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In this paper, we present a new clustering method that involves data envelopment analysis (DEA). The
proposed DEA-based clustering approach employs the piecewise production functions derived from
the DEA method to cluster the data with input and output items. Thus, each evaluated decision-making
unit (DMU) not only knows the cluster that it belongs to, but also checks the production function type
that it confronts. It is important for managerial decision-making where decision-makers are interested
in knowing the changes required in combining input resources so it can be classified into a desired clus-
ter/class. In particular, we examine the fundamental CCR model to set up the DEA clustering approach.
While this approach has been carried for the CCR model, the proposed approach can be easily extended
to other DEA models without loss of generality. Two examples are given to explain the use and effective-
ness of the proposed DEA-based clustering method.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Cluster analysis is a branch in statistical multivariate analysis and an unsupervised learning in pattern recognition (see Duda and Hart,
1973; Kaufman and Rousseeuw, 1990; Jain et al., 2000). It is a method for classifying like groups of a data set into the same cluster and
unlike groups into different clusters. Clustering is a powerful data exploratory approach to forming data groups and to revealing the feature
structure information of a given data set. It is a data-driven procedure for classifying a datum in one of a few classes by looking at proximity
and homogeneity in feature space. Generally, we may roughly divide clustering methods into the following categories: hierarchical clus-
tering (Hartigan, 1975; Kaufman and Rousseeuw, 1990), mixture-model clustering (McLachlan and Basford, 1988; McLachlan and Krishnan,
1997), learning network clustering (Grossberg, 1976; Lippmann, 1987; Tsao et al., 1994; Kohonen, 2001), objective-function-based cluster-
ing, and partition clustering (Bezdek, 1981; Yang, 1993).

Conventionally, most clustering algorithms are procedures that minimize total dissimilarity; examples of such algorithms are k-means
(Duda and Hart, 1973; Hartigan, 1975), fuzzy c-means (FCM) (Bezdek, 1981; Yang, 1993; Wu and Yang, 2002), and possibilistic c-means
(PCM) (Krishnapuram and Keller, 1993). Let A1, A2, . . . ,As be the features of data, and the units to be clustered be DMU1, DMU2, . . . ,DMUn

where xi = (xi1, xi2, . . . ,xis) is a feature vector for DMUj in the s-dimensional Euclidean space Rs. Consider d(xj, zi) as the dissimilarity measure
between xj and the cluster center zi. A general clustering method is to find c cluster centers z1, z2, . . . ,zc so that the total dissimilarity mea-
sure Js(z) with JsðzÞ ¼

Pc
i¼1

Pn
j¼1aijf ðdðxj; ziÞÞ is minimized. Js(z) is usually defined as a distance-based function, and the problem here is to

select a useful and reasonable distance measure d(xj, zi).
On the other hand, the stated clustering approaches can be seen as a feature analysis technique. An assumption of underlying feature

analysis is to regard the feature items A1, A2, . . . ,As as multiple features so that the minimization of Js(z) presents the closer of data among
their features and makes it more possible for these DMUs to be classified into the same cluster. However, the clustering results derived
from the minimization of the total feature dissimilarity Js(z) may not be helpful in some cases of clustering DMUs, especially in production
units. In these cases, we use their production data to cluster them. Suppose that the production data have feature items A1, A2, . . . ,Ak,
Ak + 1, . . . ,As with A1 to Ak being input items and Ak + 1 to As being output items. The clustering information obtained from the conventional
clustering approaches can only reveal DMU is more similar to another one. However, the more important information we want to know is
the production feature (functions) implied from the production data of all DMUs. i.e., fj(A1, A2, . . . ,Ak; Ak + 1, Ak + 2, . . . ,As) = 0. From these
ll rights reserved.
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derived production functions, f1, f2, . . ., all DMUs are classified into different clusters (production functions). Therefore, each DMU not only
knows the cluster that it belongs to, but also knows the production function type that it confronts. Each DMU can compare its production
feature with the other production functions so that the combination of its input resources or the combination of inputs and outputs can be
readjusted. That is, for the case of data feature with input and output items, the cluster derived from production functions is more valuable
than that derived from feature dissimilarity measures.

The idea of this study is to employ the production functions to cluster production data. The method supporting this idea is data envel-
opment analysis (DEA), as initiated and developed by Charnes et al. (1978). The DEA is a data-oriented method for evaluating the relative
efficiency of DMUs where each DMU is an entity responsible for converting multiple inputs into multiple outputs. Since the fundamental of
DEA uses the nonparametric mathematical programming approach to estimate piecewise frontiers and envelop the DMU data sets. In this
study, each piecewise frontier is regarded as one cluster of production functions. Therefore, we use all piecewise frontiers as a base to clus-
ter production data. That is, we give up traditional clustering approaches of feature dissimilarity and propose a new approach by adopting
the production functions revealed by the observation data to cluster all DMUs.

