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Abstract. Our aim in this article is to construct exponential attractors for singularly
perturbed damped wave equations that are continuous with respect to the perturbation
parameter. The main difficulty comes from the fact that the phase spaces for the perturbed
and unperturbed equations are not the same; indeed, the limit equation is a (parabolic)
reaction-diffusion equation. Therefore, previous constructions obtained for parabolic sys-
tems cannot be applied and have to be adapted. In particular, this necessitates a study of
the time boundary layer in order to estimate the difference of solutions between the per-
turbed and unperturbed equations. We note that the continuity is obtained without time
shifts that have been used in previous results.

1. Introduction. The study of the long time behavior of equations arising from
mechanics and physics is very important, as it is essential, for practical purposes,
to understand and predict the asymptotic behavior of the system. Several objects
have been introduced for this study.

A first object is the global attractor. It is a compact set, invariant by the flow,
which attracts all the trajectories as time goes to infinity. Since it is the smallest
(with respect to inclusion) set enjoying these properties, it is a suitable object for
the study of the long time behavior of the system. Furthermore, in many cases, one
can prove that it has finite dimension (in the sense of the Hausdorff or the fractal
dimension). We refer the reader to [BV], [CV], [H], [L] and [T] for extensive reviews
on this subject. Now, the global attractor has two drawbacks. Indeed, it can attract
the trajectories slowly (see for instance [Ko]) and (consequently) it can be sensitive
to perturbations.

In order to overcome these difficulties, Foias, Sell and Temam have introduced in
[FoST] the notion of an inertial manifold. An inertial manifold is a smooth, finite
dimensional, hyperbolic (and thus robust), semi-invariant manifold which contains
the global attractor and attracts the trajectories exponentially. Unfortunately, all
the known constructions of inertial manifolds are based on a very restrictive prop-
erty, the so-called spectral gap condition. Consequently, the existence of inertial
manifolds is not known for many physically important equations such as the Navier-
Stokes equations (even in two space dimensions) and reaction-diffusion and damped
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wave equations in three space dimensions. A non-existence result has even been ob-
tained for reaction-diffusion equations in higher space dimensions.

So, Eden, Foias, Nicolaenko and Temam have introduced in [EFNT] the notion
of an exponential attractor, which can be seen as an intermediate object between
the two ideal objects that the global attractor and an inertial manifold are. An
exponential attractor is a compact, semi-invariant set which contains the global
attractor, attracts the trajectories exponentially and has finite fractal dimension.
So, compared with an inertial manifold, an exponential attractor is not necessarily
regular and, compared with the global attractor, it is expected to be more stable
(since it attracts the trajectories exponentially). We shall come back to this last
point below. We note finally that, since it is not unique, the actual choice of an
exponential attractor may, in a sense, be artificial.

Exponential attractors have been constructed for a large class of equations (see
[BN], [EFNT], [EfM1], [EfM2], [EfMZ1], [EfMZ2], [EfMZ3], [FG1], [FG2], [FM],
[FN], [M1], [M2] and the references therein). In particular, in [EfMZ1] (see also
[EfMZ2] and [EfMZ3]), a construction that is valid in Banach spaces is given (all
the previous constructions made an essential use of orthogonal projectors with finite
ranks and were thus valid in Hilbert spaces only); another construction, due to Le
Dung and Nicolaenko and valid in Banach spaces, is given in [LdN]. So, exponential
attractors are as general as global attractors.

Let us come back to the problem of the robustness of the global attractor. Gener-
ally, global attractors are only upper semicontinuous with respect to perturbations.
The lower semicontinuity property is much more delicate to obtain and can be es-
tablished only for some particular cases (see e.g. [SH], [R] and [BV]); for instance, it
is true when the semigroup possesses a global Lyapunov function and all equilibria
are hyperbolic. In this particular case, the corresponding attractor (the so-called
regular attractor in the terminology of Babin and Vishik) is exponential and is ro-
bust under perturbations (i.e. it is upper and lower semicontinuous with respect to
perturbations, see [BV]). Moreover, if Aε is the global attractor of a perturbed sys-
tem and A0 is that of the unperturbed one, then, under natural assumptions on the
perturbations, we have distsym(Aε,A0) ≤ cεκ, where distsym denotes the symmetric
distance between sets, κ ∈ (0, 1) and ε > 0 is the perturbation parameter.

As already mentioned, exponential attractors are more robust objects. In partic-
ular, one can prove the continuity of exponential attractors under perturbations in
many cases (see [EFNT] for the continuity for Galerkin approximations and [FGM],
[FG1] and [FG2] for examples of (singular) perturbations of partial differential equa-
tions), even when this property is not known or is violated for the global attractor.
The drawback of these results is that the continuity is obtained up to a time shift.
To be more precise, the continuity can be expressed as follows:

lim
ε→0

lim sup
t→∞

[
dist(St(ε)Mε,M0) + dist(St(0)M0,Mε)

]
= 0,

where St(ε) and St(0) are the perturbed and unperturbed semigroups respectively,
Mε and M0 are the corresponding exponential attractors and dist denotes the
nonsymmetric Hausdorff distance.

In [EfMZ3], by adapting the construction of [EfMZ1], a construction of continu-
ous exponential attractors, without such time shifts, is given. Moreover, we obtain
analogous (to the case of regular attractors) estimates for the symmetric distance
between the perturbed (Mε) and unperturbed (M0) exponential attractors, namely
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distsym(Mε,M0) ≤ c1ε
κ1 , without assuming that the system possess a global Lya-

punov function and that all equilibria be hyperbolic. We also note that, in contrast
to the case of regular attractors, the constants c1 and κ1 can be computed explic-
itly in terms of the physical parameters of the problem in specific examples. This
construction was then applied to a (singularly) perturbed viscous Cahn-Hilliard
system.

Our aim in this article is to extend this construction to singularly perturbed
damped wave equations (see e.g. [R] for the study of the (upper semi)continuity of
the global attractor and [FGM] for the continuity (up to a time shift) of exponential
attractors). The difficulty here comes from the fact that the phase spaces for the
perturbed and unperturbed equations are not the same (the limit equation being
a (parabolic) reaction-diffusion equation). Therefore, the abstract construction of
[EfMZ3] cannot be applied and must be deeply reworked (we can also note that the
construction of [EfMZ3] is valid for (strongly) dissipative systems only).

This article is dedicated to Professor Mark Iosifovich Vishik on the occasion of
his eightieth birthday in recognition of the impact he had on the development of
the theory of infinite dimensional dynamical systems in mathematical physics.

2. Setting of the problem. We consider the following singularly perturbed
damped wave equation in a smooth bounded domain Ω ⊂ R

3:

ε∂2
t u + γ∂tu − ∆xu + f(u) = g, u

∣∣
t=0

= u0, ∂tu
∣∣
t=0

= u′
0, u

∣∣
∂Ω

= 0, (2.1)

where ε > 0 is a small parameter and γ > 0. We assume that the nonlinear
interaction function f satisfies the following assumptions:{

1. f ∈ C2(R), f(0) = 0, 2. f ′(u) ≥ −K,

3. f(u).u ≥ 0 if |u| ≥ L, 4. |f ′′(u)| ≤ C(1 + |u|), (2.2)

where C, K and L are fixed positive constants. We also assume that the external
force g belongs to the Sobolev space H1(Ω).

Remark 2.1. We note that assumptions (2.2) are satisfied for cubic nonlinearities
(f(u) = u3−αu, α ∈ R). We also note that, for simplicity, we require the regularity
g ∈ H1(Ω) for the external force g, although our approach allows us (after minor
changes) to obtain the main results for the case g ∈ L2(Ω) as well. We finally note
that assumption (2.2)3 is not satisfied for the Sine-Gordon equation (f(u) = sinu).
However, the calculations are simpler in that case (since f and its derivatives are
bounded) and the results obtained below are valid for this equation as well.

In order to simplify the notations, we set ξu(t) := [u(t), ∂tu(t)] and introduce
the following energy norms depending on the small parameter ε ≥ 0 on the pairs of
functions ξ := [u, v]:

‖ξ‖2
Eκ(ε) := ‖u‖2

Hκ+1 + ε‖v‖2
Hκ + ‖v‖2

Hκ−1 . (2.3)

In view of these norms, we introduce the energy spaces Eκ(ε) as follows: for ε �= 0,
we set

Eκ(ε) :=
(
Hκ+1(Ω) ∩ {u∣∣

∂Ω
= 0}) × (

Hκ(Ω) ∩ {v∣∣
∂Ω

= 0}) , (2.4)

and, for ε = 0, we set

Eκ(0) :=
(
Hκ+1(Ω) ∩ {u∣∣

∂Ω
= 0}) × (

Hκ−1(Ω) ∩ {v∣∣
∂Ω

= 0}) , (2.5)
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where Hκ(Ω) denotes the standard Sobolev space; we agree that the boundary
conditions are added only for the κ for which they have a sense (in the sense of the
trace). We will write in the sequel E(ε) instead of E0(ε).

We note that the space (2.4) is a natural phase space for the hyperbolic equation
(2.1) (see e.g. [BV]). On the other hand, in the case ε = 0, the space (2.5) is
naturally associated with the limit parabolic problem (2.1) (with ε = 0). As we will
show below, the norms (2.3) reflect in a right way the dependence on ε of the norms
of the solutions of the singularly perturbed hyperbolic equations (2.1) as ε → 0.

The rest of the article is organized as follows.
Section 3 is devoted to the study of singular perturbations of exponential attrac-

tors in an abstract setting.
In Section 4, we give uniform (with respect to ε → 0) estimates on the solutions

of (2.1) in the phase spaces Eκ(ε), κ = 0, 1, 2, which are necessary in order to
apply the abstract scheme of Section 3 to study the hyperbolic equation (2.1) and
estimates on the difference of solutions of problem (2.1), which are crucial for our
study of exponential attractors (for the reader’s convenience, the proofs of the most
classical estimates are given in Section 6). In particular, we need to study the time
boundary layer near t = 0 as ε → 0 in order to obtain the proper estimates on the
difference of solutions of the perturbed (ε �= 0) and unperturbed (ε = 0) equations
(2.1). We then prove that the dynamical systems associated with problems (2.1)
possess uniform exponential attractors Mε in the spaces E2(ε) such that

distsym,E(ε) (Mε,M0) ≤ c1ε
κ1 , (2.6)

where c1 > 0 and 0 < κ1 < 1 are independent of ε.
We note that, in Section 4, we construct the exponential attractors in the spaces

E2(ε) only, although the convergence (2.6) is established in a weaker space (namely,
E(ε)). In order to overcome this disadvantage, we prove, in Section 5, an abstract
result on the transitivity of exponential attraction and, based on this result, we
verify that Mε attracts exponentially the bounded subsets of E(ε) as well. Thus,
we finally prove that the uniform exponential attraction property for Mε and the
convergence (2.6) take place in the same phase space E(ε). We can note that this
result gives a positive answer to a question raised in [EFNT], Chapter 6.

