieval Conditions with PerceptualMatching Task (P , 0.001;
Adapted from Haxby et al., 1996)

Location X Y Z Comparison

L inf frontal 233 27 212 Enc vs match
L mid frontal 226 42 16 Enc vs match
L mid frontal 220 36 32 Enc vs match
R hippocampus 28 210 220 Enc vs match
R hippocampus 34 224 212 Enc vs match
L inf temporal 256 234 212 Enc vs match
Medial occipital 24 286 12 Enc vs matcha

R inf frontal 36 22 20 Rec vs match
R mid frontal 34 54 4 Rec vs match
Cingulate 22 24 40 Rec vs match
L parietal 238 262 36 Rec vs match
R parietal 26 264 28 Rec vs match
L ventral occipital 236 284 212 Rec vs match
L lat cerebellum 241 263 228 Rec vs match
R ventral occipital 24 284 28 Rec vs match
Cerebellum 14 278 220 Rec vs match
Medial occipital 24 286 12 Rec vs matcha
L sup temporal 246 28 4 Rec vs matcha

Note. Coordinates are in reference to the atlas of Talairach and
Tourneaux (1988).

aSignificant relative deactivation.

TABLE 2

Local Maxima in Areas Identified from PLSAnalysis of
Activation Data

Location X Y Z SI

R mid frontal 28 52 4 SI11

R inf frontal 40 20 16 SI11

Cingulate 2 22 32 SI11

R ventral occipital 38 284 4 SI11

R cerebellum 18 276 220 SI11

R thalamus 14 214 4 SI11

R parietal 30 278 28 SI11

L inf temporal 244 228 224 SI12

R inf temporal 44 26 224 SI12

R hippocampus 30 220 212 SI12

R parahipp gyrus 22 218 220 SI12

Retrosplenial 28 224 22 SI12

Cingulate 24 250 28 SI12

Cingulate 2 40 24 SI12

R parahipp gyrus 32 214 220 SI21

L inf temporal 262 234 28 SI21

Lmed frontal 218 34 32 SI21

L inf frontal 242 16 16 SI21

L inf frontal 230 22 28 SI21

Med occipital 24 290 16 SI22

Note. Singular image number (SI) is indicated in the right most
column with 1/2 indicating whether the voxel showed a positive or
negative salience.
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the scores suggested that the first SI was extracting a
significant task-related spatial pattern (R2 5 0.575,
permutation test probability P < 0.0005).
The second SI shows positive saliences mainly in

dorsal medial occipital cortex (Fig. 3). Negative salien-
ces are present in the right parahippocampal gyrus,
more ventral and anterior than the location depicted in
the first SI. Left inferior temporal and left prefrontal
cortices are also represented strongly in this pattern.
Saliences for the contrasts were 0.895 for contrast 1
and 20.445 for contrast 2. (The exact repetition of the
absolute values for the two contrast saliences is be-
cause there are only two columns in the design matrix;
this need not always be the case.) Applying these
saliences to the original contrasts gives 0.895(21, 2,
21)1 20.445(1, 0,21)5 (21.341, 1.791,20.45), which
is mainly a contrast of encoding and matching. The
singular value for the second SI was 22.05, accounting
for the remaining 39.12% of the summed squared
cross-block correlation.
The distribution of scores on the second SI shows

matching separated from both encoding and recogni-
tion. Regression of the scores on the second SI on the
contrast vectors was likewise significant (R2 5 0.289,
P < 0.001). (A reviewer has kindly pointed out to us
that this second test is not conditioned to the ‘‘true’’
value of the first singular pair. It is thus somewhat
biased toward acceptance of the null hypothesis. As
that hypothesis has been rejected here, we need not
pursue such a refinement.)
In summary, the PLS activation analysis shows that

the dominant (first) pattern distinguished recognition
of faces from encoding and face matching. The singular
image incorporates positive saliences for posterior and
ventral anterior cingulate cortices, anterior temporal
cortices, and right hippocampus, and negative salien-
ces for right prefrontal and dorsal anterior cingulate,
ventral occipital and cerebellum, and thalamus. The
scores are equal for encoding and face matching, sug-
gesting that the areas identified in the first SI do not
differentiate encoding and matching. The second SI
distinguishes encoding from matching with positive
saliences for dorsal occipital cortex and negative for
ventral–anterior right parahippocampal gyrus and left
prefrontal cortex. Scores in the recognition condition
weremost similar to those from encoding. In view of the
similarity in scores for both memory conditions on the
second SI, it is possible that these regions represent
general memory operations. There have been sugges-
tions that recognition of previously presented informa-
tion requires reactivation of some of the same regions
engaged in the initial encoding episode (Tulving and
Thompson, 1973; Nyberg et al., 1995). The PLS results
are consistent with this possibility.

