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Abstract

Recursive partitioning is embedded into the general and well-established class of parametric
models that can be fitted using M-type estimators (including maximum likelihood). An
algorithm for model-based recursive partitioning is suggested for which the basic steps are:
(1) fit a parametric model to a data set, (2) test for parameter instability over a set of
partitioning variables, (3) if there is some overall parameter instability, split the model with
respect to the variable associated with the highest instability, (4) repeat the procedure in each
of the daughter nodes. The algorithm yields a partitioned (or segmented) parametric model
that can be effectively visualized and that subject-matter scientists are used to analyzing and
interpreting.
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1. Introduction

Since the appearance of the first tree-structured regression analysis (Automated Interaction Detec-
tion, Morgan and Sonquist 1963), virtually every publication in this field highlights two features of
trees: (1) interpretability—enhanced by visualizations of the fitted decision trees—and (2) predic-
tive power in non-linear regression relationships. The latter is of diminishing importance because
modern approaches to predictive modeling such as boosting (e.g., simple Lo boosting by Bithlmann
and Yu 2003), random forests (Breiman 2001) or support vector machines (Vapnik 1996) are often
found to be superior to trees in purely predictive settings (e.g., Meyer, Leisch, and Hornik 2003).
However, a simple graphical representation of a complex regression problem is still very valuable,
probably increasingly so.

In the last decade, the incorporation of (simple) parametric models into trees has been receiving
increased interest. Research in this direction was mainly motivated by the fact that constant
fits in each node tend to produce large and thus hard to interpret trees (see e.g., Chan and
Loh 2004). Several algorithms have been suggested both in the statistical and machine learning
communities that attach parametric models to terminal nodes or employ linear combinations to
obtain splits in inner nodes. In machine learning, such approaches are known as hybrid, model or
functional trees (Gama 2004) with M5 (Quinlan 1993) being the most prominent representative.
The key developments in statistics are due to Wei-Yin Loh and his coworkers. GUIDE (Loh
2002), CRUISE (Kim and Loh 2001) and LOTUS (Chan and Loh 2004) attach parametric models
to terminal nodes, and Choi, Ahn, and Chen (2005) suggest an extension to count data. Some of
these algorithms (in particular CRUISE or QUEST, Loh and Shih 1997) additionally allow one
to employ parametric models to obtain splits in inner nodes. Furthermore, maximum likelihood
trees (Su, Wang, and Fan 2004) embed regression trees with a constant fit in each terminal node
into maximum likelihood estimation.

Building on these ideas, we carry the integration of parametric models into trees one step further
and provide a rigorous theoretical foundation by introducing a new unified framework that embeds
recursive partitioning into statistical model estimation and variable selection. Within this frame-
work, a segmented parametric model is fitted by computing a tree in which every leaf is associated
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with a fitted model such as, e.g., a maximum likelihood model or a linear regression. The model’s
objective function is used for estimating the parameters and the split points; the corresponding
model scores are tested for parameter instability in each node to assess which variable should be
used for partitioning. The benefits of employing this approach are: The objective function used
for parameter estimation is also used for partitioning (testing and split point estimation). The
recursive partitioning allows for modeling of non-linear relationships and automated detection of
interactions among the explanatory variables. The statistical formulation of the algorithm ensures
the validity of interpretations drawn from the resulting model. Moreover, the use of well-known
parametric models provides subject-matter scientists with a segmented model that they are used
to analyzing and interpreting.

The remainder of the paper is organized as follows: Section 2 establishes the class of models the
framework is based on before Section 3 describes the suggested model-based recursive partitioning
algorithm in detail. Section 4 provides a set of illustrations and applications along with benchmark
comparisons with other tree-based algorithms. Section 5 provides a short discussion of some further
details of the algorithm before Section 6 concludes the paper with a summary.

2. Segmented models

Consider a parametric model M(Y,0) with (possibly vector-valued) observations Y € Y and a
k-dimensional vector of parameters § € ©. Given n observations Y; (i = 1,...,n) the model can
be fitted by minimizing some objective function ¥ (Y, 0) yielding the parameter estimate 6

¢ = argmin U(Y;,0). 1
egee;(z) (1)

Estimators of this type include various well-known estimation techniques, the most popular being
ordinary least squares (OLS) or maximum likelihood (ML) among other M-type estimators. In
the case of OLS, ¥ is typically the error sum of squares and, in the case of ML, it is the negative
log-likelihood. In the latter case, it could be the full likelihood of the variable Y or the conditional
likelihood if Y can be split into dependent and explanatory variables Y = (y,z) .

Example: (Multivariate) normal distribution. The observations Y are normally distributed with
mean g and covariance matrix ¥: Y ~ N (p, ¥) with the combined parameter vector 6 = (u, 3).

Example: Generalized linear model (GLM). The observations can be split into a dependent
variable y and covariates or regressors x, i.e., Y = (y,x)". The model equation is g(E(y)) = ="
where y has a pre-specified exponential family distribution, g(-) is a known link function and 6 are
the regression coefficients.

In many situations, it is unreasonable to assume that a single global model M(Y,0) fits all n
observations well. But it might be possible to partition the observations with respect to some
covariates such that a well-fitting model can be found locally in each cell of the partition. In
such a situation, we can use a recursive partitioning approach based on ¢ partitioning variables
Z; e Z; (j=1,...,0) to adaptively find a good approximation of this partition.