The rest of this paper is organized as follows: Section 2 discusses the CCR model from which the proposed clustering approach is devel-
oped. Furthermore, the piecewise linear convex hull is described to establish the fundamental DEA clustering approach. Section 3 looks into
the proposed DEA-based clustering approach. We focus on why and how piecewise production functions drawn from DEA models are em-
ployed to cluster data. The algorithm of the DEA-based clustering approach is then established. Section 4 gives two numerical examples to
illustrate the proposed DEA clustering approach. Discussion is made using this empirical example with a comparison of the resultant clus-
ters derived from distance-defined clustering approaches. Moreover, a two-level clustering approach for production data is proposed by
combining the cluster obtained from production functions and efficiency ratio. Finally, conclusions are stated in Section 5.

2. Data envelopment analysis

The DEA method is a useful tool for evaluating the relative efficiency for a group of DMUs. Up to now, DEA has been widely studied and
applied in various areas for 30 years since Charnes et al. (1978) first proposed the DEA method with the CCR model. Among them, the
main forms of DEA models and their extensions include those of BCC model (Banker et al., 1984), the additive model (Charnes et al.,
1985) and the imprecise DEA models (Cooper et al., 1999; Zhu, 2003). Modifications and extensions are the assurance region models
(Thompson et al., 1986; Zanakis et al., 2007), super-efficiency models (Andersen and Petersen, 1993; Li et al., 2007), cone ratio models
(Charnes et al., 1989, 1990). Stochastic and chance-constrained extensions are considered by Land et al. (1994); Olesen and Petersen
(1995); Cooper et al. (1996); Lahdelma and Salminen (2006) and Cooper et al. (2002). A taxonomy and general model frameworks for
DEA can be found in Gattoufi et al. (2004) and Kleine (2004). The CCR is the original model of DEA (see the M1 model), and is used in this
study to explain the DEA-based clustering approach. Without loss of generality, the proposed approach is also suitable for other models of
the DEA family.

The DEA model generalizes the usual input/output ratio measure of efficiency for a given unit in terms of a fractional linear program
formulation. According to the economic notion of Pareto optimality, the DEA method states that a DMU is considered inefficient if some
other DMUs or some combinations of other DMUs produce at least the same amount of output with less of the same resources input
and not more of any other resources. Conversely, a DMU is considered Pareto efficient if the above is not possible. Suppose there are n
DMUs to be evaluated, xij is the noted amount of the ith input for the jth DMU andyrjis the noted amount of the rth output for the jth
DMU. With decision variables outputs weights u1, u2, . . . ,us (one for each item of output) and input weights v1, v2, . . . ,vm (one for each item
of input) being selected, the mathematical formulation of the method is summarized below, where the relative efficiency of the DMUk is to
be determined (see the M1 model).
M1 model

Maxu;v Effk ¼
Ps

r¼1uryrkPm
i¼1v ixik

Subject to
Ps

r¼1uryrkPm
i¼1v ixik

6 1;

ur P e;v i P e 8r; i:
The DEA model is essentially a fractional programming problem with a ratio of a weighted sum of outputs to a weighted sum of inputs
where the weights for both inputs and outputs are to be selected in a manner that calculates the efficiency of the evaluated unit. Therefore,
the original form of the DEA model is both nonlinear and nonconvex problem. Charnes et al. (1981) proved that fractional programming
problem can be transformed into two equivalent linear programming formulations. The first formulation is ‘‘input-based”, constraining the
weighted sum of outputs to be unity and minimizes the inputs that can then be obtained (see the M2 model). The second formulation is
‘‘output-based”, constraining the weighted sum of inputs to be unity and maximizes the outputs that can then be obtained (see the M20

model). The choice of using an input-based or output-based model depends on the production process characterizing the firm (that is, min-
imize the use of inputs to produce a given output or maximize the output with given levels of inputs):
M2 model M20 model

Minu;v Effk ¼
Pm
i¼1

v ixik Maxu;v Effk ¼
Ps
r¼1

uryrk

Subject to
Ps
r¼1

uryrj �
Pm
i¼1

v ixij 6 0 j ¼ 1; . . . ; n; Subject to
Ps
r¼1

uryrj �
Pm
i¼1

v ixij 6 0 j ¼ 1; . . . ; n;

Ps
r¼1

uryrj ¼ 1;
Pm
i¼1

v ixik ¼ 1;

ur P e; v i P e 8r; i: ur P e; v i P e 8r; i:
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Both M2 and M20 models are linear programming forms of the DEA method. It is implicit that the methodology employed by the DEA
method is the production function theory. In economics, the production function is a function that summarizes the process of converting
multiple inputs into a single output. Thus, a general mathematical form for the production function in economics can be expressed as
y = f(x1, x2, x3, . . . ,xn), where y is a quantity of output and x1, x2, x3, . . . ,xn are quantities of inputs. However, the DEA is a process of converting
multiple inputs into multiple outputs, i.e., g(y1, y2, y3, . . . ,yn) = f(x1, x2, x3, . . . ,xn). In fact, we can see that both M2 and M20 models with the
constraints