Brain–Behavior Analysis

The relation of RT to rCBF in the matching and
recognition task complemented the preceding PLS
analysis of experimental conditions. The maxima from
this analysis are presented in Table 3. The dominant SI
reflected common correlations in both conditions and is
presented at the top of Fig. 4 (R2 5 0.75, P < 0.0005).
The singular value for this SI was 89.49, accounting for
72% of the summed squared cross-block correlation.
Positive saliences represent activations associated with
slower RT and negative saliences with faster RT. For
the singular image, the strongest positive saliences are
for the dorsomedial portion of thalamus and dorsome-
dial occipital cortex. Themiddle prefrontal gyrus is also
represented bilaterally for the first SI, as is the inferior
parietal. But there is an asymmetry of saliences for the
superior temporal gyrus, with left greater than right.
Negative saliences for the first SI are predominantly in
the right hemisphere, with the strongest in the anterior
portion of the fusiform, which extends more medially to
include the right parahippocampal gyrus. The dorsal
extent of the relation is mainly in the right medial
parietal region.
The second SI (Fig. 4, bottom) represents the interac-

tion of the RT–rCBF relation and task (R2 5 0.50,
P 5 0.006; singular value 5 55.76, 28% of cross-block
correlation). Few areas showed positive saliences (activ-
ity associated with slower RT), most notably the right
caudate nucleus. The greatest task differences ap-
peared in negative saliences with the image encompass-
ing the right and left hippocampal and parahippocam-

TABLE 3

Local Maxima in Areas Identified from PLSAnalysis of
Behavior/Brain Relations

Location X Y Z SI

Thalamus 22 22 12 SI11

Medial occipital 26 298 4 SI11

Lmid frontal 240 44 8 SI11

R mid frontal 38 44 12 SI11

L inf parietal 228 256 32 SI11

R inf parietal 34 258 32 SI11

R fusiform 46 212 228 SI12

R parahipp gyrus 26 226 220 SI12

Cuneus/precuneus 210 260 28 SI12

Cuneus 14 274 28 SI12

R caudate 26 16 0 SI21

R parahipp gyrus 34 214 220 SI22

R hippocampus 20 214 214 SI22

L hippocampus 232 220 216 SI22

Cingulate 0 28 28 SI22

Cingulate 24 50 16 SI22

Cingulate 216 48 20 SI22

Note. Singular image number (SI) is indicated in the rightmost
column with 1/2 indicating whether the voxel showed a positive or
negative salience.
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pal gyri and a large extent of anterior cingulate cortex.
The relation of this singular image to the scores in
matching and recognition suggested the areas identi-
fied in the negative pattern showed stronger negative
correlations between rCBF and RT in recognition. For
example, the correlation of the most salient voxel from
the second SI located in the right hippocampus and RT
in recognition was 20.91; in matching, 20.67. A con-
crete interpretation of this would be that subjects who
activated these areas more were able to respond more
rapidly. Some of the regions having strong saliences in
this pattern are similar to those identified in the second
SI from the analysis of the task effects. This is not
unexpected since the interaction vector is a combina-
tion of task differences and RT. If the second SI from the
activation analysis reflects general memory operations,
then the RT–rCBF correlation suggests that subjects
who respond more rapidly are able to more fully
activate the regions engaged in these memory opera-
tions.