More formally, we assume that a partition {Bp}y=1,... g of the space Z = Z; X - -+ x Z; exists with
B cells (or segments) such that in each cell B, a model M (Y, 6;) with a cell-specific parameter 6
holds. We denote this segmented model by Mp(Y, {6,}) where {0}p=1.. 5 is the full combined
parameter.

Special cases of such segmented models are classification and regression trees where many parti-
tioning variables Z; but only very simple models M are used, and structural break models that
find partitions with respect to time.

Example: For regression trees a simple model M is chosen: the parameter 6 describes the mean
of the univariate observations Y; and is estimated by OLS (or equivalently ML in a normal model
with the variance treated as a nuisance parameter). The variables Z; are the regressors considered
for partitioning.
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Example: In change point or structural change analysis, typically a linear regression model with
Y; = (yi,x;)" and regression coefficients 6 is segmented with respect to only a single variable Z;
(i.e., £ = 1) which is usually time (Bai and Perron 2003; Zeileis, Kleiber, Krdmer, and Hornik
2003).

Given the correct partition {B,} the estimation of the parameters {6,} that minimize the global
objective function can easily be achieved by computing the locally optimal parameter estimates 6y,
in each segment B;,. However, if {B;} is unknown, minimization of the global objective function

B
>N w(¥i,6,) — min, (2)

b=11i€ly

over all conceivable partitions {B,} (with corresponding indexes I, b=1,..., B) is more compli-
cated, even if the number of segments B is fixed: If there is more than one partitioning variable
(¢ > 1), the number of potential partitions quickly becomes too large for an exhaustive search. If,
in addition, the number of segments B is unknown, the challenges become even more severe—at
least, if trivial partitions, such as the partition, where each observation is its own segment, are
excluded, e.g., by requiring some minimum segment size. Furthermore, in this case, some means
should be taken to avoid overfitting by increasing B.

In short, determining the optimal partition (with respect to W) is difficult, even for fixed B.
However, if there is only partitioning variable (¢ = 1), the optimal split(s) can be found easily:
both the statistics and econometrics literature on change point and structural change analysis
discuss various algorithms for segmenting models over a single variable, typically time. To exploit
this methodology for finding a partition close to the optimal one in ¢ > 1 dimensions, we suggest
a greedy forward search where the objective function ¥ can at least be optimized locally in each
step. A detailed description of this algorithm is given in the next section.

3. The recursive partitioning algorithm

The basic idea is that each node is associated with a single model. To assess whether splitting
of the node is necessary, a fluctuation test for parameter instability is performed. If there is
significant instability with respect to any of the partitioning variables Z;, split the node into B
locally optimal segments and repeat the procedure. If no more significant instabilities can be
found, the recursion stops and returns a tree where each terminal node (or leaf) is associated with
a model of type M (Y, 0). More precisely, the steps of the algorithm are

1. Fit the model once to all observations in the current node by estimating 6 via minimization
of the objective function V.

2. Assess whether the parameter estimates are stable with respect to every ordering Z1, ..., Zy.
If there is some overall instability, select the variable Z; associated with the highest parameter
instability, otherwise stop.

3. Compute the split point(s) that locally optimize U, either for a fixed or adaptively chosen
number of splits.

4. Split the node into daughter nodes and repeat the procedure.

The details for steps 1-3 are specified in the following. To keep the notation simple, the dependence
on the current segment is suppressed and the symbols established for the global model are used,
i.e., n for the number of observations in the current node, 0 for the associated parameter estimate
and B for the number of daughter nodes chosen.
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3.1. Parameter estimation

This step of the algorithm is common practice: Under mild regularity conditions (see e.g., White

1994), it can be shown that the estimate 0 defined by Equation 1 can also be computed by solving
the first order conditions

d w6 = o (3)
=1

where OU(Y.6)
)

v(Y,0) = —r— (4)
is the score function or estimating function corresponding to ¥(Y,#). Analytical closed form
solutions for 6 are available only in certain special cases, but for many models of interest well-
established fitting algorithms for computing 0 are available (e.g., OLS estimation via QR decom-
position for linear regression or ML via iterative weighted least squares for GLMs). The score
function evaluated at the estimated parameters 1@ = w(Yi,é) is then inspected for systematic
deviations from its mean 0 in the next section.

3.2. Testing for parameter instability

The task in this step of the algorithm is to find out whether the parameters of the fitted model are
stable over each particular ordering implied by the partitioning variables Z; or whether splitting
the sample with respect to one of the Z; might capture instabilities in the parameters and thus
improve the fit. To assess the parameter instability, a natural idea is to check whether the scores
1&1- fluctuate randomly around their mean 0 or exhibit systematic deviations from 0 over Z;. These
deviations can be captured by the empirical fluctuation process

[nt]
Wit) = TPV ez, (0<t<T) (5)
i=1
where o(Z;;) is the ordering permutation which gives the antirank of the observation Z;; in the
vector Z; = (Zyj,. . ., an)T. Thus, W;(¢) is simply the partial sum process of the scores ordered by
the variable Z;, scaled by the number of observations n and a suitable estimate J of the covariance
matrix COV(4(Y;0)), e.g., J = n~ 237" (Y3, 0)¢(Y;,6)T, but other robust estimators such as
HC (heteroskedasticity consistent) and HAC (heteroskedasticity and autocorrelation consistent)
estimators are also applicable. This empirical fluctuation process is governed by a functional
central limit theorem (Zeileis and Hornik 2007) under the null hypothesis of parameter stability: it
converges to a Brownian bridge W°. A test statistic can be derived by applying a scalar functional
A(+) capturing the fluctuation in the empirical process to the fluctuation process A(W;(-)) and the
corresponding limiting distribution is just the same functional (or its asymptotic counterpart)
applied to the limiting process A\(W?(-)).