Ps
r¼1uryrj �

Pm
i¼1v ixij 6 0, j = 1, . . . ,n, use the production function that converts multiple inputs into multiple outputs. Most pre-

vious studies had mentioned and discussed the properties of production function that are hidden in DEA methods (see Charnes et al., 1983;
Banker et al., 1984; Seiford and Thrall, 1990; Chang and Guh, 1991; Andersen and Petersen, 1993; Olesen and Petersen, 1995; Cooper et al.,
1996, 2002, 2007; Huang et al., 1997; Pitaktong et al., 1998; Zanakis et al., 2007 and Li et al., 2007).

Since the number of DMUs is usually much larger than the number of inputs, we prefer to express the linear programming in its duality
form. Further, the duality form can interpret the geometric meaning of DEA and provide information about conservation of resources or
expansion of outputs to have DMUs from inefficiency to efficiency. Therefore, we prefer to have its duality form as follows (see the M3
and M30 model):
M3 model M30 model

Min Effk ¼ ðUk � e
Pm
i¼1

s�i � e
Ps
i¼1

sþr Þ Max Effk ¼ ðUk þ e
Pm
i¼1

s�i þ e
Ps
i¼1

sþr Þ

Subject to xikUk �
Pn
j¼1

xijkj � s�i ¼ 0 i ¼ 1; . . . ;m; Subject to yrkUk �
Pn
j¼1

yrjkj þ sþr ¼ 0 j ¼ 1; . . . ; n;

Pn
j¼1

yrjkj � sþr ¼ yrk j ¼ 1; . . . ;n;
Pn
j¼1

xijkj þ s�i ¼ xik i ¼ 1; . . . ;m;

kj; s�i ; s
þ
r P 0 for all j; i; r: kj; s�i ; s

þ
r P 0 for all j; i; r:
The above shows three types of CCR model. If Eff �k is the optimal value of Effk, the DMUk is said to be efficient if and only if Eff �k ¼ 1. If Eff �k
is less than 1, DMUk is inefficient. According to the efficiency ratio, DMUs may be grouped as good ðEff �k ¼ 1Þ and poor ðEff �k < 1Þ performers,
or clustered by assigning different efficiency ratio grades (see Yu et al., 1996; Thompson et al., 1997; Jahanshahloo et al., 2005; Bick et al.,
2007; Cook and Bala, 2007). Although clustering by efficiency ratio gives some information about the rationality of output/input, it does not
reveal the intrinsic relationship between the input and output production features. Therefore, this study adopts piecewise production func-
tions derived from the DEA method to cluster data.

In M2 and M20 models, it is obvious that the constraint
Ps

r¼1uryrj �
Pm

i¼1v ixij 6 0 is an inequality formula of production functions. Solv-
ing M2 and M20 models yields the virtual multipliers u�r and v�i . Thus,

Ps
r¼1u�r yrj �

Pm
i¼1v�i xij ¼ 0 is derived. Running either the M2 or M20

model for k = 1 to n gives all production functions. Then, all DMUs are classified into different clusters by these piecewise production func-
tions. Thus, a clustering method using production functions via the DEA method is implemented.

The piecewise linear convex hull approach to frontier estimation proposed by Farrel (1957) provides a non-parametric method for
determining the relative efficiency of a DMU. Further works on identification of the empirically defined production possibility includes
Charnes et al. (1982, 1983, 1987), Banker et al. (1984), Seiford and Thrall (1990), Jahanshahloo et al. (2007). However, they basically
use Pareto-efficiency to generate these reference sets and describes DEA by floating a piecewise linear surface to rest on top of the obser-
vations (i.e., envelop the data). Suppose a simple model is erected with the input–output observations (X1, Y1), . . . , (Xn, Yn) for each DMU.
These DMUs for efficiency comparisons are assumed to use the same inputs and also to produce the same outputs even though it may be in
varying amounts. Our objective is to characterize a production possibility set and, in particular to determine an efficient frontier according
to these observed data. T is a production possibility set which has following properties:
T ¼ fðX; YÞjY P 0 can be produced from X P 0g:
Postulate 1. Convexity. If (Xj, Yj) 2 T, j = 1, . . . ,n, and kj P 0 are nonnegative scalars such that
Pn

j¼1kj ¼ 1, then ð
Pn

j¼1kjXj;
Pn

j¼1kjYjÞ 2 T .
Postulate 2. Inefficiency. (a) If (Xj, Yj) 2 T and X P X then ðX;YÞ 2 T . (b) If (Xj,Yj) 2 T and Y 6 Y then ðX;YÞ 2 T.
Postulate 3. Ray unboundness. If (X,Y) 2 T then (kX,kY) 2 T for any k > 0.
Postulate 4. Minimum extrapolation. T is the intersection set of all bT satisfying Postulates 1, 2 and 3 and subject to the condition that each

of the observed vectors ðXj;YjÞ 2 bT , j = 1, . . . ,n.