7. DISCUSSION

This paper has demonstrated how partial least
squares methods of singular value decomposition can
be used to describe the relation between brain activity
and experimental design or behavior measures. The
analysis involves three steps: computation of the cross-
correlation matrix S between images and the design or
behavior block, singular value decomposition of S, and
derivation of scores.
While the results from the PLS analysis of brain

activations were not completely dissimilar from those
obtained through SPM (a typical univariate voxelwise
method), limbic and thalamic regions of salience were
identified by PLS and not by SPM. Liberalizing the
criteria for significance in SPM would not restore that
equivalence of the analyses. In PLS, associations of the
image with its causes or effects are treated as a whole,
consistent with our scientific stance of regarding brain
operations as outcomes of cooperative interactions
among areas (McIntosh and Gonzalez-Lima, 1994). At
the same time, the permutation tests underlying signifi-
cance here avoid problems of multiple comparisons that
bedevil other approaches to the image as a whole such
as the eigenimage analysis. To evade these problems
with eigenimages seems to require that the feature
space of image variability be restricted prior to consid-
eration of interesting correlations or comparisons.
A second important difference between the typical

univariate analysis and PLS is in the analytic ap-
proach. The most common practice in univariate image
analysis, as epitomized by the cognitive subtraction
paradigm, is to examine differences between tasks.
PLS analysis, by being able to use all conditions in an
experiment at once, provides indices of similarity as

well as indices of differences. In the first application
here, the first singular image extracted from the activa-
tion PLS analysis suggested that encoding and match-
ing conditions were most similar on a singular image
that included a large extent of limbic cortex, while the
second singular image identified a different limbic
region that distinguished encoding andmatching. Such
results have some important implications for data
interpretation as it provides another dimension of
theoretical examination—namely the commonalities in
neural systems across different paradigms.
PLS is not designed to supplant either the univariate

image analysis methods, such as SPM, or the extant
multivariate methods, such as eigenimage analysis.
Rather, these three classes of analysis are complemen-
tary and address somewhat different explanatory tasks.
The scientist choosing among them must balance the
goal of optimal localization within the image with that
of optimal extraction of information from the image for
subsequent analytic steps. The univariate methods
emphasize the careful weighing of contrasts involving
specific regions, contrasts that distinguish different
cognitive processes. The multivariate methods, on the
other hand, identify distributed systems of pixels that,
as a whole, concentrate covariation with the causes or
effects of these activations. Of these multivariate meth-
ods, PLS is unusual in its choice of a figure of merit for
this assessment (covariance, not correlation); but, in
exchange, it offers an analogue of the univariate ‘‘detec-
tion of regions’’ in the pixel-by-pixel coefficients of
salience, which can be tested for localization even
though they have not been computed independently.
In our view, the principal contribution of PLS, apart

from its computational simplicity, is to point out the
possibility of a third form of explanation, just as cogent
as the styles of explanation underlying univariate or
eigenimage analysis. In doing so, it also emphasizes
how answers to questions about functional images
depend rather sensitively on the way in which the
questions are phrased. PLS, for instance, splits the
question about the ‘‘significance’’ of an image into two
pieces: the significance of the contrast as a whole (the
number reported here asR2) and the significance of any
possible localization of that contrast. Most univariate
analysis methods have no equivalent of this first signifi-
cance test (but see Worsley et al., 1995), while some-
what improving the power by which the second is
tested. The eigenimage methods, conversely, empha-
size those image regions that correlate with other
regions likewise salient among themselves, without
separating out the part that is salient for a particular
cross-block prediction task. PLS bridges this divide,
combining both explanatory purposes. It thus circum-
vents the troublesome tensions in neuroscience be-
tween localized and holistic modes of explanation. PLS
is neutral in this dispute, proffering methods by which
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one can weigh either extreme postulate against the
other. Indeed a recent study by Nyberg et al. (1996)
demonstrated how a combination of univariate correla-
tion analysis and PLS identifies a central role of the
medial temporal lobe in a distributed system underly-
ing episodic memory retrieval.
PLS analyses of the relation of brain activity to

behavioral measures and task-related changes in the
relation provide an important complement to conven-
tional image analysis. In this manner, PLS can be used
to examine relations across a number of blocks. Covari-
ances may pertain to any set of behavioral measures.
PLS can be extended to sets of demographic or psycho-
logical measures or to measures of neuroanatomy (e.g.,
structural MRI); in other versions of PLS, there can be
multiple blocks of X’s all competing to account for
patterns of covariance with the same image data.
Across this whole class of analyses, scientific under-
standing arises precisely when the saliences and the
scores fall into patterns consistent with the causal
nexus presumed to underlie the data that were mea-
sured.
The analysis here treats the experimental design as