This very general framework for testing parameter stability is called generalized M-fluctuation test
and has been established by Zeileis and Hornik (2007). It has been shown to encompass a large
number of structural change tests suggested both in the econometrics and statistics literature,
including OLS-based CUSUM and MOSUM tests (Ploberger and Krimer 1992; Chu, Hornik,
and Kuan 1995), score-based tests (Nyblom 1989; Hjort and Koning 2002) and statistics based
on Lagrange multiplier statistics (Andrews 1993; Andrews and Ploberger 1994)—an overview is
given in Zeileis (2005). In principle, any of the tests from this framework could be used in the
recursive partitioning algorithm, but two different test statistics seem to be particularly attractive
for assessing numerical and categorical partitioning variables Z; respectively.

Assessing numerical variables: To capture the instabilities over a numerical variable Z;, the
following functional is most intuitive:
i
ws [ =
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which is the maximum of the squared Ly norm of the empirical fluctuation process scaled by its
variance function. This is the supL M statistic of Andrews (1993) which can be interpreted as the
supremum of LM statistics against a single change point alternative where the potential change
point is shifted over the interval [i,7] that is typically defined by requiring some minimal segment
size i and then 7 = n — 4. This test statistic is asymptotically equivalent to the supremum of
likelihood-ratio (or Chow) statistics (Chow 1960) but has the advantage that the model has to
be fitted only once under the null hypothesis of parameter stability and not under the alternative
for each conceivable change point. The limiting distribution of the supL M statistic is given by
the supremum of a squared, k-dimensional tied-down Bessel process sup,(t(1 — ¢))~1[|[W°(#)||3
from which the corresponding p value p; can be computed (Hansen 1997) for the ordering Z;
(j = 1,...,¢). To avoid that the test becomes liberal, it can be imposed—in addition to the
minimal segment size—that in each node at least a certain fraction of the current observations
are trimmed on each end. Typically, 10% are used for this (Andrews 1993). The trimming affects
only the tests not the subsequent splitting.

This approach of assessing numeric partitioning variables combines the ideas from (linear) model
tree algorithms, such as GUIDE (Loh 2002) or the RD and RA trees of Potts and Sammut (2005),
with state-of-the-art methodology for testing parameter instability (Andrews 1993; Zeileis 2005).
Both GUIDE and RD/RA trees assess the parameter instability along numerical partitioning
variables. The tests employed in these algorithms are based on some ad-hoc approximations:
GUIDE and RD trees evaluate only a fixed number of conceivable change points, such as 3 (for
GUIDE) or 5 (for RD trees) points at sample quantiles. Furthermore, GUIDE and RA trees assess
only the sign of the residuals, not the full model scores. Finally, RD trees employ a crude Bonferroni
approximation for computing the p values instead of the correct limiting distribution. Thus, we
start from the same ideas but embed them into a state-of-the-art framework for testing structural
stability in general parametric models. For the linear regression model, the tests employed by
GUIDE and the RD/RA trees are contained in our framework as special cases via the choise
of a different aggregation functional A(-). As mentioned above, any (reasonable) functional A
could be used, because these always lead to omnibus tests that are not uniformly dominated by
any other functional over all conceivable patterns of parameter changes. However, the Agup Las is
particularly attractive for fitting tree models because it has high power against abrupt changes
(Andrews and Ploberger 1994) as captured by partitioning, evaluates all conceivable change points,
and is sensitive to changes in all elements of the parameter vector 6. The latter is not true for
residual-based tests as employed by GUIDE; this is illustrated in Section 5.

Assessing categorical variables: To capture the instability with respect to a categorical variable
Z; with C different levels or categories, a different statistic is required because, by definition, Z;
has ties and hence a total ordering of the observations is not possible. The most natural statistic,
which is insensitive to the ordering of the C' levels and the ordering of observations within each

level, is given by
ALW; (’)
n

where Ay Wj is the increment of the empirical fluctuation process over the observations in category
c=1,...,C (with associated indexes I..), i.e., essentially the sum of the scores in category c. The
test statistic is then the weighted sum of the squared Lo norm of the increments which has an
asymptotic x? distribution with k- (C —1) degrees of freedom from which the corresponding p value
p; can be computed (Hjort and Koning 2002).

2

(7)

l
n 2

C |I -1
)‘xz(Wj) = Z
c=1

The advantage of using this approach, based on the empirical fluctuation processes from Equation 5
with the functionals from Equations 6 and 7, is that the parameter estimates and corresponding
score functions just have to be computed once in a node. For performing the parameter instability
tests, the scores just have to be reordered and aggregated to a scalar test statistic each time.

To test whether there is some overall instability in the current node, it just has to be checked
whether the minimal p value min;—; . p; falls below a pre-specified significance level o, which
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is typically corrected for multiple testing. If this is the case, the variable Z;- associated with the
minimal p value is chosen for splitting the model in the next step of the algorithm.

3.3. Splitting

In this step of the algorithm the fitted model has to be split with respect to the variable Z;- into
a segmented model with B segments where B can either be fixed or determined adaptively. For a
fixed number of splits, two rival segmentations can be compared easily by comparing the segmented
objective function Zszl >ier, Y(Yi,0p). Performing an exhaustive search over all conceivable
partitions with B segments is guaranteed to find the optimal partition but might be burdensome,
so several search methods are briefly discussed for numerical and categorical partitioning variables
respectively.