The slope along the piecewise efficient frontier of the production possibility set denotes different rates of change in outputs with respect
to changes in inputs. Chang and Guh (1991), Huang et al. (1997), Pitaktong et al. (1998) and Cooper et al. (2007) had developed methods for
identifying facet members of the Pareto-optimal frontier. The piecewise efficient facet stated by these authors has important implications
for effective management of the resources employed to obtain desired feasible outputs. In particular, Huang et al. (1997) developed a series
of linear programming for determining rates of change in facets. Up to date, we find that there is less consideration in using these facets
(production function) as a reference to classify evaluated DMUs. In this study, we shall propose a clustering approach according to the
properties of DEA and its production possibility set such that we can use these facets (production function) as a reference to classify eval-
uated DMUs. This DEA-based clustering method will be derived in the next section.
3. DEA-based clustering method

As stated above, the basic idea of DEA-based clustering approach uses the piecewise production functions derived from the M2 or M20

model to conduct a cluster analysis for a group of DMUs. In this section, we will further explain the DEA-based clustering approach using
the following demonstration.
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Fig. 1. An illustration of DEA-based clustering approach (DEA isoquant: Combination of x1 and x2 for producing one unit of output).
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As illustrated in Fig. 1, the DEA method uses a piecewise linear approximation to the efficient frontier, which is determined by the effi-
cient DMUs (DMU1, DMU2, DMU3, DMU4) and five envelopes (production functions) with different virtual multipliers u�i (1 ¼ u�11x1,
1 ¼ u�21x1 þ u�22x2, 1 ¼ u�31x1 þ u�32x2, 1 ¼ u�41x1 þ u�42x2 and 1 ¼ u�52x2). The slope of each segment of envelope determines the substitution
possibility for a DMU on this local frontier to produce one unit of output. For example, the input substitution rate of the envelope
1 ¼ u�21x1 þ u�22x2 is �u�21=u�22. Therefore, there are five different ways of combining inputs to yield outputs. For example, a product is fab-
ricated by the machine (x1) and manpower (x2). If DMUi and DMUj use the production functions 1 = u21x1 + u22x2 and 1 = u41x1 + u42x2,
respectively, to yield one unit of product, DMUi is a labor-oriented industry and the DMUj is a capital-oriented industry because
u11 P u21 P u31 P u41 P u51 = 0 and u52 P u42 P u32 P u22 P u12 = 0. Thus, five clusters are established in this example and each piecewise
envelope represents one type of production. Each DMU is clustered according to its corresponding production function:

Cluster I: DMU1, DMU2, DMU7.
Cluster II: DMU2, DMU3, DMU5, DMU8, DMU9.

Cluster III: DMU3, DMU4, DMU6, DMU10.
Cluster IV: DMU1, DMU11.
Cluster V: DMU4, DMU12.

Among these clusters, the virtual multipliers of production functions corresponding to Clusters I, II and III are all nonzero. This infor-
mation is important for managerial decision-making while a DMU is interested in knowing its production feature relative to other DMUs,
and refers to other production function features, which provide a direction to readjust the combination of its input resources, and/or the
combination of inputs and outputs, so as to be reassigned into a desired cluster/class. However, the virtual multipliers of production func-
tions corresponding to Clusters IV and V are not all nonzero, for example 1 = u11x1 and 1 = u52x2, these frontiers cannot be considered as
effective clusters because they are degenerative, and there exists no substitution rate between input and output items. Thus, the inefficient
DMUs (DMU11 and DMU12) belonging to degenerative clusters will be reclassified into another effective cluster whose production functions
are with all nonzero virtual multipliers. According to the minimum extrapolation postulate of the possibility production set, the nearest
frontier of production function that the inefficient DMU confronts toward the original point should be considered as its cluster. In this illus-
tration, both DMU11 and DMU12 are re-clustered to the frontier 1 ¼ u�21x1 þ u�22x2 (Cluster I) and 1 ¼ u�41x1 þ u�42x2 (Cluster III), respectively.
Hence, the clusters with their DMU classification shown in Fig. 1 reduce to the following three types:

Cluster I: DMU1, DMU2, DMU7, DMU11.
Cluster II: DMU2, DMU3, DMU5, DMU8, DMU9.

Cluster III: DMU3, DMU4, DMU6, DMU10, DMU12.