3. Perturbations of exponential attractors: the abstract setting. In this
section, we formulate and prove an abstract result on the construction of uniform
exponential attractors for a singularly perturbed family of maps, which generalizes
that given in [EfMZ3] and will be applied to our problem in Section 4 below (see
also [MZ] for the application to phase-field type equations). In order to do so, we
will use the concept of Kolmogorov ε-entropy (see e.g. [KT] for details).

Definition 3.1. Let K be a (pre)compact set in a metric space V and let Nµ(K,V )
be the minimal number of balls of radius µ > 0 in V that are necessary to cover
K. Then, the Kolmogorov µ-entropy of K is the number Hµ(K,V ) := lnNµ(K,V ).
We recall that the fractal dimension of the set K can be expressed in terms of the
µ-entropy, namely dimF (K,V ) := lim supµ→0+

Hµ(K,V )

ln 1
µ

.

We are now in a position to formulate our abstract scheme.
Let E(ε) and E1(ε), ε ∈ [0, 1], be two families of Banach spaces (which are

embedded into a larger topological space V) such that E1(ε) ⊂⊂ E(ε), for every
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ε ∈ [0, 1]. We also assume that these compact embeddings are in some sense uniform
with respect to ε, which we express in the following way:

Hµ(BE1(ε)(0, 1), E(ε)) ≤ M(µ), ∀µ > 0, (3.1)

where M(µ) is some monotonic function that is independent of ε (here and below,
BV (v,R) denotes the R-ball in V centered at v).

We further assume that we are given a family of closed sets Bε ⊂ E(ε) (with B0

bounded in E(0)) and a family of maps Sε : Bε → Bε such that
1. For every ε ∈ [0, 1], B0 ⊂ E(ε) and

‖b0‖E(ε) ≤ C1‖b0‖E(0) + C2ε, ∀b0 ∈ B0. (3.2)

2. There exist maps Cε and Kε (which map Bε into E(ε)) such that Sε = Cε +Kε

and, for every b1
ε, b2

ε ∈ Bε, the following estimates hold:

‖Cεb
1
ε − Cεb

2
ε‖E(ε) ≤ κ‖b1

ε − b2
ε‖E(ε), ‖Kεb

1
ε −Kεb

2
ε‖E1(ε) ≤ K‖b1

ε − b2
ε‖E(ε), (3.3)

where κ < 1
2 and K are independent of ε.

3. There exist nonlinear “projectors” Πε : Bε → B0 such that ΠεBε = B0 and

‖S(k)
ε bε − S

(k)
0 Πεbε‖E(ε) ≤ CεLk, (3.4)

for every bε ∈ Bε, where the constants C and L are independent of ε (here and
below, S

(k)
ε denotes the kth iteration of the map Sε).

The main result of this section is the following theorem.

Theorem 3.1. Let assumptions (3.1)–(3.4) hold. Then, there exists a family of
exponential attractors Mε ⊂ Bε for the maps Sε such that SεMε ⊂ Mε and the
following conditions are satisfied:

1. The rate of exponential attraction is uniform with respect to ε:

distE(ε)(S(k)
ε Bε,Mε) ≤ C3e

−νk, (3.5)

where the positive constants C3 and ν are independent of ε.
2. The sets Mε are compact in E(ε), for ε ∈ [0, 1], and their fractal dimensions

are uniformly bounded with respect to ε:

dimF (Mε, E(ε)) ≤ C4, (3.6)

where the positive constant C4 is independent of ε.
3. The symmetric distance between Mε and M0 satisfies

distsym,E(ε) (Mε,M0) ≤ C5ε
τ . (3.7)

Moreover, the constants Ci, i = 3, 4, 5, and 0 < τ < 1 can be calculated explicitly.

Proof. We first construct the exponential attractor M0. To this end, we construct
a family of sets Vi ⊂ S

(i)
0 B0, i = 1, 2, · · · , by the following inductive procedure. We

recall that, due to our assumptions, the set B0 is bounded in E(0). Consequently,
there exists a ball BE(0)(b0, R) such that b0 ∈ B0 and B0 ⊂ BE(0)(b0, R). We
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set V0 := {b0}. We now assume that the set Vk is already constructed such that
Vk ⊂ S

(k)
0 B0 and Vk is an Rk := R

(
κ + 1

2

)k-net of S
(k)
0 B0 (we recall that, due to

our assumptions, κ < 1
2 ). We then construct the next set Vk+1 preserving these

properties. To this end, we use estimates (3.3). Let b belong to Vk. We consider a
ball BE(0)(b,Rk) and its image under the map S0. It follows from (3.3) that

K0BE(0)(b,Rk) ⊂ BE1(0)(K0b,KRk). (3.8)

We now recall that E1(0) ⊂⊂ E(0). Consequently, there exists a covering of the
right-hand side of (3.8) by a finite number of Rk

1−2κ
4 -balls in E(0). We fix a

covering with a minimal number of balls and denote by Wk(b) the set of all the
centers of this covering. Furthermore, we note that

#Wk(b) = NRk
1−2κ

4

(
BE1(0)(K0b,KRk), E(0)

) ≤

≤ N 1−2κ
4K

(
BE1(0)(0, 1), E(0)

) ≤ exp
(

M(
1 − 2κ

4K
)
)

:= N. (3.9)

It is essential for our construction that the number N defined in (3.9) be independent
of k (and of b ∈ Vk; moreover, thanks to (3.1), this number will be independent of
ε as well if we replace the spaces E(0) and E1(0) by E(ε) and E1(ε)).

We note that the first estimate of (3.3) implies that the system of Rk
1−2κ

4 +
κRk = Rk

1+2κ
4 -balls centered at the points of the set C0b + Wk(b) covers the set

S0BE(0)(b,Rk) and that the number of balls in this system does not exceed N .
Therefore, the system of Rk

1−2κ
4 -balls centered at the points of ∪b∈Vk

(C0b+Wk(b))
covers S

(k+1)
0 B0 and the number of balls in this system is not greater than N#Vk.

Increasing the radius of every ball in this covering by a factor of two, we can assume
that the centers of the covering belong to S

(k+1)
0 B0. We now denote by Vk+1 the

(new) centers of this covering and we note that Rk+1 = Rk
1+2κ

2 .
Thus, we have constructed by induction the family of sets Vk ⊂ S

(k)
0 B0, k ∈ N,

which satisfy the following properties:

1. #Vk ≤ Nk, 2. distE(0)

(
S

(k)
0 B0, Vk

)
≤ R(κ +

1
2
)k. (3.10)

(We recall that, due to our assumptions, κ + 1
2 < 1.)

We now define a new family of sets Ek, k ∈ N, by the following inductive formula:

E1 := V1, Ek+1 := S0Ek ∪ Vk+1.

Then, obviously{
1. Ek ⊂ S

(k)
0 B0, S0Ek ⊂ Ek+1, 2. #Ek ≤ Nk+1,

3. distE(0)

(
S

(k)
0 B0, Ek

)
≤ R(κ + 1

2 )k.
(3.11)

We finally set
M′

0 := ∪k∈NEk, M0 := [M′
0]E(0), (3.12)

where [·]V denotes the closure in V . It is not difficult to verify that the set M0 is
an exponential attractor for the map S0 on B0. Indeed, (3.11)1 and (3.12) imply
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that S0M0 ⊂ M0 and the exponential attraction (3.5) is an immediate corollary of
(3.11)3. Furthermore, it follows from (3.11)2, together with (3.11)1, that the fractal
dimension of M0 satisfies (see [EfMZ1] for details)

dimF (M0, E(0)) ≤ M( 1−2κ
4K )

ln 2
2κ+1

. (3.12′)

We then construct the exponential attractors Mε, for ε �= 0, using the construc-
tion of the attractor M0. To this end, we fix inverse images of the sets Ek under
the maps S

(k)
0 (it is possible to do so thanks to (3.11)1). To be more precise, we

assume that the family of sets Êk ⊂ B0 is such that

1. S
(k)
0 Êk = Ek, 2. #Êk = #Ek ≤ Nk+1. (3.13)

We fix an arbitrary ε ∈ (0, 1] and arbitrary liftings of the sets Êk ⊂ B0 to Bε (with
respect to the projection Πε), i.e. the Êk(ε) ⊂ Bε are such that

1. ΠεÊk(ε) = Êk, 2. #Êk(ε) = #Ek ≤ Nk+1. (3.14)

We finally set Ẽk(ε) := S
(k)
ε Êk(ε). We claim that

distE(ε)

(
S(k)

ε Bε, Ẽk(ε)
)
≤ 2CεLk + C1R(κ +

1
2
)k + C2ε, (3.15)

where the constants C, C1, C2 and L are defined in (3.2) and (3.4). Indeed, let
b ∈ Bε be an arbitrary point. We set b0 := S

(k)
0 Πεb ∈ S

(k)
0 B0. We recall that Ek

is an R(κ + 1
2 )k-net of the set S

(k)
0 B0. Consequently, there exists a point bk ∈ Ek

such that

‖b0 − bk‖E(ε) ≤ C1‖b0 − bk‖E(0) + C2ε ≤ C1R(κ +
1
2
)k + C2ε. (3.16)

Let b̂k, b̂k(ε) and b̃k(ε) be the images of the point bk in Êk, Êk(ε) and Ẽk(ε)
respectively (i.e. bk = S

(k)
0 b̂k, Πεb̂k(ε) = b̂k and b̃k(ε) = S

(k)
ε b̂k(ε)). Then, estimates

(3.4) imply that

‖S(k)
ε b − b0‖E(ε) ≤ CεLk, ‖b̃k(ε) − bk‖E(ε) ≤ CεLk. (3.17)

Combining estimates (3.16) and (3.17), we find ‖S(k)
ε b − b̃k(ε)‖E(ε) ≤ ‖S(k)

ε b −
b0‖E(ε) + ‖b0 − bk‖E(ε) + ‖bk − b̃k(ε)‖E(ε) ≤ 2CεLk + C1R(κ + 1

2 )k + C2ε, which
proves (3.15).