Splitting numerical variables: Exhaustive search for a split into B = 2 segments is feasible
in O(n) operations. For B > 2, an exhaustive search would be of order O(n®~!)—however, the
optimal partition can be found using a dynamic programming approach of order O(n?). This is
an application of Bellman’s principle and has been discussed in several places in the literature
on change point and structural change analysis (see e.g., Hawkins 2001; Bai and Perron 2003;
Zeileis et al. 2003, among others). Alternatively, iterative algorithms can be used that are known
to converge to the optimal solution (e.g., Muggeo 2003). If B is not fixed, but should be cho-
sen adaptively, various methods are available (see e.g., Bai and Perron 2003; O’Brien 2004). In
particular, information criteria can be used if the parameters are estimated by ML.

Splitting categorical variables: For categorical variables, the number of segments can not be
larger than the number of categories B < C'. Two simple approaches would be either to always
split into all B = C possible levels or alternatively to always split into the minimal number of
B = 2 segments. In the latter case, the search for the optimal partition is of order O(2¢~!). For
ordinal variables, it also makes sense to just split in the ordering of the levels, so that the search for
a binary split is only of order O(C'). Again, information criteria could be an option to adaptively
determine the number of splits, although this is less intuitive than for numerical variables.

In summary, two plausible strategies would be either to always use binary splits, i.e., use a fixed
B = 2, or to determine B adaptively for numerical variables while always using B = C for
categorical variables. In Section 4 below, we adopt the former strategy of binary splits.

This concludes one iteration of the recursive partitioning algorithm and steps 1-3 are carried out
again in each of the B daughter nodes until no significant instability is detected in step 2.

4. Illustrations and applications

To illustrate how model-based recursive partitioning can be used in practice, the general frame-
work from the previous section is applied to various regression problems (linear regression, logistic
regression, and survival regression). Four different data sets are analyzed in the following way:
In a first step, the recursively partitioned model is fitted to the data and visualized for explana-
tory analysis, emphasizing that the algorithm can be used to build intelligible local models by
automated interaction detection. In a second step, the performance of the algorithm is compared
with other tree-based algorithms in two different respects: prediction and complexity. Comparing
predictive performance of different learning algorithms is established practice—for (model-based)
recursive partitioning comparing the model complexity (i.e., the number of splits and estimated
coefficients) is equally important. As argued above, the strength of single tree-based classifiers is
not so much predictive power alone, but that the algorithms are able to build interpretable models.
Clearly, more parsimonious models are easier to interpret and hence are to be preferred (among
those with comparable predictive performance).

For the linear regression applications, the model-based (MOB) recursive partitioning algorithm
introduced here is compared to other algorithms previously suggested in the literature: GUIDE
(Loh 2002) and M5 (Wang and Witten 1997), which is a rational reconstruction of M5 (Quin-
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lan 1992), as linear model trees; as well as CART (classification and regression trees, Breiman,
Friedman, Olshen, and Stone 1984) and conditional inference trees (CTree, Hothorn, Hornik, and
Zeileis 2006a) as trees with constant models in the nodes. The logistic regression-based MOB trees
are compared with logistic model trees (LMT, Landwehr, Hall, and Frank 2005) as well as various
tree-based algorithms with constant models in the nodes: QUEST (Loh and Shih 1997), CRUISE
(Kim and Loh 2001), the J4.8 implementation (Witten and Frank 2005) of C4.5 (Quinlan 1993),
CART and CTree.

All benchmark comparisons are carried out in the framework of Hothorn, Leisch, Zeileis, and
Hornik (2005) based on 250 bootstrap replications and employing the root mean squared error
(RMSE) or misclassification rate on the out-of-bag (OOB) samples as predictive performance
measure and the number of estimated parameters (splits and coefficients) as complexity measure.
The median performances on the bootstrap replications are reported in tabular form, simultaneous
confidence intervals for performance differences (obtained by treatment contrasts with MOB as
the reference category) are visualized. The median rather than the mean performance is used for
two reasons: First, to account for the skewness of the performance distributions, and second due
to the many ties in the complexity measure for the model-based tree algorithms (MOB, GUIDE,
M5’, LMT). In addition to the OOB performances, the tables contain the obvious complexity
and prediction performance measures (RMSE or misclassification) on the original data set as an
additional reference information (although the obvious prediction measures obviously represent no
honest estimators).

Most computations have been carried out in the R system for statistical computing (R Devel-
opment Core Team 2007), in particular using the packages party (Hothorn, Zeileis, and Hornik
2006b), providing implementations of MOB and CTree, rpart (Therneau and Atkinson 1997), im-
plementing CART, and RWeka (Hornik, Zeileis, Hothorn, and Buchta 2006), the R interface to
Weka (Witten and Frank 2005) containing implementations of M5, LMT and J4.8. For GUIDE,
QUEST and CRUISE, the binaries distributed at http://www.stat.wisc.edu/"1loh/ were used.

4.1. Demand for economic journals

Journal pricing is a topic that stirred considerable interest in the economics literature in re-
cent years, see Bergstrom (2001) and his journal pricing Web page http://www.econ.ucsb.edu/
“tedb/Journals/jpricing.html for further informations on this discussion. Using data collected
by T. Bergstrom for n = 180 economic journals, Stock and Watson (2003) fit a demand equation
by OLS for the number of library subscriptions explained by the price per citation (both in logs).
In their analysis, they find that this simple linear regression can be improved by including further
variables such as age, number of characters and interactions of age and price into the model with
no clear solution what is the best way of incorporating these further variables.