Fig. 1 shows the geometric meaning of efficiency ratio determined by the DEA method. For example, DMU5 is inefficient relative to the
reference set of DMU2 and DMU3. The dashed line from q to the origin represents the contraction path for DMU5. By connecting the piece-
wise envelope segment from DMU2 to DMU3, the efficiency ratio ðEff �5Þ of DMU5 is evaluated as �o�p=�o�q and obtained from the implemen-
tation of any one model of M1, M10, M2 and M20. However, if a DMU belongs to a degenerative cluster, we had discussed that it will be
reclassified into a new cluster (the nearest frontier of production function), and thus its efficiency ratio will be re-evaluated by this frontier.
For example, DMU11 and DMU12 are inefficient and belong to degenerative clusters initially. After being re-clustered to their nearest effec-
tive clusters 1 = u21x1 + u22x2 and 1 = u41x1 + u42x2, the efficiency ratios of DMU11 and DMU12 are re-evaluated by these piecewise envelope
segments, respectively. The re-clustering and reevaluating algorithm is shown in the next section.

It is noted, according to DEA cluster analysis, the cluster for each DMU is identified. However, if the evaluated DMU falls over the inter-
section point of frontiers, it will be attributed to these clusters of frontiers simultaneously. For example, DMU2 is classified into Clusters I
and II for its location is at the intersection point of frontiers 1 ¼ u�21x1 þ u�22x2 and 1 ¼ u�31x1 þ u�32x2. Thus, the algorithm of the DEA-based
clustering approach can be summarized as follows:
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3.1. DEA-based clustering algorithm

Step1. Evaluate the efficiency ratio for each DMU, find all production functions, and then identify the DMU whose efficiency ratio needs
to be re-evaluated according to the following procedure:
Let p = 0; Let PF(p) = / and C(p) = /.
Let q = 0; Let R(q) = /.
LOOP for k = 1 to n

Obtain the efficiency ratio Effk of the kth DMU and its solution of virtual multipliers v�i , i = 1, . . . ,m and u�r , r = 1, . . . ,s using the M2
or M20 model. These obtained v�i and u�r will be in one of the following cases.

Case 1. v�i and u�r are both nonzero.
Derive the frontier of production function with

f ðx1; x2; . . . ; xm; y1; y2; . . . ; ysÞ ¼
Ps

r¼1u�r yr �
Pm

i¼1v�i xi ¼ 0.
IF the derived production function exists in one of PF(1), . . . ,PF(p), say PF(h) THEN the kth DMU is classified into the Cluster

C(h).
ELSE let p = p + 1. Assign f(x1, x2, . . . ,xm, y1, y2, . . . ,ys) as a production function in PF(p) and classify the kth DMU into the Cluster

C(p).
Case 2. v�i and u�r are both not nonzero.

It means the kth DMU(xk1, xk2, . . . ,xkm, yk1, yk2, . . . ,yks) is surrounded by an edge frontier. Thus, it should re-evaluate its effi-
ciency ratio. Let q = q + 1. Assign the kth DMU to R(q).

ENDLOOP
(Now, there exist production functions in PF(1), PF(2), . . . ,PF(p) with Clusters C(1), C(2), . . . ,C(p) and there are q DMUs in R(1),
R(2), . . . ,R(q) surrounded by edge frontiers.)
Step 2. Re-evaluate the efficiency ratio and reclassify the DMU surrounded by edge frontiers according to the following loop:

LOOP for j = 1 to q
Multiply the input items of R(j)th DMU by t and then substitute the R(j)th DMU data by (txj1, txj2, . . . , txjm, yj1, yj2, . . . ,yjs).
LOOP for w = 1 to p

Take the R(j)th DMU data (txR(j)1, txR(j)2, . . . , txR(j)m, yR(j)1, yR(j)2, . . . ,yR(j)s) into PF(w).
Obtain the value of t such that the production function f(txR(j)1, txR(j)2, . . . , txR(j)m, yR(j)1, yR(j)2, . . . ,yR(j)s) = 0.
Let t(w) = t.

ENDLOOP
Take the index k* where t(k*) = max{t(1), t(2), . . . , t(p)}.
Re-evaluate the efficiency ratio of the R(j)th DMU to be t(k*).
Assign the R(j)th DMU to be in the Cluster C(k*).

ENDLOOP
Step 3.Obtain the final clusters C(1), C(2), . . . ,C(p). Moreover, the efficiency ratios Eff1, Eff2, . . . ,Effn for all DMUs are also obtained.
We mention that the proposed DEA-based clustering algorithm can systematically choose the effective clusters (the production func-
tions whose virtual multipliers are all nonzero) and cancel the degenerative clusters simultaneously. The algorithm re-classifies the DMU
which confronts the degenerative cluster (frontier) to the nearest effective cluster (frontier) toward the original point, and re-evaluate its
efficiency ratio using this effective frontier.