Let now k(ε) and 1 > τ > 0 be the solutions of

εLk = (
1
2

+ κ)k = ετ , (3.18)

i.e. k(ε) = logL ε

logL( 1
2+κ)−1

, τ = − logL( 1
2+κ)

1−logL( 1
2+κ)

. Then, it follows from (3.4), (3.15) and
(3.18) that  1. distsym,E(ε)

(
Ẽk(ε), Ek

)
≤ C ′ετ ,

2. distE(ε)

(
S

(k)
ε Bε, Ẽk(ε)

)
≤ C ′′R( 1

2 + κ)k,
(3.19)
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for every 1 ≤ k ≤ k(ε), where the constants C ′ and C ′′ are independent of k and ε.
Thus, we can take Ek(ε) := Ẽk(ε), if k ≤ k(ε). In order to construct the sets

Ek(ε) for k > k(ε), we forget the exponential attractor M0 and the sets Ẽk(ε)
and construct them by the inductive procedure described above based on (3.3) and
starting from Ek(ε)(ε) rather. Thus, we have a family of sets Ek(ε) which satisfy
the following conditions:{

1. Ek(ε) ⊂ S
(k)
ε Bε, SεEk(ε) ⊂ Ek+1(ε), #Ek(ε) ≤ Nk+1,

2. distE(ε)

(
S

(k)
ε Bε, Ek(ε)

)
≤ C ′R( 1

2 + κ)k.
(3.20)

Moreover, for k ≤ k(ε), we have

distsym,E(ε)(Ek(ε), Ek) ≤ C ′′ετ . (3.21)

We finally define the exponential attractor Mε as follows:

M′
ε := ∪k∈NEk(ε), Mε := [M′

ε]E(ε). (3.22)

Arguing as in [EfMZ3], we can verify that the family of exponential attractors Mε

satisfies all the assertions of the theorem. Indeed, the semi-invariance property is
straightforward. Furthermore, the uniform exponential attraction property (3.5) is
an immediate corollary of (3.20)2. Estimate (3.6) for the fractal dimension of Mε

can be derived from (3.20) as in the case of M0 (see [EfMZ1]). Moreover, since the
quantities N , κ and C ′′ in (3.20) are independent of ε, the estimate that we will
obtain will be uniform with respect to ε (actually, the dimension of Mε for ε �= 0
has the same upper bound (3.12′) as in the case ε = 0).

So, there remains to verify estimate (3.7). We shall actually only prove the
estimate

distE(ε) (Mε,M0) ≤ C5ε
τ . (3.23)

The other inequality (giving the symmetric distance) can be proved analogously.
Moreover, it is sufficient to check (3.23) for M′

ε instead of Mε. So, let bε belong
to M′

ε. Then, there exists k ∈ N such that bε ∈ Ek(ε). If k ≤ k(ε), the result
follows immediately from (3.21). Let us therefore assume that k > k(ε). There
exists b̂ε ∈ S

(k−[k(ε)])
ε Bε ⊂ Bε such that S

([k(ε)])
ε b̂ε = bε. We set b̂0 := Πεb̂ε. Then,

on the one hand, (3.4) implies that

‖bε − S
([k(ε)])
0 b̂0‖E(ε) ≤ CεLk(ε), (3.24)

and, on the other hand, it follows from (3.11) that

distE(ε)

(
S

([k(ε)])
0 b̂0,M0

)
≤ R(κ +

1
2
)[k(ε)]. (3.25)

Combining (3.24), (3.25) and (3.2) and using the explicit expression for k(ε), we
obtain estimate (3.23) and Theorem 3.1 is proved.

Remark 3.1. It is essential for Section 4 below to note that Mε satisfies Mε ⊂
SεBε.

4. Uniform exponential attractors for damped hyperbolic equations. In
this section, we apply the abstract result obtained in Section 3 in order to construct
a uniform family of exponential attractors for the family of equations (2.1). We
first give uniform bounds on the solutions of (2.1) in the spaces Eκ(ε), κ = 0, 1, 2,
and estimates on the difference of solutions of (2.1) (the proofs of the most classical
estimates will be given in Section 6).

4.1. Uniform bounds on the solutions.
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Theorem 4.1. Let assumptions (2.2) hold and let 0 < ε ≤ 1. Then, for every
ξu(0) := (u0, u

′
0) ∈ E(ε), problem (2.1) has a unique solution u such that ξu(t) ∈

E(ε), for every t ≥ 0, and the following estimate is valid:

‖ξu(T )‖2
E(ε) +

∫ T+1

T

(ε‖∂2
t u(t)‖2

H−1 + ‖∂tu(t)‖2
L2) dt ≤

≤ Q
(
‖ξu(0)‖2

E(ε)

)
e−αT + Q(‖g‖L2), (4.1)

where the monotonic function Q and the constant α > 0 are independent of ε > 0.
Moreover, system (2.1) possesses a global Lyapunov function:

U(ξu) :=
1
2
‖∇xu‖2

L2 + (F (u), 1) − (g, u) +
1
2
ε‖∂tu‖2

L2 , (4.2)

which satisfies the relation

U(ξu(T )) − U(ξu(0)) = −γ

∫ T

0

‖∂tu(t)‖2
L2 dt, (4.3)

for every solution ξu(t). Here, F (u) :=
∫ u

0
f(s) ds and (·, ·) denotes the standard

inner product in L2(Ω).

We now give, based on (4.1), uniform bounds on the solutions in the spaces E1(ε)
for more regular initial data.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold and let, in addition, ξu(0)
belong to E1(ε). Then, the solution u of problem (2.1) satisfies ξu(t) ∈ E1(ε), for
every t ≥ 0, and the following analogue of estimate (4.1) is valid:

‖ξu(T )‖2
E1(ε) +

∫ T+1

T

(ε‖∂2
t u(t)‖2

L2 + ‖∂tu(t)‖2
H1) dt ≤

≤ Q
(
‖ξu(0)‖2

E1(ε)

)
e−αT + Q(‖g‖L2), (4.4)

where the monotonic function Q and the constant α > 0 are independent of ε > 0.

We finally give uniform bounds on the solutions in E2(ε).

Theorem 4.3. Let the assumptions of Theorem 4.1 hold. Let also ξu(0) belong to
E2(ε) and the compatibility condition

∆xu0

∣∣
∂Ω

= g
∣∣
∂Ω

(4.5)

be satisfied. Then, the solution u of equation (2.1) satisfies ξu(t) ∈ E2(ε), for every
t ≥ 0, and the following estimate is valid:

‖ξu(T )‖2
E2(ε) +

∫ T+1

T

(ε‖∂2
t u(t)‖2

H1 + ‖∂tu(t)‖2
H2) dt ≤

≤ Q
(‖ξu(0)‖E2(ε)

)
e−αT + Q(‖g‖H1), (4.6)

where the monotonic function Q and the constant α > 0 are independent of ε > 0.

Let us consider, to conclude this section, the limit parabolic problem
γ∂tu = ∆xu − f(u) + g, u

∣∣
∂Ω

= 0, u
∣∣
t=0

= u0, (4.7)

that is associated with (2.1) for ε = 0. It is well known (see e.g. [BV]) that,
under the above assumptions, this equation has a unique solution u(t), for every
u0 ∈ L2(Ω). Moreover, it is not difficult to verify that all the estimates of Theorems
4.1-4.3 remain valid for ε = 0 as well (obviously, in that case, the quantity ∂tu(0)
should be expressed through u(0) by using equation (4.7)). To be more precise, the
following assertion is valid.
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Corollary 4.1. Let assumptions (2.2) hold and let, in addition, (4.5) be satisfied.
Then, the solution u(t) of problem (4.7) satisfies the following estimate:

‖u(T )‖2
H3 + ‖∂tu(T )‖2

H1 +
∫ T+1

T

‖∂tu(t)‖2
H2 dt ≤

≤ Q(‖u0‖H3)e−αT + Q(‖g‖H1), (4.8)

where α > 0 and Q is an appropriate monotonic function. Moreover, if u(0) ∈
Hi(Ω) ∩ H1

0 (Ω), for i = 1, 2, then

‖u(T )‖2
Hi + ‖∂tu(T )‖2

Hi−2 +
∫ T+1

T

‖∂tu(t)‖2
Hi−1 dt ≤ Q(‖u0‖Hi)e−αT + Q(‖g‖L2).

Actually, we will need in the sequel stronger estimates for the solutions of (4.7)
and we have the

Corollary 4.2. Let the assumptions of Theorem 4.3 hold. Then

‖∂2
t u(T )‖2

H−1 +
∫ T+1

T

(‖∂2
t u(t)‖2

L2 + ‖(−∆x)−1∂3
t u(t)‖2

L2

)
dt ≤

≤ Q(‖u0‖H3)e−αT + Q(‖g‖H1), (4.9)

where α > 0 and Q is a monotonic function.

The proof of this corollary is based on classical arguments and is left to the
reader.

4.2. Estimates on the difference of solutions.

Theorem 4.4. Let the assumptions of Theorem 4.1 hold and let u1(t) and u2(t)
be two solutions of equation (2.1) such that ξu1(0) and ξu2(0) belong to E(ε). Then

‖ξu1(t) − ξu2(t)‖E(ε) ≤ CeKt‖ξu1(0) − ξu2(0)‖E(ε), (4.10)

where the constants C and K depend on ‖ξui
(0)‖E(ε), i = 1, 2, but are independent

of ε.

We then give an (asymptotically) smoothing property for the difference of so-
lutions of (2.1), assuming that their initial values belong to E1(ε). To this end,
we decompose the function v(t) := u1(t) − u2(t) into the sum of an exponentially
decaying and a smoothing parts: v(t) = v1(t) + v2(t), where the functions v1 and
v2 satisfy the equations

ε∂2
t v1 + γ∂tv1 − ∆xv1 = 0, ξv1(0) = ξv(0), (4.11)

and
ε∂2

t v2 + γ∂tv2 − ∆xv2 = −l(t)v, ξv2(0) = 0, (4.12)

respectively, with l(t) =
∫ 1

0
f ′(su1(t) + (1 − s)u2(t))ds.
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Theorem 4.5. Let u1(t) and u2(t) be two solutions of (2.1) such that ξu1(0) and
ξu2(0) belong to E1(ε) and let the functions v1(t) and v2(t) be defined as above.
Then, the following estimates hold:

‖ξv1(t)‖2
E(ε) ≤ Ce−αt‖ξv(0)‖2

E(ε), (4.13)

‖ξv2(t)‖2
E1(ε) ≤ C1e

Kt‖ξv(0)‖2
E(ε), (4.14)

where all the constants are independent of ε (the constants C and α > 0 depend
only on equation (2.1) and the constants C1 and K depend also on ‖ξui

(0)‖E1(ε),
i = 1, 2).

We now consider the analogues of Theorems 4.4 and 4.5 for the limit parabolic
problem (4.7) (ε → 0); see e.g. [BV]. We recall that, in contrast to the hyperbolic
problem (2.1), the parabolic problem possesses a smoothing property on a finite
interval.