consisting only of two dimensions of ‘‘contrast.’’ This
omits two other aspects that are often included here: a
set of subject effects (contrasts across subjects) and a
set of run effects (contrasts across repetitions of the
task). In principle, each of these constitutes an addi-
tional design block that could be wielded to produce
singular images comparable to those here. There is no
reason to believe that those images would be the same
as those here, and thus it may be unwise to combine the
task contrasts and the repeated-measures contrasts
into a single enlarged design matrix a priori. Interindi-
vidual differences would be of importance if the study
sample consisted of two groups (e.g., patients versus
controls); run effects for tasks that show a strong
component of learning. If one or the other of these
facets is a determinant of image contents commensu-
rate with the experimental design, it can be accounted
for using PLS. The columns in the design matrix may
be appended with columns for contrasts among sub-
groups of subjects, for run effects, and, if necessary,
combinations of task, subjects, and run, just as in the
setup of general crossed MANOVAs. The singular im-
ages from this PLS analysis are compared to those from
a simpler analysis where only task effects are consid-
ered. If the singular images do not differ, then the task
effects are robust and the added information provided
using subject and run effects may serve to enhance the
cross-block prediction of task effects. If they differ, then
the data may be adjusted for the effects from subject or
run, either by preprocessing steps (cf. Moeller et al.,
1987; Alexander and Moeller, 1994) or by adjusting out
singular images representing such effects.
Three other image analysis methods have been pro-

posed that attempt to extract images related to either
experimental manipulations or experimental groups.
Scaled subprofile modeling (SSM; Moeller et al., 1987;
Moeller and Strother, 1991; Alexander and Moeller,
1994) performs a principal components analysis on a
covariance matrix obtained between brain regions
across a sample of subjects containing both normal
controls and patients. Before the covariance matrix is
computed, the raw data are normalized by log trans-
form and subtraction of regional and subject means.
The extracted components represent eigenimages that
show the most variation after the normalizations.
Component scores are computed for all subjects to show
how patients and controls relate to the particular
eigenimage. Although they are not formally optimal for
any discriminatory purpose, the eigenimages can be
powerful aids in description of group differences.
The eigenimage analysis of Friston et al. (1993; also

Friston, 1994) differs from that of SSM in that subject
variance is completely removed by averaging and the
analysis is performed across tasks. The goal of the
analysis here is to identify those brain regions most
related to the experimental condition. This is not too
dissimilar from the PLS analysis of activations except
that PLS makes use of subject variance as well as
experimental variance. PLS identifies those regions
most related to the experimental manipulation and
derives scores within each condition to give an indica-
tion of how each subject relates to the manipulation
(i.e., how ‘‘typical’’ that subject’s brain activity was in
comparison with the rest of the sample). In this way,
PLS can be thought of as a combination of SSM and
eigenimage analysis, with the important improvement
that all the data can be examined simultaneously
without exclusion of variance sources or additional
transforms of the data.
The PLS analysis is quite different in principle from

the analysis of eigenimages recently suggested by
Friston et al. (1995). These are restricted to the sub-
space of the brain image block Y spanned by its largest
principal components (eigenimages of the experiment
irrespective of design). Vectors of this subspace are
regressed on the elements of the design matrix by
multiple regression (realized as a canonical variates
analysis). The results do not agree with those of the
PLS analysis here, even in perfectly balanced crossed
designs, owing to the reduction of the image block to
eigenimages before the multiple regression procedure.
Such a filter would be appropriate if the confrontation
of explained and observed images is by the MANOVA
used by Friston et al., which implicitly incorporates a
multiple regression step on both sides; but in partial
least squares there is no multiple regression at any
time—only decomposition of one single covariance ma-
trix. What is optimally accounted for in PLS are the
elements of this matrix, not the values of the individual
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pixels at any point of the image. The purpose of PLS is
to optimize information between the blocks for scien-
tific understanding, not to predict either set of values
by the other.
The interest in identifying spatial patterns across

the brain that relate to the experimental task or
behavior is in part a reflection of the recent emphasis
on interregional interactions and how these interac-
tions change across tasks of an experiment. In this
context, PLS can play an important role in identifying
the key regions that form the nodes of a functional
network differentially engaged across the experiment.
The capacity for the examination of brain–behavior
relations in PLS helps to identify portions of the
functional networks that aremost involved in organiza-
tion of neural processes in response selection. Enrich-
ing the toolkit of image analysis by a least-squares
multivariate technique such as PLS will help research-
ers extractmore information from any functional neuro-
imaging data set.