It is also noted, as the numbers of inputs (m) and outputs (s) of DEA problem grow, the number of piecewise production functions (clus-
ters) may increase drastically but most are degenerative (there exists Cmþs

1 þ Cmþs
2 þ � � � þ Cmþs

mþs�1 possible degenerative production func-
tions). Consequently, it will possibly cause most DMUs to be clustered into separated and degenerative clusters, and thus the cluster
classification is no longer meaningful. It is exactly the purpose of the proposed clustering algorithm, which takes advantage of the piece-
wise production function of DEA to cluster evaluated units while avoiding the disturbance of degenerative clusters.

4. Numerical examples

We now examine two numerical examples to demonstrate the DEA-based clustering approach and then to illustrate its applications in
the real world.

Example 1. Consider an efficiency evaluation problem with 20 DMUs, each DMU with two inputs and one output. The simplified
production data of DMU (input1, input2, output1) are shown as follows:
DMU1ð1;5;1Þ DMU2ð2;3;1Þ DMU3ð3;2;1Þ DMU4ð5;1;1Þ DMU5ð2;5;1Þ;
DMU6ð3;4;1Þ DMU7ð3;8;1Þ DMU8ð4;8;1Þ DMU9ð5;9;1Þ DMU10ð4;10;1Þ;
DMU11ð6;5;1Þ DMU12ð7;5;1Þ DMU13ð7;4;1Þ DMU14ð7;3;1Þ DMU15ð8;4;1Þ;
DMU16ð9;2;1Þ DMU17ð10;3;1Þ DMU18ð11;3;1Þ DMU19ð10;1:5;1Þ DMU20ð11;2;1Þ:
By using the M2 or M20 model, for each DMUk, its efficiency ratio Effk and the solution of virtual multipliers v�1, v�2 and u�1 are obtained.
The analytical results are shown in Table 1.

By selecting the set of virtual multipliers v�1, v�2 and u�1 to be all nonzero, three frontiers of production functions are found, PF(1) = y � 2/
7x1 � 1/7x2 = 0, PF(2) = y � 1/7x1 � 2/7x2 = 0 and PF(3) = y � 1/5x1 � 1/5x2 = 0. Therefore, the 20 DMUs are classified into the following
three clusters (see Fig. 2):



Table 1
Analytical results derived from M2 or M20 model in Example 1.

Virtual multipliers Efficiency ratio (Effk) Evaluated by the frontier of

v�1 v�2 u�1

DMU1(1,5,1) 2/7 1/7 1 1.0000000 y = 2/7x1 + 1/7x2

DMU2(2,3,1) 2/7 1/7 1 1.0000000 y = 2/7x1 + 1/7x2

1/5 1/5 1 y = 1/5x1 + 1/5x2

DMU3(3,2,1) 1/7 2/7 1 1.0000000 y = 1/7x1 + 2/7x2

1/5 1/5 1 y = 1/5x1 + 1/5x2

DMU4(5,1,1) 1/7 2/7 1 1.0000000 y = 1/7x1 + 2/7x2

DMU5(2,5,1) 2/9 1/9 7/9 0.7777778 y = 2/7x1 + 1/7x2

DMU6(3,4,1) 1/7 1/7 5/7 0.7142857 y = 1/5x1 + 1/5x2

DMU7(3,8,1) 1/7 5/70 1/2 0.5000000 y = 2/7x1 + 1/7x2

DMU8(4,8,1) 1/8 5/80 7/40 0.4375000 y = 2/7x1 + 1/7x2

DMU9(5,9,1) 2/19 1/19 7/19 0.3684211 y = 2/7x1 + 1/7x2

DMU10(4,10,1) 1/9 5/90 7/18 0.3888889 y = 2/7x1 + 1/7x2

DMU11(6,5,1) 1/11 1/11 5/11 0.4545455 y = 1/5x1 + 1/5x2

DMU12(7,5,1) 5/60 5/60 5/12 0.4166667 y = 1/5x1 + 1/5x2

DMU13(7,4,1) 2/30 2/15 7/15 0.4666667 y = 1/7x1 + 2/7x2

DMU14(7,3,1) 1/13 2/13 7/13 0.5384615 y = 1/7x1 + 2/7x2

DMU15(8,4,1) 5/80 1/8 7/16 0.4375000 y = 1/7x1 + 2/7x2

DMU16(9,2,1) 1/13 2/13 7/13 0.5384615 y = 1/7x1 + 2/7x2

DMU17(10,3,1) 5/80 1/8 7/16 0.4375000 y = 1/7x1 + 2/7x2

DMU18(11,3,1) 1/17 2/17 1/17 0.4117647 y = 1/7x1 + 2/7x2

DMU19(10,1.5,1) 0 2/3 2/3 0.6666667 y = x2

(0.53846) Re-evaluated by y = 1/7x1 + 2/7x2

DMU20(11,2,1) 0 1/2 1/2 0.5000000 y = x2

(0.4666667) Re-evaluated by y = 1/7x1 + 2/7x2
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Fig. 2. Resultant clusters derived from DEA-cluster and distance-defined clustering approaches for Example 1. (DEA isoquant: combining x1 and x2 for producing one unit of
output).
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Cluster I: DMU1, DMU2, DMU5, DMU7, DMU8, DMU9, DMU10,
Cluster II: DMU2, DMU3, DMU6, DMU11, DMU12,

Cluster III: DMU3, DMU4, DMU13, DMU14, DMU15, DMU16, DMU17, DMU18, DMU19, DMU20.