Theorem 4.6. Let the assumptions of Theorem 4.1 hold and let u1(t) and u2(t)
be two solutions of the limit problem (4.7) such that ui(0) ∈ H1

0 (Ω). Then

‖u1(t) − u2(t)‖H1 ≤ CeKt‖u1(0) − u2(0)‖H1 . (4.15)

Moreover, for every t > 0

‖u1(t) − u2(t)‖2
H1 ≤ C

1 + t

t
eKt‖u1(0) − u2(0)‖2

L2 , (4.16)

where the constants C and K depend on the H1-norm of the initial data for ui.

We finally estimate the difference of solutions between the unperturbed (ε = 0)
and perturbed (ε �= 0) problems. To this end, we look for a formal asymptotic
expansion of uε near t = 0 with respect to ε. According to the standard scheme
(see e.g. [VLy] for details), we seek for an asymptotic expansion of the form

uε(t) := u0(t) + εũ1(
t

ε
) + εR(t), (4.17)

where u0(t) is the solution of the limit parabolic problem (4.7), the boundary layer
term ũ1(τ), τ := t/ε, satisfies

∂2
τ ũ1 + γ∂τ ũ1 = 0, ũ1(0) = ∂tu

0(0) − u′
0 and lim

τ→+∞ ũ1(τ) = 0, (4.18)

i.e. (solving (4.18))

ũ1(τ) = − 1
γ

e−γτφuε(0), where φuε(0) := u′
0 −

1
γ

(∆xu0 − f(u0) + g) (4.19)

(here, we have computed the value of ∂tu
0(0) from equation (4.7)), and the remain-

der R(t) := R(t, ε) will be estimated in the next theorem below.
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Theorem 4.7. Let the assumptions of Theorem 4.3 hold. Then, the solution uε(t)
of problem (2.1) possesses a decomposition (4.17), where u0(t) is the solution of
problem (4.7), the boundary layer ũ1 is defined via (4.19) and the remainder R can
be estimated as follows:

‖ξR(t)‖E(ε) ≤ CeKt, ξR(t) := [R(t), ∂tR(t)], (4.20)

where the constants C and K depend on ‖ξuε(0)‖E2(ε), but are independent of ε.

Proof. Owing to the construction of the asymptotic expansion, the remainder R is
solution of the following wave equation:{

ε∂2
t R + γ∂tR− ∆xR + l(t)R = −l(t)ũ1( t

ε ) + ∆xũ1( t
ε ) − ∂2

t u0,

R∣∣
t=0

= 1
γ φuε(0), ∂tR

∣∣
t=0

= 0, R∣∣
∂Ω

= 0,
(4.21)

where l(t) ≡ luε,u0(t) :=
∫ 1

0
f ′(u0(t) + θ(uε(t) − u0(t)))dθ. We note that, due to

Theorem 4.3, ξR(0) ∈ E(ε) and ‖ξR(0)‖E(ε) = 1
γ ‖φuε(0)‖H1 ≤ Q(‖ξuε(0)‖E(ε)). As

usual, multiplying equation (4.21) by ∂tR, integrating over Ω and integrating by
parts, we obtain

1
2

d

dt

(
ε‖∂tR(t)‖2

L2 + ‖∇xR(t)‖2
L2 + 2

(
∇xũ1(

t

ε
),∇xR(t)

))
+

+ γ‖∂tR(t)‖2
L2 = −

(
l(t)(R(t) + ũ1(

t

ε
)), ∂tR(t)

)
+

(
∂t∇xũ1(

t

ε
),∇xR(t)

)
−

− (
∂2

t u0(t), ∂tR(t)
)
. (4.22)

We note that, due to Theorem 4.2 and Corollary 4.1, we have

‖l(t)‖L∞ ≤ C(1 + ‖uε(t)‖H2 + ‖u0(t)‖H2)2 ≤ C1

(
1 + ‖ξuε(0)‖2

E1(ε)

)
, (4.23)

where C1 is independent of ε. Consequently, we have no difficulty to estimate the

first term in the right-hand side of (4.22), namely |
(

l(t)(R(t) + ũ1(
t

ε
)), ∂tR(t)

)
| ≤

K‖∇xR(t)‖2
L2+

γ

4
‖∂tR(t)‖2

L2+K‖ũ1(
t

ε
)‖2

H1 , where K depends on ‖ξuε(0)‖E1(ε), but

is independent of ε. Also, the last term in (4.22) arises no difficulty since, according
to Corollary 4.2, we have an estimate of the integral of ∂2

t u0. We estimate the
second term in the right-hand side of (4.22) in the following way:

|
(

∂t∇xũ1(
t

ε
),∇xR(t)

)
| ≤

≤ ‖∂tũ
1(

t

ε
)‖H1‖∇xR(t)‖L2 ≤ ‖∂tũ

1(
t

ε
)‖H1

(
1 + ‖∇xR(t)‖2

L2

)
.

Inserting these estimates into (4.22), we find

1
2

d

dt

(
ε‖∂tR(t)‖2

L2 + ‖R(t)‖2
H1 − 2

(
∇xũ1(

t

ε
),∇xR(t)

))
+

+
γ

2
‖∂tR(t)‖2

L2 ≤ K

(
1 + ‖∂tũ

1(
t

ε
)‖H1

)
‖R(t)‖2

H1+

+ C

(
‖∂tũ

1(
t

ε
)‖H1 + ‖ũ1(

t

ε
)‖2

H1 + ‖∂2
t u0(t)‖2

L2

)
. (4.24)
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We now note that, in view of the explicit expression (4.19) of the boundary layer
term, we have an estimate of the form

‖ũ1(τ)‖H1 +
∫ ∞

0

‖∂tũ
1(

t

ε
)‖H1 dt ≤ Q(‖ξuε(0)‖E2(ε)), (4.25)

where Q is independent of ε. Thus, applying Gronwall’s inequality to (4.24) and
using (4.9) and (4.25), we obtain

ε‖∂tR(t)‖2
L2 + ‖R(t)‖2

H1 +
∫ t+1

t

‖∂tR(s)‖2
L2 ds ≤ C2e

K1t, (4.26)

where the constants C2 and K1 depend on ‖ξuε(0)‖E2(ε), but are independent of ε.
Therefore, it only remains to estimate ‖∂tR(t)‖H−1 . In order to do so, we multiply
equation (4.21) by (−∆x)−1∂2

t R and integrate by parts. We then have

d

dt
Γ(t) = −

(
ũ1(

t

ε
), ∂2

t R(t)
)
−

(
l(t)ũ1(

t

ε
), (−∆x)−1∂2

t R(t)
)

+

+
(
∂t[l(t)R(t)], (−∆x)−1∂tR(t)

)
+

+ ‖∂tR(t)‖2
L2 − ε‖∂2

t R(t)‖2
H−1 +

(
(−∆x)−1∂3

t u0(t), ∂tR(t)
) ≡ H(t), (4.27)

where

Γ(t) :=
γ

2
‖∂tR(t)‖2

H−1 + (R(t), ∂tR(t)) +
(
l(t)R(t), (−∆x)−1∂tR(t)

)
+

+
(
∂2

t u0(t), (−∆x)−1∂tR(t)
)
.

It is not difficult to verify, using Hölder’s inequality, estimate (4.23) and estimate
(4.9) for ‖∂2

t u0(t)‖H−1 , that
γ

4
‖∂tR(t)‖2

H−1−C‖R(t)‖2
H1−C3 ≤ Γ(t) ≤ γ‖∂tR(t)‖2

H−1+C‖R(t)‖2
H1+C3, (4.28)

where the constants C and C3 depend on ‖ξuε(0)‖E2(ε), but are independent of ε.
So, it only remains to estimate the function H(t) in the right-hand side of (4.27).
To do so, we note that, due to the embeddings H1 ⊂ L6 and H2 ⊂ C, we can
easily deduce from estimates (4.6) and (4.8) the inequality ‖∂tl(t)‖L6 ≤ C4, where
C4 depends only on ‖ξuε(0)‖E2(ε) (and is independent of ε). Consequently, due to
Hölder’s inequality, the function H satisfies

|H(t)| ≤

≤ C

(
‖R(t)‖2

H1 + ‖∂tR(t)‖2
L2 + ‖(−∆x)−1∂3

t u0(t)‖2
L2 + ε−1‖ũ1(

t

ε
)‖2

H1

)
, (4.29)

where C is independent of ε. We now observe that the explicit expression (4.19) of
the boundary layer ũ1 implies that

ε−1

∫ ∞

0

‖ũ1(
t

ε
)‖2

H1 dt ≤ C‖φuε(0)‖2
H1 ≤ C ′, (4.30)

where C ′ depends on ‖ξuε(0)‖E2(ε), but is independent of ε. Integrating (4.27) over
[0, T ] and using estimates (4.9), (4.26) and (4.28)-(4.30), we derive the necessary
estimate for ‖∂tR(t)‖H−1 . This finishes the proof of Theorem 4.7.
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Corollary 4.3. Let the assumptions of Theorem 4.3 hold and let uε(t) and u0(t)
be solutions of (2.1) and (4.7) respectively such that uε(0) = u0(0) = u0. Then

‖ξuε−u0(t)‖E(ε) ≤ C1εe
Kt + C2e

− γ
ε t

(
‖φuε(0)‖H−1 + ε1/2‖φuε(0)‖L2

)
, (4.31)

where φuε(t) := ∂tu
ε(t) − 1

γ (∆xuε(t) − f(uε(t)) + g) and where the constants Ci,
i = 1, 2, and K depend on ‖ξuε(0)‖E2(ε), but are independent of ε.

Indeed, (4.31) is an immediate corollary of Theorem 4.7.

Corollary 4.4. Let the assumptions of Theorem 4.7 hold and let uε(t) and u(t)
be solutions of problems (2.1) and (4.7) respectively, with u(0) ∈ H3(Ω) ∩ H1

0 (Ω)
satisfying the compatibility condition (4.5), but such that u(0) �= uε(0) = u0. Then

‖ξuε−u(t)‖E(0) ≤ C1εe
Kt + C2‖uε(0) − u(0)‖H1eKt+

+ C3e
− γ

ε t
(
‖φuε(0)‖H−1 + ε1/2‖φuε(0)‖L2

)
, (4.32)

where the constants Ci, i = 1, 2, 3, and K depend on ‖ξuε(0)‖E2(ε) and ‖u0(0)‖H3 ,
but are independent of ε.

Proof. Let u0(t) be the solution of the parabolic equation with u0(0) = uε(0) = u0.
Then, on the one hand, we have estimate (4.31) for the difference between uε(t)
and u0(t) and, on the other hand, estimate (4.15) implies that

‖ξu(t) − ξu0(t)‖E(0) ≤ CeKt‖u(0) − u0(0)‖H1 . (4.33)

Combining (4.31) and (4.33), we obtain (4.32).