APPENDIX—WORKING EXAMPLE

For the simulation, assume that measures from a
four-pixel image (pixels Y1 to Y4) were obtained from
three conditions. The data set was created using
the random-number functions in MATLAB with the
pixel values sampled from a population of normally
distributed random numbers (mean 5 10, SD 5 1.5).
Values were grouped into three ‘‘conditions’’ of five
observations each. A constant, representing an effect,
was added to certain pixels within a condition,
plus uncorrelated error variance. The data are as
follows:

For the PLS analysis, assemble orthogonal contrast
vectors to form a design matrix X:

The cross correlations between design and data
matrices are:

The cross-correlation matrix is then decomposed using
singular value decomposition (S 5 ADBt). The result-
ing solution yields two pairs of singular vectors (singu-
lar images, SI), because the smallest dimension in the
cross-correlation matrix is 2.
The singular values, representing the covariance

between SI pairs, for the solution are:

The sum of the squared singular values is equal to the
sum of squared cross correlations (2.30). The ratio of a
squared singular value to this sum, is ‘‘the proportion
of summed squared cross-block correlation accounted
for’’ by the SI. For SI1, this is 0.73 (1.68/2.30), and for
SI2, is 0.27 (0.62/2.30).
Two matrices are also obtained from the solution:

This states that the second contrast (condition 2 versus
3) is most related to SI1, and the first contrast (condi-
tion 1 versus 2 and 3) is more related to SI2.

Design matrix (X )

Contrast 1 2 2 2 2 2 21 21 21 21 21 21 21 21 21 21
Contrast 2 0 0 0 0 0 1 1 1 1 1 21 21 21 21 21

Cross correlations (S)

Contrast 1 Contrast 2

Y1 20.7555 0.1432
Y2 20.217 20.0692
Y3 0.019 0.9403
Y4 0.035 0.8796

Singular
values (D)

SI1 SI2

1.2981 0.7858

Singular vectors for
design matrix (A)

Contrast SI1 SI2

1 0.0417 0.9991
2 20.9991 0.0417

Condition

Data

Y1 Y2 Y3 Y4

1 9.49 7.75 11.93 17.31
1 9.40 10.55 9.54 17.06
1 7.71 10.06 10.78 19.84
1 7.46 11.25 12.05 19.00
1 8.53 10.69 11.41 19.91
2 11.14 10.45 11.80 18.80
2 10.56 10.54 14.36 20.89
2 12.08 9.95 14.86 22.20
2 10.39 11.52 14.97 22.72
2 9.15 9.61 15.26 21.25
3 9.96 10.41 8.41 17.13
3 10.18 12.08 7.93 14.13
3 10.74 9.94 8.19 16.32
3 9.66 10.56 6.90 15.73
3 10.66 9.88 7.61 15.21

Mean 1 8.52 10.06 11.14 18.62
Mean 2 10.66 10.41 14.25 21.17
Mean 3 10.24 10.57 7.81 15.70
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The saliences for the data matrix indicate which
variables are most related to each SI.

The saliences for SI1 show that Y3 and Y4 are most
related to SI1. Since this SI also is related to the
contrast of conditions 2 and 3, the interpretation is that
these are the pixels that differ most between those
conditions. SI2 has high weights for Y1, this is the pixel
most different between condition 1 and conditions 2
and 3.
The scores give an indication of the conditions that

are being distinguished for a given SI.

The scores on the first SI (with high saliences for Y3 and
Y4) show an even gradient across conditions, consistent
with the rawmeans in the datamatrix table. The scores
on the second SI will be substantially identical to the
values for pixelY1, which shows the greatest distinction
between condition 1 and conditions 2 and 3.
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