However, if we use the general clustering approaches such as the distance-defined c-mean, the 20 DMUs will be classified into the
following four clusters (see Fig. 2):

Cluster 1: DMU1, DMU2, DMU3, DMU4, DMU5, DMU6,
Cluster 2: DMU7, DMU8, DMU9, DMU10,
Cluster 3: DMU11, DMU12, DMU13, DMU14, DMU15,
Cluster 4: DMU16, DMU17, DMU18, DMU19, DMU20.

Fig. 2 points out a significant difference between the clusters derived from the DEA-cluster approach and distance-defined clustering
approach. For example, according to the distance-defined clustering approach, DMU1, DMU2, DMU3, DMU4, DMU5, and DMU6 are classified
into Cluster 1. On the contrary, according to the DEA-cluster approach, these six DMUs belong to three clusters of production functions.
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That is, DMU1, DMU2 and DMU5 are classified into Cluster I; DMU2, DMU3 and DMU6 are classified into Cluster II; and DMU4 and DMU5 are
classified into Cluster III.

Why is there discrepancy between results derived from these two approaches? It is because the distance-defined clustering approach
ignores the input and output relationship between the features, and regards all items as multiple attributes. Thus, the DMUs are classified
into the same cluster if their data attributes are closer. This result will give us an incorrect message that these DUMs have the same or
similar production features. Indeed, they may belong to different production types. Hence, the clustering results derived from the DEA-
based clustering approach using the production functions reveal the input–output relationships hidden in the feature items of inputs
and outputs, so it is more meaningful and helpful for production units.

DMU19 and DMU20 confront the degenerative frontier (y = x2). This study suggests that they should be reclassified into the nearest effec-
tive frontier (the frontier with nonzero virtual multipliers). In this example, it is observed DMU19 and DMU20 confront the nearest effective
frontier y = 1/7x1 + 2/7x2, thus their efficiency ratio will be re-evaluated by this frontier. However, in complicated problems (with more
data items of input and output), it is impossible to judge the nearest effective frontier by observation. Hence, for DMU19, we follow the
procedure of Step 2 stated in Section 3, taking (x1, x2, y) = (10t(i), 1.5t(i), 1), i = 1, 2, 3 into PF(1) = y � 2/7x1 � 1/7x2 = 0, PF(2) = y � 1/
7x1 � 2/7x2 = 0 and PF(3) = y � 1/5x1 � 1/5x2 = 0, respectively. The t(i) value is calculated, giving t(1) = 0.32558, t(2) = 0.53846 and
t(3) = 0.43483. By taking the maximal value, the efficiency ratio for DMU19 is re-evaluated as 0.53846. In addition, DMU19 is classified into
the cluster determined by the corresponding envelope PF(2) = y � 1/7x1 � 2/7x2 = 0.

Finally, to provide more information by clustering, we combine production function and efficiency ratio to propose a two-level cluster
for production data. The first level is according to the production function that the evaluated DUMs confront. The second level is according
to the efficiency ratio, which is divided into good ðEff �k ¼ 1Þ and poor ðEff �k < 1Þ performance. The resultant clusters for these 20 DMUs are
shown in Fig. 3.

As to the stability of resultant clusters derived from the DEA-based clustering method, it is determined by the proposed method
whether or not it is robust to a slight change in the input–output data, and thus retains the existing reference set of frontiers (production
functions). As seen in Fig. 1, the production function y = 1/7x1 + 2/7x2 is created by connecting the efficient DMU4 and DMU3. If the impre-
cise input data of DMU4 are within the scope of the dashed-line rectangle, then the clustering result shown in Fig. 3 still holds. That is, the
proposed DEA-based clustering algorithm is robust to a slight change in the input and output data sets. However, if the imprecise input
data are beyond the scope of the dashed-line rectangle, or the input data are an outlier, they will change the reference set of frontiers.
Hence, it is important to check data correction or diminish the bias of data priori to implement the DEA-based clustering method. We men-
tion that this kind of sensitivity to outliers is always a problem for most clustering algorithms (see Bezdek,1981; Yang, 1993; Wu and Yang,
2002). In clustering literature, several authors had discussed the robustness for clustering (see Jolion et al., 1991; Dave and Krishnapuram,
1997). The robustness of the DEA-based clustering algorithm will be another interesting research issue. In fact, a robust algorithm to out-
liers using the DEA approach merits further study.