In the sequel, we will also need to control the evolution of the quantity

−φuε(t) ≡ γε∂2
t uε(t). (4.34)

Corollary 4.5. Let the assumptions of Theorem 4.7 hold. Then

‖φuε(t)‖H−1 + ε
1
2 ‖φuε(t)‖L2 ≤ C

(
e−

γ
ε t‖φuε(0)‖H−1 + ε

)
, (4.35)

where C depends on ‖ξuε(0)‖E2(ε), but is independent of ε.

Proof. It follows from the asymptotic expansion (4.17) of uε that

γφuε(t) = −εγ∂tũ1(
t

ε
) + ε

(
∆xũ1(

t

ε
) + ∆xR(t) − γ∂tR(t)

)
+

+ εl(t)(ũ1(
t

ε
) + R(t)), (4.36)

where l(t) ≡ luε,u0(t) :=
∫ 1

0
f ′(u0(t)+θ(uε(t)−u0(t)))dθ. We note that, without loss

of generality, we may assume that t ≤ 1. It then follows from (4.19), (4.20), Theorem
4.2 and Corollary 4.1 (see also (4.33)) that γ‖φuε(t)‖H−1 ≤ e−

γ
ε t‖φuε(0)‖H−1 +Cε,

where the constant C depends on ‖ξuε(0)‖E2(ε). We then recall that, due to Theorem
4.3, we have the estimate ‖φuε(t)‖H1 ≤ C1. Finally, interpolating between the spaces
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H−1 and H1, we derive the necessary estimate for the second term in the left-hand
side of (4.35).

Remark 4.1. We note that, due to (4.34), estimate (4.35) can be rewritten as
follows:

‖∂2
t uε(t)‖H−1 + ε

1
2 ‖∂2

t uε(t)‖L2 ≤ C1

ε
e−

γ
ε t + C2, (4.37)

where the constants Ci, i = 1, 2, depend on ‖ξuε(0)‖E2(ε), but are independent of
ε.

4.3. Uniform exponential attractors for damped hyperbolic equations. According
to Theorem 4.1, the hyperbolic problem (2.1) with ε �= 0 generates a semigroup
St(ε) : E(ε) → E(ε) via the formula

St(ε)ξu(0) = ξu(t), where u(t) is the solution of (2.1). (4.38)

(Here, the Eκ(ε) denote the spaces defined by (2.4)-(2.5).) Moroever, due to The-
orems 4.2 and 4.3, this semigroup is well defined in the phase spaces E1(ε) and
E2(ε)∩{(4.5)} as well. Analogously, according to Corollary 4.1, the limit parabolic
problem (4.7) corresponding to ε = 0 generates a semigroup St : H1

0 (Ω) → H1
0 (Ω)

via the formula

Stu0 = u(t), where u(t) is the solution of (4.7). (4.39)

Moreover, this semigroup is well defined in the phase spaces H2(Ω) ∩ H1
0 (Ω) and

H3(Ω) ∩ H1
0 (Ω) ∩ {(4.5)} as well. We note however that this semigroup and the

semigroups St(ε) introduced above are defined in different phase spaces. In order
to overcome this difficulty, we introduce an infinite dimensional submanifold N i of
E i(0) by the following expression:

N i := {[u, v] ∈ E i(0), v =
1
γ

(∆xu − f(u) + g) ≡ N (u)}, (4.40)

i = 0, 1, 2, and we define a semigroup St(0) : N i → N i by the following expression:

St(0)[u, v] = [Stu,N (Stu)]. (4.41)

We easily check that N ∈ C1(Hi(Ω),Hi−2(Ω)), i = 1, 2, 3 (see e.g. [BV]). Moreover,
the following estimates are satisfied, for i = 1, 2, 3:

‖N (u)‖Hi−2 + ‖DuN (u)‖L(Hi,Hi−2) ≤ Q(‖u‖Hi), ∀u ∈ Hi(Ω), (4.42)

for an appropriate monotonic function Q. Thus, N i is indeed a C1-submanifold
of E i(0) and the semigroups St and St(0) are conjugated by the diffeomorphism
Φ : u → [u,N (u)]. Therefore, the assertions of Theorem 4.6 remain valid for the
semigroup St(0):

Corollary 4.6. Let the assumptions of Theorem 4.6 hold and let ξ1 and ξ2 belong
to N 0. Then{ ‖St(0)ξ1 − St(0)ξ2‖E(0) ≤ CeKt‖ξ1 − ξ2‖E(0),

‖St(0)ξ1 − St(0)ξ2‖2
E1(0) ≤ C 1+t

t eKt‖ξ1 − ξ2‖2
E(0), t > 0,

(4.43)

where the constants C and K depend on ‖ξi‖E(0), i = 1, 2.

The main result of this section is the following theorem.
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Theorem 4.8. Let assumptions (2.2) hold. Then, for every ε ∈ [0, 1], the semi-
group St(ε) generated by problem (2.1) possesses an exponential attractor Mε which
attracts exponentially the bounded subsets of E2(ε) in the topology of E(ε), i.e. there
exists a function Q and a constant α > 0 that are independent of ε such that, for
every B ⊂ E2(ε)

distE(ε) (St(ε)B,Mε) ≤ Q(‖B‖E2(ε))e−αt. (4.44)

(Of course, for ε = 0, we take B ⊂ N 2 ⊂ E2(0).) Moreover, the fractal dimension
of Mε in E(ε) is uniformly bounded with respect to ε and the symmetric distance
between Mε and M0 in E(ε) satisfies

distsym,E(ε) (Mε,M0) ≤ Cετ , (4.45)

where the constants C > 0 and 0 < τ < 1 are independent of ε.

Proof. We apply Theorem 3.1 to our problem. To this end, we first note that, owing
to Theorem 4.3, the balls

Bε := {ξ ∈ E2(ε), ‖ξ‖2
E2(ε) ≤ 2Q(‖g‖H1)}, (4.46)

where Q is the same as in (4.6), are uniformly (with respect to ε) absorbing sets for
the semigroups St(ε) in E2(ε). Consequently, it is sufficient to verify the exponential
attraction to Mε only for these bounded subsets of E2(ε). We complete the family
Bε ⊂ E2(ε) with the set

B0 := {[u, v] ∈ N 2, ‖u‖2
H3 ≤ 2Q(‖g‖H1)}. (4.47)

We also note that, without loss of generality, we may assume that the functions Q
in (4.6) and (4.8) are the same and that, consequently, B0 is an absorbing set for
St(0) in N 2 as well. Moreover, it follows from estimates (4.6) and (4.8) that there
exists T0 independent of ε ∈ [0, 1] such that

St(ε)Bε ⊂ Bε, if t ≥ T0. (4.48)

Let us now fix T ≥ T0 (independent of ε) such that, for every ε ∈ (0, 1] and for
every ξu1(0), ξu2(0) ∈ Bε, the function v1(t) defined by equation (4.11) satisfies the
estimate

‖ξv1(T )‖E(ε) ≤ κ‖ξu1(0) − ξu2(0)‖E(ε), (4.49)

where κ < 1
2 (it is possible to do so thanks to (4.13)).

We then set Sε := ST (ε) and construct the exponential attractors Md
ε for the

discrete semigroups generated by these maps. To this end, we need to verify the
assumptions of Theorem 3.1.

Assumption (3.1) is obviously satisfied for the family of energy spaces E(ε) and
E1(ε) defined by (2.4). Moreover, the L2-norm (and even the H1-norm) of N (u) is
uniformly bounded on B0 and, consequently

‖b0‖2
E(ε) ≤ ‖b0‖2

E(0) + C1ε, ∀b0 ∈ B0. (4.50)

Thus, (3.2) is also valid (with ε replaced by ε
1
2 ).
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Let us now verify (3.3). To this end, we define the operators Cε : Bε → E(ε),
ε > 0, as follows: Cεξu(0) := ξv1(T ), where v1(t) is the solution of the following
linear problem:

ε∂2
t v1 + γ∂tv1 − ∆xv1 = 0, ξv1(0) = ξu(0). (4.51)

Thus, Kε := Sε − Cε. For ε = 0, we set C0 = 0. Then, estimates (3.3) hold thanks
to Theorem 4.5 and Corollary 4.6 and thanks to our choice of T .

Let us finally verify (3.4). To this end, we set

Πε := Π, Π[u, v] := [u,N (u)]. (4.52)

Obviously, ΠεBε = B0 and estimate (3.4) is an immediate corollary of (4.31) (the
boundary layer term disappears because we start from time t = T > 0).

Thus, all the assumptions of Theorem 3.1 are satisfied and, consequently, there
exists a family of discrete exponential attractors Md

ε which satisfy conditions (3.5)–
(3.7). As usual (see e.g. [EFNT]), we finally construct the continuous attractors as
follows:

Mε := ∪t∈[0,T ]St(ε)Md
ε . (4.53)

We note that, by construction, Mε ⊂ ST (ε)Bε (see Remark 3.1). Consequently
(thanks to (4.35)), the boundary layer term in (4.32) will be of order ε. Therefore,
(4.32) implies that

distsym,E(0) (Mε,M0) ≤ C1e
KT

(
ε + distsym,E(ε)

(Md
ε ,Md

0

))
+ C2ε, (4.54)

and, thanks to (3.7), (4.50) and (4.54), we find estimate (4.45) (where, compared
with (3.7), the exponent τ is replaced by min{ 1

2 , τ}). The exponential attraction
(4.44) is an immediate corollary of (3.5) and of the uniform Lipschitz continuity
(4.10) and (4.43). Thus, there only remains to verify the boundedness of the fractal
dimensions. As usual, this property is an immediate corollary of the uniform (with
respect to ε) time Lipschitz continuity of the solutions of (2.1), which is established
in Lemma 4.1 below. Moreover, thanks to Remark 3.1 and (4.53), this Lipschitz
continuity is indeed necessary for the trajectories ξu(t) with ξu(0) ∈ Bε for t ≥ T
only.

Lemma 4.1. Let the assumptions of Theorem 4.3 hold and let u(t) be the solu-
tion of (2.1). Then, for every 0 < T ≤ t and 0 < s ≤ 1, ‖ξu(t+s)−ξu(t)‖E(ε)

s ≤
QT (‖ξu(0)‖E2(ε)), where the function QT depends on T , but is independent of ε.

The proof of this lemma follows immediately from (4.6) and (4.37).