This is where we set out with an analysis by means of model-based recursive partitioning. The
model to be partitioned is a linear regression for the number of library subscriptions by price per
citation in log-log specification (i.e., with k = 2 coefficients). The ¢ = 5 partitioning variables are
the raw price and number of citations, the age of the journal, number of characters and a factor
indicating whether the journal is associated with a society or not. Thus, we use a standard model
whose specification is driven by economic knowledge and try to partition it with respect to further
variables whose influence is not clear in advance. Note that whereas the selection of appropriate
transformations is crucial for the modeling variables, monotone transformations of the partitioning
variables have no influence on the fitting process. For testing, a Bonferroni-corrected significance
level of a = 0.05 and a minimal segment size of i = 10 are used.

The resulting linear regression-based tree for the economic journals data is depicted in Figure 1
employing scatter plots with fitted regression lines in the leaves; some more details are provided in
Table 1. In the fitting process, a global model for all observations is estimated in node 1 yielding
a price elasticity of about —0.53. Its stability is assessed with respect to all £ = 5 partitioning
variables, the corresponding parameter instability test statistics (as defined in Equation 6 and
7, respectively) are provided in Table 1 along with their Bonferroni-adjusted p values. A highly
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Figure 1: Linear-regression-based tree for the economic journals data. The plots in the leaves
depict library subscriptions by price per citation (both in logs).

Node Regressors Partitioning variables

(Intercept) log(price/citation) || price citations age chars society

1 4.766 —0.533 || 6.562 5.261 42.198 4.564 3.280

< 0.001 < 0.001 || 0.922 0.988 < 0.001 0.998 0.660

2 4.353 —0.605 || 3.342 3.726 5.613 6.040 0.650

< 0.001 < 0.001 || 1.000 0.998 0.935 0.898 0.998

3 5.011 —0.403 || 3.370 6.839 5.987 3.677 0.608

< 0.001 < 0.001 || 1.000 0.894 0.960 1.000 0.999

Table 1: Summary of the fitting process for the linear-regression-based tree for the economic
journals data. The first two column summarize the regressors in the linear regression by means of
estimated coeflicients and associated Wald test p values. The remaining five columns summarize
the partitioning variables by means of parameter instability statistics and associated p values.

RMSE Number of parameters

Bootstrap  Original | Bootstrap Original

MOB 0.730 0.654 8 5
GUIDE 0.734 0.606 13 13
M5’ 0.752 0.625 22 19
CTree 0.806 0.710 11 9
RPart 0.804 0.651 17 11

Table 2: Performance comparison for economic journals data: prediction error is compared by
median root mean squared error (RMSE) on 250 bootstrap samples and obvious RMSE on the
original data set; complexity is compared by (median) number of estimated parameters.
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Figure 2: Performance comparison for economic journals data: prediction error is compared by
RMSE differences, complexity by difference in number of estimated parameters (coefficients and
split points).

significant instability is found only with respect to age (with a Bonferroni-adjusted p value of
p < 0.001) which is subsequently used for splitting, leading to an optimal split at age 18. For
the 53 young journals in node 2 a much higher price elasticity of about —0.6 is found than for
the 127 older journals in node 3 with a price elasticity of about —0.4. No further parameter
instabilities with respect to the partitioning variables can be detected: all p values are greater
than 89% and hence the algorithm stops. Table 2 reports the RMSE on the original data and the
model complexity of 5 (2 times k = 2 coefficients plus 2 — 1 splits).

Table 2 and Figure 2 provide the results of the benchmark comparison on 250 bootstrap samples.
The MOB trees have the lowest median RMSE and complexity, the simultaneous confidence inter-
vals show that the differences compared to GUIDE are non-significant in both cases and significant
compared to all other models. While the trees with constant fits are clearly outperformed with
respect to RMSE, M5’ is still quite close in terms of RMSE but requires a substantially larger
number of parameters to achieve this predictive performance.

4.2. Boston housing data

Since the analysis by Breiman and Friedman (1985), the Boston housing data are a popular and
well-investigated empirical basis for illustrating non-linear regression methods both in machine
learning and statistics (see Gama 2004; Samarov, Spokoiny, and Vial 2005, for two recent examples)
and we follow these examples by segmenting a bivariate linear regression model for the house values.

The data set provides n = 506 observations of the median value of owner-occupied homes in
Boston (in USD 1000) along with 14 covariates including in particular the number of rooms per
dwelling (rm) and the percentage of lower status of the population (Istat). A segment-wise linear
relationship between the value and these two variables is very intuitive, whereas the shape of the
influence of the remaining covariates is rather unclear and hence should be learned from the data.
Therefore, a linear regression model for median value explained by (rm)? and log(lstat) with k& = 3
regression coefficients is employed and partitioned with respect to all £ = 11 remaining variables.
As argued above, choosing appropriate transformations of the modeling variables is important to
obtain a well-fitting model in each segment and we follow in our choice the recommendations of
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Figure 3: Linear-regression-based tree for the Boston housing data. The plots in the leaves give
partial scatter plots for log(Istat) (upper panel) and (rm)? (lower panel).
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Figure 4: Performance comparison for Boston housing data: prediction error is compared by

RMSE differences, complexity by difference in number of estimated parameters.
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RMSE Number of parameters

Bootstrap  Original | Bootstrap Original

MOB 3.975 3.469 27 19
GUIDE 4.378 4.137 13 13
M5’ 4.058 2.482 348 321
CTree 4.607 3.428 43 37
RPart 4.838 4.030 17 15

Table 3: Performance comparison for Boston housing data: prediction error is compared by RMSE
on 250 bootstrap samples and obvious RMSE on the original data set; complexity is compared by
(median) number of estimated parameters.