Example 2. This example has 15 DMUs. Each DMU also has two inputs (x1 and x2) and one output (y) as shown in Fig. 4, in which the data
are listed as follows:
DMUD1ð6;5;1Þ DMUD2ð8;5;1Þ DMUD3ð5;2;1Þ DMUD4ð6;3;1Þ DMUD5ð8;2;1Þ;
DMUE1ð18;15;3Þ DMUE2ð24;15;3Þ DMUE3ð15;6;3Þ DMUE4ð18;9;3Þ DMUE5ð24;6;3Þ;
DMUF1ð30;25;5Þ DMUF2ð40;25;5Þ DMUF3ð25;10;5Þ DMUF4ð30;15;5Þ DMUF5ð40;10;5Þ:
According to the distance-based clustering method, these data can be divided into the three groups: Cluster 1 (DMUD1–DMUD5), Cluster
2 (DMUE1–DMUE5) and Cluster 3 (DMUF1–DMUF5), Suppose the enveloped frontier of DMUD1–DMUD5 is u�1y ¼ v�1x1 þ v�2x2. Since the data of
DMUE1–DMUE5 are two times those of DMUD1–DMUD5, respectively, the enveloped frontier of DMUE1–DMUE5 is 2u�1y ¼ 2v�1x1 þ 2v�2x2, the
same as the enveloped frontier of DMUD1–DMUD5. Thus, according to the DEA-cluster approach, DMUE1–DMUE5 and DMUD1–DMUD5 are
classified into the same cluster. Similarly, DMUF1–DMUF5 and DMUD1–DMUD5 are also classified into the same cluster. That is, these three
groups of DMUs form one cluster (Cluster I). However, if we use the distance-function clustering approaches, they will be classified into
three different clusters.
Cluster I: y = 2/7x1 + 1/7x2 
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Fig. 3. Two-level cluster for production data.
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Fig. 4. Resultant clusters derived from DEA-cluster and distance-defined clustering approaches for Example 2.

R.-W. Po et al. / European Journal of Operational Research 199 (2009) 276–284 283
This is an interesting result for cluster analysis. It means that the DEA-cluster result is not affected by the scale of data, thus the three
groups of DMUs are classified into the same cluster. The reason is that the CCR model of the DEA method has constant return to scale (the
production function has no constant term), so the model can automatically diminish the ‘‘multiple” effect among data. It is so-called ‘‘unit
invariant” (invariant to the units of measurement chosen); that is, changing the units of measurement (for example, measuring the quan-
tity of labors in person-hours instead of person-years) will not change the cluster it belongs to or its efficiency ratio. Nevertheless, the unit-
invariant property may not exist in other DEA models (for example, the BCC model).

To summarize the analytical results from the above examples, the DEA-cluster approach not only clusters data, but also provides pro-
duction functions to describe the relationship between the feature items. The proposed approach is suitable for clustering data which con-
tain input and output items.

5. Conclusion

This study develops a DEA-based clustering approach. The proposed approach employs the piecewise production functions derived from
the DEA method to cluster the data with input and output items. Compared with distance-defined clustering approaches that only provide
the information of similarity features among DMUs, our proposed approach reveals the input–output relationships hidden in the data items
of input and output. Thus, for each evaluated DMU, we know not only the cluster that it belongs to, but also the production function type
that it confronts. It is very important for managerial decision-making where decision-makers are interested in knowing the changes re-
quired in combining input resources so that it can be re-classified into a different and desired cluster/class.

The focus of this paper is to examine the CCR model of DEA and then establish the DEA-based clustering. Without loss of generality,
while this approach has been carried out for the CCR model, the proposed approach can be easily extended to other DEA models. We also
showed that the clustering results drawn from the DEA-based clustering are unit-invariant, meaning that they are not affected by the scale
of data.

It is important to point out, however, the DEA-based clustering approach is suitable for most clustering problems where there are in-
puts-and-outputs or cause-and-effect relationships between the features. For example, we can use the proposed approach in the analysis of
industry classification, sorting of organizations by input–output data, classification for developed, developing and underdeveloped nations,
and productivity sorting for staff, subunits, departments, institutes, and so on. In summary, in view of the advantages of the DEA-based
clustering approach, it is uniquely poised for clustering problems. We believe that future researches are necessary to unleash the full po-
tential of this DEA-based clustering approach. It thus has tremendous potential to be used for various clustering problems. Finally, we need
to point out that the proposed DEA-based clustering algorithm is robust to a slight change in the input and output data sets, but not to
outliers. Our future research will consider developing a robust-type DEA-based clustering algorithm.
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