5. Transitivity of exponential attraction and exponential attraction in
E(ε). In this section, we formulate and prove an abstract result on the transitivity
of exponential attraction and then apply this theorem to our problem to deduce
that the attractors Mε attract uniformly (with respect to ε) not only the bounded
subsets of E2(ε), but also the bounded subsets of E(ε).

Theorem 5.1. Let (M, d) be a metric space and let St be a semigroup acting on
this space such that

d(Stm1, Stm2) ≤ CeKtd(m1,m2), (5.1)
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for appropriate constants C and K. We further assume that there exist three subsets
M1, M2, M3 ⊂ M such that

distM (StM1,M2) ≤ C1e
−α1t, distM (StM2,M3) ≤ C2e

−α2t. (5.2)

Then
distM (StM1,M3) ≤ C ′e−α′t, (5.3)

where C ′ = CC1 + C2 and α′ = α1α2
K+α1+α2

.

Proof. Let m1 belong to M1 and let us set t = t1 + t2, where ti ≥ 0, i = 1, 2, will be
fixed below. Owing to the first estimate of (5.2), there exists m2 ∈ M2 such that

d(St1m1,m2) ≤ C1e
−α1t1 . (5.4)

Then, estimate (5.1) implies that

d(Stm1, St2m2) ≤ CC1e
Kt2−α1t1 . (5.5)

On the other hand, using the second estimate of (5.2), we deduce that there exists
m3 ∈ M3 such that

d(St2m2,m3) ≤ C2e
−α2t2 . (5.6)

Combining (5.4)–(5.6) and noting that m1 ∈ M1 and t1 ∈ [0, t] is arbitrary, we
obtain

distM (StM1,M3) ≤ inf
t1+t2=t

(
CC1e

Kt2−α1t1 + C2e
−α2t2

)
. (5.7)

Fixing the values ti in an optimal way (i.e. such that Kt1−α1t2 = α2t2), we obtain
(5.3).

We are now in a position to prove the

Proposition 5.1. Let the assumptions of Theorem 4.8 hold. Then, there exist a
function Q and constants R > 0 and α > 0 that are independent of ε ∈ [0, 1] such
that, for every bounded subset B ⊂ E(ε)

distE(ε)

(
St(ε)B,BE2(ε)(0, R)

) ≤ Q(‖B‖E(ε))e−αt. (5.8)

Corollary 5.1. Let the assumptions of Theorem 4.8 hold. Then, there exist a
function Q and a positive constant α > 0 such that, for every ε ∈ [0, 1] and for
every bounded subset B ⊂ E(ε) (for ε = 0, obviously, B ⊂ N 0 ⊂ E(0))

distE(ε) (St(ε)B,Mε) ≤ Q(‖B‖E(ε))e−αt, (5.9)

where the attractors Mε have been defined in Theorem 4.8.

Proof of Proposition 5.1. The case ε = 0 is straightforward, due to the smoothing
property for parabolic equations. We will thus consider below the case ε �= 0 only.

We will prove estimate (5.8) in several steps, using the spaces Eκ(ε), with frac-
tional order 0 < κ < 1. The most complicated step is to prove the analogue of (5.8)
for the space Eκ(ε), with 0 < κ < 1

2 , instead of E2(ε). So, we will concentrate on
this point only.
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Step 1. We decompose (following [BV]) the nonlinearity f into a sum f = f1 +f2

such that

f ′
1(v) ≥ 0, f1(0) = f ′

1(0) = 0, |f2(v)| + |f ′
2(v)| + |f ′′

2 (v)| ≤ C, (5.10)

where C is independent of v (such a decomposition exists, thanks to assumptions
(2.2)). We then decompose a solution u(t) of (2.1) into the sum u(t) = v(t) + w(t),
where v(t) is the solution of

ε∂2
t v + γ∂tv − ∆xv + f1(v) = 0, ξv

∣∣
t=0

= ξu

∣∣
t=0

, v
∣∣
∂Ω

= 0. (5.11)

Consequently, w satisfies the equation

ε∂2
t w+γ∂tw−∆xw+[f1(v+w)−f1(v)] = g−f2(u), ξw

∣∣
t=0

= 0, w
∣∣
∂Ω

= 0. (5.12)

Arguing as in the proof of Theorem 4.1, we can prove that the function v(t) satisfies
the estimate∫ T+1

T

‖∂tv(t)‖2
L2 dt + ‖ξv(T )‖2

E(ε) ≤ Q
(‖ξu(0)‖E(ε)

)
e−αT , (5.13)

where Q and α > 0 are independent of ε.
We now estimate the solution w of (5.12). To this end, we multiply this equation

by (−∆x)κθ(t), θ(t) := ∂tw(t) + αw(t), where α is a fixed small strictly positive
number and 0 < κ < 1

2 , integrate over Ω and integrate by parts. We obtain, after
standard transformations

1
2

d

dt
[ε‖θ(t)‖2

κ,2 + ‖w(t)‖2
1+κ,2 + (Φv(t)w(t), (−∆x)κw(t))]+

+ (γ − αε)‖θ(t)‖2
κ,2 + α‖w(t)‖2

1+κ,2 − α(γ − αε)(w(t), (−∆x)κθ(t)) =

= (g − f2(u(t)), ∂t(−∆x)κθ(t)) − α (Φv(t)w(t), (−∆x)κw(t)) +

+ (∂tΦv(t)w(t), (−∆x)κw(t)) + (Φv(t)∂tw(t), (−∆x)κw(t)) , (5.14)

where Φv :=
∫ 1

0
f ′
1(v+sw) ds. We only estimate the last two terms in the right-hand

side of (5.14) (the other terms are easier to estimate). Thanks to Hölder’s inequality
and the Sobolev embedding theorems, we have, for κ < 1

2

| (∂tΦv(t)w(t), (−∆x)κw(t)) | ≤ C‖∂tΦv(t)‖L3/2‖w(t)‖κ,2‖w(t)‖1+κ,2 ≤
≤ µ‖w(t)‖2

κ,2 + Cµ‖∂tΦv(t)‖2
L3/2‖w(t)‖2

1+κ,2, (5.15)

for an arbitrary µ > 0. We note that, owing to the dissipative integrals for u and v
(see (4.3) and (5.13)), we have∫ ∞

0

‖∂tΦv(t)‖2
L3/2 dt ≤

≤ Q(‖ξu(0)‖E(ε))
∫ ∞

0

(‖∂tu(t)‖2
L2 + ‖∂tv(t)‖2

L2) dt ≤ Q′(‖ξu(0)‖E(ε)) < ∞. (5.16)
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We now estimate the last term in the right-hand side of (5.14), splitting it into two
terms again:

(Φv(t)∂tw(t), (−∆x)κw(t)) = ((Φv(t) − f ′
1(v(t)))∂tw(t), (−∆x)κw(t)) +

+ (f ′
1(v(t))∂tw(t), (−∆x)κw(t)) . (5.17)

The second term in the right-hand side of (5.17) can be estimated using Hölder’s
inequality and appropriate embedding theorems:

| (f ′
1(v(t))∂tw(t), (−∆x)κw(t)) | ≤ C‖f ′

1(v(t))‖L3‖∂tw(t)‖κ,2‖w(t)‖1+κ,2 ≤
≤ µ‖∂tw(t)‖2

κ,2 + Cµ‖f ′
1(v(t))‖2

L3‖w(t)‖2
1+κ,2. (5.18)

(Here, we have also implicitly used the assumption κ < 1
2 .) We note that, thanks

to (5.10), we have |f ′
1(v)| ≤ C|v|(1 + |v|) and, consequently, due to (5.13), we have

the analogue of a “dissipative” integral:∫ ∞

0

‖f ′
1(v(t))‖2

L3 dt ≤ Q(‖ξu(0)‖E(ε)) < ∞. (5.19)

So, there only remains to estimate the first term in the right-hand side of (5.17).
To this end, we note that, according to (2.2), we have

|Φv(t) − f ′
1(v(t))| ≤ C|w(t)|(1 + |u(t)| + |v(t)|), (5.20)

and, consequently, thanks to Hölder’s inequality and the Sobolev embedding theo-
rems, it follows that

| ((Φv(t) − f ′
1(v(t)))∂tw(t), (−∆x)κw(t)) | ≤
≤ C(1 + ‖u(t)‖H1 + ‖v(t)‖H1)‖∂tw(t)‖L2‖w(t)‖2

L1+κ ≤
≤ µ‖w(t)‖2

L1+κ + Cµ‖∂tw(t)‖2
L2‖w(t)‖2

L1+κ . (5.21)

Inserting estimates (5.15)–(5.21) into (5.14) and arguing as in the proof of Theorem
4.2, we obtain the estimate

ε‖∂tw(t)‖2
κ,2 + ‖w(t)‖2

1+κ,2 +
∫ t+1

t

‖∂tw(s)‖2
κ,2 ds ≤

≤ Q(‖ξu(0)‖E(ε))e−αt + Q(‖g‖H1), (5.22)

where Q and α > 0 are independent of ε.
Multiplying equation (5.12) by (−∆x)κ−1∂2

t w, arguing as in the proof of Theorem
4.1 (Step 2) and using (5.22), we finally find

‖ξw(t)‖Eκ(ε) ≤ Q(‖ξu(0)‖E(ε))e−αt + Q(‖g‖H1) (5.23)

(the derivation of (5.23) is standard and simpler than that of (5.22) because we can
use the additional regularity of w(t) obtained above (in (5.22)); so, we leave the
details to the reader). Estimates (5.13) and (5.23) imply that

distE(ε)

(
St(ε)B,BEκ(ε)(0, R)

) ≤ Q(‖B‖E(ε))e−αt, (5.24)
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for every bounded subset B ⊂ E(ε) and for R = 2Q(‖g‖H1).
Step 2. Starting now from ξu(0) ∈ Eκ(ε), with κ close to 1

2 , and arguing as in the
first step (but the proof is simpler since the solutions are more regular), we have

distE(ε)

(
St(ε)B,BE1(ε)(0, R′)

) ≤ Q(‖B‖Eκ(ε))e−αt, (5.25)

for every bounded subset B ⊂ Eκ(ε).
Step 3. Starting from ξu(0) ∈ E1(ε), we find similarly

distE(ε)

(
St(ε)B,BE2(ε)(0, R′′)

) ≤ Q(‖B‖E1(ε))e−αt, (5.26)

for every bounded subset B ⊂ E1(ε). Finally, using (5.24)–(5.26) and the transi-
tivity of exponential attraction (Theorem 5.1), we obtain (5.8). This finishes the
proof of Proposition 5.1.

6. Proofs of the main estimates.

Proof of Theorem 4.1. The proof of existence and uniqueness of solutions can be
found, for instance, in [BV]. The existence of a Lyapunov function U and relation
(4.3) are also obtained in [BV]. So, it remains to verify the uniform estimate (4.1).
We will give below a formal derivation of this estimate only; it can be justified by
considering Galerkin approximations and consists of two steps.