Breiman and Friedman (1985). The model is estimated by OLS, the instability is assessed using a
Bonferroni-corrected significance level of & = 0.05 and the nodes are split with a required minimal
segment size of ¢ = 40.

The resulting model-based tree is depicted in Figure 3 which shows partial scatter plots along with
the fitted values in the terminal nodes. It can be seen that in the nodes 3, 6 and 7 the increase
of value with the number of rooms dominates the picture (lower panel) whereas in node 9 the
decrease with the lower status population percentage (upper panel) is more pronounced. Splits are
performed in the variables tax (property-tax rate) and ptratio (pupil-teacher ratio). As reported
in Table 3, the model has 5 - 3 regression coefficients after estimating 5 — 1 splits, giving a total of
19 estimated parameters.

The results of the benchmark comparison in Table 3 and Figure 4 show that the MOB trees
perform significantly better on this data set than the other tree-based algorithms. The algorithm
with the most comparable predictive performance, M5’, is here clearly inferior concerning its
interpretability, requiring on average more than 12 times as many parameters.

4.3. Pima Indians diabetes data

Another popular data set for comparing new classifiers is the Pima Indians diabetes data which is—
just as the Boston Housing data—available from the UCI machine learning repository (Newman,
Hettich, Blake, and Merz 1998). The data set contains many missing values—usually falsely
coded as (physically impossible) zero values—which are most prevalent in the variables serum
insulin and triceps skin fold thickness (Ripley 1996). Hence, these two variables and the missing
values in the remaining data are omitted, so that the data comprises observations for n = 724
Pima Indian women of 6 prognostic variables and the outcome (positive/negative) of a diabetes
test. It is rather clear that the diabetes diagnosis depends on the plasma glucose concentration
such that using a logistic regression model for diabetes explained by glucose (corresponding to

Misclassification Number of parameters

Bootstrap  Original | Bootstrap Original

MOB 0.255 0.238 17 8
LMT 0.293 0.215 329 8
CTree 0.265 0.224 19 13
QUEST 0.265 0.250 23 3
J4.8 0.291 0.159 101 39
RPart 0.263 0.228 29 5

Table 4: Performance comparison for Pima Indians data: prediction error is compared by mis-
classification rate on 250 bootstrap samples and obvious misclassification on the original data set;
complexity is compared by (median) number of estimated parameters.
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Figure 5: Logistic-regression-based tree for the Pima Indians data. The spinograms in the leaves
depict diabetes by plasma glucose concentration.

LMT 1 — LMT - [A)
CTree — ! — CTree -{ &)
QUEST — O QUEST 4 £

J4.8 | — Jas8 4 o)
RPart S ) RPart - 't
f T T T T T f T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0 50 100 150 200 250 300
Misclassification difference Complexity difference

Figure 6: Performance comparison for Pima Indians data: prediction error is compared by mis-
classification rate differences, complexity by difference in number of estimated parameters.
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k = 2 parameters) is intuitive. This model is partitioned with respect to the remaining ¢ = 5
variables, using a minimal segment size of § = 40 and again a Bonferroni-corrected significance

level of o = 0.05.

Figure 5 displays the resulting logistic regression-based tree. The data is first split at a body mass
index of 26.3 (corresponding roughly to the lower quartile of this variable), those observations with
a higher body mass index are partitioned into age groups below or above 30 years. The leaves
of the tree visualize the data and the fitted logistic regression model using spinograms (Hofmann
and Theus 2005) of diabetes by glucose (where the bins are chosen via the five point summary
of glucose on the full data set). It can be seen that for women with a low body mass index the
average risk of diabetes is low, but increases clearly with age (corresponding to an odds ratio of
1.060 per glucose unit). For the young women with a high body mass index, the average risk is
higher and increases less quickly with respect to age (with an odds ratio of 1.048). Finally, the
older women with a high body mass index have the highest average risk but with a lower odds
ratio of only 1.024. The model uses 8 parameters (3 - 2 coefficients and 3 — 1 splits).

The results of the benchmark comparison in Table 4 and Figure 6 show that the MOB trees
perform slightly (and significantly) better on this data set than the other tree-based algorithms
included. In particular, it performs considerably better than the other model-based algorithm
(LMT) both with respect to prediction and model complexity.

4.4. German breast cancer study

The same ideas used for recursive partitioning in (generalized) linear regression models can straight-
forwardly be applied to other parametric regression models without further modification. Here, we
apply the generic model-based recursive partitioning algorithm to a Weibull regression for mod-
eling censored survival times. We follow the analysis of Schumacher, Holldnder, Schwarzer, and
Sauerbrei (2001) and Hothorn et al. (2006a) who use constant fit survival trees to analyze survival
times of n = 686 women from positive node breast cancer in Germany. Along with the survival
time (in years) and the censoring information, there are 8 covariates available as prognostic factors:
number of positive lymph nodes, age, tumor size and grade, progesterone and estrogen receptor,
and factors indicating menopausal status and whether the patient received a hormonal therapy.