Step 1. Multiplying equation (2.1) by ∂tu(t) + βu(t), β > 0 small enough,
integrating over Ω and arguing in a standard way, we find∫ T+1

T

‖∂tu(t)‖2
L2 dt + ε‖∂tu(T )‖2

L2 + ‖u(T )‖2
H1 ≤

≤ Q
(
ε‖∂tu(0)‖2

L2 + ‖u(0)‖2
H1

)
e−αT + Q(‖g‖L2), (6.1)

where Q and α > 0 are independent of ε (see e.g. [BV] for details).
Step 2. Thus, it only remains to estimate ‖∂tu(t)‖H−1 . In order to do so, we

multiply equation (2.1) by (−∆x)−1∂2
t u(t) and obtain, integrating by parts

d

dt

[γ

2
‖∂tu(t)‖2

H−1 + (u(t), ∂tu(t)) + (f(u(t)) − g, (−∆x)−1∂tu(t))
]
+

+ ε‖∂2
t u(t)‖2

H−1 +
[γ

2
‖∂tu(t)‖2

H−1 + (u(t), ∂tu(t))+

+ (f(u(t)) − g, (−∆x)−1∂tu(t))
] ≤ h(t), (6.2)

where

h(t) :=
[γ

2
‖∂tu(t)‖2

H−1 + (u(t), ∂tu(t)) + (f(u(t)) − g, (−∆x)−1∂tu(t))
]
+

+ ‖∂tu(t)‖2
L2 + (f ′(u(t))∂tu(t), (−∆x)−1∂tu(t)). (6.3)

It follows from the growth restriction (2.2)4 on f , from (4.2), from the Sobolev
embedding H1 ⊂ L6 and from estimate (6.1) that∫ T+1

T

|h(t)| dt ≤ Q(ε‖∂tu(0)‖2
L2 + ‖u(0)‖2

H1)e−αT + Q(‖g‖L2). (6.4)
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Indeed, the only difficulty to derive (6.4) is to estimate the last term in (6.3).
Applying Hölder’s inequality, together with the embedding H1 ⊂ L6, to this term,
we have

|(f ′(u(t))∂tu(t), (−∆x)−1∂tu(t))| ≤
≤ ‖f ′(u(t))‖L3‖∂tu(t)‖L2‖(−∆x)−1∂tu(t)‖L6 ≤

≤ C(1 + ‖u(t)‖2
H1)‖∂tu(t)‖2

L2 . (6.5)

Integrating (6.5) over [T, T +1] and estimating the right-hand side of the inequality
that we obtain by using (6.1), we find the right-hand side of (6.4). The other terms
in (6.3) can be estimated analogously.

Applying now Gronwall’s inequality to (6.2) and using estimate (6.4), we obtain,
after simple transformations

Y (T ) ≤ CY (0)e−T + Q1

(
ε‖∂tu(0)‖2

L2 + ‖u(0)‖2
H1

)
e−αT + Q1(‖g‖L2), (6.6)

where Y (t) := γ
2 ‖∂tu(t)‖2

H−1 + (u(t), ∂tu(t)) + (f(u(t)) − g, (−∆x)−1∂tu(t)) and
where C > 0 and the monotonic function Q1 are independent of ε ∈ (0, 1). It follows
from the growth restriction (2.2)4 and from the Sobolev embedding theorems that,
analogously to (6.5)

C1‖∂tu(t)‖2
H−1 − Q2(‖u(t)‖H1) ≤ Y (t) ≤ C2‖∂tu(t)‖2

H−1 + Q2(‖u(t)‖H1), (6.7)

for positive constants Ci and a monotonic function Q2 that are independent of ε.
Combining estimates (6.1), (6.6) and (6.7), we can find the necessary estimates
for ‖∂tu(t)‖H−1 . The estimates for ε‖∂2

t u(t)‖2
H−1 can be easily derived by then

integrating (6.2) over [T, T + 1]. This finishes the proof of Theorem 4.1.

Proof of Theorem 4.2. We again only give a formal derivation of (4.4). We introduce
the solution G = G(x) of the following problem:

∆xG = g, G
∣∣
∂Ω

= 0. (6.8)

We set w(t) := u(t) − G. This function obviously satisfies the equation

ε∂2
t w+γ∂tw−∆xw+f(w+G) = 0, w

∣∣
t=0

= u0−G, ∂tw
∣∣
t=0

= u′
0, w

∣∣
∂Ω

= 0. (6.9)

We multiply equation (6.9) by −∆x(∂tw(t)+βw(t)) and integrate over Ω to obtain

1
2

d

dt
[ε‖∂t∇xw(t)‖2

L2 + ‖∆xw(t)‖2
L2 − 2βε(∂tw(t),∆xw(t))]+

+ (γ − βε)‖∂t∇xw(t)‖2
L2 + β‖∆xw(t)‖2

L2 − γβ(∂t∇xw(t),∇xw(t)) =

= β(f(u(t)),∆xw(t)) + (f(w(t) + G),∆x∂tw(t)). (6.10)

We transform the last term of (6.10) (the other terms are easier to treat) as follows:

(f(w + G),∆x∂tw) = ∂t(f(w + G),∆xw) − (f ′(w + G)∂tw,∆xw), (6.11)

and we estimate the last term of this equality via Hölder’s inequality:

|(f ′(w + G)∂tw,∆xw)| ≤ ‖f ′(w + G)‖L6‖∂tu‖L3‖∆xw‖L2 . (6.12)
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We recall that, due to the growth restriction (2.2)4, we have an estimate of the
form ‖f ′(w + G)‖L6 ≤ C

(
1 + ‖g‖2

L2 + ‖w‖2
L12

)
. Inserting these estimates into

(6.12), we find, using classical interpolation results (in particular, we have ‖w‖2
L12 ≤

C‖w‖3/2
H1 ‖w‖1/2

H2 and ‖∂tw‖L3 ≤ C‖∂tw‖1/2
L2 ‖∂tw‖1/2

H1 )

|(f ′(w + G)∂tw,∆xw)| ≤ Q(‖ξu(t)‖E(ε))‖∆xw‖3/2
L2 ‖∂tu‖1/2

L2 ‖∇x∂tw‖1/2
L2 .

Applying Young’s inequality, we finally obtain, for every µ > 0

|(f ′(w(t) + G)∂tw(t),∆xw(t))| ≤ µ
(‖∂t∇xw(t)‖2

L2 + ‖∆xw(t)‖2
L2

)
+

+ Qµ(‖ξu(t)‖E(ε))‖∂tu(t)‖2
L2‖∆xw(t)‖2

L2 .

Fixing µ > 0 small enough (but independently of ε) and inserting this estimate into
the right-hand side of (6.11), we derive the inequality

1
2

d

dt

[
ε‖∂t∇xw(t)‖2

L2 + ‖∆xw(t)‖2
L2 − 2βε(∂tw(t),∆xw(t))−

− 2(f(u(t)),∆xw(t))
]
+ β1

(‖∂t∇xw(t)‖2
L2 + ‖∆xw(t)‖2

L2

) ≤
≤ Q(‖ξu(t)‖E(ε))‖∂tu(t)‖2

L2‖∆xw(t)‖2
L2 + C‖f(u(t))‖2

L2 , (6.13)

for a sufficiently small β1 > 0 that is independent of ε. We set

Y (t) = ε‖∂t∇xw(t)‖2
L2 + ‖∆xw(t)‖2

L2 − 2βε(∂tw(t),∆xw(t)) − 2(f(u(t)),∆xw(t)).

Then, due to Hölder’s inequality, due to the growth restriction (2.2)4 and due to
classical embedding theorems, we have (for a sufficiently small β > 0)

C1

(
ε‖∂tw(t)‖2

H1 + ‖w(t)‖2
H2

) − Q1(‖u(t)‖H1) ≤ Y (t) ≤
≤ C2

(
ε‖∂tw(t)‖2

H1 + ‖w(t)‖2
H2

)
+ Q1(‖u(t)‖H1), (6.14)

for appropriate positive constants Ci and monotonic function Q1 that are indepen-
dent of ε.

Inequality (6.13) now implies that

d

dt
Y (t) + (β1 − Q(‖ξu(t)‖E(ε))‖∂tu(t)‖2

L2)Y (t) ≤
≤ (

β1 + Q(‖ξu(t)‖E(ε))‖∂tu(t)‖2
L2

) [
2βε|(∂tw(t),∆xw(t))|+ 2|(f(u(t)),∆xw(t))|]+

+ C‖f(u(t))‖2
L2 . (6.15)

Applying Hölder’s inequality to the right-hand side of (6.15), using (6.14) and the
obvious estimate ‖f(u(t))‖2

L2 ≤ Q(‖ξu(0)‖E(ε))e−αt + Q(‖g‖L2), we find

d

dt
Y (t)+B(t)Y (t) ≤ (

Q2(‖ξu(0)‖E(ε))e−αt + Q2(‖g‖L2)
) (

1 + ‖∂tu(t)‖2
L2

)
, (6.16)

where B(t) := 1
2β1 − 2Q(‖ξu(t)‖E(ε))‖∂tu(t)‖2

L2 .
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We note that it easily follows from (4.3) that
∫ T

0
‖∂tu(t)‖2

L2 dt ≤ Q3(‖ξu(0)‖E(ε)),
for a function Q3 that is independent of T ≥ 0 and ε, and, consequently∫ T

0

B(t) dt ≥ 1
2
β1T − Q4(‖ξu(0)‖E(ε)), (6.17)

where β1 > 0 and Q4 are independent of T and ε. Applying then Gronwall’s
inequality to (6.16) and using (6.17), we find, after simple computations

ε‖∂tw(T )‖2
H1 +‖w(T )‖2

H2 ≤ Q
(
ε‖∂tu(0)‖2

H1 + ‖u(0)‖2
H2

)
e−αT +Q(‖g‖L2), (6.18)

where Q and α > 0 are independent of ε.
A similar estimate for

∫ T+1

T
‖∂tu(t)‖2

H1 dt can be easily derived by now integrat-
ing (6.13) over [T, T + 1] and by using (6.18). So, there only remains to estimate
‖∂tu(t)‖L2 and ε

∫ T+1

T
‖∂2

t u(t)‖2
L2 dt. To this end, we multiply equation (6.9) by

∂2
t w(t) and argue as in Step 2 of the proof of Theorem 4.1. We also note that this

reasoning is simpler than that performed in the proof of Theorem 4.1 because we
already have an estimate of the L∞-norm of the solution u(t) (due to (6.18) and due
to the embedding H2 ⊂ C) and, consequently, we do not need to worry about the
growth of f . That is the reason why we leave the rigorous proof of these estimates
to the reader. This finishes the proof of Theorem 4.2.