For explaining survival from positive node breast cancer in a regression model, the number of
positive lymph nodes is chosen as the explanatory variable with differing intercepts depending
on whether a hormonal therapy was performed or not. Together with the scale parameter of the
Weibull distribution, this gives a total of k = 4 parameters in the model, using the remaining ¢ = 6
prognostic variables for partitioning. The model is estimated by ML, the instability is assessed
using a Bonferroni-corrected significance level of & = 0.05 and the nodes are split with a required
minimal segment size of ¢ = 40.

The resulting model-based tree is depicted in Figure 7 employing scatter plots for survival time
by number of positive nodes in the leaves. Based on the ideas of Gentleman and Crowley (1991),
circles with different shadings of gray (hollow and solid) are used for censored and uncensored
observations, respectively. Fitted median survival times from the Weibull regression model are
visualized by dashed and solid lines for patients with and without hormonal therapy. The data
are partitioned once with respect to progesterone receptor, splitting the observations into a group
with marked influence of positive nodes and negligible influence of hormonal therapy and a group
with less pronounced influence of positive nodes but clear hormonal therapy effect. A fair amount
of censored observations remains in both groups; no further significant instabilities can be detected
(all p values are above 50%). The resulting model has 9 parameters (2 - 4 coefficients and 2 — 1
splits), yielding a log-likelihood of —809.924.

For this survival regression problem, we refrain from conducting a benchmark comparison of per-
formance as carried out in the previous section. The main reason for this is that it is not clear
which predictive perfomance measure should be used in such a comparison: Whereas RMSE and
misclassification are usually regarded to be acceptable (albeit not the only meaningful) perfor-
mance measures for regression and classification tasks, the situation is not as well understood for
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Figure 7: Weibull-regression-based tree for the German breast cancer study. The plots in the
leaves depict censored (hollow) and uncensored (solid) survival time by number of positive lymph
nodes along with fitted median survival for patients with (dashed line) and without (solid line)
hormonal therapy.

censored regression models. Although various measures, such as the Brier score (Graf, Schmoor,
Sauerbrei, and Schumacher 1999), are used in the literature their usefulness still remains a mat-
ter of debate (Henderson 1995; Altman and Royston 2000; Schemper 2003). As resolving these
discussions is beyond the scope of this paper, we content ourselves with the empirical analysis for
this regression problem.

5. Discussion

In this section, some aspects of model-based recursive partitioning are discussed in more detail or
compared with previous approaches—also, some ideas for extensions are given.

Parameter instability tests: To illustrate size and power properties of the score-based fluctu-
ation tests employed in the MOB algorithm, we present a simple simulation study. The results
are compared to those from GUIDE which uses residual-based tests to determine the partitioning
variable in each node. A simple linear regression y = x' 3 + ¢ is used where both the regressor =
and the error € are standard normal. There are six splitting variables: three standard normal
variables 7y, Z5, Z3, one uniform variable Z; on [0, 1] (rounded to 1 digit to yield many ties), one
discrete uniform categorical variable Z5 with 2 categories and another variable Zg with 5 cate-
gories. We draw n = 500 observations from this data-generating process in three scenarios: (1) no
change, 3 = (0,0)" on the full sample, (2) intercept change, 3 switches to (1,0)" for Z; > 0,
(3) slope change, 3 switches to (0,1)" for Z; > 0. The outcome from both MOB (with a = 0.05)
and GUIDE applied to 500 samples drawn from these models are summarized in Table 5. Under
the null hypothesis of no change, both algorithms select almost always the right model without
any splits. GUIDE’s model search performs somewhat better—however, MOB selects splits only
in roughly 5% of all replications, i.e., maintains its nominal size and works as expected and ad-
vertised. In the power case for an intercept change, both algorithms again perform very similar
and always find the correct partitioning variable. Again, MOB selects a larger model somewhat
more often, in roughly 5% of the replications. In the power case for a slope change, however, the
GUIDE procedure breaks down while MOB performs as for the intercept change. The reason for
GUIDE’s behaviour is that residual-based tests are insensitive to parameter changes orthogonal
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Change | Algorithm Number of splits First split (if any) in
0 1 2 3 4+ | Zy Zy Zs Zy Zs Zs
none MOB | 481 18 1 0 0 5} 3 5 1 4 1
GUIDE | 499 1 0 0 0 1 0 0 0 0 0
intercept MOB 0 463 34 3 0(500 0 0 0 0 O
GUIDE 0 498 0 1 11500 0 0 0 0 0
slope MOB 0 470 30 0 0(50 0 0 0 0 O
GUIDE | 106 135 91 67 101 | 125 68 62 45 23 71

Table 5: Number of splits and first partitioning variable chosen for splitting (if any) in 500 repli-
cations for three artificial types of parameter changes: no/intercept/slope change.

to the mean regressor (Ploberger and Kriamer 1992). This results in too few or too many (up to
12) splits selected, more often than not in the wrong partitioning variable. Although this is an
extreme scenario, similar situations can occur in practice when the variables are standardized prior
to modeling (as commonly done for many statistical and machine learning algorithms). Therefore,
employing the full model scores for assessing parameter stability seems to be a beneficial strat-
egy. For abrupt changes, the tests advocated in the paper enjoy some weak optimality properties
(Andrews and Ploberger 1994) but are generally also consistent for other patterns of parameter
change.