Proof of Theorem 4.3. As above, we only give a formal derivation of (4.6). We
set, as in the proof of Theorem 4.2, w(t) := u(t) − G, where G is the solution of
(6.8). Then, due to equation (2.1) and due to the compatibility condition (4.5), the
function w satisfies equation (6.9), together with the following boundary conditions:

w(t)
∣∣
∂Ω

= ∆xw(t)
∣∣
∂Ω

= 0. (6.19)

Here, we have implicitly used the condition f(0) = 0.
Multiplying equation (6.9) by ∆2

x(∂tw(t) + βw(t)), integrating by parts using
(6.19), and arguing as in the proof of Theorem 4.2, we obtain

1
2

d

dt
[ε‖∂t∆xw(t)‖2

L2 + ‖∇x∆xw(t)‖2
L2 − 2βε(∂t∇xw(t),∇x∆xw(t))]+

+ (γ − βε)‖∂t∆xw(t)‖2
L2 + β‖∇x∆xw(t)‖2

L2 − γβ(∂t∇xw(t),∇x∆xw(t)) =

= −β(f(u(t)),∆2
xw(t)) + (f ′(u(t))∆xu(t),∆x∂tw(t))+

+ (f ′′(u(t))|∇xu(t)|2, ∂t∆xw(t)). (6.20)

We set Y (t) := ε‖∂t∆xw(t)‖2
L2+‖∇x∆xw(t)‖2

L2−2βε(∂t∇xw(t),∇x∆xw(t)). Then,
for a sufficiently small β > 0, we easily have

C1

(
ε‖∂t∆xw(t)‖2

L2 + ‖∇x∆xw(t)‖2
L2

) ≤ Y (t) ≤
≤ C2

(
ε‖∂t∆xw(t)‖2

L2 + ‖∇x∆xw(t)‖2
L2

)
, (6.21)

for positive constants Ci that are independent of ε.
We again estimate the most complicated term in the right-hand side of (6.20)

only (the other terms can be estimated analogously). Using Hölder’s inequality, we
find, for every µ > 0

|(f ′(u(t))∆xu(t),∆x∂tw(t))| ≤ C‖f ′(u(t))‖L∞‖u(t)‖H2‖∂tw(t)‖H2 ≤
≤ Cν‖f ′(u(t))‖2

L∞‖u(t)‖2
H2 + ν‖∂tw(t)‖2

H2 . (6.22)
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Noting that H2 ⊂ C, we have

‖f ′(u(t))‖2
L∞ ≤ Q(‖u(t)‖H2), (6.23)

for an appropriate monotonic function Q depending only on f . Estimating the H2-
norm of u(t) using Theorem 4.2, inserting (6.22) and (6.23) into (6.20) and using
(6.21), we find, after standard calculations d

dtY (t)+β1Y (t) ≤ Q(‖ξu(0)‖E1(ε))e−αt+
Q(‖g‖L2), for a positive constant β1 and a function Q that are independent of ε.
Applying now Gronwall’s inequality and using (6.21) again, we finally obtain∫ T+1

T

‖∂tw(t)‖2
H2 dt + ε‖∂tw(T )‖2

H2 + ‖w(T )‖2
H3 ≤

≤ Q
(
ε‖∂tu(0)‖2

H2 + ‖u(0)‖2
H3

)
e−αT + Q(‖g‖L2), (6.24)

for appropriate monotonic function Q and positive constant α that are independent
of ε. Noting that ‖u(t)‖H3 ≤ ‖w(t)‖H3 + ‖g‖H1 , (6.24) then implies an analogous
(to (6.24)) estimate for u(t).

Multiplying finally equation (6.9) by ∆x∂2
t w and arguing as in Step 2 of the proof

of Theorem 4.1, we have the estimates for ‖∂tu(t)‖H1 and
∫ T+1

T
ε‖∂2

t u(t)‖2
H1dt. This

finishes the proof of Theorem 4.3.

Proof of Theorem 4.4. We set v(t) = u1(t) − u2(t). Then, we have

ε∂2
t v + γ∂tv − ∆xv + l(t)v = 0, ξv(0) = ξu1(0) − ξu2(0), (6.25)

where l(t) :=
∫ 1

0
f ′(su1(t) + (1 − s)u2(t)) ds.

We note that, according to the growth restrictions on f ′, the Sobolev embedding
theorems and estimate (4.1)

‖l(t)‖L3 ≤ C(1+‖u1(t)‖H1 +‖u2(t)‖H1)2 ≤ Q(‖ξu1(0)‖E(ε) +‖ξu2(0)‖E(ε)). (6.26)

Multiplying now equation (6.25) by ∂tv, integrating over Ω and using the obvious
estimate

|(l(t)v(t), ∂tv(t))| ≤ C‖l(t)‖L3(‖v(t)‖2
H1 + ‖∂tv(t)‖2

L2), (6.27)

we obtain, after standard transformations (see e.g. [BV])∫ T+1

T

‖∂tv(t)‖2
L2 dt + ε‖∂tv(T )‖2

L2 + ‖∂tv(T )‖2
H1 ≤

≤ CeKT
(
ε‖∂tv(0)‖2

L2 + ‖v(0)‖2
H1

)
. (6.28)

In order to obtain an estimate for ‖∂tv(t)‖H−1 , we multiply equation (6.25) by
(−∆x)−1∂2

t v and integrate over Ω. We then have

d

dt
[
γ

2
‖∂tv(t)‖2

H−1 + (v(t), ∂tv(t)) + (l(t)v(t), (−∆x)−1∂tv(t))]+

+ ε‖∂2
t v(t)‖2

H−1 ≤ ‖∂tv(t)‖2
L2 + (l′(t)v(t), (−∆x)−1∂tv(t))+

+ (l(t)∂tv(t), (−∆x)−1∂tv(t)) ≡ h(t). (6.29)
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Estimate (6.2), together with Hölder’s inequality and the growth restrictions on f ,
gives∫ T+1

T

|h(t)| dt ≤

≤ Q(‖ξu1(0)‖E(ε) + ‖ξu2(0)‖E(ε))eKT
(
ε‖∂tv(0)‖2

L2 + ‖v(0)‖2
H1

)
. (6.30)

To do so, we only estimate the second term in h(t) (the other terms can be estimated
analogously). It follows from the growth restrictions on f ′′ that

‖l′(t)‖L3/2 ≤ C(1 + ‖u1(t)‖H1 + ‖u2(t)‖H1)(‖∂tu1(t)‖L2 + ‖∂tu2(t)‖L2). (6.31)

Thus, due to (4.1) and (6.28) and due to Hölder’s inequality

|(l′(t)v(t), (−∆x)−1∂tv(t))| ≤
≤ C‖l′(t)‖L3/2‖v(t)‖H1‖∂tv(t)‖L2 ≤ C ′‖l′(t)‖2

L3/2‖v(t)‖2
H1 + ‖∂tv(t)‖2

L2 ≤
≤ Q(‖ξu1(0)‖E(ε) + ‖ξu2(0)‖E(ε))(ε‖∂tv(0)‖2

L2 + ‖v(0)‖2
H1)×

× eKt(‖∂tu1(t)‖2
L2 + ‖∂tu2(t)‖2

L2) + ‖∂tv(t)‖2
L2 . (6.32)

Integrating (6.32) over [T, T + 1] and using estimates (6.7) and (6.28), we obtain
(6.30) (for this part of h). Integrating finally (6.29) and using (6.30), we find, after
standard calculations, the necessary estimate for ‖∂tv(t)‖H−1 . This finishes the
proof of Theorem 4.4.

Proof of Theorem 4.5. We will only prove estimate (4.14) (estimate (4.13) is
straightforward, v1 being the solution of a linear equation). Multiplying equation
(4.12) by −∆x∂tv2(t), we have

1
2

d

dt

(
ε‖∇x∂tv2(t)‖2

L2 + ‖∆xv2(t)‖2
L2

)
+ γ‖∇x∂tv2(t)‖2

L2 =

= (l(t)v(t),∆x∂tv2(t)). (6.33)

We recall that H2 ⊂ C; therefore, it follows from Theorem 4.2 that

‖l(t)‖L∞ + ‖∇xl(t)‖L6 ≤ Q
(‖ξu1(0)‖E1(ε) + ‖ξu2(0)‖E1(ε)

)
. (6.34)

Thus, the right-hand side of (6.33) can be estimated as follows:

|(l(t)v(t),∆x∂tv2(t))| ≤ |(∇xl(t)v(t), ∂t∇xv2(t))| + |(l(t)∇xv(t), ∂t∇xv2(t))| ≤
≤ γ

2
‖∇x∂tv2(t)‖2

L2 + C ′‖v(t)‖2
H1 , (6.35)

where the constant C ′ depends on ‖ξui
(0)‖E1(ε), but is independent of ε. Inserting

this estimate into (6.33) and using (4.10), we have

∫ T+1

T

‖∂tv2(t)‖2
H1 dt + ε‖∂tv2(T )‖2

H1 + ‖v2(T )‖2
H2 ≤ CeKT ‖ξv(0)‖2

E(ε). (6.36)
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So, it only remains to estimate ‖∂tv2(t)‖2
L2 . To this end, we multiply (as above)

equation (4.12) by ∂2
t v2(t) and integrate over Ω. We obtain

d

dt

(γ

2
‖∂tv2(t)‖2

L2 − (∆xv2(t), ∂tv2(t)) + (l(t)v(t), ∂tv2(t))
)

+ ε‖∂2
t v2(t)‖2

L2 =

= ‖∇x∂tv2(t)‖2
L2 + (∂tl(t)v(t), ∂tv2(t)) + (l(t)∂tv(t), ∂tv2(t)) ≡ h(t). (6.37)

We note that, using the growth restriction (2.2)4, estimate (4.4) and the embedding
H2 ⊂ C, we have, arguing as in (6.31), the estimate

‖∂tl(t)‖L3/2 ≤ Q
(‖ξu1(0)‖E1(ε) + ‖ξu2(0)‖E1(ε)

)
, (6.38)

and, consequently, due to (6.34) and (6.38)

|h(t)| ≤ C1(‖v(t)‖2
H1 + ‖∂tv(t)‖2

L2 + ‖∂tv2(t)‖2
H1). (6.39)

Inserting (6.39) into (6.37), integrating the inequality that we obtain over [0, T ] and
using (6.28) and (6.36), we find the necessary estimate for ‖∂tv2(t)‖L2 . This finishes
the proof of Theorem 4.5.
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