Unbiasedness: A desirable property which has been emphasized for many of the more recent
tree algorithms—such as QUEST (Loh and Shih 1997), GUIDE (Loh 2002) or CTree (Hothorn
et al. 2006a)—is unbiasedness. While exhaustive search algorithms (such as CART or C4.5) have
a variable selection bias (e.g., towards partitioning variables with many potential change points),
this problem can be overcome by separating variable and split point selection (or assessing the
significance of a selected split appropriately). As MOB is based on formal parameter instability
tests, unbiasedness is also achieved: If the model fitted in a certain node is stable, any of the
partitioning variables will only be selected with (approximate) probability « because the overall
test is constructed by Bonferroni-adjusting asymptotic p values from the individual parameter
instability tests for each partitioning variable. If there is parameter instability with respect to one
partitioning variable, it will be picked up (for large enough n) because all tests used are consistent
(at rate y/n, see Zeileis and Hornik 2007).

Pruning: The algorithm as discussed in this paper relies on a statistically motivated internal
stopping criterion (sometimes called pre-pruning). This has the advantage that it is easy to un-
derstand and interpret the tree-growing algorithm as it simply relies on significance tests. By
construction, splits in irrelevant partitioning variables are selected in each node only with prob-
ability « (as also illustrated in Table 5). Across nodes, significance is controlled by an approach
corresponding to closed testing procedures for multiple comparisons (Marcus, Peritz, and Gabriel
1976; Hochberg and Tamhane 1987): because the hypotheses in a tree are recursively nested, sig-
nificance of p values is only interpretable if parameter stability has been rejected for all previous
nodes in the tree. Conversely, this implies that the algorithm stops growing the tree in nodes where
parameter stability cannot be rejected. However, such an inference-based strategy does not have
uniform power against all patterns of parameter instability and it might miss certain instabilities,
e.g., interaction effects (see also below). Thus, if the focus of application is predicitve performance,
the power could be enhanced by combining the algorithm with a refined model-selection strategy,
such as cross-validation-based post-pruning. Note that in such a situation p values can only be
interpreted in an exploratory manner. As every node of the tree is associated with a fitted model
with a certain number of parameters, another attractive option is to grow the tree with a large «
(leading to a large tree) and then prune based on information criteria.

Objective function: For some statistical models, there is a clearly defined estimating function
(Y, 6) but the antiderivate ¥(Y, ) does not necessarily exist. Such models can also be recursively
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partitioned: the parameter instability tests work in the same way, only the selection of the splits
has to be adapted. Instead of minimizing an objective function, the corresponding B-sample split
statistics have to be maximized.

Interactions: Typically, recursive partitioning algorithms use perpendicular splits, i.e., the par-
titioning variables Z; just include ‘main effects’. To prevent that the algorithm fails to pick up
‘interaction effects’ such as the XOR problem, interactions could also be added to the list of
partitioning variables.

Regressors vs. partitioning variables: If regression models are partitioned, the question arises
whether a certain covariate should be included in Y as a regressor or in Z as a partitioning variable.
For categorical variables, this amounts to knowing/assuming the interactions or trying to find
them adaptively—for numerical variables, it amounts to knowing/assuming a segment-wise linear
relationship vs. approximating a possibly non-linear influence by a step function. The separation
can usually be made based on subject knowledge as in the economic journals example. Other
scenarios of this kind are conceivable: e.g., in biostatistics it would be natural to fit a dose-response
relationship and partition it with respect to further experiment-specific covariables, or in business
applications a market segmentation could be carried out based on a standard demand function.
Finally, the variables entering the explanatory part of Y and Z can also be overlapping—in this
case, a trend-resistant fluctuation test is probably more appropriate for partitioning.

Large datasets: In Section 4, we have applied the suggested MOB algorithm to several small
to medium-sized data analysis tasks, showing that both satisfactory predictive performance and
interpretability can be achieved simultaneously. The same is not necessarily true in very large
data sets (both with many observations and many partitioning variables), where there is usually a
stronger trade-off between complexity and predictive power. If there is a true underlying recursive
partition, the algorithm will recover this and stop growing the tree (as irrelevant splits are only
selected with probability «). However, in practice, there is typically no simple partition-based
model (both with a simple partition and simple local models) for large data sets. Thus, the
algorithm can be used for approximating a global model by recursive partitioning and fitting local
models in the resulting segments, typically by finding a more complex partition. Alternatively,
the practitioner can often reduce the complexity of the partition by making the model M(Y, )
more complex. In contrast, if the primary focus is model-based data exploration (rather than
prediction), a smaller tree can be grown, e.g., by decreasing « or by limiting the maximal depth
of the tree.

6. Summary

A powerful, flexible and unified framework for model-based recursive partitioning is suggested.
It builds on parametric models which are well-established in the statistical theory and whose
parameters can be easily interpreted by subject-matter scientists. Thus, it can not only model the
mean but also other properties of a parameterized distribution. Furthermore, it can be employed
to partition regression relationships, such as GLMs or survival regression. It aims at minimizing
a clearly defined objective function (and not certain heuristics) by a greedy forward search and is
unbiased due to separation of variable and split point selection.

Within the genuine statistical framework proposed in this paper, practitioners can assess whether
one (standard) global parametric model fits their data or whether it is more appropriate to par-
tition it with respect to further covariates. If so, the partitioning variables and their split points
are selected separately in a forward search that controls the type I error rates for the variable
selection in each node. This formulation of the algorithm ensures that interpretations obtained
from graphical representations of the corresponding tree-structured models are valid in a statistical
sense.
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7. Computational details

All results were obtained using R 2.5.1—with the packages party 0.9-90, strucchange 1.3-2, mod-
eltools 0.2-10, survival 2.32, and ved 1.0-6. A detailed vignette reproducing the empirical analysis
for the Boston housing and Pima Indians diabetes data sets is available as vignette ("MOB",
package = "party").
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